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Abstract 

We have recently identified three molecules (tilorone, quinacrine and pyronaridine 

tetraphosphate) which all demonstrated efficacy in the mouse model of infection with 

mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition 

of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. 

Using a machine learning model to predict lysosomotropism these compounds were 

evaluated for their ability to inhibit via a lysosomotropic mechanism in vitro. We now 

demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker 

accumulation in lysosomes (IC50 = 0.56 μM). Further, we evaluated synergy between 

pyronaridine and artesunate (Pyramax®), which are used in combination to treat 

malaria. Artesunate was not found to have lysosomotropic activity in vitro and the 

combination effect on EBOV inhibition was shown to be additive. Pyramax® may 

represent a unique example of the repurposing of a combination product for another 

disease. 
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Introduction  

The outbreaks of Ebola virus (EBOV) disease (EVD) in Africa have come at great 

human and financial cost (1, 2). For example, the outbreak in 2014-2016 killed over 

11,000 and it is estimated that it resulted in $53bn in economic damage (3). The most 

recent outbreak in the Democratic Republic of the Congo, has killed more than 2200 

people (4). Even with approval of a vaccine for prevention of EVD (5) there is still an 

urgent need to advance development of filovirus-specific antiviral therapeutics. A clinical 

trial (NCT03719586) investigated ZMapp (a monoclonal antibody cocktail) (6)), 

remdesivir (a small molecule), MAb114 (a monoclonal combination) (7)) and REGN-

EB3 (monoclonal antibody combination) (8). These results showed that the antibodies 

REGN-EB3 and mAb114 had overall statistically similar survival rates of 71% and 66%, 

respectively. Unfortunately, ZMapp and remdesivir were less effective with a 51% and 

47% survival rates, respectively (9). With remdesivir showing no statistically significant 

clinical efficacy the search for antiviral small molecules continues. 

 

In an effort to repurpose drugs for the treatment of EVD, we have developed a Bayesian 

machine learning (ML) approach with a set of 868 anti-EBOV active molecules identified 

in a viral pseudotype entry assay and confirmed in an EBOV replication assay (10, 11). 

The EBOV ML model enabled us to virtually screen several thousand compounds and 

identify three active compounds against EBOV: tilorone, quinacrine and pyronaridine 

tetraphosphate (12). The three molecules inhibited EBOV in HeLa cells and 

demonstrated significant in vivo activity in the mouse-adapted EBOV (ma-EBOV) 
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efficacy model (13-16) and in the guinea pig model of EBOV infection. The compounds 

also inhibited replication of multiple strains of EBOV and Marburg virus (MARV) (17). 

The trend for compounds to be active against both EBOV and MARV has been 

demonstrated before, with analysis of previously published data revealing an in vitro 

inhibition (IC50’s) correlation ((10, 18), Figure S1).  

 

To date, we have not determined the mechanism of the antiviral compounds we have 

identified. Previously we evaluated pyronaridine, tilorone and quinacrine in vitro for its 

anti-EBOV activity (Zaire strain) in the type I IFN-deficient Vero 76 cell line (19, 20) and 

no antiviral activity was observed at any concentration below the 50% cytotoxicity 

concentration. In HeLa cells all three drugs demonstrated selectivity (12, 14). These 

observations support the hypothesis that their antiviral activity could be partially acting 

through or on the type I IFN-related innate immunity pathway (15). We also tested a 

combination of pyronaridine with tilorone in HeLa cells and evaluated the data with the 

BRAID model which suggested they are likely synergistic (21). Based on published data 

for tilorone and quinacrine, which are well known to be lysosomotropic agents, it was 

suspected that this may also be important. In addition, pyronaridine is used as an 

antimalarial in combination with artesunate (Pyramax®). We had previously determined 

that artesunate also has micromolar in vitro inhibitory activity against EBOV (22). We 

now assess whether pyronaridine accumulates in lysosomes and if there is any effect 

with artesunate or its active metabolite dihydroartemisinin against EBOV when 

combined with pyronaridine in vitro. 
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Materials and Methods 

