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ABSTRACT

In spite of evidence of females having a greater lifetime risk of developing Alzheimer’s Disease
(AD) and greater apolipoprotein E4-related (apoE4) AD risk compared to males, molecular
signatures underlying these findings remain elusive. We took a meta-analysis approach to study
gene expression in the brains of 1,084 AD patients and age-matched controls and whole blood
from 645 AD patients and age-matched controls. Gene-expression, network-based analysis and
cell type deconvolution approaches revealed a consistent immune signature in the brain and blood
of female AD patients that was absent in males. Machine learning-based classification of AD
using gene expression from whole blood in addition to clinical features revealed an improvement
in classification accuracy upon stratifying by sex, achieving an AUROC of 0.91 for females and
0.80 for males. These results help identify sex and apoE4 genotype-specific transcriptomic
signatures of AD and underscore the importance of considering sex in the development of

biomarkers and therapeutic strategies for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most
common cause of dementia'. It is pathologically characterized by the deposition of extracellular
amyloid B (APB) and intracellular tau, otherwise referred to as plaques and neurofibrillary tangles,
respectively>™>. AD is also marked by neuronal loss, impaired neurotransmitter signaling,
neuroinflammation, and dysregulation of neuronal metabolism and immune response in the
central nervous system®3. AD prevalence increases dramatically with age, where the majority of
cases are in individuals above the age of 65'°. Although AD was identified more than a century

ago!®

, its cause and pathophysiology are not fully understood, and there are no available
treatments that aid in halting or reversing the disease!'. Accordingly, it is of high priority to tackle
AD, as it is projected to triple in incidence by 2050 as a consequence of population aging®®!? and,
to date, has no disease-modifying therapies.

While the exact cause and pathophysiology remain unknown, a number of mutations and
genetic risk factors have been identified as associated with AD. Apolipoprotein E (apoE) is the
most common genetic risk factor for late onset AD®!37'8, ApoE is a lipid binding protein, that
plays a central role in lipid transport and metabolism. It is highly expressed in the brain, and is
important for maintaining neuronal membranes during inflammation and damage. In humans,
apoE has three isoforms, apoE2, apoE3, and apoE4, which are encoded by the three alleles, €2,
€3, and €4, of the apoE gene, respectively. The €2 isoform has been shown to be protective against

AD, while the €4 isoform (apoE4) is associated with increasing the risk and lowering the age of

onset for developing late onset AD in a gene dose-dependent manner'®2°, Specifically, one copy
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of the €4 isoform confers a 3 to 4-fold increased risk and 7 year decrease in age of onset, while
two copies confers a 12 to 15-fold increased risk of AD, and a 14 year decrease in age of onset®?!.

Sex is another major risk factor in AD. Female sex is associated with increased AD
incidence, exacerbated pathophysiology and increased rate of cognitive decline related to the
disease progression®22723, It has been conjectured that the higher prevalence in females is a result
of longer life span®?°. Alternatively, studies have alluded to sex-specific hormonal and metabolic
changes that interplay with the onset and progression of AD dementia®!62°, Sex also interacts
with apoE isoform status, where females with the apoE4 isoform are at increased risk compared
to males’”?°. Despite the clear therapeutic potential to better understanding these
pathophysiological patterns, there is still little understanding of the mechanisms underlying sex-
specific differences in AD.

With the rising prevalence of AD, it is critical to facilitate the development of robust
means to detect AD early and discover therapeutic interventions’*3. Technological innovations
and the increasing availability of large transcriptomic datasets present worthwhile avenues to
study and characterize the molecular underpinnings of AD stratified by sex. Here, we analyze
publicly available gene expression datasets from over 1,500 brain and blood samples to
characterize this highly complex disease. To derive sex-specific transcriptomic molecular
signatures, we perform a meta-analysis, differential gene expression, weighted gene co-
expression network analysis, pathway enrichment, and cell-type deconvolution in a large cohort
of brain and blood samples from AD patients and healthy controls (Figure 1). We further
characterize these signatures and apply machine learning to build a predictive model based on
biomarkers identified in the blood of AD patients. Our findings reveal underlying mechanisms of

sex differences, which provide clinical implications for identifying more accurate, and less
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invasive biomarkers, as well as efficacious therapeutics tailored to better fit the complex

molecular profiles in AD.

Metanalysis Overview
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Figu re 1 Meta-analysis Overview. control using whole blood transcriptomic data

METHODS

Study Cohorts:

Publicly available RNA-sequencing (RNA-Seq) and microarray datasets from the Gene
Expression Omnibus (GEO) and from consortium studies indexed on PubMed were searched for
the key word “Alzheimer’s”. To minimize technical variability, brain samples were restricted to
RNA-sequencing studies while blood analyses were restricted to microarray studies. Samples
were curated to include bulk gene expression from subjects with Alzheimer’s or elderly healthy
individuals with no history of neurodegenerative disease. Individuals with non-Alzheimer’s

neurodegenerative diseases including Huntington’s and Parkinson’s were excluded. Brain
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samples were restricted to the hippocampus, parietal cortex, temporal cortex and prefrontal cortex.
Additional clinical covariates, including age, sex, apoE4 carrier status, education were recorded

for the samples and used as covariates or stratification variables in subsequent analyses.
Gene Expression Meta-Analysis:

Meta-analysis was conducted separately for brain and blood studies according to standard
quality control, normalization, and batch correction procedures. All data processing was

conducted using R (v3.6.1).
Brain studies:

Raw RNA-sequencing data were processed for the Mount Sinai Brain Bank (MSBB)*,
Mayo Clinic RNAseq *°, and Religious Orders Study and Memory and Aging Project
(ROSMAP)*¢ as previously described in the AMP-AD consortium project . Briefly, read
alignment and counting was performed using STAR3®. Alignment quality metrics were generated
using PICARD?’. For the Allen dataset, expected counts produced using RSEM were downloaded
from the Allen Brain Atlas: Aging Dementia and TBI Study website*°. Counts-per-million (CPM)
were calculated for all studies. Genes with less than 1 CPM in at least 50% of samples across
tissue diagnosis group were removed. Genes with missing gene length or GC content percentage
metrics were removed. Library normalization was performed using conditional quantile

normalization.

