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Summary

Induced pluripotent stem cell (iPSC) derived neural cultures from amyotrophic lateral sclerosis (ALS)
patients can reflect disease phenotypes targetable by treatments. However, widely used differentiation
protocols produce mixtures of progenitors, neurons, glia, and other cells at various developmental stages and
rostrocaudal neural tube segments. Here we present a methodology using single-cell RNA sequencing analysis
to distinguish cell type expression in C9orf72 ALS, sporadic ALS, control, and genome-edited cultures across
multiple subjects, experiments, and commercial platforms. Combinations of HOX and developmental gene
expression with global clustering classified rostrocaudal, progenitor, and mantle zone fates. This demonstrated
that iPSC-differentiated cells recapitulate fetal hindbrain and spinal cord development and resolved early,
reproducible, and motor neuron-specific signatures of familial and sporadic ALS. This includes downregulated
ELAVL3 expression, which persists into disease endstages. Single-cell analysis thus yielded predictive ALS

markers in other human and mouse models which were otherwise undiscovered through bulk omics assays.

Introduction

The ability to analyze global gene expression in single cells within bulk tissues shifts the paradigm for
understanding molecular mechanisms underlying cellular, tissue, and organismal physiology. Numerous recent
studies have utilized single-cell RNA-seq (scRs) technology in primary human tissue as well as animal models
(Keren-Shaul et al., 2017; Sala Frigerio et al., 2019; Stegle et al., 2015; Wagner et al., 2016) to survey and catalog
cell identities (Macosko et al., 2015), developmental trajectories (Qiu et al.,, 2017), and physiological
perturbations associated with disease (Mathys et al.,, 2019). scRs can also interrogate human induced
pluripotent stem cell (iPSC)-based models of disease, such as in cases of familial and sporadic Parkinson’s disease

(Lang et al., 2019).
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Here, we applied scRs to understand the heterogeneous and cell type-specific nature of disrupted
physiology in human iPSC-based models of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder
characterized by cortical and spinal motor neuron (MN) death that results in weakness and paralysis of voluntary
muscles (Ragagnin et al., 2019; Swinnen and Robberecht, 2014). While numerous molecular pathways and cell
types associated with ALS have been described, definitive mechanisms responsible for MN degeneration remain
elusive (Taylor et al., 2016). The vast majority of ALS cases are sporadic, with no known genetic link. In familial
cases, ALS can be traced to a set of genetic mutations, for instance in the genes for SOD1 and C9orf72. However,
symptom onset for both familial and sporadic ALS varies across body regions, thereby compounding difficulty in
discerning disease etiology. Despite this variation, common clinical presentations are observed across familial
and sporadic cases, suggesting that molecular features may converge across ALS patients. These features may

encompass common mechanisms underlying MN degeneration that could be detected in patient iPSC models.

The ability to isolate robust disease signatures at single-cell resolution in iPSC disease models remains a
challenging endeavor in many aspects. First, droplet based scRs, as a recently developed technology with lower
sequencing depth compared to bulk RNA-seq, is vulnerable to technical confounders such as dropout, sensitivity
to experimental batch effects, and variation across technological and commercial platforms (Hicks et al., 2018;
Luecken and Theis, 2019). Second, iPSC-differentiated tissues do not recapitulate defined, mature, and adult-
like states (Ho et al., 2016; Stein et al., 2014), which may reduce the fidelity of signals representing dysfunctional
physiologies experienced by in vivo tissues in late onset diseases. Finally, iPSC-based modeling of nongenetic
forms of disease requires a large number of subject lines to meaningfully represent populations of genetically
diverse individuals; however, processing many samples within one experimental batch remains restricted by

current costs and technological limitations of scRs.
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We addressed the technical challenges of scRs of iPSC disease models by profiling multiple subject lines
across multiple experimental batches and two scRs commercial platforms and performing meta-analysis to
discern reproducible, cell type-specific, and early gene expression signatures of ALS. We combined supervised
annotation of cell types by developmental gene markers with unsupervised global clustering to identify
individual cells along the rostrocaudal axis of the mammalian body, as well as progenitor and postmitotic neural
subtypes, which arise in complex cultures during in vitro differentiation. To isolate cell type-specific effects of
the C9orf72 hexanucleotide repeat expansion (HRE) in ALS, we compare gene expression changes between
C90rf72 HRE ALS cells to control subject cells as well as genome-edited isogenic cells. We also performed gene
expression comparisons between sporadic ALS and control conditions and observed common changes occurring
in C90orf72 ALS conditions. Highlighting the efficacy of this rigorous scRs approach, we uncover early signatures
that persisted throughout early to end stages of disease in both familial and sporadic ALS cases as well as in
animal models. Furthermore, the signatures discovered through scRs could be applied to bulk transcriptomic
and proteomic data sets to accurately classify ALS from non-ALS cases. Our results suggest that these signatures
are potentially causative of disease and highlight their value as predictive biomarkers that will aid future studies

aiming to better characterize and treat ALS.

Results
Production of control, sporadic, C9orf72 ALS and isogenic iPSC derived MNs

MNs were differentiated from iPSC lines reprogrammed from either fibroblasts or peripheral blood
monocytes from four healthy subjects: 0083, 0179, 0025, and 0465, two sporadic ALS subjects: 2XWC and 8BRM,
and four familial ALS subjects with C9orf72 HRE: 0028, 0029, 0052, and 6ZLD (Table S1 and Figure 1A). To isolate
C90rf72 HRE effects from inherent genetic variability, isogenic patient lines were established from two C9orf72
HRE lines (0029 and 0052) using CRISPR-Cas9-mediated gene editing to remove the HREs (Table S1 and Figure

S1A). Successfully edited iPSC clones were kayotypically normal (Figure S1B-E), and, retained the ability to


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

differentiate into MNs over a 30 day in vitro differentiation protocol (Yang et al., 2013) at a comparable
efficiency to their parental C9orf72 HRE cell lines (Figure S2A). Removal of the repeat expansions resulted in
two-fold increase in expression of all C90orf72 transcript variants back to levels observed in normal controls
(Figures S2B and S2C) and eliminated the presence of RNA foci comprising sense and antisense sequences of
the HRE (Figures S2D and S2E). Furthermore, the presence of polyGP dipeptide repeats, which accumulated in
C90rf72 HRE ALS subject MN cultures over time (Figure S2F), were reduced to control subject levels (Figure S2G).
The generation of isogenic MN cultures thus enabled the direct attribution of molecular phenotypes to the HRE

in their parental C9orf72 ALS subject lines.

iPSC-derived MN cultures recapitulate developmental gene expression patterns

Next, the differentiation of iPSC-MNs were characterized at the single-cell level using the lllumina® Bio-
Rad® SureCell™ WTA 3' Library Prep Kit for the ddSEQ™ System for one control line (0083) using a more rapid
18 day differentiation protocol that produces cranial and spinal MNs and interneurons (Maury et al., 2015:
Figure 1B). Consistent with previous observations (Efroni et al., 2008), pluripotent cells undergo a reduction in
overall transcriptional activity upon differentiation suggesting a refinement of transcriptional programs from
the pluripotent to progenitor state (Figures 1C and 1D). Interestingly, the median of unique molecular identifiers
(nUMis) per cell increased between days 12 and 18 reflecting perhaps a state of specialized physiology and
functions. Global clustering resolved each time point into distinct clusters, where day 12 and day 18 populations
further resolved into subpopulations (Figure 1E). Pseudotime analysis through Monocle (Qiu et al., 2017) of cells
from all time points arranged each time course in the expected order of progressively differentiating cell states
(Figure 1F). 20 marker genes for spinal MN development and maturation (Ho et al., 2016) were expressed along

the pseudotime axis in a pattern consistent with fetal-like tissues derived in vitro from iPSCs (Figure S3A).

iPSC-MN cultures globally resemble fetal hindbrain and spinal cord
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We next performed scRs on MN cultures from several ALS and control subject lines at 18 days of
differentiation in order to establish a pool of single cells we could use to determine regional specificity as well
as the presence of ALS signatures (Table S1 and Figure 1G). Because only a finite amount of samples could be
captured and processed within each experiment, we collected samples across six batches of differentiation (A-
F). We also aimed to establish the robustness of any signal across two different scRs platforms: the Illumina Bio-
Rad Single-Cell Sequencing Solution (DDSEQ) and the 10X (TENEX) Genomics Chromium (Table S1 and Figure
1G). Immunostaining and quantification of day 18 cultures indicated no significant differences in ISL1 and SMI-
32 positive MNs between ALS and control suggesting that an overt disease phenotype such as cell death has not
manifested at this relatively early differentiation time point (Figure S3B) as shown in previous studies (Fujimori
et al., 2018; Sareen et al., 2013). In total, we analyzed 21,702 cells that passed quality control filters. To gauge
the developmental and maturation states of these cultures, we correlated their expression profiles to previous
data sets characterizing spinal MN maturation gene expression (Ho et al., 2016) (Figures S4A and S4B) and to a
bulk RNA-seq dataset of human fetal hindbrain and spinal cord tissue ranging from Carnegie stages 13 to 23 (de
Kovel et al., 2017) (Figure 1H). By 18 days, iPSC-derived cells showed transcriptional states that most globally

resemble fetal hindbrain and spinal cord tissue at Carnegie stage 17, or about 42 days of in vivo development.

In order to establish the rostrocaudal identity of individual cells, we next focused on the family of
homeobox transcriptional regulators of morphological patterning, the HOX genes. Based on previous genetic
studies (Di Bonito et al., 2013; Lippmann et al., 2015; Philippidou and Dasen, 2013), we composed a model for
relative HOX gene expression along the rostrocaudal axis ranging from rhombomeres two to eight of the
developing hindbrain and cervical to caudal segments of the spinal cord (Figures 2A, 2B, and Table S2A). We
observed that RNA expression levels of each HOX gene in the fetal hindbrain and spinal cord tissue samples from
de Kovel et al., 2017 are consistent with our model, and classification of segment identity based on the highest

correlation for each sample resolves the sample types (Figures 2B and 2C). While correlation of bulk profiles
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from day 18 iPSC-MN cultures suggested that the cultures globally resembled hindbrain more than spinal cord,
we hypothesized that some rare cells may have differentiated into more caudal identities. We therefore applied
this classification approach for each single cell in the day 18 cultures. These results indicated that while a
majority of cells (33.19%) were not assigned (NA) categories at the single-cell level, either due to a lack of any
detectable HOX gene expression or failure to meet the correlation cutoff, the second majority of cells (25.75%)
were classified as rhombomere eight, and a third majority of cells (10.78%) were classified as the cervical
segment (Figure 2C and Table S2C). Notably, there were some cells classified as brachial (1.32%) and thoracic
(1.40%) segments, suggesting that the 18 day protocol can achieve differentiation into cell types within spinal
cord that reflect the upper limb sites of disease onset for most subjects represented in this study (Table S1).
However, there were no cells classified as lumber segment, possibly due to the early differentiation time point

of these day 18 cultures.

Developmental gene expression profiles and global clustering classify ventricular zone (VZ) progenitor and
mantle zone (MZ) postmitotic neuronal identities

The induction of neural differentiation occurs after embryonic regionalization of the anterioposterior
axis (Metzis et al., 2018). It involves the specific expression of 105 genes encoded in a two-dimensional
coordinate system of morphogen gradients that regulate the dorsoventral and mediolateral axes and the
progression of neural progenitors to postmitotic neurons in a representative spinal cord segment (Alaynick et
al.,, 2011; Lu et al., 2015) (Figures 2A, S5A, and Table S2B). We next sought to resolve individual neural identities
using these genes in day 18 cultures. We focused on correlating each cell type in our model with one another
based on these 105 genes and demonstrated that these profiles can systematically distinguish each identity
(Figure S5B). Assignment of individual cells along the 18 day differentiation to either VZ progenitors or MZ

postmitotic neurons illustrated a cell fate progression consistent with the functions of the morphogenic
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components used during induction (Figures 1B, 3A, and Table S2C). Notably, very few astrocytes were seen

(Figure 3A) indicating that the rapid 18 day differentiation did not enact a glial program.