Chemicals and reagents  

Pyronaridine tetraphosphate [4-[(7-Chloro-2-methoxybenzo[b][1,5]naphthyridin-10-

yl)amino]-2,6-bis(1-pyrrolidinylmethyl)phenol phosphate (1:4)] (12) was purchased from 

BOC Sciences (Shirley NY). Tilorone was purchased from BOC Sciences. Quinacrine 

and Chloroquine were purchased from Cayman Chemicals (Ann Arbor, Michigan) and 

Sigma-Aldrich (St. Louis, MO), respectively. Artesunate was purchased from TRC 

Canada (North York, ON, Canada) and dihydroartemisinin (DHA) was purchased from 

Sigma-Aldrich (#D7439). 

 

NIAID screening 

Pyronaridine tetraphosphate, tilorone and quinacrine were also tested (using the NIAID 

DMID services) against representatives of several viruses using human cells. The 

general methods have been described previously (16).  

 

Lysosomotropic machine learning model 

The Assay Central software has been previously described (23-32) which uses the 

source code management system Git to gather and store structure-activity datasets 

collated in Molecular Notebook (Molecular Materials Informatics, Inc. in Montreal, 

Canada). The output is a high-quality dataset and a Bayesian model using extended-

connectivity fingerprints of maximum diameter 6 (ECFP6) descriptors. Each model 

includes several metrics to evaluate and compare predictive performance as previously 

described in a relevant publication (29), including Receiver Operator Characteristic, 
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Recall, Precision, F1 Score, Cohen’s Kappa (33, 34), and Matthews Correlation 

Coefficient (35). Applicability is representative of the overlap between the training and 

the test set. It is the quotient of the total number of ECFP6 fingerprints of the test 

molecule represented in the model divided by the total number of ECFP6 fingerprints of 

that test molecule. Generation and interpretation of prediction scores has been 

previously described (36, 37). The model consisted of curated data from a key paper 

from Nadanaciva et al. (38), where their quantitative approach to measuring 

lysosomotropic properties allowed for a direct activity threshold cut-off and was defined 

as an IC50 (decrease in LysoTracker Red staining) of ≥ 70 µM. A negative series of 

drugs that lack lysosomotropic properties from Kazmi et al. was also curated and added 

as inactive compounds (39) to the model.  

 

Lysosomotropic method 

A previous published lysosomotropic assay by Nadanaciva et al. was used as the basis 

for the following work (38).  

 

MCF7 cell culture conditions 

The human metastatic mammary gland cell line MCF7 was obtained from American 

Type Culture Collection (ATCC# HTB-22). Cells were grown in Eagle’s minimum 

essential medium (Corning) supplemented with 10% fetal bovine serum (Gibco), 100 

unit/ml penicillin and 100 µg/ml streptomycin (Corning) in a humidified incubator at 37°C 

and 5% CO2. 
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Lysosomotropic Assay 

MCF7 cells were seeded into black walled clear bottom 96-well plates at 15,000 

cells/well in 100 ul growth media and incubated for 48 hours (h).  Cells were treated with 

drugs at 2-fold dilutions, with an initial testing concentration of 50 µM and an additional 

series of 9 tested dilutions (final 0.098 µM). Based on solubility restrictions, compounds 

for stocks were either solubilized in DMSO (tilorone, quinacrine, artesunate) or water 

(pyronaridine, chloroquine). Control wells included cells treated with DMSO or water. To 

start assay, 0.5 µl of appropriate compound stock or control was added using Biomek 

NXp (Beckman Coulter) and incubated at 37°C, 5% CO2 for 3 hours. LysoTracker Red 

(75 nM) (ThermoFisher) was then added and incubated for 30 min followed by a wash 

in phosphate buffered saline (PBS). The cells were immediately fixed with 10% formalin 

at room temperature for 15 min. Cells were then stained with Hoechst (5 µg/ml) (Sigma-

Aldrich) in PBS for 10 min at room temperature. Following cell staining they were 

washed in PBS. Each experimental run tested a series of compounds in triplicate and 

was repeated on two different days (n=6 for each compound series) with multiple DMSO 

(n=12) and water (n=24) controls per plate.  