Following read alignment and normalization, studies were merged using common genes
between the four studies. Mean value imputation was performed for missing gene expression
values. Quantile normalization was performed across studies. The ComBat function from the sva

package*! was used to perform cross-study normalization, retaining variation in apoE4 carrier
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status, sex, and diagnosis. Principal component analysis (PCA) plots were generated to evaluate

successful batch correction and to detect outliers.
Blood studies:

Study data were downloaded from GEO for the AddNeuroMed datasets*? or the
Alzheimer’s Disease Neuroimaging Initiative Consortium** (ADNI) for the ADNI dataset and
processed. Raw data were not available for the ADNI dataset and therefore normalized expression
data were used for all studies. Outlier removal was performed on individual studies by removing
probes whose mean expression was outside 1.5 times the interquartile range. Probe IDs were
mapped to gene symbols. Expression value of probes mapping to the same gene were reported as
the median of all probes mapping to that gene**. Quantile normalization was performed across
studies. Similar to the brain data analysis, the ComBat function from the sva package was used
to perform cross-study normalization, retaining variation in apoE4 carrier status, sex and
diagnosis. Principal component analysis (PCA) plots were generated to evaluate successful batch

correction.
Differential Gene Expression Analysis:

All differential gene expression analyses were performed separately for brain and blood
samples. The Limma package® was used to determine differentially expressed genes between
cases and controls all together and stratified by sex. In each model, age and apoE4 carrier status
were included as covariates to minimize confounding. An additional covariate of education was
used in the blood analyses. Education was not available for all brain samples and therefore was
not included as a covariate. A cutoff false discovery rate (FDR) of 0.05 and fold change (FC) of

greater than or equal to 1.2 was used for brain analyses. Fold changes were calculated using the
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individual study data before merging and weighted by sample size. For blood analyses, a FC
cutoff was not used to maximize gene discovery. Significant overlap between up- and down-
regulated genes between males and females was assessed using a hypergeometric test. Functional
enrichment analysis of gene lists was carried out by overrepresentation analysis using the KEGG*

database of biological pathways.

Network Analysis:

Weighted Gene Co-Expression Network Analysis:

In order to detect gene network level differences, network analysis was performed using
Weighted Gene Co-Expression Network Analysis (WGCNA)*. All analyses were performed
separately for brain and blood samples. In signed WGCNA, a module is defined as a set of genes
whose expression is highly correlated in the same direction. Signed gene co-expression networks
were created separately for male and female samples to identify sex-specific gene modules.
Module Z-summary scores were computed to assess module preservation between male and
female networks, as described previously*®. A Z-summary score greater than ten was considered
to be strong evidence of preservation between the two networks. A score between two and ten

was considered to represent weak to moderate evidence of preservation, as previously described*®.

Association between module gene expression and case/control status was assessed by
relating the module eigengenes, defined as the first principal component of the genes in a given
module, to case/control status using linear regression. Age, apoE4 carrier status, and education
(for blood samples) were used as covariates to minimize confounding. An additional analysis
identifying apoE-by-disease interaction effects was performed by adding the interaction term:

apoE4 carrier status:case/control status to the previous model. Significant modules were
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characterized by performing functional gene enrichment using the KEGG database of biological

pathways3!.

Hub Gene Analysis:

To identify central regulators of gene expression, we identified hub genes within
significant modules, as described previously*’. Hub genes were defined as genes with gene
significance (the correlation between the gene expression and case/control status) greater than 0.2
and module membership (the correlation between gene expression and module eigengene) greater
than 0.8, as previously described*’. We also restricted hub genes to those that were differentially
expressed in AD vs control. Network visualization using the STRING v11°!' database was used

to assess evidence for protein-protein interactions between hub genes.

Cell-type Deconvolution

CIBERSORT?? was applied to the transcriptomic signatures generated in the blood meta-
analysis to deconvolve gene expression data into cell type composition and identify sex-specific
dysregulation of immune cell types between cases and controls. CIBERSORT applies a linear
support vector regression method to solve the problem: m= f x B where m is an input mixture of
gene expression data for a given sample, f is a vector consisting of fractions of each cell type in
the mixture and B is a matrix of reference gene expression profiles. A gene expression profile of
22 reference cell populations was built using differential gene expression of purified or enriched

cell populations from the authors of CIBERSORT.

CIBERSORT was used to deconvolve gene expression data from pooled male and female
data, male only samples, and female only samples. In each condition, differences in cell type

proportions between cases and controls were compared using a linear regression model adjusting


https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.060558; this version posted April 25, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

for age, sex (in the pooled male female analysis), and apoE4 carrier status. An additional analysis
identifying apoE4-by-disease interaction effects was performed by adding the interaction term:
apoE4 carrier status:case/control status to the previous model. A cutoff FDR of 0.05 was deemed

significant.

Classification of Healthy and Alzheimer’s Disease Patients

A linear support vector machine (SVM) model with /i regularization to enforce feature
sparsity was used to classify Alzheimer’s patients and healthy controls based on blood gene
expression data. To assess the relative value of stratifying by sex in increasing model performance,
we compared the performance of three models built using pooled male and female samples, male
samples only, and female samples only. We also compared the performance of a ‘clinical model’
with age, sex (for male and female pooled samples), and apoE4 carrier status information to a
‘clinical + molecular model” which included age, sex (for male and female pooled samples),
apoE4 carrier status, and transcriptomic data from the blood meta-analysis.

For each model, data were split into 75% training/validation and 25% test sets using a
class balancing procedure to maintain a constant case/control ratio across training/validation and
test sets. A random search over the space 10 to 10* with five-fold cross validation was used to
optimize the C hyper-parameter, or the degree of regularization penalty applied for misclassified
points. Receiver operating characteristic (ROC) curves were generated from the test set. Model
performance was assessed using the area under the ROC curves. Feature importance was
determined using the absolute value of the model coefficients corresponding to the vector
coordinates orthogonal to the model hyperplane.

RESULTS

Study Cohort Characteristics
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We obtained four publicly available RNA-seq data sets (Allen Brain Institute Aging
Dementia and TBI study, Mayo Clinic RNA-seq, MSBB, and ROSMAP) from the brain
(temporal cortex, parietal cortex, prefrontal cortex, and hippocampus) and three microarray
datasets from whole blood (AddNeuroMed cohort 1, AddNeuroMed cohort 2 and ADNI). After
outlier removal, we included a total of 1,084 brain samples (58% female; 26% apoE4 carriers)
and 645 blood samples (58% female; 38% apoE4 carriers) in our analysis. Table 1 shows a
summary of sample annotations including number of cases and controls, apoE carrier status, and
number of males and females for brain datasets and blood datasets.