Additionally, we used unsupervised global gene expression profiles to unbiasedly cluster distinct
identities present in day 18 cultures. However, dimensional reduction and projection using principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE) of raw expression data primarily
separated cells based on single-cell technology platform (Figure S5C). Experimental batch effects were also
evident for samples processed within the same platform. These preliminary data highlighted the need to
normalize the scRs expression data prior to discovering common variations between ALS and control conditions.
To this end, multi-canonical correlation analysis (MultiCCA) in Seurat (Butler et al., 2018) corrected for
experimental batch and platform effects (Figure S5D). By optimizing clustering parameters to yield a maximum
modularity value of all communities, this analysis revealed four major populations of cells that enriched for
expression of genes associated with a variety of gene ontology (GO) terms (Figures 3B-D, S5E, and Table S2C).
Altogether, these analyses enable the resolution of major populations present in this rapid differentiation
protocol, revealing not only postmitotic neurons generated from iPSCs, but also persistent progenitors and

another population of non-neuronal cells.

In order to specifically detect neuronal subtype signatures in these cultures, we repeated subpopulation
detection by removing non-neuronal cells and progenitors and then performing a new batch correction and
global cluster analysis. This analysis assigned 18 major populations of cells (Figures 3E, S5F, and Table S2C).
Overlaying each of the VZ and MZ identities with the globally defined clusters revealed that six of the
classification groups reconciled with the global clustering patterns. We therefore renamed them based on these
observations (Figure 3F-3H and Table S2C). For example, cells assigned as MNs of the lateral motor column (MN

LMC) were enriched in clusters 0, 4, 7, 11, 15, and 17, and these cells expressed the MN markers PHOX2B (Pla
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et al.,, 2008) and ISL1 (Liang et al., 2011). We therefore renamed this group MN hereafter (Figure 3G).
Immunostaining cultures confirmed protein co-expression of PHOX2B with ISL1, and distinct expression of the
V2a and V2c interneuron markers VSX2 and SOX1, respectively (Figure S6A). Overall, based on overlapping
classifications and expression of key marker genes, subsets of the 18 populations were merged to produce seven

major populations (Figure 3G and Table S2C).

We then assessed whether the cells classified as MN, when segregated from the rest of the day 18
culture cells, showed more of an adult MN expression profile than if all cells were analyzed in bulk. By correlating
only the pooled MN expression profiles to our previously characterized data set (Ho et al., 2016), MNs were
significantly more correlated to in vivo adult MNs (Figures 31, S4C-E). By subsetting cells into seven populations,
reanalysis of rostrocaudal identity based on HOX gene expression demonstrated that the distributions of
hindbrain and spinal cord segments are largely consistent across all populations (Figure 3J). Notably, cluster 1,
V1 Renshaw, V2a, and V2c populations contained a modest number of cells resembling brachial and thoracic
identities. These results highlight the value of scRs in resolving cell types to enable more accurate measures of

similarity between in vitro iPSC-derived models and in vivo adult cell types.

Pooling sparse transcriptional changes detected by scRs defines cell type-specific ALS responses

Having defined these seven populations, we performed differential gene expression between ALS and
control conditions. After dividing each population into ALS and control groups, a comparable number of cells
remained for each condition (Figure 4A), supporting the results determined by protein immunostaining for MN
markers at this time point (Figure S3B). Tracking the scRs platforms also demonstrated equal representation of
ALS and control groups assayed within each platform (Figure 4A). There were sufficient numbers of MNs, V1
Renshaw, and V2a interneurons from each experimental batch to perform differential gene expression analysis.

Conducting comparisons between ALS and control conditions (which included isogenic C9orf72 HRE-corrected


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

lines) yielded genes called significantly differentially expressed (data not shown). However, latent categorical
variables such as experimental batch and scRs technology platform effects mainly drove these differences,
illustrating the pitfalls of performing differential gene expression analysis without accounting for these
properties. Thus, we next applied a meta-analysis approach by conducting comparisons between ALS and
control or isogenic samples within each experimental batch and catalogued genes called significant (Figure 4B
and Tables S3-7). For each ALS to control comparison (sporadic ALS samples presented in orange, C9orf72 ALS
samples in magenta, control samples in black, and isogenically corrected HRE samples in green), the list of
significantly upregulated genes (enumerated in red) were intersected with all other ALS to control comparisons,
and the red heatmap indicates the Jaccard index, a measure of overlap between gene sets (Figure 4B). A similar
analysis was performed on the downregulated genes (enumerated in blue) and presented in the blue heatmap.
Interestingly, the number and concordance of genes called significantly dysregulated were highly variable across
several comparisons, including repeated comparisons performed between two subject lines across different
experimental batches (Figure 4B and Table S6). This indicated that despite assaying the same genetic
comparisons, batch effects are observed, which may have arisen either by distinct biological responses to
repeated differentiation experiments or by distinct technical effects across sample processing, both within and
across commercial scRs platforms. Furthermore, there was low concordance of dysregulated genes when
C90rf72 HRE lines were compared directly to their isogenically corrected lines. This observation highlights a
challenge in detecting a reproducible gene expression signature of the C9orf72 HRE using scRs analysis of iPSC

models, even when genetic variation is controlled.

Given the sparseness of genes that were reproducibly discovered to be dysregulated across experimental
batches, we next catalogued and pooled upregulated and downregulated genes called significant in at least two
ALS to control or isogenic sample comparisons. This was done for the C9orf72 HRE ALS lines (12 comparisons)

and the sporadic ALS lines (9 comparisons) (Tables S3, S4, and S5). Since our goal was to find early, convergent
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signatures across familial and sporadic forms of ALS, we respectively compared the extent of overlap between
the upregulated and downregulated gene sets for each category between C9orf72 HRE and sporadic ALS
conditions. Through hypergeometric testing, all comparisons indicated that the gene sets catalogued for both
ALS conditions overlapped significantly (Figure S6B). We therefore combined the sparse set of differentially
expressed genes from the C9orf72 HRE lines together with the sporadic ALS lines to amass gene sets large
enough to pursue subsequent enrichment analyses. To this end, we catalogued and pooled genes called
significant in at least two of the 21 ALS to control or isogenic sample comparisons drawn across all scRs
experiments. With this approach, we generated a list of upregulated and downregulated genes for each of these
three majority populations in our cultures (Tables S6 and S7A), and we compared these gene lists across all three
populations (Figure 4C). Furthermore, we compared these gene lists to differentially expressed genes calculated
by bulk analysis of all cells (Table S7A). This comparison demonstrated ALS can induce some overlapping but
mostly distinct gene expression changes in each of the three iPSC-derived neuronal populations. Resolving cells
into subpopulations was necessary to detect reproducibly disrupted genes, because analysis on the bulk
expression profiles of the entire culture did not yield a high number of genes in either the upregulated or

downregulated categories (Figure 4C and Table S7A).

GO analysis on the entire list of upregulated or downregulated genes from each cell type determined
overlapping and distinct GO terms enriched among each list (Figure S6C and Table S7B-G). Analysis on the
upregulated and downregulated genes that were unique to each cell type further refined GO terms (Figure 4C
and Table S7H-M). Notably, components involved with translation and ribosomal subunits were commonly
enriched among upregulated genes in all three neuronal cell types, but functions in cholesterol and isoprenoid
synthesis were enriched among genes uniquely upregulated in V1 Renshaw interneurons. While translational

components were also enriched among genes downregulated in all three neuronal cell types, components of
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neuronal processes including dendrite and growth cone were enriched among genes uniquely downregulated

in MNs.

ALS iPSC-MN cultures exhibit transcriptional changes detectable in postmortem ALS spinal MNs

We next tested the pathological relevance of these iPSC-MN defined gene sets by examining
postmortem, adult spinal MNs. In previous work, we defined 52 co-expression modules using Weighted Gene
Co-expression Network Analysis (WGCNA) (Zhang and Horvath, 2005) from laser capture micro-dissected MNs
(LC MNs) from postmortem sporadic ALS and control subjects (Ho et al., 2016; Rabin et al., 2010), herein referred
to as data set A. Some of these modules significantly correlated or anti-correlated to a principal component that
distinguished sporadic ALS from control conditions. We systematically tested whether each list of upregulated
or downregulated genes from MNs, V1 Renshaw, and V2a interneurons were enriched in each of the 52
previously defined WGCNA modules (Figure 5A). Markedly, the genes upregulated and downregulated by ALS
in MNs were significantly enriched among modules that were respectively upregulated and downregulated by
sporadic ALS in postmortem spinal MNs. This concordant response to ALS was not observed for V1 Renshaw
and V2a interneurons. A repeated analysis between our scRs data set and an independent but similar
postmortem study (Krach et al., 2018), herein referred to as data set B, demonstrated reproducibly concordant
gene expression changes (Figure 5B). The robustness of networks defined in each of the postmortem data sets
were also examined using module preservation z-statistics (Langfelder et al.,, 2011), which indicates the
likelihood that the network structures of each module occurred by random chance. The most significantly
overlapping modules, namely the Magenta, Midnightblue, Blue (Figure 5A), and Darkgreen modules (Figure 5B)
possess the some of the most preserved network structures across data sets A and B (Figures S6D and S6E),
suggesting they support critical functions in MNs. Importantly, dysregulation of these network genes in iPSC-

MNs suggests that their disruption by ALS conditions occurs as early as embryonic development.
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A closer examination of upregulated genes overlapping among the Magenta module in data set A, the
Steelblue module in data set B, and MNs highlighted genes previously implicated in ALS and other motor
neuropathies, and the overlapping genes and GO terms enriched among them are consistent with reports of
disrupted mRNA and protein processing pathways (Deshaies et al., 2018; Kim et al., 2013, 2008; Montibeller and
de Belleroche, 2018) (Figure 5C). Similarly, examination of downregulated genes overlapping among the Blue
and Midnightblue modules in data set A, the Darkgreen module in data set B, and MNs highlighted genes
previously implicated in ALS (Lederer et al., 2007; Saris et al., 2009; Umahara et al., 2016) (Figure 5D). The GO
term regulation of neuronal projection development was significantly represented among the overlapping,
downregulated genes (Figure 5D), consistent with recent models suggesting that deficiencies in maintaining

axonal projections may underlie ALS (Klim et al., 2019; Melamed et al., 2019).

Auditing the expression of these overlapping genes in MNs demonstrated their dysregulation in ALS
conditions as measured by average as well as percent expression (Figure 5E). Neuronatin (NNAT), which has
been associated with neuronal development as well as degeneration (Joseph, 2014), was found to be
upregulated in ALS MNs in the greatest number of ALS to control comparisons (Table S6A) while not observed
as belonging to any modules significantly associated with sporadic ALS in postmortem data sets. Auditing the
expression of ten overlapping genes in LC MNs from data sets A and B demonstrated high correlation between
their expression and the first principal component that distinguishes sporadic ALS from control conditions
(Figures 5F and 5G), further supporting the efficacy and fidelity of our discovery approach. A deeper
investigation into the module genes disrupted in sporadic ALS conditions revealed a significant enrichment of

module genes previously associated with spinal MN maturation and aging (Ho et al., 2016) (Figure 6).

Predictive ALS markers are detectable in iPSC-MNs
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While pooling of sparsely dysregulated genes in iPSC-MNs enriched for concordantly dysregulated genes
in postmortem MNs, their average and percent expression varied considerably across subject lines (Figure 5E).
This demonstrated a challenge in discovering consistently dysregulated genes by applying a significance
threshold on a sample to sample basis across many scRs samples. We therefore took an alternative approach to
discover genes that are consistently altered in iPSC-MNs from ALS subjects. We considered a combined
expression score that reflected the average and percent expression for each gene in the MN populations at day
18 per subject (n = 22) in the scRs data set (see Methods). We then performed t-tests comparing the combined
expression scores between all ALS and control and isogenic samples and ranked them by increasing nominal p-
values. Among the top 20 ranking genes, we found six genes were concordantly downregulated in ALS conditions
in data sets A and B, and they exhibited more uniform downregulation in ALS iPSC-MNs compared to controls
(Figure 7A). We found no genes concordantly upregulated in all three data sets. Observing the expression
kinetics of these genes over the course of embryonic, fetal, and adult spinal cord tissues (Ho et al., 2016) showed
that some positively correlated with spinal MN maturation (ADCYAP1, ELAVL3, and NUAK1), DNMT3B anti-
correlated with spinal MN maturation, and NDUFAF5 as well as NNAT were upregulated during fetal spinal cord

stages (Figure 7B).