 

Imaging was done using a CellInsight CX5 High Content Screening Platform (Thermo 

Scientific) with 10X objective. Fluorescence was measured with Hoechst (nuclei) and 

LysoTracker Red (lysosomes) in channel 1 and 2, respectively. A total of 3 to 4 fields 

were captured for all wells. For analysis, nuclei were identified, and a circular mask was 

extended out 5 pixels to represent the cell. Total intensity of the fluorescent signal from 

Lysotracker Red within the mask area was then used to represent the lysosomal 
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staining in the cells. Data was normalized to controls and then analyzed with GraphPad 

Prism version 8.00. Error bars of dose-response curves represent the SEM of the 

replicates. 

 

Cell Viability 

MCF7 cells were seeded in white walled clear bottom 96-well plates at 15,000 cells/well 

in 100 µl growth media and incubated for 48 h. To start the assay, 0.5 µl of compound 

stock or control was added using Biomek NXp and incubated at 37°C, 5% CO2 for 3.5 

hours.  Following compound incubation, 80 µl of CellTiter-Glo (Promega) was added. 

The plates were shaken on an orbital shaker at 300 rpm for 20 min and then read on an 

Envision 2104 Multilabel reader (PerkinElmer). Experiments were repeated in triplicate 

and data was analyzed with Graphpad Prism version 8.00. Error bars of dose-response 

curves represent the SEM of the replicates. 

 

In vitro combination studies methods 

The in vitro infection inhibition of EBOV/Mak (Makona, IRF0165, 1.98E7 PFU/mL) was 

performed in HeLa and Huh 7 cells.  HeLa cells were seeded at 3 x 104 cells/well in 96-

well plates. After 24 hr the drugs were added to cells in a 6x6 matrix with 2-fold serial 

dilutions with a starting concentration of 30 µM. The experiment was run on 3-4 

replicate plates. The experiment was run on 2 different days. Cells were infected with 

virus 1 h after the addition of the drugs in BSL4-containment at a multiplicity of infection 

(MOI) of 0.21 (Huh 7) or 0.5 (HeLa). After 48 h, plates were fixed and virus was 

detected with a mouse antibody specific for EBOV VP40 protein (#B-MD04-BD07-AE11, 
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made by US Army Medical Research Institute of Infectious Diseases, Frederick MD 

under Centers for Disease Control and Prevention contract) (40) followed by staining 

with anti-mouse IgG-peroxidase labeled antibody (KPL, Gaithersburg, MD, #074-1802). 

Luminescence was read on an Spark 20M plate reader (Tecan US, Morrisville, NC). 

The signal of treated, infected wells was normalized to uninfected control wells and 

measured (in percent) relative to untreated infected wells. Non-linear regression 

analysis was performed, and the 50% inhibitory concentrations (EC50s) were calculated 

from fitted curves (log [agonist] versus response [variable slope] with constraints to 

remain above 0% and not exceed 100%) (GraphPad Software version 8.0, La Jolla, 

CA). The EBOV drug screen assay was performed with three replicates for each drug 

concentration. Error bars of dose-response curves represent the SEM of the replicates. 

For quantitation of drug toxicity, HeLa cells were mock infected (no virus) and treated 

with drug dilutions under the same conditions as the infected cells. After 48 h, cell 

viability was measured using the CellTiter Glo Luminescent Cell Viability Assay kit 

according to manufacturer’s protocol (Promega, Madison, WI).  

 

Combination Analysis using BRAID and SynergyFinder  

The BRAID analysis (21) service calculates synergy by fitting data to a seven-variable 

function. The variable κ represents a quantitative synergy value where κ�<�0 implies 

antagonism, κ�=�0 implies additivity, and κ�>�0 implies synergy. As an additional 

reference, “strong synergy” corresponds to κ�=�2.5, “mild synergy” corresponds to 

κ�=�1, “mild antagonism” corresponds to κ�=�−0.66, and “strong antagonism” 

corresponds to κ�=�−1. To assess if the combined inhibitory effect of pyronaridine and 
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or artesunate/dihydroartemisinin on EBOV was synergistic, additive, or antagonistic we 

analyzed a 6x6 checkboard assay with these pairs of drugs at various combined 

concentrations in HeLa and Huh 7 cells. It is noted that inhibition data under toxic 

concentrations (consistently >50% cell death) were removed from the analysis. 