In the brain datasets, compared to controls, AD patients were significantly older (mean +
SD for AD: 86.5 + 6.0 years and controls: 84.8 + 7.4 years; two sample t-test, P < 0.001), more
likely to be apoE4 carriers (AD: 38% carriers vs controls: 15% carriers; Chi-squared test, P <
0.001), and more likely to be females (AD: 65% female vs controls: 51% female; Chi-squared
test, P <0.001).

In the blood datasets, compared to controls, AD patients were significantly older (mean +
SD for AD: 77.0 = 7.1 years and controls: 74.7 = 5.7 years; two sample t-test, P < 0.001), more
likely to be apoE4 carriers (AD: 60% carriers vs controls: 27% carriers; Chi-squared test, P <
0.001), more likely to be females (AD: 64% female vs controls: 55% female; Chi-squared test, P
<0.001), and had more years of education (mean + SD for AD: 9.4 + 4.8 years and controls: 13.9
+ 4.7 years; two sample t-test, P < 0.001).

Studies were merged and batch corrected using ComBat resulting in 13,500 common
genes across 1,084 samples for brain studies and 3,371 common genes across 645 samples for
blood studies. Supplementary Figure S1 and S2 show PCA plots before and after batch correction,

demonstrating successful data merging and batch effect removal.
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Table 1: Meta-analxsis Studz Characteristics

AD CN
Female apoE4 YesFemale apoE4
Study Accession Total AD, no. IMale INo IMale Yes /INo

participants (%) (% Female) (% Yes) (% Female) (% Yes)

Brain Transcriptomic Studies

Allen https://aging.brain- 212 72 29/43 22/50 54/86 19/121
map.org/ (34) (40) (31) (39) (14)
Mayo Clinic RNA- 80 49/31 42/38 36/38 9/65
Seq syn5550404 154 (52) (61) (53) (49) (12)
185 131/54 63/122 57/59 16/100
MSBB GSE52564 301 (62) (71) (34) (49) (13)
218 151/67 83/135 122/77 33/166
ROSMAP syn3219045 417 (52) (70) (38) (61) (17)
555 360/195 210/345 269/260 771452
Sum 1084 (52) (65) (38) (51) (15)
Whole Blood Transcriptomic Studies
. N 43 17/26 32/11 71/189
ADNI http://adni.loni.usc.edu/ 301 (14) (40) (74) (15325)/125 27)
91 65/26 52/39 55/36 30/61
AddNeuroMed1 GSE63060 182 (50) (71) (57) (60) (33)
86 59/27 47/39 45/29
AddNeuroMed2 GSE63061 160 15/59
u (43) (69) (55) (61) (20)
Sum 645 220 141/79 131/89 235/190 116/309
(34) (64) (60) (55) (27)

Differential Gene Expression in the Brain Identifies a Distinct Sex-Specific Signature of AD

We observed distinct AD-associated transcriptomic signatures in the brain in males and
females. A total of 981 genes were differentially expressed in females, including 583 upregulated
genes and 398 downregulated genes (FC > 1.2, q < 0.05; Figures 2A-B; Supplementary Table 1).
In males, 513 genes were differentially expressed, including 415 upregulated genes and 98

downregulated genes (FC > 1.2, q < 0.05; Figures 2A-B; Supplementary Table 1). Altogether,
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631 genes were uniquely dysregulated in females, including 309 upregulated genes and 327
downregulated genes. In males, 166 genes were uniquely dysregulated, including 141 upregulated
genes and 27 downregulated genes. There was a significant overlap of dysregulated genes across
males and females (P < 0.05; hypergeometric test).

Next, we characterized the transcriptomic signatures observed in the brains of male and
female AD patients. In females, among upregulated AD genes, we found 69 enriched pathways,
many of them relating to components of the innate and adaptive immune system (Table 2;
Supplementary Table 2). Several upregulated HLA system genes including HLA-DPB1, HPA-
DRA, HLA-DOA, HLA-DRBS, HLA-DMA, HLA-DPA1 contributed to enrichment of a number
of pathways relating to response to infection (Table 3). Components of the complement system
including CIQA, C4B, and C4A were also uniquely dysregulated in females (Table 4;
Supplementary Table 2). We also observed an enrichment of genes in the MAPK signaling
pathway including MRAS, MK2, and MK3. Downregulated AD genes in females were enriched
for a number of neurological signaling pathways including synaptic vesicle exocytosis,
neuroactive ligand-receptor activation, and GnRH signaling (Table 2; Supplementary Table 3).

Strikingly, we observed an enrichment of fewer immune-related pathways in males with
AD. Among upregulated genes in male AD patients, we found 12 enriched pathways, including
amoebiasis and cytokine-cytokine receptor interaction, suggestive of adaptive and innate immune
activation (Table 2; Supplementary Table 4). Similar to females, we also observed an enrichment
of the MAPK signaling pathway, including MAP4K4 and MK2, in males. Among downregulated
genes in male AD patients, we did not identify significantly enriched pathways. For a full list of

enriched pathways, refer to Supplementary Tables S2-S4.
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Lastly, we performed a non-stratified analysis comparing gene expression between AD
and control samples irrespective of sex. Statistical models were adjusted for sex, apoE4 carrier
status, and age. A total of 662 genes were upregulated and 430 genes were downregulated in
patients with AD compared to controls (Figure S3, Table 2; Supplementary Table 1. Upregulated
genes were enriched for several pathways previously implicated in AD including PI3K-Akt
signaling and MAPK signaling as well as a number of immune related pathways including
Staphylococcus aureus infection, human papillomavirus infection, and malaria (Supplementary
Table S5). Several components of the complement system, including C4B, C4A, C1R, C3ARI1,
and C5ARI also contributed to this enrichment (Supplementary Table S6). In our analysis of
downregulated genes, we found several pathways related to neuroreceptor signaling and
GABAergic transmission were enriched including the genes GABRA1, GNG3, GNG2, SLC32A1,

GABRD, and GABRG2 (Supplementary Table S6).
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Table 2: Enriched Pathwazs in Brain

Term Adjusted P Genes

Female Upregulated Genes (n= 583)

Staphylococcus

C1QB;C1QA;HLA-DRBS5;CFH;CFI;PTAFR;C4B;C4A;HLA-DMA;HLA-DMB;FCGR2A;HLA-

aureus infection <0.001 DPB1;HLA-DRA:MASP1:HLA-DOA;HLA-DPAT;C1QC
MAPK  signaling CSF1:FLT4:HSPB1:FGF1:FGF2:EGFR:RASGRP3:MECOM:RPS6KA1:GNA12:MAP3K20;:CD14:

. <0.001 MAP3K6:PDGFRB: TGFB2:ANGPT2:IL1R1:DUSP1:HGF:GNG12:NFKB1: TGFBR1:GADD45G; TG
pathway FBR2:EFNA1:MRAS;MAPKAPK3:MAPKAPK2: TAB2:MYD88:EPHA2:HSPA1A
PIK-AKE  signaling CDKN1A;CSF1:ITGB5;FLT4: TNC:LPAR3:FGF1: THBS2:FGF2;EGFR;SPP1;ITGBS:IL6R;:MCL1:P

A <0.001 DGFRB;ANGPT2:SYK.LAMB2:NOS3:HGF:FN1:GNG12:0SMR;GNG11:NFKB1:EFNAT:COL1A2:
pathway ITGA10:ITGA6;SGK1: TLR4:EPHA2: TLR2
Leishmaniasis <0001 TGFB2;HLA-DRB5;NFKB1;HLA-DMA:HLA-DMB;FCGR2A: HLA-DPB1;HLA-DRA: TAB2: HLA-

: DOA;TLR4:MYD88:HLA-DPA1:TLR2
Inflammatory bowel _o - TGFB2:HLA-DRB5;NFKB1;HLA-DMA:HLA-DMB;HLA-DPB1:HLA-DRA;HLA-
disease (IBD) : DOA;TLR5:TLR4:IL18R1:HLA-DPA1:TLR2
Toxoplasmosis <0001 TGFB2;HLA-DRB5;LAMB2:NFKB1:HLA-DMA;HLA-DMB:HLA-DPB1:HLA-
: DRA.TAB2:ITGA6;HLA-DOA; TLR4-MYD88:HLA-DPAT; TLR2:HSPA1A
cell adhesion _ o HLA-DRBS5:SDC2;HLA-E;CLDN11;0CLN:VCAN:HLA-DMA;PTPRC;HLA-DMB:CLDN15:HLA-
molecules (CAMs) : DPB1;HLA-DRA.I TGB8:ITGA6;CD58;HLA-DOA:CD34:HLA-DPA1
Epstein-Barr  virus _o 0. LYN:HLA-DRB5;CDKN1A:SYK:DDX58;TAP1: TNFAIP3;:NFKB1;HLA-E;GADDA45G:HLA-
infection : DMA:HLA-DMB:HLA-DPB1:HLA-DRA; TAB2;HES1:CD58;HLA-DOA;MYD88: HLA-DPAT: TLR2
NOTCH2:CDKN1A;NOTCH4:FLT4:LEF1:SLC2A1:CXCR4;LPAR3:FGF1:FGF2:DLL1:GLI3;EGFR
Pathways in cancer  <0.001 -GLI2:RASGRP3;:MECOM:GNA12:HES1:RXRG;IL6R:PDGFRB:CDKN2B; TGFB2;LAMB2;FZD7:H
GF:FN1:MITF:GNG12:GNG11:NFKB1;TGFBR1:GADD45G: TGFBR2;HEYL; SMO:ITGA6

Systemic lupus C1QB;C1QA:HLA-DRB5;C4B;C4A:HLA-DMA;HLA-DMB:FCGR2A;HLA-DPB1:HIST1H4H;HLA-
erythematosus <0.001 DRA:HLA-DOA:HIST1H2AC;HIST1H2BD:HLA-DPA1:C1QC
69 more..

Female Downregulated Genes (n= 398)

Neuroactive ligand-

CHRNB2;GABRB2;GABRA1;CHRNA2;GABRA4;PTH2R;CCK;GRIK2;HTR5A;RXFP1;GABRG2;

receptor interaction 0001 MCHR2:MAS1:GLRA3;GLRB:CNR1:SST:NPY;TAC1:VIP:GABRD

Retrograde

endocannabinoid 0.01 RIMS1;GABRB2:MAPK9:GABRA1:NDUFA5;CNR1:GABRA4;ITPR1:ADCY 1;:GABRD;GABRG2
signaling

g}{’:lzpt'c vesicle ;4 RIMS1;SLCBAT7:ATP6V1G2;ATPEV1B2;ATPEV1H;ATPEVOE2;CPLX1:STX1A

Aldosterone

synthesis and 001 CAMK2D:STAR:PRKCE;CAMK4:CAMK2A:I TPR1:ADCY1:ATP1B1:CAMK1G

secretion

Nicotine addiction  0.02 CHRNB2:GABRB2;GABRA1:GABRA4;GABRD;GABRG2

GnRH signaling , ;3 MAPK9:EGR1;CAMK2D;PRKCD;CAMK2A;ITPR1:PTK2B:ADCY 1

pathway

Male Upregulated Genes (n= 415)

PI3K-Akt signaling

PDGFRB;CSF3R;CSF1;ITGB5;IRS1;,LAMB2;FLT4;FN1;,LAMC1;GNG12;0SMR;FGF2;NFKB1;BC

pathway 0.009 L2L11:ITGA10:KDR;SPP1:ITGA6;EPHA2; TLR2

MAPK signaling 0. PDGFRB;TGFB2;CSF1;IL1R1;DUSP1;FLT4;GNG12:FGF2;NFKB1; TGFBR2;MRAS;MECOM;MA

pathway : PKAPK2:KDR;CD14;MYD88;EPHA2:MAP4K4

NOD-like receptor , ;; NEK7:CARD6;ERBIN;ANTXR2:GBP2:ANTXR1:IKBKE:GBP1:NFKB1:MYD88;GBP4:GBP3

signaling pathway

ECM-receptor 0.03 ITGB5:LAMB2;ITGA10;SPP1;FN1:ITGA6;LAMC1:HSPG2

interaction

z;‘r’ltc‘::g'yca“s M 004 TGFB2;MRAS;ITGB5;FZD7;KDR;FN1;GAB1:HCLS1:WNT7A;HSPG2;FGF2; TLR2

Focal adhesion 0.04 VAV3;PDGFRB;ITGB5;LAMB2;ITGA10;FLT4;KDR;FN1:SPP1;CAPN2;I TGAG;LAMC1

Fc gamma R-

mediated 0.04 VAV3;PTPRC;:FCGR2A;MYO10;INPP5D;DOCK2;WASF2;PLPP1

phagocytosis

Amoebiasis 0.04 TGFB2;IL1RT;LAMB2;FN1;LAMC1;CD14:NFKB1; TLR2

Pathwavs in cancer 0,04 NOTCH2;PDGFRB;TGFB2;CSF3R;LAMB2;FZD7;FLT4;LEF1;FN1;SLC2AT;WNT7A:CXCR4MIT
Y : F;LAMC1;GNG12;FGF2;NFKB1;GLI2; TGFBR2;BCL2L11;MECOM;I TGAG;NFE2L2

Cytokine-cytokine 0.04 TGFB2;CSF3R;CSF1;IL1R1;CXCR4;LIFR;INHBB;OSMR; TNFRSF1B;IL17RB; TGFBR2;IL1RL1:A

receptor interaction
2 more..