The classification accuracy of ALS cases versus controls, as measured by the area under the curve (AUC),
using PCA based on these six genes was significant in the MN population (Figures 7C and S7A). However,
classification accuracy of ALS cases versus controls was not significant in V1 Renshaw, V2a, or by using bulk
expression data (Figures 7C and S7A). The classification of sporadic ALS cases versus control postmortem adult
spinal MNs in data set A (Rabin et al., 2010) and data set B (Krach et al., 2018) was also significant (Figure 7D
and S7B). These results were expected, because the classifier genes were defined by these data sets. However,
validating the accuracy of these six genes in classifying external test data sets would underscore their predictive

power. In separate test data sets of postmortem adult spinal MNs from familial and sporadic ALS cases, which
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include variants in C9orf72, CHMP2B, and SOD1 (Cox et al., 2010; Highley et al., 2014; Kirby et al., 2011),
classification using these genes significantly distinguished ALS from control subjects (Figures 7D and S7B).
Additionally, in a disease progression study of SOD1G93A transgenic mouse spinal MNs (Nardo et al., 2013),
classification of ALS versus control conditions based on these genes increased accuracy as mice progressed to
the end stage of disease (Figures 7E and S7C). Interestingly, focusing analysis on these genes from the
NeuroLINCS Consortium (Keenan et al., 2018) bulk RNA-seq data set analyzing undifferentiated human iPSCs
and iPSCs differentiated into MN cultures over 18 days demonstrated that ALS could not accurately be
distinguished from control conditions (Figure 7F and S7D). However, using a different and longer MN
differentiation protocol (Sareen et al., 2013), where MN cultures were extended up to 90 days and again profiled
by bulk RNA-seq, analysis of these six genes demonstrated a significant accuracy in classifying ALS cases from
control as well as from spinal muscular atrophy cases (Figures 7F and S7D). Additionally, these signature genes
could distinguish SOD1A4V ALS patient samples from zinc-finger nuclease corrected isogenic samples in iPSC-
derived, HB9-RFP positive MNs at 39 days of differentiation (Kiskinis et al., 2014) (Figures 7F and S7D). Similarly,
these genes also distinguished C9orf72 ALS patient derived, HB9-RFP positive MNs from control samples, and
further distinguished isogenic control samples in which one or two copies of the C9orf72 HRE were targeted
into the genome with CRISPR-Cas9 (Shi et al., 2018) (Figure 7F). Finally, this panel of genes distinguished control
subject iPSC-MN cultures from sporadic and familial ALS subjects, including those with variants in FUS, SOD1,
and TARDBP (Fujimori et al., 2018) (Figure 7F). Among the six genes quantifiable by RNA in all expression data
sets tested, ELAVL3 was the only gene quantifiable as a protein when analyzing the NeuroLINCS proteomics data
sets at 18 and 90 days of differentiation. Classification of iPSC-MN cultures based solely on ELAVL3 protein
expression demonstrated that it was an accurate classifier for ALS versus control MN cultures only in extended
cultures at 90 days, where it was also decreased in ALS conditions (Figure 7G). However, analysis of ELAVL3 RNA
alone demonstrated less overall accuracy when compared to joint RNA analysis of all six genes (Figures S7E-H).

Lastly, the decline in ELAVL3 protein per MN was also detectable in postmortem spinal cords in both sporadic
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and C9orf72 ALS cases versus control (Figures 7H-7K). Altogether these data reveal that despite globally
resembling in vivo fetal tissue, single-cell analysis of iPSC-MNs can model early, common signatures of familial

and sporadic ALS that persist into the end stages of disease.

Discussion

Recent scRs studies have characterized diverse neuronal populations in vivo mouse spinal cords (Delile
et al., 2019; Sathyamurthy et al., 2018). However, this technology has not been used to rebuild the spinal cord
from complex mixtures of cells in cultures differentiated from iPSCs. Our approach described here is ideally
suited to achieve this goal and demonstrates initial steps toward building a iPSC-based cellular atlas of the
developing human spinal cord to provide an anatomical context for human embryonic development as well as

disease modeling.

Overcoming experimental challenges to single-cell profiling iPSC models to cope with technical and biological
variability

As variable molecular readouts caused by genetic background is becoming increasingly acknowledged
by experimentalist in human iPSC disease modeling, experimental design must account for the genetic
backgrounds of several individual subjects as well as isogenic controls in order to isolate reproducible disease-
related effects (Fujimori et al., 2018; Kiskinis et al., 2014; Shi et al., 2018). In line with this outlook, we
incorporated iPSC lines from several ALS and control subjects into this study, and repeatedly assayed MN
differentiations with the goal of detecting reproducible transcriptional signatures in distinct cellular
subpopulations. However, repeated experimental sampling presented the challenge of coping with batch
effects, which in the process of scRs analysis, severely affects global clustering approaches towards cell type
annotation such as Louvain community detection and tSNE dimensionality reduction (Hicks et al., 2018; Luecken

and Theis, 2019). We alleviated these effects on these unsupervised learning methods through MultiCCA (Butler
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et al., 2018). In addition, we referenced decades’ worth of developmental genetic literature to supervise cell
type annotation using a relatively small number of key developmental genes (Alaynick et al., 2011; Lu et al.,
2015). This complementary approach was more refractory to batch effects, and when combined with batch-

corrected global clustering, enabled us to confidently annotate cell identities.

Having reliably annotated cells uniformly across experimental batches, the next challenge was to find
reproducibly dysregulated genes between ALS and control conditions within each subpopulation. Despite
increasing sample size and replicates, the sparse nature of scRs yielded low reproducibility of dysregulated
genes. This was especially evident in CRISPR-Cas9-corrected isogenic comparisions, despite the observations
that genetic removal of the C9orf72 HRE universally corrected RNA and dipeptide phenotypes. This suggests
that even in conditions that rule out genetic variability, sensitivities to technical noise arising from experimental
platform or batch variation remain. To overcome the sparsity of reproducibly dysregulated genes, we relaxed
the threshold in cataloguing upregulated and downregulated genes by counting instances where genes are
detected in any comparison more than once and then subsequently pooling them together. Interestingly, genes
defined as dysregulated by this criteria in C9orf72 HRE ALS conditions significantly overlapped with those
determined in sporadic ALS conditions. This motivated us to analyze C9orf72 HRE and sporadic conditions
together to jointly discover genes, co-expression networks, and pathways that are convergently disrupted in
both conditions. As an alternative to selecting genes based on significance thresholds, we also applied a ranked
metric to discover consistently dysregulated genes across ALS and control conditions that did not meet
significance. This approach revealed a small number of genes that were consistently downregulated in ALS in
the scRs data and additionally served as effective predictors of ALS cases. Importantly, we validated this
methodology by testing our discoveries against external data sets such as RNA-seq data from postmortem LC
MNs or other iPSC-based or animal models of familial and sporadic ALS. We validated both cell annotation as

well as ALS signatures, as further described below.
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Single-cell resolution of rostral, caudal, hindbrain, and spinal cord identity

The colinear expression of HOX genes during embryonic development spatially defines rostral to caudal
body segments and downstream neural fate (Di Bonito et al., 2013; Lippmann et al., 2015; Philippidou and
Dasen, 2013). HOX gene expression from bulk sample preparations of iPSC-differentiated neurectoderm
cultures suggested that more caudal identities are present (Lippmann et al., 2015). Our scRs analysis of day 18
cultures, which we demonstrated to be globally similar to approximately 42 days of in vivo embryonic
development, enabled the resolution of rare cells that have activated expression of caudal identity-encoding
HOX genes. This revealed the majority of cells were similar to hindbrain and cervical spinal cord regions. This
anatomical classification lays the foundation for future work with human iPSC models to investigate instrinsically

different physiologies between rostrocaudal regions that contain cranial and phrenic MNs, respectively.

iPSC-based models are further challenged in that the cells differentiated in vitro do not fully recapitulate
the distinctive identities of cells formed in vivo. Therefore, cellular identities are less resolved by conventional
dimensional reduction and classification based on a small set of markers, even after batch correction. By using
a unit expression matrix of genes assiduously delineated by Thomas Jessell and others to define cell types in the
developing chick and rodent spinal cords (Alaynick et al., 2011; Delile et al., 2019; Lu et al., 2015), we assigned
identities based on significant Pearson correlation to the profiles in this expression matrix, which accounts for
both the presence and absence of key marker gene expression in specific cell types. Together this combined
classification method dissected out specific neuronal and progenitor populations from complex, in vitro tissue

cultures to rebuild sections of in vivo hindbrain and spinal cord.

Single-cell analysis enables attribution of early and convergent ALS signatures to MNs
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The most recent iPSC-based transcriptomic reports performed RNA profiling at time points during
differentiation concomitant with various observed ALS phenotypes which include nuclear RNA foci (Sareen et
al., 2013), decreased neurite length (Fujimori et al., 2018), reduced neurite repair after injury (Klim et al., 2019;
Melamed et al.,, 2019), and MN death (Kiskinis et al., 2014; Shi et al., 2018). Several of these protocols
differentiated iPSCs for over 30 days, and many required a relatively prolonged maturation phase, the presence
of glia, and additional stressor conditions in order to yield a disease phenotype. Thus, it is unclear whether the
transcriptional events observed precede the disease phenotypes, are concomitant, or are immediate
consequences of other prior events. We elected to profile transcription in postmitotic MNs at an earlier point,
day 18 at which their identity was established and in the absence of glial cells. This event was demonstrated as
early as day 14 of differentiation (Maury et al., 2015). Our approach satisfied two objectives. One was to capture
a transcriptional signature as early as possible, prior to the manifestation of disease phenotypes ranging from
neurite repair to overt cell death. The other was to reduce heterogeneity across subject lines and experimental
batches that could be augmented by a longer time of differentiation in culture. Within this early developmental
time point, we detected signatures in ALS conditions prior to disease phenotypes, suggesting that these

transcriptomic events precede and are potentially causative of later phenotypes.

The ability to leverage expression information on a panel of MN marker genes bolstered our validation
that iPSC-derived MNs globally resemble adult in vivo MNs more than any other cell types concommittantly
arising in culture. Additionally, single-cell profiling of all cells present in the differentiation cultures enabled us
to account for the direct contribution of each cell type to the signals present in bulk RNA-seq. The dysregulation
of gene expression we discovered in V1 Renshaw interneurons supports previous work that have proposed
interneuron dysfunction and degeneration as a cause of MN changes in ALS (Chang and Martin, 2009; Maekawa

et al., 2004; Martin and Chang, 2012; Morrison et al., 1998; Stephens et al., 2006; van Zundert et al., 2008).
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Future work exploring the contributions of interneurons to ALS in iPSC-MN cultures may provide more

mechanistic insights into this model of disease.

Of note, recent literature has characterized convergent and divergent aspects of ALS pathways and
mechanisms across subject lines and subsets of ALS conditions, often delineated by genotype (including familial
ALS mutations in C90rf72, SOD1, hnRNPA1, TARDBP, FUS, and CHMP2B as well as sporadic ALS), site of symptom
onset, disease progression, or treatment response (Chen et al., 2014; Fujimori et al., 2018; Kiskinis et al., 2014;
Klim et al., 2019; Melamed et al., 2019; Sareen et al., 2013; Shi et al., 2018). We noted that bulk transcriptomic
analysis may contribute to discrepancies in pathway discoveries, and thus sought to characterize these
commonalities and distinctions using higher resolution, single-cell analysis. These changes were observed
specifically in MNs and can be used to establish whether the MNs were from a control or ALS subject. This ability
to determine disease phenotype with greater accuracy means that an at-risk ALS subject could have iPSCs
generated and differentiated into MNs. Following scRs, it would then be possible to predict whether the subject
would go on to get ALS with some fidelity. As more samples are run through this pipeline it will be possible to
further refine the the subtype of ALS through correlative studies. Thus, the six genes we have defined based on
our iPSC-MNs and postmortem laser-captured MNs can be used as early biomarkers across a broad range of
familial and sporadic ALS cases, and they can be further expanded upon through the discovery approach we

have described here to improve accuracy.