Inclusively, this consisted of only individual and combined experiments with 

concentrations of pyronaridine that exceeded its CC50 (i.e. 5 µM concentrations in HeLa 

cells only). All toxicity data was retained for BRAID analysis. 

  

The SynergyFinder analysis service (41) similarly calculates the degree of combination, 

synergy or antagonism by comparing the observed drug combination response against 

the expected response, while assuming there is no interaction between the two drugs. 

These scores were calculated using the Loewe reference additivity mode (42). The 

threshold to define a good synergy score is variable, but the program developers 

suggest that synergy scores near 0 gives limited confidence on synergy or antagonism 

and a score < -10 or >10 are expected to be antagonist or synergistic, respectively.  

 

Results 

NIAID invitro screening 

Pyronaridine, quinacrine and tilorone were previously demonstrated to be active against 

EBOV in HeLa cell but not Vero cells (14). We have now tested these compounds 

against Adenovirus 5, Human papillomavirus 11, Chikungunya virus, Dengue virus 2, 

Powassan virus, Rift valley virus, Yellow Fever virus and human cytomegalovirus in 

additional human cells through the use of NIAID screening resources. None however 
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showed selectivity in the cell lines and concentrations tested, but this may be due to 

high cytotoxicity and or the insufficient range of concentrations tested in these cell lines 

(Table S1A-C) 

 

Lysosomotropic machine learning model predictions 

A Bayesian machine learning model with 52 compounds (23 were classed as 

lysosomotropic) was generated from published data using Assay CentralTM with 5-fold 

cross validation ROC = 0.765 (Figure 1).  Additional model statistics suggest that the 

model is potentially useful for scoring compounds to predict lysosomal accumulation 

(Table 1). Tilorone, pyronaridine and artesunate were used as a prospective test set. All 

compounds were correctly predicted, with tilorone and pyronaridine predicted to be 

lysosomotropic, while artesunate was predicted to not be lysosomotropic. 

 

In vitro inhibition of lysosomal accumulation of Lysotracker  

Pyronaridine tetraphosphate was found to be a potent inhibitor of Lysotracker 

accumulation in MCF7 lysosomes in vitro (IC50 = 0.56 μM). In contrast, artesunate 

showed no appreciable inhibition of Lysotracker (Figure 2). Tilorone (IC50 = 3.09 μM), 

chloroquine (IC50 = 6.21 μM) and finally quinacrine (IC50 = 7.31 μM) were less potent 

inhibitors of Lysotracker accumulation in MCF7 lysosomes in vitro (Figure S2).  

 

Combination Analysis  

The BRAID analysis (Figure 3) of pyronaridine and artesunate in vitro inhibition data 

from the checkerboard assay indicates additivity of these molecules in HeLa cells. 
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Artesunate ameliorates the toxicity of pyronaridine in the checkboard assay and 

therefore indirectly potentiates pyronaridine. The non-linear regression, 4-parameter 

curve fit (Hill equation) for the artesunate control in Huh 7 cells suggested a plateau at 

~60% inhibition (Figure S3), therefore the combination data for this cell-line and 

pyronaridine/artesunate pair was not included in the analysis. Pyronaridine and DHA 

similarly shows an additive effect in HeLa and Huh 7 cells, both with a parallel reduction 

in toxicity based on the BRAID analysis (Figure S4). A secondary analysis using 

Synergyfinder (Figures S5-S6) also suggests that this combination indirectly potentiates 

pyronaridine in HeLa cells, but in Huh 7 cells these interpretations are ambiguous 

(Figure S7).  