CKR3;TNFRSF25;IL18R1
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Male Downregulated Genes (n= 98)
No enriched pathways

Network Analysis in the Brain Identifies a Stronger Disease Signature in Females

To assess transcriptomic changes on a gene network level, we utilized WGCNA. Gene
networks were derived separately for male and female samples and compared using network
preservation methods, as previously described*®. We identified two AD-associated modules in
males and 11 AD-associated modules in females (Figure 3A) that met the significance threshold
(FDR < 0.05) and were either positively or negatively correlated with case/control status. Among
the male modules, a 463-gene module (termed black) was upregulated in AD, and a 151-gene
module (termed tan) was downregulated in AD. The black module in males had significant
overlap with two modules in females (termed yellow and pink) (P < 0.001; hypergeometric test)
as indicated by asterisks in Figure 3B. The black module also had strong preservation in the
female network (Z-summary score > 10). Among the female-specific disease associated modules,
four modules (termed green, red, black and turquoise) were downregulated in AD, while seven
were upregulated (Figure 3A).

Enrichment analysis of disease-associated modules using the 2019 KEGG Human
pathway database revealed pathways relevant to AD that were consistent with those identified in
the single gene analysis (Figure 3A). For example, in both males and females, an upregulated
module was enriched for Akt signaling related pathways and downregulated modules were
enriched for oxidative phosphorylation and thermogenesis related pathways, consistent with
single gene level analyses.

Notably, several additional pathways not seen through single gene analysis were observed

in the network analyses. An upregulated module in both males and females was highly enriched
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for zinc finger nuclease genes related to Herpes simplex viral infection, consistent with recent
work demonstrating Herpes virus infection in AD brains>>.

Consistent with the single gene analysis, we observed greater number of disease
associated modules in females with AD than in males. For example, an upregulated female
module was enriched for cell structural processes related to adherens junctions, actin cytoskeleton
and axonal guidance. An additional downregulated female module was enriched for neurological
signaling pathways including synaptic vesicle exocytosis, aldosterone synthesis and secretion and
morphine addiction. Interestingly, an additional female downregulated module was enriched for
autophagy and proteolysis pathways, consistent with molecular studies demonstrating decreased
autophagy in AD, particularly in females> (Figure 3A).

We also conducted an analysis identifying modules with apoE4:disease interactive effect
to understand differential penetrance of the apoE &4 allele in males and females. In the male gene
network, we were unable to identify modules with significant apoE4:disease interactive effect.
Interestingly, in the female network, we identified one module that was downregulated (2211
genes) in AD, and two modules (329 genes and 439 genes) that were upregulated in AD and
exhibited a significant apoE4:disease interactive effect (Figure 3A). The two upregulated modules
(termed pink and purple) were significantly enriched for several zinc finger nuclease genes related
to Herpes simplex viral infection. The downregulated module was enriched for metabolic
pathways including oxidative phosphorylation and the TCA cycle. Together these results suggest
a female-specific network dysregulation involving zinc finger nucleases and metabolic alteration
supporting differential apoE4 penetrance in males and females.

There were 102 hub genes among disease associated modules in the female network

identified as module membership greater than 0.8, gene significance greater than 0.2, and
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differentially expressed between AD and controls (Figure 3C; Supplementary Table S7). In
contrast, zero hub genes were identified in the male gene network. Protein-protein interaction
maps generated by STRING v11 suggest several Ca*?- and G protein-dependent interconnected
genes including ITPKB, PDGFRB, GNG12, and GNA12 among the female disease associated
modules (Figure 3C). Among modules with apoE4:disease interactive effect in females, 35 hub
genes were identified, including ITPKB as a highly connected regulator (Figure 3D). For a full

list of genes in each module, including hub genes, please refer to Supplementary Table S7).
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Differential Gene Expression in Whole Blood Identifies Stronger Disease Signatures in
Females with AD in Comparison to Males

Similar to the brain, we observed distinct AD-associated transcriptomic signatures
between males and females with AD in whole blood. We observed a total of 599 differentially
expressed genes in females with AD, including 294 upregulated genes and 305 downregulated
genes (q < 0.05; Figures 2C-D; Supplementary Table 8). In males, 98 genes were differentially
expressed in AD, including 38 upregulated genes and 50 downregulated genes (q < 0.05; Figures
2C-D; Supplementary Table 8). Altogether, 542 genes were uniquely dysregulated in females,
including 271 upregulated genes and 271 downregulated genes. In males, 31 genes were uniquely
dysregulated, including 15 upregulated genes and 16 downregulated genes. There was a
significant overlap of dysregulated genes across males and females with AD (P < 0.05;
hypergeometric test).

Next, we characterized the transcriptomic signatures observed in the blood of male and
female AD patients. Among upregulated genes in female AD patients, we found 14 enriched
pathways, many of them relating to components of the innate and adaptive immune system (Table
3; Supplementary Table S9). Several cytokine response elements including STATS5B, STAT6,
and IL10RB contributed to enrichment of a number of pathways relating to response to infection
(Table 3). Similar to the brain, components of actin cytoskeleton regulation were also
dysregulated in females. (Table 3; Supplementary Table S9). Downregulated genes in female AD
patients were enriched for a number of metabolism related processes including oxidative
phosphorylation and thermogenesis, consistent with the single-gene and network analysis in the

brain (Supplementary Table S10).


https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.060558; this version posted April 25, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Similar to the brain analysis, we observed dramatically fewer enriched pathways in males
with AD. Among upregulated genes in male AD patients, we did not identify any enriched
pathways. Among downregulated genes in male AD patients, components of the proteasome were
enriched including PSMD4 and PSMC3 (Table 3; Supplementary Table S11). For a full list of
enriched pathways, refer to Supplementary Tables S9-S11.