Single-cell analysis of ALS iPSC-MNs highlights putatively causal genes and pathways

Despite their global resemblance to fetal tissue, iPSC-MNs from ALS subjects exhibited concordant
signatures detectable in MNs from postmortem ALS subjects. While these observations highlight the utility in
discovering effective disease biomarkers, a more potent utility would be to discover disease drivers. In order to

determine if these early changes in gene expression are causative of ALS, the complete course of disease should
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be recapitulated in iPSC-based models to ascertain this causality. We have previously demonstrated that ALS
preferentially disrupts homeostatic pathways enacted during neuronal maturation and aging contexts (Ho et al.,
2016). By intersecting the set of genes disrupted in MNs with our previously characterized gene co-expression
modules involved with MN maturation, aging, and ALS, we revealed that pathways associated with neurite
structure and synaptic vesicle trafficking, which increase with maturation and aging, are downregulated in ALS
subject cells, and these changes are already detectable in iPSC-MNs. This suggests that early deficiencies in
activating these homeostatic pathways may prime the MNs to a disease state upon maturation and aging. We
posit that strategies that accelerate maturation and aging gene expression programs in patient iPSC models can
enact a state where the ALS-driven deficiencies, which possibly stem from these early gene expression changes,

can be observed and therapeutically treated (Studer et al., 2015).

The most notable among the marker genes we have highlighted is ELAVL3, whose dysregulation was
detectable in various ALS conditions during early, late, and end stages of diseased MNs. It is a neuron-specific
RNA-binding protein whose expression starts embryonically and persists into adulthood (Okano and Darnell,
1997). Previous studies have noted disruption of ELAVL3 in ALS conditions (Colombrita et al., 2015; Klim et al.,
2019), and because it regulates RNA processing, splicing, alternative poly-adenylation, and stabilizes
translational control (Grassi et al., 2018), future studies investigating functional disruption of ELAVL3 may

address whether it is an upstream pathway to MN degeneration shared among familial and sporadic ALS cases.

Finally, future iPSC-based studies that distinguish bulbar from spinal onset ALS patients can build upon
the data reported here to help correlate region of onset in the patient with the pathology in specific MNs
associated with those regions. Equally important, our anatomical assessment of iPSC-MN models establishes a
cellular and molecular framework to address how MN degeneration and paralysis spreads throughout the body

of ALS patients, mechanisms which are of great interest to develop accurate prognostic assessments or
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interventional therapies (Turner et al., 2010). While the fidelity of our iPSC-MNs to in vivo MNs was based on
pooled LC MNs, recent advances in single nuclei RNA-seq of human postmortem tissues of the central nervous
system (Gaublomme et al., 2019; Mathys et al., 2019) will provide an expanded resolution of cellular and disease
signatures with which our data can be reconciled. This comparison will enable better interpretation of molecular
signatures and cellular compositions as they arise in early stages of ALS and progress into the end stages of ALS,
thus enabling a better understanding of disease etiology. Finally, the analysis reported here provides a
methodological resource for iPSC-based disease models of not only ALS, but also for several other late onset

diseases standing to benefit from single-cell resolved investigations.
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Methods

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All human iPSC lines are banked and available through the Cedars-Sinai Biomanufacturing Center. Cell lines were
routinely characterized for mycoplasma, Alkaline Phosphatase staining, immunostaining for pluripotency
markers, karyotypes by G-banding, PluriTest, Trilineage Differentiation Potential (assessed via TagMan hPSC
Scorecard Assay), and Cell Line Authentication (assessed via STR Analysis) to match primary donor tissue.
Relevant clinical and experimental data about the iPSC donor subjects (e.g. age, sex, tissue source) are presented
in Table S1 and in the Key Resources Table. All protocols were performed in accordance with the Institutional

Review Board guidelines at Cedars-Sinai Medical Center under the auspices of IRB-SCRO Protocol 21505.

METHODS DETAILS

Culture of human iPSCs

All'iPSC lines were maintained in complete mTeSR1 growth medium on Growth Factor Reduced Matrigel and
passaged every seven days using the StemPro EZ Passaging Tool or Versene and typically split between 1:4 and

1:9 ratios.

Genome editing of C90rf72 repeats in iPSCs

CRISPR guides were designed to target regions immediately 5" and 3’ of the C90rf72 hexanucleotide repeat
expansion using the Zhang lab CRISPR design tool (Shi et al., 2018). Guides were cloned into pSpCas9(BB)-2A-
GFP (PX458) plasmids, (gift from Feng Zhang, Addgene plasmid #48138. Each iPSC line was transfected with both
5’ and 3’ targeting plasmids using the Neon Electroporation System (Thermo Fisher). After 48 hours, iPSCs were
dissociated and flow sorted by GFP fluorescence to isolate successfully transfected cells. These cells were plated,
cultured for 1 week, passaged, and allowed to grow to confluency. Cells were then subcloned as following: iPSCs

were Accutase-dissociated into single cells and replated sparsely at 30,000 cells/10 cm dish. Rock inhibitor (Y-
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27632) was included for 24 hours after plating to promote iPSC survival. Once individual cells formed small
colonies, pipette tips were used to manually transfer subclones from the 10 cm dish into individual wells of a 96
well plate. These subclones were passaged with Versene into two 96 well plates, one for further propagation
and one for gDNA extraction and sequencing. Sanger sequencing was used to identify subclones that had
modified genetic sequences around the C9orf72 locus. PCR products from these subclones were then TOPO-
cloned (Invitrogen) and Sanger sequenced to determine the sequences of each allele. Subclones lacking the

C90rf72 HRE were expanded and characterized.

Repeat primed PCR assay for HRE

PCR products were amplified using FastStart Master Mix (Roche) and 1X betaine using the following cycling
conditions: 1x 95°C for 15 min, 2x 94°C for 1 min -> 70°C for 1 min -> 72°C for 3 min, 3x 94°C for 1 min -> 68°C
for 1 min ->72°C for 3 min, 4x 94°C for 1 min -> 66°C for 1 min -> 72°C for 3 min, 5x 94°C for 1 min -> 64°C for 1
min -> 72°C for 3 min, 6x 94°C for 1 min -> 62°C for 1 min -> 72°C for 3 min, 7x 94°C for 1 min -> 60°C for 1 min
-> 72°C for 3 min, 8x 94°C for 1 min -> 58°C for 1 min -> 72°C for 3 min, 5x 94°C for 1 min -> 56°C for 1 min ->

72°C for 3 min, and 1x 72°C for 10 min. Samples were then sent to Genewiz for sequencing.

Sanger sequencing of C90rf72 locus

The C90rf72 locus was PCR-amplified using PrimeStar Polymerase with 1X betaine. To determine the sequence
of each allele, PCR products were cloned using the TOPO Cloning Kit for Sequencing (Invitrogen). Plasmids were
used to transform TOP10 competent bacteria, which were plated on agar dishes containing ampicillin and

incubated at 37°C overnight. Bacterial plates were sent for direct colony sequencing at Genewiz.

Karyotype

G-Band Karyotyping was performed by the Cedars-Sinai Biomanufacturing Center.
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Differentiating iPSC-MN cultures

For Figures S2A-E, iPSC-MNs as previously described (Yang et al., 2013). In brief, iPSCs were dissociated into
single cells, cultured in Neural Induction Media (NIM) consisting of Neurobasal (Gibco), 1.1 uM ascorbic acid
(Sigma), 1% non-essential amino acids (Gibco), 1% GlutaMax (Gibco), 2% B27 (Gibco), 0.16% D-glucose solution,
and 1% penicillin-streptomyosin-amphotericin solution. 10 uM Y-27632 ROCK inhibitor (Sigma) was included in
the media or the first 48 hours to improve survival of iPSCs following dissociation. On days 1-4, NIM was
supplemented with 10 uM SB431542 (StemGent), 1uM Dorsomorphin (Sigma), and 10 ng/mL bFGF (PeproTech).
This media was changed every other day, and bFGF was replenished daily. On day 5, cells were cultured in NIM
supplemented with SB431542, Dorsomorphin, 10 ng/mL BDNF (R&D), and 1 uM retinoic acid (Sigma). On days
7 and 9, the media was changed to NIM with BDNF, retinoic acid, and 1 uM smoothen agonist (Sigma). The cells
were densely plated onto poly-ornithine/laminin coated dishes and cultured in the same media on day 11. This
media was further supplemented with 2 uM DAPT (Cayman Chemicals) on days 13-20, with media changes every
2-3 days. On days 20-30, cells were fed every 2-3 days with NIM containing BDNF, smoothen agonist, 1 uM
retinoic acid, and 2 uM Ara-C (Sigma). Cells were then gently dissociated using papain (Worthington), plated on
poly-ornithine/laminin coated dishes, and cultured in NIM with the addition of 1% N2 supplement (Gibco), 4 uM
Ara-C, and 40 ng/mL each of growth factors BDNF and GDNF (PeproTech). For Figures S2F and S2G, iPSC-MN

cultures were differentiated using the 18 day protocol as described below for polyGP ELISA.

For the 18 day iPSC-MN differentiation, mTeSR1 was removed from iPSCs at 30-40% confluency and replaced
with Stage 1 media (1:1 mixture of Iscove's Modified Dulbecco's Medium (IMDM):F12 basal media
supplemented with 1% non-essential amino acids (NEAA), 2% B27, 1% N2, 1% Penicillin-Streptomycin-
Amphotericin B solution (PSA), 0.2 uM LDN193189 (Selleck), 10 uM SB431542, and 3 uM CHIR99021(Xcess

Biosciences)) for six days with daily media changes. The cells were then Accutase-treated to single-cell
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suspension and centrifuged in 50 ml conical tubes, resuspended in Stage 2 media (Stage 1 media further
supplemented with 0.1 uM all-trans retinoic acid (Stemgent) and 1 uM Sonic hedgehog agonist (SAG) (Cayman
Chemicals)), and plated onto Matrigel-coated plates or coverslips. Stage 2 media was changed every two days
until day 12, when Stage 3 media (1:1 mixture of IMDM:F12 basal media supplemented with 1% non-essential
amino acids (NEAA), 2% B27, 1% N2, 1% PSA, 0.1 uM Compound E (Calbiochem), 2.5 uM DAPT, 0.1 uM dibutyryl
cyclic adenosine monophosphate (db-cAMP), 0.5 uM all-trans retinoic acid, 0.1 pM SAG, 200 ng/ml ascorbic
acid, 10 ng/ml BDNF, and 10 ng/ml GDNF) was then used to feed cells every two days until day 18, when cultures

were analyzed.