 

 
Discussion 

Within the last 5 years we have seen two major EVD outbreaks in Africa. These led to 

renewed efforts to develop treatments for this virus. The actives and inactives of several 

in vitro high throughput drug screens (10, 18, 43) have been used to develop 

computational models for predicting anti-EBOV activity of compounds. More recently, 

combinations of approved drugs found in these and other studies have suggested 

synergistic combinations (44-47). To date, none of these many efforts for EBOV have 

resulted in a clinical antiviral candidate. Several small molecule antivirals were felled at 

the hurdle of animal models, specifically the transition from mouse to the guinea pig 

model. Compounds that have failed to show in vivo efficacy against EBOV following this 

well-trodden route include chloroquine (18, 48), azithromycin (18), amiodarone (49), 
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BGB324 (50), NCK8 (50) and 17-DMAG (50). As discussed previously (17), this may be 

due to differences in drug metabolism making the model inappropriate for EBOV.  

 

Efforts to improve the efficiency and cost effectiveness of EBOV drug discovery have 

involved our efforts to identify several molecules using ML which have progressed 

through in vitro and in vivo testing (12-15, 17, 51). We have also previously used these 

ML models to predict in vitro efficacy for drugs that were then tested against EBOV (12, 

22). The mechanism for these three compounds against EBOV is unknown. Others 

have demonstrated that compounds with physicochemical properties such as a basic 

pKa (> 6.5) and cLogP of > 2 tend to be lysosomotropic (38) and they accumulate in the 

lysosomes. We have now taken an ML approach to predict potential for a 

lysosomotropic mechanism using published in vitro data (38, 39) along with ECFP6 

molecular fingerprints and a Bayesian algorithm. We have now performed several in 

vitro studies to validate the predictive ability of this model as well as infer the potential 

mechanism of one of these EBOV drugs. Pyronaridine clearly is a potent 

lysosomotropic agent, more so than all the other molecules tested. There is a strong 

correlation between published anti-EBOV activity and the lysosomotropic property 

(Table S2) for a large number of drugs. All of the compounds that were considered 

actives in our model were researched to identify whether they had been previously 

tested against EBOV and or MARV either with a psuedovirus/VLP and or a competent 

virus inhibition assay. 21 of 23 of these compounds had been tested previously and all 

inhibited these viruses, with AC50s almost all in the nM to low µM range. This is certainly 

not a comprehensive list of all lysosomotropic compounds, but this strongly supports the 
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notion that the lysosomotropic characteristic is directly related to the antiviral activity of 

the compounds within this model. Artesunate which is also similarly active against 

EBOV was found not to share this physiological characteristic. The initial combination of 

these two drugs to form Pyramax® was to avoid drug resistance of Plasmodium 

parasites, the causative agents of Malaria and has been extensively reviewed (52). The 

combinations of these two molecules are additive in inhibiting EBOV replication in vitro 

but with a reduced cytotoxicity as compared to the individual treatments (Figure 2 and 

3). Previous work has suggested that it is possible to identify pairs of drugs that block 

EBOV infection in vitro via the same methodology as used here (47) and these prior 

data have been used with other software to suggest a variation in prioritizing drug pairs 

based on selective efficacy (53), which considers both synergy and toxicity. This 

software independently confirms our observations with the BRAID analysis (Figure S5-

7). 

 

This current study has implications outside of EBOV, with the increased interest in 

antivirals for testing against SARS-CoV-2, and in particular the heavy focus on 

chloroquine and hydroxychloroquine, which have shown low micromolar activity in vitro 

against this virus (54-57). Pyronaridine has recently also been shown to have some 

limited activity against SAR-CoV-2 in Vero cells (54), but Vero cells may not be as 

appropriate as human cells to test compounds such as pyronaridine (low in vitro 

selectivity index, but high in vivo antiviral activity). Based on our previous findings, this 

leaves the distinct possibility that there has been an underestimate of pyronaridine’s 
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antiviral inhibition potential. Our current data also suggests that we should be testing 

artesunate versus additional viruses as well as in combination with pyronaridine.  

 

Frequently, single drugs are repurposed for new uses (58), to our knowledge there is no 

precedent for a two drug combination being repurposed for the same indication. We 

have previously estimated that the dose used for treating malaria patients may have a 

beneficial effect in EBOV patients (14), further indicating the potential for direct 

repurposing without the need to change dose, route or formulation. From our 

experience and insights gained during the discovery of the antiviral properties of 

pyronaridine, tilorone and quinacrine we propose our ML approach could be optimized 

by adding the additional ML model for the lysosomotropic mechanism described here. 