Lastly, we performed a non-stratified analysis comparing gene expression between AD
and control samples irrespective of sex in whole blood. Analyses were adjusted for sex, apoE4
carrier status, age and education. A total of 339 genes were upregulated and 360 genes were
downregulated in patients with AD compared to controls (Figure S3B, Supplementary Table S8).
Upregulated genes were enriched for several pathways previously implicated in AD, including
MAPK signaling, autophagy and NFkB signaling (Supplementary Table S12). In addition, a
number of immune related pathways were enriched including tuberculosis, Escherichia coli
infection, salmonella infection, and inflammatory bowel disease. Several components of the
NFkB cascade and antigen presentation system including NFKBIA, ITGAM, STATS5B, TLRS,
TLR4, CD14 and C4A, contributed to this enrichment (Supplementary Table S12). Among
downregulated genes, pathways related to protein synthesis and metabolism, including ribosome,
proteasome, protein export, thermogenesis, and oxidative phosphorylation were enriched.
Included in these pathways were several oxidation phosphorylation related genes including

NDUFA9, NDUFAS, COX412 (Supplementary Table S13).

Table 3: Enriched Pathwazs in Blood

Term Adjusted P Genes
Female Upregulated Genes (n= 294)
ATP6VOB;CEBPB;ITGAM;IL10RB;IFNGR2;TCIRG1;CTSS;
CREB1;IRAK1T;LAMP2;ITGAX;RAF1;,CAMK2G
PYCARD;STAT5B;MLKL;H2AFJ;IFNGR2;STAT6; TYK2;CF
LAR;CAMK2G;HIST1H2AC;HIST2H2AC

Tuberculosis <0.001

Necroptosis 0.004
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Fc gamma R-
mediated
phagocytosis
Pathogenic
Escherichia coli
infection
TNF signaling
pathway
Regulation of actin
cytoskeleton

Lysosome
Phagosome

JAK-STAT
signaling pathway
Estrogen signaling

pathway

4 more..

Ribosome

Proteasome

Spliceosome

Protein export
Oxidative
phosphorylation

Huntington disease

Non-alcoholic fatty
liver disease
(NAFLD)
Protein processing
in endoplasmic
reticulum

Parkinson disease

Thermogenesis

3 more...

Proteasome
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0.006

0.01

0.01

0.02
0.02
0.02

0.02

0.03

HCK;PTPRC;ARPC1A;PRKCD;RAC2;ASAP1;ARPC5;RAF
1

ARPC1A;NCK2;ARHGEF2;ARPC5;TLR5; TUBA4A

CEBPB;RPS6KAS5;CREB1;MLKL;MAP3K8;FOS;CFLAR;C
REB5
FGDS;ITGAM;SPATA13;ARPC1A;RAC2;ITGAX;IQGAP1;A
RPC5;RAF1;SSH2;PAK2

GNPTG;CD63;ATP6VOB;LAMP2;IDS; TCIRG1;GNS;CTSS

ATP6VOB;ITGAM;LAMP2;CANX;TAP1;TCIRG1;TUBA4A;C
TSS;ATP6V1F
STATS5B;CCNDS3;CSF3R;IL10RB;IFNGR2;STAT6; TYK2;R
AF1;MCL1

CREB1;PRKCD;FOS;KRT10;RAF1;ADCY7;FKBP5;CREB5S

Female Downregulated Genes (n= 305)

<0.001

<0.001

<0.001

<0.001
<0.001

<0.001

<0.001

0.002

0.002

0.007

RPL4;RPL5;RPL30;RPL41;RPL32;RPL12;RPL22;RPL11;R
PL35A;MRPL36;MRPL24;RPL6;MRPL33;RPS25;RPL36AL
;RPL35;RPL24;RPS20;RPL26;RPS27A;RPL39;RPS24;RP
S12
PSMB6;PSMAS5;PSMB7;PSMA3;PSMD4;PSMC3;PSMC1;
POMP;PSMB1;PSMC2;PSMD1;PSMF1
ISY1;HSPAS8;SF3B5;CCDC12;BUD31;DDX42;PLRG1;PQB
P1,SNRPD2;ZMAT2;SYF2;SNRPG;PPIH;SNRPA1;SNRPB
2;SLU7;CTNNBLA1
SRP19;SEC61G;SRPRB;SRP68;SRP14;SEC11A
NDUFA9;NDUFA8;NDUFS5;COX17;NDUFB2;NDUFA1;C
OX6A1;ATP6V1E1;NDUFV2;COX6C;ATP6V1D;UQCRH
NDUFA9;NDUFA8;NDUFB2;NDUFA1;CLTA;COX6C;COX
6A1;UQCRH;SOD1;SIN3A;NDUFS5;VDAC3;BAX;NDUFV2

NDUFA9;NDUFA8;NDUFS5;NDUFB2;NDUFA1;BAX;PIK3
R1;COX6A1;NDUFV2;COX6C;ADIPOR2;UQCRH

DNAJA1;ATXN3;HSPA8;HSPO0AA1;HSPH1;HSPO0AB1;E
IF2AK1;SEC61G;ERP29;BAX;UBXNG

NDUFA9;NDUFA8;NDUFS5;VDAC3;NDUFB2;NDUFA1;C
OX6A1;NDUFV2;COX6C;UQCRH
NDUFA9;COA3;NDUFA8;SMARCC1;NDUFS5;COX17;ND
UFB2;NDUFA1;COX6C;COX6A1;NDUFV2;,UQCRH

Male Upregulated Genes (n=38)

No enriched pathways

Male Downregulated Genes (n=50)

0.06

PSMD4;PSMC3;POMP
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Network Analysis in Whole Blood Identifies a Stronger Disease Signature in Females

We identified five AD-associated modules in females and zero AD-associated modules in
males (Figure 4) that met the significance threshold (FDR < 0.05) and were either positively or
negatively correlated with case/control status. Among the modules in female samples, three
modules including a 483-gene module (termed turquoise), a 129-gene module (termed pink) and
153-gene module (termed black) were upregulated in AD. Two modules including a 270-gene
module (termed blue) and 119-gene module (termed magenta) were downregulated in AD (Figure
4A). No modules with significant apoE4:disease interaction effect were found in female or male
network analyses from the blood datasets.

Enrichment analysis of disease-associated modules using the 2019 KEGG Human
pathway database revealed pathways relevant to AD that were consistent with those identified in
the single gene analysis (Figures 4A and 3A). For example, upregulated modules in females were
strongly enriched for innate immune system activity, neutrophil degranulation, CSF signaling,
IL2 signaling, and cytokine signaling. Consistent with single gene analyses, downregulated
modules in females were enriched for metabolic processes including metabolism of RNA and
metabolism of amino acids (Figure 4A).