The 90 day iPSC-MN differentiation was performed as previously described (Ho et al., 2016). In brief, 80%
confluent iPSC cultures were Accutase-treated into single cells suspension and centrifuged in 384-well Matrigel
coated PCR plates. The cells were maintained in Neural Differentiation Media (NDM): IMDM/F12 supplemented
with 2% B27-vitamin A, 1% N2, 1% NEAA, 0.2 uM LDN193189, and 10 pM SB431542. On day two, neural
aggregates were collected and transferred into Poly-Hema coated T75 flasks and the aggregates were cultured
for three more days in NDM. On day seven, aggregates were collected and transferred onto poly-
ornithine/laminin coated wells with fresh NDM. After five days, cells were cultured in MN Specification Media:
NDM supplemented with 0.25 uM all-trans retinoic acid, 1 uM purmorphamine, 1 uM db-cAMP, 200 ng/mL
ascorbic acid, 20 ng/mL BDNF, and 20 ng/mL GDNF. Once rosettes were observed, they were collected with
STEMdiff Neural Rosette Selection Reagent and cultured in MN Precursor Expansion Media: NDM supplemented
with 0.1 uM all-trans retinoic acid, 1 uM purmorphamine (Millipore), 100 ng/mL EGF, and 100 ng/mL FGF2. After
day 26, the iPSC-MN precursor spheres (iMPS) are expanded by using a chopping method every seven to ten
days. The iMPS are matured into MNs for 21 days in MN Maturation Media: Neurobasal supplemented with 1%
NEAA, 0.5% Glutamax, 1% N2, 10 ng/ml BDNF, 10 ng/ml GDNF, 200 ng/ml ascorbic acid, 1 uM db-cAMP and 0.1

KM all-trans retinoic acid.
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Immunofluorescent staining, imaging, and quantification of iPSC-MN cultures

iPSC-MNs were fixed in 4% paraformaldehyde, rinsed with PBS, incubated in 0.5% Triton-X in PBS, rinsed with
0.2% Tween-20 in PBS, incubated in blocking solution (5% normal donkey serum and 0.2% Tween-20 in PBS).
Primary antibody solution in blocking solution containing various combinations of goat polyclonal IgG anti-
Human ISL1 (1:200) ( R&D Systems AF1837, RRID: AB_2126324), mouse monoclonal I1gG1 anti-NF-H (SMI-32)
(1:200) (BioLegend 801701, RRID: AB_2564642), goat polyclonal anti-ChAT (1:200) (Millipore AB144P, RRID:
AB_2079751), rabbit polyclonal 1gG anti-PHOX2B (1:200) (GeneTex GTX109677, RRID: AB_1951223), mouse
monoclonal 1gG2b, rabbit polyclonal IgG anti-CHX10 (VSX2) (1:200) (Novus NBP1-84476, RRID: AB_11022841),
and rabbit polyclonal IgG anti-SOX1 [EPR4766] 1:200) (GeneTex GTX62974) were incubated, rinsed with 0.2%
Tween-20 in PBS, and incubated in species-specific Alexa-fluor secondary antibodies (1:2,000), and rinsed with
0.2% Tween-20 in PBS with DAPI staining. Fluorescent images were acquired using ImageXpress Micro XLS
system (Molecular Devices) at 10X magnification. For a complete analysis, total 9 sites per well were captured.
The captured images were quantified for the cellular population using MetaXpress software (Molecular

Devices).

Quantification of C90rf72 transcript variants

RNA was extracted from iPSCs using the PureLink RNA mini Kit (Invitrogen) and reverse-transcribed into cDNA
using the Promega Reverse Transcription System. Quantitative PCRs were conducted in triplicate using SYBR
Green and primers amplifying all C9orf72 transcripts as well as specific transcript variants. PCR cycles consisted

of the following steps: [1x 95°C for 10 min, 40x 95°C for 30 seconds -> 58°C for 60s, and 1x 72°C for 5 min].

FISH of C90rf72 sense and antisense RNA foci and imaging
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RNA FISH was performed as previously described in (Sareen et al., 2013). Briefly, cells were cultured on chamber
slides (Lab-Tek Il chamber slide system, Thermo Fischer Scientific, Cat #154917). Cells were then fixed in 4%
paraformaldehyde, permeabilized with diethylpyrocarbonate (DEPC)-PBS/0.2% Triton X-100, and washed with
(DEPC)-PBS. Cells were incubated with hybridization buffer containing 50% formamide, DEPC-2xSSC (300 mM
sodium chloride, 30 mM sodium citrate, pH 7.0), 10% w/v dextran sulfate, and DEPC-50 mM sodium phosphate,
pH 7.0 for 30 min at 66°C. This was followed by hybridization with 40 nM of a Locked Nucleic Acid probe for
C90rf72 HREs in hybridization buffer for 3 hours at 66°C. Afterwards, the cells were rinsed once in DEPC-
2xSSC/0.1% Tween-20 at room temperature and three times in DEPC-0.1xSSC at 65°C. The cells were then

stained with DAPI, mounted using ProLong Gold antifade reagent, and analyzed with fluorescence microscopy.

PolyGP Response

PolyGP in iPSC-MNs were measured blinded to C9orf72 HRE and disease status using a previously described
sandwich immunoassay that utilizes Meso Scale Discovery electrochemiluminescence detection technology, and
an affinity purified rabbit polyclonal polyGP antibody (Rb9259) as both capture and detection antibody

(Gendron et al., 2015; Su et al., 2014).

Single-cell RNA-seq of MN cultures

iPSC and iPSC-MN differentiation cultures were washed with PBS, incubated at 37°C with 0.25% Trypsin-EDTA
between 5 and 20 minutes, and diluted with an equal volume of the complete culture media in which they were
grown. After pelleting cells at 200 x g for five minutes at 4°C, cells were resuspended in PBS, observed for clumps,
and further triturated with a fire polished glass pipet. The cell suspension was filtered through a Miltenyi 30 um
filter, counted on a hemocytometer, and the concentration was adjusted prior to loading onto the Illumina Bio-
Rad ddSEQ System or 10X Genomics Chromium scRs platforms in accordance with the respective instructions

for each kit for targeting approximately 1,000 cells per sample. Library preparation kits used were lllumina® Bio-
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Rad® SureCell™ WTA 3' Library Prep Kit for the ddSEQ™ System and 10X Chromium Single-cell 3’ Library & Gel
Bead Kit v2. Libraries were sequenced on lllumina NextSeq500 targeting 100,000 reads per cell. Raw sequencing
reads were demultiplexed and processed to FASTQ using Illumina bcl2fastg. Sample reads were aligned to the
transcriptome and uniquely mapped reads were counted and assigned to cell specific barcodes. For ddSEQ
libraries, reads were aligned and demultiplexed to cell barcodes using lllumina Single-Cell RNA Seq BaseSpace
Workflow (v1.0.0) with STAR Aligner (v2.5.2b) (Dobin et al., 2013) and hg19 reference genome. For 10X libraries,
reads were aligned and demultiplexed using 10X Genomics Cell Ranger (v2.1.0) with STAR Aligner (v2.5.1) and
GRCh38 reference genome. Ensembl gene IDs were annotated to HGNC symbols. In instances of multiple ENSG
IDs mapping to unique HGNC symbols, the sum of unique molecular identifiers (UMls) across ENSG IDs was
calculated and used as the UMI for the unique HGNC symbol. The summarized UMI count tables for each

experimental batch are deposited in GEO under accession number GSE138121.

Immunohistochemistry and quantification of ELAVL3 in spinal cords

Human tissues were obtained using a short-postmortem interval acquisition protocol that followed HIPAA-
compliant informed consent procedures and were approved by Institutional Review Board (Benaroya Research
Institute, Seattle, WA IRB# 10058 and University of California San Diego, San Diego, CA IRB# 120056). For IHC, 8
sporadic ALS, 4 C9 ALS, and 5 control lumbar spinal cord sections were studied. Sections with 6 um thickness
were formalin-fixed and paraffin-embedded. On day one, sections were deparaffinized with Citrisolv (Fisher
Scientific #04-355-121) and hydrated with different dilutions of alcohol. Endogenous peroxidase activity was
quenched with 0.06% H202 for 15 min. Antigen retrieval was performed in a Antigen Unmasking Solution
(Vector Laboratories #H-3301) in a pressure cooker for 20 min at a temperature of 120 °C. Following antigen
retrieval, sections were permeabilized with 1% FBS (Atlanta Biologicals #511150) and 0.2% Triton X-100 in PBS
for 15 min and then blocked with 2% FBS in PBS for 25 min. The sections were incubated overnight with the

primary antibody, rabbit polyclonal ELAVL3, 1:1000, LSBio, Cat# LS-C408905. On the second day, after 60-min
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incubation with the secondary antibody (Immpress reagent kit, anti-Rabbit, Vector Laboratories #MP-7401) in
room temperature, signals were detected using Immpact DAB (Vector Laboratories #SK-4105) for 5-10 min.
Counterstaining was performed with hematoxylin (Fisher #HHS128). For IHC visualization, slides were scanned
with Hamamatsu Nanozoomer 2.0HT Slide Scanner at 40X magnification. At least 6 motor neurons per spinal
cord were evaluated, and across all samples totaled a combined number of 199 neurons from sporadic ALS
subjects, 77 neurons from C9 ALS subjects, and 313 neurons from control subjects. Images were deconvoluted
using Fiji ImageJ (Schindelin et al., 2012) and the optical density (OD) was measured for each neuron, where OD

= log (max intensity/1/Mean intensity), where max intensity = 255 for 8-bit images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pseudotime analysis

Monocle version 2.12.0 (Qiu et al., 2017) was used to perform pseudotime analysis of the 18 day differentiation
time course. Genes with minimum average expression of 0.1 and detectable in at least 10 cells were filtered.
Cells were further filtered for those whose total UMI count was within three standard deviations of the average
log10 UMI across all time points. Tests each gene for differential expression as a function of the time course was
calculated using the full generalized linear model, and genes with a g-value less than 0.1 from this test was
filtered. These genes were used in dimensional reduction of the time course samples onto two components
through Discriminative Dimensionality Reduction with Trees. All cells were ordered along this pseudotime

trajectory, and expression of select genes were plotted against the cells ordered along this pseudotime.

Seurat Version 2.3.0 was used to process, normalize, cluster, and analyze scRs data for day 18 MN cultures. UMI
count tables for each of the six experimental batches were each loaded as Seurat objects as well as cell barcodes
and sample covariates for meta data. Genes with at least one UMI in at least one cell were kept. The percent

of mitochondrial genes was calculated for each cell and stored as meta data. Z-scores were calculated for three
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columns in the meta data for each cell: nGene, nUMI, and percent mitochondrial genes. Cells were then filtered
based on these z-scores; any cell that had a z-score greater than 3 or less than -3 (greater than 3 standard
deviations away from the mean of that meta data) in any of the three columns were excluded from further
analysis. Next, the global scaling normalization method normalizes the gene expression measurement for each
cell by the total expression, multiplies this by a scale factor, and log transforms the result. The maximum UMI
detected in the experimental batch was used as the scaling factor. Next, highly variable genes (HVGs) in the
experimental batch were calculated. The mean expression for all detected ( i.e. non-zero value) genes was
calculated as well as the log transformed ratio of variance to mean expression (regarded as the dispersion).
Genes were then binned into 20 intervals, and within each interval, the z-score for dispersion was calculated for
each gene. This helps control for the relationship between variability and average expression. Genes with z-
score for dispersion values greater than 2 were deemed to be HVGs. After all six experimental batches were
processed as Seurat objects, samples were subsetted out of each Seurat object, totaling 22 samples. 279 HVGs

were calculated in at least 11 of the 22 samples, and these were kept for subsequent dimensional reduction.

Data set normalization, identity assignment, and clustering

Multiple Canonical Correlation Analysis (MultiCCA) was performed on the 22 samples to correct for
experimental batch and platform effects. Up to 20 dimensions were evaluated, and the first 18 dimensions were
determined to be used for subspace alignment. Prior to subspace alignment, cells whose expression profiles
cannot be well-explained by low-dimensional CCA compared to low-dimensional PCA (less than a two-fold ratio)
were removed. 17,531 cells remained. Subsequently, samples were aligned using dynamic time warping along
the first 18 dimensions, and the resulting batch integrated Seurat object holding all 22 samples was used for
downstream analysis. To determine the optimal number of communities to cluster, several resolution settings
were tested using the FindClusters command in Seurat. The first 18 dimensions from the reduction through CCA

were used, and 30 nearest neighbors were considered for each resolution setting. All other parameters were
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kept at default values. The original Louvain algorithm determined the modularity for each setting, and the
maximum modularity observed after 100 iterations was recorded for each number of communities. A
polynomial trendline was calculated, and the residuals for each setting greater than zero was considered to
determine the optimal number of communities. Based on the independently optimized tSNE calculations and
visualizations for 17,531 cells, a resolution setting of 0.125 yielding 4 communities was selected to proceed with
downstream analysis. When projecting all cells on two two dimensional tSNE plots using the RunTSNE command,
the same 18 dimensions were used as for the FindClusters command, and all other parameters were kept at
default values . A perplexity setting of 100 was selected based on the visual concordance with the 4 communities

determined.