This would enable us to create a computational pipeline to identify new antivirals more 

rapidly that could have this lysosomotropic property and hence direct the antiviral 

mechanism of action investigations. Molecules with this mechanism may also have 

more utility as broad-spectrum antivirals which is needed to counter flare ups of viruses 

like EBOV, MARV or potential pandemics such as SARS-CoV-2. 
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Table 1. Physicochemical properties and Assay Central lysosomotropic machine learning predictions for compounds 

tested in vitro. An applicability score of 1 indicates that all the fragments are in the model and may indicate the molecule is 

in the training set (chloroquine is in the training set). (Calculated with ACD/Labs PhysChem Batch program$, (59)) 

Predicted pka’s (negative log of the acid dissociation constant) were obtained from drugbank, which were initially 

calculated using Chemaxon. AlogP (predicted log octanol-water partition coefficient was calculated via Discovery Studio). 

 

Name pKa (predicted) Pka (Experimental) AlogP Lysosomotropic 

Prediction Score 

Lysosomotropic 

Applicability Score 

Chloroquine 
10.32 (Strongest 

Base) 

4.0, 8.4 and 10.2 

(60) 
4.34 1.09 1 

Artesunate 

3.77 (Strongest 

Acid), -4.2 

(Strongest Base) 

4.6 (61) 

1.84 0.31 0.21 

Quinacrine 
10.33 (Strongest 

Base) 

N/A 
5.67 1.00 0.68 

Tilorone ~8.6$ N/A 4.56 0.75 0.69 
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Pyronaridine 

7.96 (Strongest 

Acid), 10.08 

(Strongest Base) 

7.08, 7.39, 9.88 and 

10.30 (62) 6.19 0.68 0.51 
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Figure 1. Lysosomotropic machine learning model. 5-fold cross validation receiver 

operator curve as well as multiple metrics depicting the internal validation of this 

Bayesian model (ECFP6). 
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Figure 2. Inhibition analysis of total fluorescent intensity/cell of lysotracker red by 

chloroquine, pyronaridine and artesunate in MCF7 Cells. Lysotracker accumulation in 

lysosomes is pH dependent, therefore a reduction in signal from the lysotracker 

suggests a pH increase in these organelles. This is proposed to be caused by 

accumulation of the charged base of the lysosomotropic compound in the lysosome, 

which in a lower pH environment becomes neutralized and trapped in the organelle. A) 

Representative images showing Lysotracker lysosomal accumulation inhibition at 

various concentrations. B) Graphical representation and quantification (Parentheses 

represent 95% CI) of the dose-dependent effect of on Lysotracker accumulation in 

lysosomes (Error bars represent SEM). Outliers were identified using the ROUT method 

(Q=10%) and consequentially removed. C) Measure of cellular toxicity at concentrations 

and times mimicking the inhibition assays. 
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Figure 3. Combination data for the pyronaridine and artesunate checkerboard assay in 

HeLa cells. A) Inhibition/cytotoxicity plots for the pyronaridine and artesunate controls 

(compound tested in the absence of the other compound). Controls were run in triplicate 

at 5 concentrations per plate, so the total number from replicates for each compound 

varied (Pyronaridine, n=27; Artesunate, n=18). Error bars represent the SEM at each 

concentration tested. B) Graphical representations (from left to right) of the inhibition 

plots of the smoothed raw data, predicted additive inhibition and predicted inhibition 

using the 7-parameter BRAID analysis. It is noted that inhibition data under toxic 

concentrations (>50% cell death) were removed from the analysis. The “Additive” or 

“BRAID” error represents the corresponding accuracy of fit with the “Observed Effect”. κ 

represents the combinatory effect where “strong synergy” corresponds to κ�=�2.5, 

“mild synergy” corresponds to κ�=�1, “mild antagonism” corresponds to κ�=�−0.66, 

and “strong antagonism” corresponds to κ�=�−1. C) Representation of the cytotoxicity 

(toxicity is representative of % cell death from control) arranged in the same manner as 

inhibition.   
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