There were 35 hub genes among disease associated modules in the female-specific
network identified as module membership greater than 0.8, gene significance greater than 0.2 and
differentially expressed between AD and controls (Figure 4B). In contrast, zero hub genes were
identified in the male-specific gene network. Protein-protein interaction maps generated by
STRING vl11 suggest several interconnected genes including the B cell development related

protein, IGLL1, and ribosomal proteins RPS20, RPS25, RPL4, and RPL35A (Figure 4B).


https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.060558; this version posted April 25, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

For a full list of genes in each module, including hub genes, please refer to Supplementary Table

S14).
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Comparison of Brain and Blood Transcriptomic Signatures Reveals Common Immune

Related Signals in Females

We next identified genes that were commonly dysregulated in both blood and brain

(Figure 2E). In females, a total of 23 genes were dysregulated in the brain and blood in the same

direction (two downregulated and 21 upregulated). Several genes among the commonly

upregulated genes have roles in antigen presentation including TAP1, CTSS, and PTPRC.

Enrichment analysis of commonly upregulated genes revealed an enrichment of the KEGG terms

primary immunodeficiency, phagosome, and cell adhesion molecules (adjusted P < 0.1; Figure

2F). In addition, eight genes were dysregulated but in different directions in the brain and blood

including PRKCD, VAMPS, GIMAP7, LAPTMS, HLA-DOA, TNS1, DBI, GIMAP7, TUbA4A
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(Figure 2E). In contrast, in males we found one upregulated gene, VCAN encoding vesican,
dysregulated in both the blood and brain (Figure 2E).
Cell-type Deconvolution Identifies Sex-specific Immune Cell Dysregulation in Females with
AD

Differences in 22 immune blood cell types (Figures 5A-B) were evaluated by
deconvolving the transcriptomic signature obtained via meta-analysis of blood studies. Analysis
of cell type proportions adjusting for age, sex, and apoE4 status revealed an increase in
neutrophils and naive B cells, and a decrease in M2 macrophages and CD8+ T cells in AD patients
compared to controls in pooled male and female samples (Figure 5C, FDR P <0.05). Among
females with AD, relative to controls, we observed an increase in neutrophils and naive B cells
and a decrease in M2 macrophages, memory B cells, and CD8+ T cells in AD samples (Figure
5C, FDR P <0.05). Interestingly, among males with AD, we did not find any significant

differences in immune cell proportions compared to controls.


https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.060558; this version posted April 25, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

T°0 > ¥Ad ««
S0°0 > ¥Ad

O &
av &

sisoubeiq

* ——
lloﬂlﬂ’:dllﬂa :‘llﬂ'\! s

n< '
sisoubeig

uosuodua o0 snneioy

e

n____aoi_nz

- =
-

S
i i
qudlme"‘ﬂw e

0 =
av &
sisoubeld 4 e
] [
oro
dk %k
Kiowawrs|jeo'g
5
&
CAC
N
A %«.&
&
o, 000
.
g
wesm
WO & i
s g
sisoubeig 3
oo
=
5
< ' H
% * -
aAjeu’s|j99'g
»
& &
a@%\o v,v&.o @
& & wvo&
& &S
00
O &=

av &
sisoubeig

3 3
uopodoid 1190 aAneIoY

* - k-
ZW'sabeydosoep

Aowaw's||90°g
ZIN'sebeydoioepy
8Q0's|I®Y’ L
aAleus||90'g
s|iydosinaN
o
Alowaw's||20'g
Ns_.mmmmcao._oms_

8d0’s|PYL

}_

__

1
[l ___f __;

_%

|

dewjeaH ajein

|
il

i

___ _‘

dewjeay ajeway

J

|

|

|

|

1192 1 Aioje|n8ay

||92 1 e}jap ewwen

|19 43d[ay Jejnaijjo} |

‘poojg 3]oyM ul sisAjeuy adA] (19D G 24n314

91Ad0ouo

|199 1sew Sunsay

1ER)
1SEW PajeAIY

1192 1 +8AD 98eydouden ZIN
1199 L +7AD eAIeN a8eydossew TN
1?1
Aowsw +yg) Sunsay  a8eydoudew QW
1192 1 Aowaw
+7QD paleAldy sjiydouisog
ER]
S[]90 ewse|d J1upuap Sunsay
1133 213 pusp
1139 XN 8unsay paileAdy
1133 3N pP3ieAldy 1192 g @AleN
jlydosinaN 1192 g Atows
sadAL |10 L¥OSY3a


https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.060558; this version posted April 25, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sex-specific Transcriptomic Data Improves AD Classification Accuracy

To assess the value of sex-specific transcriptomic data in developing a blood-based
classifier in AD, we trained a linear SVM model to classify AD patients controls using the
transcriptomic signature obtained via meta-analysis of blood studies. We trained a ‘clinical model’
with age, sex, education, and apoE4 status and a ‘clinical + molecular model’ with age, sex,
education, apoE4 status, and blood transcriptomic data. Using pooled male and female samples,
the ‘clinical + molecular model’ achieved a higher AUROC compared to the ‘clinical model’
(AUROC = 0.88 for ‘clinical + molecular model’; AUROC = 0.77 for ‘clinical model’) on a test
set composed of 25% of samples (Figures 6A and S4A).

Interestingly, a model trained with only female data achieved a higher AUROC (“clinical
+ molecular model’: 0.90 and ‘clinical model’: 0.86; Figures 6B and S4B) than the pooled male
and female model. In contrast, a model trained with only male data obtained a lower AUROC
(‘clinical + molecular’ model 0.81 and “clinical model’ 0.83; Figures 6C and S4C) than the pooled
male and female model.

Figures 6G-H summarizes shared features between models. In all simple models (pooled
male and female, female only, and male only), age and apoE4 status had a positive feature
importance while education had a negative feature importance. A positive feature importance
means that the expression of that feature increases the likelihood of being classified as AD
(termed risk factor). A negative feature importance means that expression of the feature
expression reduces the likelihood of being classified as AD (termed protective factor). In the
female ‘clinical + molecular model’, 57 features, including known risk factors including apoE4
and age, had a positive feature importance (Supplementary Table S15). In addition, 50 features

had negative feature importance. Among these were education and previously implicated AD risk
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genes including CETN2 (Supplementary Table S15). In the male ‘clinical + molecular model’,
103 features, including apoE4, had positive feature importance. (Supplementary Table S16). In
addition, 105 features, including education, had negative feature importance (Supplementary
Table S16).