To analyze only the postmitotic, neuronal subtypes from these 17,531 cells, we repeated the FindClusters
command using a resolution parameter of 0.04, which detected 2 communities, and the postmitotic community
containing 11,120 cells was subsetted into a new Seurat object. Once again, 22 samples were subsetted out of
this Seurat object. HVGs were again calculated in each of the 22 samples using the same parameters stated
above. 158 HVGs were calculated in at least 11 of the 22 samples, and these were kept for subsequent
dimensional reduction. MultiCCA using 22 dimensions was applied to this batch integrated Seurat object, and
the final data set comprised of 10,866 cells. The optimal parameters for resolution set to 1 and perplexity set to
0.75 were selected for FindClusters and RunTSNE, respectively, and this produced 18 communities, which were

subsequently re-annotated based on key marker gene expression.

To assign rostrocaudal segment or cell type identity considering the expression pattern of HOX genes (Table
S2A) or 105 developmental genes (Table S2B), respectively, all expression values were log transformed after
adding a pseudocount of 1. Pearson correlations were performed using pairwise complete observations.

Benjamini-Hochberg-corrected p-values for each Pearson correlation were calculated using the corr.test
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function in the pysch package, and the correlation with the lowest p-value, meeting the specified threshold was
used to assign the segment or cell type identity. Multiple identities with the highest correlation were randomly

selected for assignment.

Differential expression, gene set enrichment, and classifier accuracy analyses

To perform differential gene expression analysis between any two populations, the FindMarkers command in
Seurat was applied with the bimodal expression likelihood test and the log fold change threshold was set to 0.1.
Genes with Bonferroni adjusted P-values less than 0.05 were called significantly changed. Additionally,
differentially expressed genes between ALS and control conditions were calculated in DESeq (Anders and Huber,
2010) by summing all scRs UMI counts for each gene across the expression matrix for each sample to simulate

bulk RNA-seq expression.

Jaccard indices were calculated by tabulating genes called differentially upregulated or downregulated in each
ALS to control of isogenic comparison within each experimental batch and intersecting each set of genes among
all experimental batches. The Jaccard index is the ratio of the number of intersecting genes divided by the sum
of the union of all genes across the two sets being compared. Gene Ontology (GO) analysis was performed on
gene lists using official gene symbols for homo sapiens through the DAVID functional annotation chart. The
following categories were tested: OMIM disease, GO Term BP direct, GO Term CC direct, GO Term MF direct,
BIOCARTA, KEGG, and REACTOME. Thresholds used were minimum count of 2 and EASE score of 0.1, and GO
and pathway sets with Benjamini-Hochberg-corrected P-values of less than 0.5 were called significant and
reported. The Vennerable package was used to create Euler and Chow-Ruskey plots. WGCNA and module

preservation was performed as previously described in Ho et al., 2016.
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Multiset enrichment analysis was performed using SuperExactTest (Wang et al., 2015). Lists of gene sets to be
intersected were input, the expected and observed number of overlaps were calculated, and the P-value

indicates the likelihood of overlap among all possible comparisons.

To generate a combined expression score for each gene within a population of cells in each sample, we
calculated the average UMI counts using all cells within a specified population with a non-zero UMI value. For
each gene, the minimum average UMI count among all 22 samples was subtracted from the average UMI in
each sample to floor the average expression to zero. From this transformed set of values, the maximum was
identified and subsequently used as a divisor for each floored average expression to transform them into a
ceiled average expression, with the maximum value being 1. For each gene in each population in each sample,
the ceiled average expression was summed with the percent UMI counts for all cells within the specific
population, which includes zero UMI values, to generate a combined expression score that equally weights
average UMI expression with percent UMI expression. This combined expression score was used to perform
statistical test for changes in distribution between all ALS samples and all control and isogenic samples across

all experimental batches.

To define MN-specific marker genes for ALS classification, a table of combined expression scores were generated
from iPSC-MN scRs data, which contained 1,281 genes. A t-test was performed between all ALS and all control
and isogenic samples; 39 genes obtained nominal p-values less than 0.05, and none of these retained this status
after Benjamini-Hochberg correction. Therefore, the genes were ranked from lowest to highest nominal p-
values, and the top 20 genes were selected to be intersected with the LCM MN transcriptomic data from Rabin
etal., 2010 as analyzed in Ho et al., 2016 as well as Krach et al., 2018. Among these, six genes were concordantly

changed between ALS and control conditions in all three data sets; the combined expression score was lower in
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ALS compared to control and isogenic iPSC-MNs, and the gene significance to the sALS component was negative

in LCM MNs.

To incorporate the six ALS marker genes into a single prediction metric, principal component analysis (PCA) was
applied to samples using the expression values of these six genes, and sample coordinates along the first,
second, or a sum of both principal components was used as the prediction metric. For analyzing the scRs
samples, the combined expression score for the six genes were used as input. For analyzing bulk RNA-seq data,
the log transformed expression values for the six genes were used as input. In some data sets, five of the six
genes were used; NDUFAF5 was not annotated in Highley et al., 2014; CARS2 was not annotated in Cox et al.,
2010, Kirby et al., 2011, and Kiskinis et al., 2014. For Krach et al., 2018, Highley et al., 2014, and Shi et al., 2018,
sample coordinates along PC2 were used as the prediction metric. For Fujimori et al., 2018, the signed values
for PC2 coordinates of samples were reversed to place control samples concordant with their placement along
PC1. Both PC1 and PC2 coordinates were floored to zero by subtracting the minimum of each PC coordinate,
and the sum of the floored PC1 and PC2 coordinates were used as the prediction metric. Coordinates along PC1
were used as the prediction metric for all other data sets. The ROCR package (Sing et al., 2005) was used to plot
the Receiver Operator Characteristics and calculate the Area Under the Curve (AUC). The p-value of the Wilcox
Rank Sum test was used to determine whether the AUC significantly differs from 0.5, the AUC of an

uninformative test.

DATA AND CODE AVAILABILITY
The scRs data generated in this study are available at the Gene Expression Omnibus under the accession code
GSE138121. The scripts written for the analysis performed in this study are compiled into a text document and

available https://github.com/ritchieho/2020 scRs iPSC ALS.
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Figure 1. iPSC-MN cultures recapitulate developmental gene expression patterns.

A. Immunostaining day 18 cultures from three individual subject lines for the expression of MN markers
ISL1 and SMI-32.

B. Experiment schematic for analyzing the time course of MN differentiation over the course of 18 days.

C-D. Violin plots indicate refinement of gene expression programs during MN differentiation. C depicts the
number of unique molecular identifiers (nUMI), and D depicts the number of detectable genes per time
point.

E. tSNE of spinal MN differentiation time course samples.

F. Monocle analysis projects samples into a pseudo-time axis consistent with the order of time points.

G. Histogram displays meta data for all samples profiled in this study. This data is also presented in Figure
S4.

H. UMI counts were summed for each gene across the expression matrix for each sample, thereby
simulating bulk RNA-seq data. Simulated bulk gene expression profiles for each sample were correlated
to bulk RNA-seq gene expression profiles from fetal hindbrain and spinal cord at various Carnegie stages
analyzed in de Kovel et al., 2017. The median Spearman correlation was calculated for each column of
day 18 samples and displayed along the bottom row. For each row of pairwise correlations, the top three
ranked correlations are outlined, indicating which sample from de Kovel et al., 2017 most globally similar
to each sample analyzed by single-cell RNA-seq.

See also Figures S1, S2, S3, and S4, and Table S1.
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Figure 2. iPSC-MN cultures globally resemble rhombomere eight and cervical spinal cord.

A. Models of cell type organization along representative hindbrain and spinal cord segments. Left, HOX
gene expression patterns determine rostrocaudal axis identities, adapted and simplified from Di Bonito
et al., 2013; Lippmann et al., 2015; and Philippidou and Dasen, 2013. Center, dorsoventral progenitors
in the ventricular zone (VZ) and postmitotic lineages localized to distinct regions in the gray matter
mantle zone (MZ) of the spinal cord, adapted and simplified from Alaynick et al., 2011 and Lu et al., 2015.
Right, registration of all cell types present within the hindbrain and spinal cord based on HOX and
lineage-specific transcription factor expression.

B. Left: Unit expression matrix of HOX genes that developmentally determine hindbrain and spinal cord
segment identity. R2-8: rhombomeres 2-8, Ce: cervical, Br: brachial, Th: thoracic, Lu: lumbar, Sa: sacral,
Ca: caudal. Right: Expression heatmap of HOX genes in fetal hindbrain and spinal cord at various Carnegie
stages analyzed in de Kovel et al., 2017. Labels below each sample column indicate the hindbrain or
spinal cord segment that each sample most resembles, based on the highest Spearman correlation to
the expression patterns for each segment shown in the unit expression matrix and with Benjamini-
Hochberg adjusted P-values < 0.05.

C. Histogram of segment identities assigned to fetal hindbrain samples, fetal spinal cord samples, and
individual cells analyzed from day 18 cultures based on the highest Spearman correlation to the
expression patterns for each segment shown in the unit expression matrix and with Benjamini-Hochberg
adjusted P-values meeting the indicated thresholds. NA: not assigned.

See also Figure S5, and Table S2.
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Figure 3. Developmental gene expression profiles and global clustering classify VZ progenitor and MZ

postmitotic neuronal identities.

A.

Based on the expression profile of 105 developmental genes (Table S2B), individual cells from the time
course of differentiation over 18 days were classified as identities belonging to the VZ, MZ, astrocyte, or
not assigned (NA).

tSNE showing global clustering of 17,531 cells from day 18 cultures across experimental batches, which
by Seurat determined four clusters indicated by four colors. Significantly differentially expressed genes
in each cluster relative to the other clusters were analyzed for enriched GO terms, and these are
displayed below the tSNE plot.

The same tSNE as in B with each cell colored by classification based on 105 developmental genes.

The same tSNE as in B with each cell colored by relative expression level of each indicated gene, which
were determined to be among the most significantly differentially expressed genes in clusters 1 (SOX2,
TOP2A), 2 (COL3A1, TAGLN), 3 (STMN2, ONECUT2), and 4 (PHOX2A, PHOX2B).

tSNE showing global clustering of 10,866 cells classified into clusters 3 and 4 in B. Seurat analysis
determined 18 clusters.

The same tSNE as in E with each cell colored red if they were classified as the indicated cell type based

on 105 developmental genes.

. The same tSNE as in E with each cell colored by their reclassification into clusters formed by merging the

clusters identified in E based on enrichment for identities shown in F. This data is also presented in Figure
4.

The same tSNE as in E with each cell colored by relative expression level of each indicated gene, which
are regarded as distinct markers of each identity listed above each plot in F.

Boxplots of Spearman correlation values between gene expression profiles of LC MNs from Ho et al.,

2016; summed gene expression profiles across all cells for each day 18 sample (Bulk); and summed gene

48


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

expression profiles across cells classified as MN in G. P-values were calculated from a paired, two-tailed
t-test. n.s. = not significant, p > 0.05.

J. Bar graph of segment identities assigned to individual cells within each of the seven clusters based on
the highest Spearman correlation to the HOX expression patterns for each segment shown in the unit
expression matrix (Table S2A) and with Benjamini-Hochberg adjusted P-value < 0.1. R2-8: rhombomeres
2-8, Ce: cervical, Br: brachial, Th: thoracic, Lu: lumbar, Sa: sacral, Ca: caudal, NA: not assigned.

See also Figures S4, S5, and S6, and Table S2.
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Figure 4. ALS enacts distinct gene expression changes in neuronal subtypes.

A. Left to right: the same tSNE as in Figure 3G, with each cell colored by ALS or control (CTR) condition,
colored by experimental platform, and bar graph quantifying the number of cells assigned to each class.

B. Jaccard indices of overlapping gene sets across ALS to CTR comparisons within the neuronal subtypes
MN, V1 Renshaw, and V2a. Each pairwise ALS to CTR comparison is shown along left and top axes, and
the heatmap indicates the Jaccard index for each intersection of gene sets. The number of upregulated
genes in each ALS to CTR comparison is printed in red along the right axis, and the number of
downregulated genes in each ALS to CTR comparison is printed in blue along the bottom axis.
Upregulated gene sets were only compared to other upregulated gene sets, and downregulated gene
sets were only compared to other downregulated gene sets. The red and blue heat maps represent the
Jaccard indices for intersections of upregulated and downregulated gene sets, respectively.

C. Left: Differentially expressed genes between ALS and control conditions for neuronal subtypes MN, V1
Renshaw, V2a, and simulated bulk RNA-seq. Genes were categorized as upregulated or downregulated
by ALS, and Chow-Ruskey diagrams present the intersection among each neuronal subtype as well as
with bulk comparisons. Right: Euler diagrams present the intersection of GO terms enriched among
genes that are reproducibly dysregulated by ALS uniquely within each neuronal subtype in the
upregulated or downregulated categories. Representative GO terms are displayed from each
overlapping or unique set. See Table S7H-M for full set of uniquely enriched GO terms. No GO terms
were significantly enriched among genes upregulated or downregulated by ALS in bulk comparisons, and
no GO terms were enriched among genes uniquely downregulated by ALS in V2a interneurons. See
Tables S3-7 and Methods for details on how differentially expressed gene and GO lists were generated.

See also Figure S6 and Tables S3, S4, S5, S6, and S7.
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Figure 5. ALS iPSC-MN cultures exhibit transcriptional changes detectable in postmortem ALS spinal MNs.

A. Hypergeometric test or each of 52 modules defined from WGCNA on LC MNs (data set A) from
postmortem sporadic ALS (sALS) and non-ALS subjects (Ho et al., 2016) to detect enrichment for ALS
dysregulated genes from each of the neuronal subtype categories identified in Figure 4C. Upper panel:
WGCNA modules and the sample traits (SALS disease status and PC1 sALS component) with which they
are significantly associated outlined in black rectangles (Pearson correlation between module eigengene
and sample trait, Bonferroni-adjusted P-value < 0.01). Z-summary value for each module measures the
extent of module preservation between data set A and B (Krach et al., 2018) (Figure 5B). Bar graphs
above and to the right indicate the number of genes represented in data set A and our scRs data set,
respectively. A matrix of P-values from hypergeometric tests performed for each module to neuronal
subtype category comparison were adjusted by the Benjamini—-Hochberg method, and subsequent P-
values < 0.05 are marked as black squares in the matrix.

B. Asin A, except for 32 modules define from data set B (Krach et al., 2018).

C. Euler diagram of intersecting gene sets among the Magenta module from data set A, the Steelblue
module from data set B, and the MN upregulated in ALS genes. P-values indicate the likelihood of multi-
set intersections using SuperExactTest (Wang et al., 2015). Genes are listed for overlapping sets, bolded
genes are associated with the representative GO terms listed below.

D. Asin C, except among the Blue module from data set A (left), the Midnightblue module from data set A
(right), the Darkgreen module from data set B, and the MN downregulated in ALS genes.

E. Split dot plots indicate percent of MNs within each sample that express a non-zero value of each gene
and also indicate the average gene expression among MNs within each sample that express non-zero
values of that gene.

F. Scatterplots depict gene expression in each LC MN sample from data set A (y-axis) against the coordinate

for that sample along the first principal component (PC1 sALS component, x-axis). Prior to performing

53


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PCA on the expression data set, the ten genes shown in this panel were removed from the expression
matrix to eliminate autocorrelation. sALS samples are colored red, and control samples are colored blue.
The Spearman correlation between expression and PC1 coordinate is indicated next to the gene symbol,
and the nominal P-value of the correlation is indicated below the gene symbol.

G. AsinF, except applied to data set B.

See also Figure S6.
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Figure 6. ALS iPSC-MN neuron cultures exhibit early transcriptional changes counteracting homeostatic
maturation and aging.

A. Euler diagram of intersecting gene sets among the Magenta, Blue, Midnightblue, or Yellow modules from
data set A, the MN dysregulated genes in ALS identified in Figure 4C, and genes assigned to modules that
significantly correlate with MN maturation and aging (Ho et al., 2016). The number of genes within each
set is indicated. P-values indicate the likelihood of multi-set intersections using SuperExactTest (Wang
et al., 2015). Genes with pathogenic variants in the ClinVar database are indicated on the right.

B. Heatmap of genes listed in A demonstrating expression kinetics as tissues progress from embryonic,
fetal, and adult spinal cord tissues (Ho et al., 2016). Pluripotent stem cells (PSCs) include embryonic stem

cells and iPSCs.
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Figure 7. Single-cell analysis reveals predictive ALS marker genes.

A. Split dot plots indicate percent of MNs within each sample that express a non-zero value of each of six
predictive marker genes. Plots also indicate the average gene expression among MNs within each sample
that express non-zero values of that gene.

B. Heatmap of five genes listed in A, along with NNAT demonstrating expression kinetics as tissues progress
from embryonic, fetal, and adult spinal cord tissues (Ho et al., 2016). CARS2 was not annotated in this
data set. Pluripotent stem cells (PSCs) include embryonic stem cells and iPSCs.

C - G. Receiver-operator characteristic (ROC) analysis performed on several data sets classifying samples in
each data set as ALS or non-ALS, based on sample coordinates along the first, second, or both principal
components using six predictive marker genes. See methods for calculations. P-values for each area
under the curve (AUC) are calculated using the Mann-Whitney U test to determine whether the AUC
differs significantly from 0.5 (diagonal grey line), which indicates an uninformative test. The number of
samples for each ALS and non-ALS cases used in the analysis, along with their genotypes are indicated.
The number of genetically distinct subjects included in the analysis are indicated in parentheses. Familial
ALS subjects with pathogenic variants in C9orf72 (C90), CHMP2B (CHM), FUS, SOD1 (SOD), TARDBP
(TDP). Sporadic ALS subjects with no known pathogenic variants (SPO). Non-ALS control subjects (CTR).
C90rf72 or SOD1 subject lines in which the pathogenic variant has been genome edited (ISO). Spinal
muscular atrophy subjects classified as non-ALS (SMA). C. ROC analysis performed on subpopulation data
generated from scRs data set based on a combined metric of average and percent expression for the six
predictive marker genes. D. ROC analysis performed on previously published LC MN expression data sets
(Cox et al., 2010; Highley et al., 2014; Kirby et al., 2011; Krach et al., 2018; Rabin et al., 2010). E. ROC
analysis performed on mouse LCM MNs (Nardo et al., 2013). F. ROC analysis performed on bulk RNA-seq
data sets generated by the NeuroLINCS Consortium for undifferentiated iPSCs (day 0), two MN

differentiation protocols at days 18 and 90, and iPSC-MNs from Fujimori et al., 2018; Kiskinis et al., and
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2014; Shi et al., 2018. G. ROC analysis performed on bulk proteomics data sets generated by the
NeuroLINCS Consortium for two MN differentiation protocols at days 18 and 90. ELAVL3 protein
expression is used as the prediction.

H - J. Representative images of lumbar spinal cord sections from control, sporadic, and C9orf72 ALS subjects
immunostained for ELAVL3 and counterstained with hematoxylin. Scale bar, 2.5 mm for H, |, and J; 250
um for inset images H’, I’, and J'.

K. Comparative distributions of ELAVL3 optical densities.

See also Figure S7.
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Figure S1. CRISPR-Cas9 removes hexanucleotide repeat expansions (HRE) in two C90rf72 ALS patient iPSC
lines. Related to Figure 1.
A. Schematic of guide RNA sequences (blue highlights) used to target GGGGCC HRE expansion (red
highlight) in the first intron of C9orf72.
B. Table summarizing the efficiency of correctly targeted iPSC clones isolated from parental lines 0029 and
0052. 0029-D7 and 0029-RB4 are subclones of 0029, and 0052-C3 is a subclone of 0052.
C. Repeat primed PCR assay for HRE in parental and correctly targeted iPSC lines.
D. Sanger sequenced C9orf72 alleles from correctly targeted iPSC lines aligned to reference C9orf72
sequence. Red dashes indicate deleted segments, and red nucleotides indicate mismatches.

E. Chromosome spreads indicate that the correctly targeted iPSC lines are karyotypically normal.

61


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S2
A B
«» 807 1.5+
©
© c
T 601 2
L2 ? 1.0-
@ &
8 40 3
:\ N
+, % 054
® 204 o]
5 o
= . .
52i 52i 83i 29i- 29i-D7  29i 29i-R-B4
C9ALS (C9ISO CTR CO9ALS C9ISO C9ALS C9ISO
C D
2.01 . ) 52i-C9ALS-sense 52i-C3-C9ISO-sense
52i CoALS [} 52i caiso
§ 1.51
[7)]
2]
o
S 1.0
(0]
N
e 52i-C9ALS-antisense  |52i-C3-C9ISO-antisense
S 0.54 T
(o))
o
0.0
Total C9 TV3
F
7000- Day 30
6000+
g 50004 29|-C9ALS-sense 29i-D-7C9ISO-sense
[}
o
é 4000+ Day 18
o 30004
(2, 20004
©
& 10004 29i-C9ALS-antisense 29i-D7-C9ISO-antisense
07 & & ¢
ENIPNIN
0’3;0\“0%“09%?9% ,C)(bv
\ Q\ 1\
4
14i-CTR
_ I 29i-C9ALS-sense 29i-R-B4-C9ISO-sense
G 800 -
© 29i-C9ALS
o @ 29-C9ISO
(2]
S 600 | (o)
Q.
2]
(0]
oY 400 A o
?5 29i-C9ALS-antisense 29i-R-B4-C9ISO-antisense
>
S 200 4
o n _®
0 B hd
29i- 29i-
CTR COALS  CoISO

62


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Figure S2. CRISPR-Cas9 corrected iPSC clones differentiate to MNs with altered C90rf72 expression

phenotypes. Related to Figure 1.

A.

Immunostaining MN cultures differentiated from the 0052 corrected iPSC line for the expression of MN
markers CHAT and SMI-32 (left). Quantification of percent CHAT-positive cells among total cells in 0052
and isogenic HRE-corrected clone.

gPCR quantification of total C9orf72 transcript expression in MNs differentiated from control (0083),
C90rf72 ALS (0029), and isogenic HRE-corrected clones (0029-D7 and 0029-RB4).

gPCR quantification of C9orf72 total and transcript variants (TV2 and TV3) expression in MNs
differentiated from C90rf72 ALS (0052) and its isogenic HRE-corrected clone.

Sense and antisense RNA foci are present in MNs differentiated from C9orf72 ALS (0052) but eliminated
in its isogenic HRE-corrected clone.

As in D, for 0029 and its two isogenic HRE-corrected clones.

ELISA quantification of polyGP dipeptide repeats in MNs differentiated over 18 and 30 days from several

control (CTR) and C90rf72 HRE ALS (C9ALS) iPSC lines.

. ELISA quantification of polyGP dipeptide repeats in MNs differentiated over 18 days from a control

(0014), C9ALS (0029), and its isogenic HRE-corrected clone, demonstrating reduction of polyGP response

as a consequence of HRE removal.
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Figure S3. iPSC differentiated spinal MN cultures globally resemble fetal spinal tissue. Related to Figure 1.

A. Pseudo-time plots of MN development and maturation markers (Ho et al., 2016) indicate iPSC-MNs
recapitulate downregulation of pluripotent stem cell and cell cycle markers and upregulate early spinal
MN patterning and progenitor markers with modest expression of maturation markers.

B. Quantification of immunostained day 18 cultures from several subject lines (three control, one sporadic
ALS, one C90rf72 repeat expansion, and one C9orf72 repeat expansion-corrected isogenic control) for
the double positive expression of spinal MN markers ISL1 and SMI-32. Cultures were fixed and stained
at day 18, and parallel differentiation cultures were processed on the same day for scRs. Color of bar
graphs indicate which differentiation experiments were processed on either the DDSEQ or TENEX scRs
technology platform. Three fields of view were quantified and averaged per sample, and error bars

indicate standard error.
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Figure S4. iPSC differentiated spinal MN cultures globally resemble fetal spinal tissue. Related to Figures 1

and 3.

A.

D.

Histogram displays experimental meta data for all samples profiled using scRs in this study and the
number of individual cells that passed quality control filters and subsequently analyzed. This data is also
presented in Figure 1.

scRs UMI counts were summed for each gene across the expression matrix for each sample, and the
summed UMI for each gene is meant to simulate bulk RNA-seq expression data for each sample.
Simulated bulk gene expression profiles for each sample were correlated to microarray gene expression
profiles analyzed in Ho et al., 2016 using Spearman’s method based on the number of matching genes
between the two data sets. In comparing the time course experiment from Batch A, there were 9,789
matching genes between the scRs data set and Ho et al., 2016. In comparing the day 18 experiments
from Batches B through F, there were 9,989 matching genes between the scRs data set and Ho et al.,
2016. The median Spearman correlation was calculated for each column of day 18 samples and displayed
along the bottom row. For each row of pairwise correlations, the top three ranked correlations are
outlined, indicating which sample from Ho et al., 2016 is most globally similar to each sample analyzed
by scRs. ESC: embryonic stem cells, HB9neg and HB9pos: Respectively, GFP-negative and GFP-positive
fractions of MN cultures differentiated from ESCs bearing an HB9::GFP reporter, iMN: iPSC-MN cultures,
SC: spinal cord, LC MN: laser capture micro-dissected MNs from post-mortem human subjects, Oculo.
MN: laser capture micro-dissected oculoMNs from post-mortem human subjects.

Histogram displays experimental meta data for all day 18 samples profiled using scRs in this study and
the number of individual cells classified as MN and subsequently analyzed.

As in B, for cells from C classified as MNs.
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E. Boxplots of Spearman correlation values for each sample type in B (Bulk) and D (MN) compared with
sampls from Ho et al., 2016. P-values were calculated from a paired, two-tailed t-test. n.s.: not significant,

p > 0.05.
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Figure S5. Developmental gene expression profiles distinguish VZ progenitor and MZ postmitotic neuronal
identities. Related to Figures 2 and 3.

A. Unit expression matrix of 105 genes that developmentally determine VZ progenitor and MZ postmitotic
neuronal identities. The number of genes whose expression characterizes each identity is indicated in
the bar graph above the heatmap.

B. Pairwise Pearson correlation of each identity based on 105 genes in A indicating that the unit expression
profile of 105 genes is reasonably sufficient to distinguish each cell type from one another.

C. tSNE plot showing global clustering of 17,531 cells from day 18 cultures prior to multiple canonical
correlation analysis (Multi-CCA). Each cell is colored by experimental platform (left, red: DDSEQ, blue:
TENEX) and experimental batch (middle, n = 5), and sample (right, n = 22).

D. tSNE plot showing global clustering of 17,531 cells from day 18 cultures after Multi-CCA. Each cell colored
by experimental platform (red: DDSEQ, blue: TENEX), experimental batch (n = 5), sample (n = 22), case
(red: ALS, blue: control), genotype (n = 4), and, cell line (n = 10).

E. Plot of maximum detected modularity coincident with the number of communities determined by
adjusting resolution settings and considering 30 nearest neighbors to construct the shared nearest
neighbor graph. The number of communities were determined by testing several resolution settings in
the FindClusters command in Seurat. The original Louvain algorithm determined the modularity for each
setting, and the maximum modularity observed after 100 iterations was recorded and plotted for each
number of communities. A polynomial trendline was calculated (equation is displayed), and the residuals
for each setting greater than zero was considered to determine the optimal number of communities.
Based on the independently optimized tSNE calculations and visualizations for 17,531 cells, a resolution

setting of 0.125 yielding 4 communities was selected to proceed with downstream analysis.
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F. AsinE, exceptappliedto 10,866 classified into clusters 3 and 4 in Figure 3B. Based on the independently
optimized tSNE calculations and visualizations, a resolution setting of 1 yielding 18 communities was

selected to proceed with downstream analysis.
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Figure S6. Distinct markers of neuronal subtypes are expressed as proteins in iPSC differentiated spinal MN

cultures and enact distinct pathways in ALS conditions. Related to Figures 3, 4, and 5.

A.

Immunostaining day 18 cultures from one control subject line, 1034 for the expression of spinal MN
marker, ISL1, a cranial MN marker, PHOX2B, a V2a interneuron marker, VSX2, and a V2c interneuron
marker, SOX1. DAPI and SMI-32 are also used as counter stains. Scale bar, 50 um.

Venn diagrams of overlapping gene sets between 1) sporadic ALS to CTR and 2) C90orf72 HRE ALS to CTR
comparisons within the neuronal subtypes MN, V1 Renshaw, and V2a. Upregulated gene sets were only
compared each other, and downregulated gene sets were only compared to each other. P-values of each
intersection was calculated by a hypergeometric test.

Enriched GO terms among genes significantly upregulated or downregulated in ALS compared to control
neuronal subtypes are intersect in Venn diagrams. Representative GO terms are displayed from each
overlapping or unique set. Full set of GO terms are shown in Table S7B-G.

Left: measure of how well 52 modules defined in data set A are preserved in the modules defined in data
set B. The Z-summary statistic (y-axis) for is plotted against module size (x-axis). Data points reflect
module color. Dashed green line indicate threshold at Z = 10, and dashed blue line indicate threshold at
Z = 2. For the likelihood of module preservation, Z-summary > 10 indicates strong evidence; 10 > Z-
summary > 2 indicates moderate to weak evidence, and Z-summary < 2 indicates no evidence. Right:
measure of how well 52 modules defined in data set A are preserved in the modules defined in data set
B, as a relative comparison among modules. The median rank statistic (y-axis) is plotted against module
size (x-axis). Data points reflect module color. Low median rank values indicate a high preservation. The
data points for notable modules featured in Figures 5C and 5D are labeled.

As in A, except applied to 32 modules defined in data set B and tested for preservation in the modules

defined in data set A.
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Figure S7
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Figure S7. Genes differentially expressed in MN accurately distinguishes ALS from non-ALS conditions

throughout the time course of disease. Related to Figure 7.

A.

B.

C.

D.

PCA on subpopulation data generated from scRs data set based on a combined metric of average and
percent expression for the six predictive marker genes: ADCYAP1, CARS2, DNMT3B, ELAVL3, NDUFAF5,
and NUAK1. See methods for details on calculation.

As in A, except on postmortem LC MNs from Cox et al., 2010; Kirby et al., 2011; Krach et al., 2018; and
Rabin et al., 2010. For Cox et al., 2010 and Kirby et al., 2011, CARS2 was not annotated and therefore
not used in the analysis.

As in A, except on mouse LC MNs (Nardo et al., 2013).

As in A, except on bulk RNA-seq data sets generated by the NeuroLINCS Consortium for iPSCs, two MN
differentiation protocols at 18 and 90 days of differentiation from iPSCs, and iPSC-MNs profiled by RNA-
seq after fluorescent sorting for HB9-RFP-positive MNs (Kiskinis et al., 2014). CARS2 was not annotated

and therefore not used in the analysis.

E - H. Receiver-operator characteristic (ROC) analysis performed on the data sets described in A-D classifying

samples in each data set as ALS or non-ALS. Classifications were based on ELAVL3 mRNA expression. The
area under the curve (AUC), which summarizes the overall performance of ELAVL3 expression in
correctly classifying samples, is shown beneath each data set. The P-values for each AUC are calculated
using the Mann-Whitney U test to determine whether the AUC differs significantly from 0.5 (diagonal
grey line), which indicates an uninformative test. The number of samples for each ALS and non-ALS cases
used in the analysis, along with their genotypes are indicated. The number of genetically distinct subjects
included in the analysis are indicated in parentheses. C90: familial ALS subjects with pathogenic variants
in C9orf72, SPO: sporadic ALS subjects with no known pathogenic variants, CTR: control subjects who do

not have ALS, ISO: C9orf72 or SOD1 subject lines in which the pathogenic variant has been genome
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edited, CHM: familial ALS subjects with pathogenic variants in CHMP2B, SOD: familial ALS subjects with

pathogenic variants in SOD1, SMA: spinal muscular atrophy subjects, classified as non-ALS

76


https://doi.org/10.1101/2020.04.27.064584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.064584; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Table Legends
Table S1. Subject cell line data. Related to Figure 1.

Subject clinical and experimental attributes.

Table S2. HOX expression, VZ, MZ, expression, and cell meta data and annotations. Related to Figures 2 and 3.
A. Unit expression matrix of HOX genes as they are expressed along the rostrocaudal axis of the developing
embryo.
B. Unit expression matrix of ventricular and mantle zone developmental marker genes as they are
expressed along the dorsoventral and medial lateral axes of the developing embryonic spinal cord.

C. Cell metadataand annotations based on rostrocaudal, VZ, and MZ gene expression and global clustering.

Table S3. Differentially expressed genes in MN. Related to Figure 4.
Tables of genes called significantly differentially expressed using the bimodal expression likelihood ratio test
with log fold-change threshold greater than 0.1 at a Bonferroni-adjusted P-value less than 0.05. Each tab
lists significant genes determined from sample to sample comparisons within MN for each experimental
batch, separated by upregulated and downregulated categories. ALS to CTR or ISO comparisons were only

analyzed between samples within each experimental batch, indicated above each comparison.

Table S4. Differentially expressed genes in V1 Renshaw. Related to Figure 4.
Tables of genes called significantly differentially expressed using the bimodal expression likelihood ratio test
with log fold-change threshold greater than 0.1 at a Bonferroni-adjusted P-value less than 0.05. Each tab
lists significant genes determined from sample to sample comparisons within V1 Renshaw for each

experimental batch, separated by upregulated and downregulated categories. ALS to CTR or ISO
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comparisons were only analyzed between samples within each experimental batch, indicated above each

comparison.

Table S5. Differentially expressed genes in V2a. Related to Figure 4.
Tables of genes called significantly differentially expressed using the bimodal expression likelihood ratio test
with log fold-change threshold greater than 0.1 at a Bonferroni-adjusted P-value less than 0.05. Each tab
lists significant genes determined from sample to sample comparisons within V2a for each experimental
batch, separated by upregulated and downregulated categories. ALS to CTR or ISO comparisons were only

analyzed between samples within each experimental batch, indicated above each comparison.

Table S6. Differentially expressed genes in MNs, V1 Renshaw, and V2a interneurons. Related to Figure 4.
Tables of genes called significantly differentially expressed using the bimodal expression likelihood ratio test
with log fold-change threshold greater than 0.1 at a Bonferroni-adjusted P-value less than 0.05. Each tab
lists significant genes determined from sample to sample comparisons within each of three populations: MN
(Aand B), V1 Renshaw (C and D), and V2a (E and F) interneurons, respectively separated by upregulated and
downregulated categories. ALS to CTR or ISO comparisons were only analyzed between samples within each
experimental batch, indicated above each comparison. Genes called significant are highlighted blue. The
number of instances each gene was called significant within each category is listed to the right: comparisons,
ALS cell lines, CTR or ISO cell lines, and batches. The ratio of each number to total number of comparisons,
ALS cell lines, CTR or ISO cell lines, or batches is also displayed. The sum of ratios is calculated to the far right
of each table. Genes are displayed based on ranking their ratio sums from highest to lowest. Genes
determined to be significant in at least two comparisons were grouped into each set used for subsequent

analysis in Figures 4, 5, and 6.
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Table S7. Enriched Gene Ontology terms among genes differentially expressed in MNs, V1 Renshaw, and V2a
interneurons. Related to Figure 4.

A. Differentially expressed genes (DEG) table shows the number of comparisons in which genes were
significantly, differentially expressed using the bimodal expression likelihood ratio test with log fold-
change threshold greater than 0.1 at a Bonferroni-adjusted P-value less than 0.05. Genes observed to be
differentially expressed in two or more comparisons were deemed to be reproducibly dysregulated and
thereby kept for subsequent GO analysis.

B - G. Tables of Gene Ontology (GO) terms enriched among genes that are reproducibly dysregulated by ALS
within each neuronal subtype in the upregulated or downregulated categories.

H - M. Tables of Gene Ontology (GO) terms enriched among genes that are reproducibly dysregulated by
ALS uniquely within each neuronal subtype in the upregulated or downregulated categories.

GO terms are displayed based on ranking Benjamini-Hochberg-corrected P-values from lowest to highest.

Benjamini-Hochberg-corrected P-values < 0.05 are highlighted blue. Bonferroni-corrected P-values < 0.01

are highlighted yellow.
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