Altogether, we observed a significant overlap (P < 0.001, hypergeometric test) in features
with non-zero feature importance between the pooled male and female ‘clinical + molecular
model’ and female ‘clinical + molecular model’; female ‘clinical + molecular model’ and male
‘clinical + molecular model’; and pooled male and female ‘clinical + molecular model’ and male
‘clinical + molecular model’ (Figure 6G).

Functional annotation of features with a non-zero feature importance was performed via
enrichment analysis using the 2019 KEGG database of human pathways. Among features with
non-zero feature importance, we did not identify any enriched biological pathways in the male
only and female only complex models. In the male and female pooled complex model, features
with positive feature importance (risk factors), were enriched for staphylococcus aureus infection,
graft-vs-host disease, and antigen presentation and processing KEGG pathways (adjusted P <
0.05; Figure 6H). The HLA genes HLA-DRB4 and HLA-DQA1 contributed to this enrichment.
In addition, the P-selection glycoprotein ligand-1 gene (SELPLG) and killer cell
immunoglobulin-like receptor (KIR2DL3) also contributed to enrichment, suggesting a role for

leukocyte recruitment and natural killer cell activity in AD pathology.
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DISCUSSION

In this study, through computational analysis of publicly available gene expression
datasets from brain and blood samples, we evaluated AD at the transcriptome level using single
gene and network approaches to gain insight into the mechanisms underlying sex and apoE4-
genotype based differences in AD. We also evaluated how including sex-specific transcriptomic
data from blood samples with clinical data would affect the performance of a machine learning
classifier for AD diagnostics.

Our characterization of brain transcriptomic signatures revealed, among upregulated
genes in the brains of both females and males with AD, an enrichment of pathways related to
components of the innate and adaptive immune systems as well as the MAPK signaling pathway.
This result is consistent with past findings where the brain’s immune system has been indicated
as a major component of AD pathogenesis®®!. Additionally, MAPKSs, enzymes that play critical
roles in cellular signaling, have also been implicated as accelerators of AD development®?.
Overall, findings from our brain transcriptome analysis provide supporting evidence for
therapeutics currently being explored for AD, such as p38 MAPK inhibitors®’, and suggest that
possible treatments targeting the MAPK pathway may have a greater effect in females with AD.

Interestingly, from our differential expression analysis, we found a nearly two-fold greater
total number of dysregulated genes in the brain transcriptome that met our significance cutoff for
females with AD compared to males with AD (974 vs 509, respectively). Many of these genes
are in pathways related to antigen presentation and processing, complement activation, suggesting
a female-specific role of neuroinflammation in the pathogenesis of AD. Additionally, for
downregulated genes in AD patients, we observed enrichment of neurological signaling pathways

in females only and no enriched pathways in males.
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Through network analysis, we identified more AD-associated modules in the brain
transcriptome of females than males. Enrichment analysis of AD-associated modules also
revealed some pathways that were enriched in both sexes, including an upregulated module for a
PI3/Akt signaling related pathway and downregulated modules for oxidative phosphorylation and
thermogenesis related pathways. Unique to females, we observed upregulated modules associated
with cell structural processes (adherens junctions, actin cytoskeleton and axonal guidance) and
HSV infection-related zinc finger nuclease genes, as well as a downregulated module for
neurological signaling pathways, autophagy and proteolysis.

Upon performing hub gene analysis, we identified hub genes in female disease-associated
modules but were unable to identify male disease associated hub genes. These female hub genes
consisted of several potentially interconnected genes including ITPKB, PDGFRB, GNG12, and
GNA12. In our subsequent analysis to assess an apoE4:disease interaction effect, we identified
three modules, one of which was significantly enriched for HSV infection-related zinc finger
nuclease genes as well as containing the ITPKB hub gene as a highly connected regulator. These
results suggest zinc finger nucleases as a potential mechanism underlying sex-associated
differential penetrance of apoE4 in AD.

Our findings suggest a neuroinflammatory model of AD pathogenesis in females with
dysregulation in components of the adaptive and innate immune system including antigen
presentation and processing and complement activation and genes including MAPK and ITPKB.
It has been postulated that accumulation of damage from HSV infection and major
neuroinflammatory effects can lead to the development of AD, and that apoE4 carriers suffer
either greater viral damage or have poorer repair of such damage®*. Previous studies have

demonstrated that ITPKB expression is increased in human AD brains and exacerbates AD
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pathology in an animal model®*. Our brain transcriptome findings for females with AD, including
downregulation of autophagy and proteolysis pathways, upregulation of pathways related to the
immune system and HSV infection, as well as ITPKB as a hub gene, particularly in female apoE4
carriers, highlight specific gene-encoded processes in the brain that may be more involved in AD
for women than for men.

Similar to our brain findings, in analysis of blood transcriptomes, we observed more
dysregulated genes in the blood of females with AD than in males with AD. Further
characterization of these transcriptomic signatures revealed, among upregulated genes,
enrichment in only females with AD of pathways related to components of the innate and adaptive
immune systems as well as actin cytoskeleton regulation; however, for downregulated AD genes,
we observed enriched metabolic pathways (oxidative phosphorylation and thermogenesis) in
females and enriched pathways for protein homeostasis in males.

Through network analysis, we identified AD-associated modules and hub genes in the
female blood transcriptome but not in males. In the blood of females with AD, upregulated
modules were strongly enriched for innate immune system activity (neutrophil degranulation,
CSF signaling, IL2 signaling, and cytokine signaling). Consistent with single gene analyses,
female downregulated modules were enriched for metabolic processes (e.g. metabolism of RNA
and amino acids). Hub genes identified in the blood of females with AD include those related to
immunity (the B cell development related protein, IGLL1) and viral RNA translation (ribosomal
proteins RPS20, RPS25, RPL4, and RPL35A).

In addition to neuroinflammation’s role in AD, dysregulation of the immune system
outside of the brain has also been noted to be a factor in AD®’. Our findings feature specific gene-

encoded processes in peripheral blood cells that may be more involved in AD for women than for
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men. Furthermore, our cell-type deconvolution analysis revealed dysregulation of peripheral
immune cells uniquely in females with AD and not males with AD.

When including blood transcriptomic features with clinical features (age, sex, education,
and apoE4 status) to train a machine learning prediction model of AD, our model performed better
with these additional molecular features than without (AUROC: 0.88 vs 0.77, respectively). The
performance of this model also improved when trained with only female data (clinical + molecular
model AUROC: 0.90 and clinical model AUROC: 0.86) and worsened when trained with only
male data (molecular model AUROC: 0.81 and clinical model AUROC: 0.83) than with pooled
male and female model. This finding suggests that the molecular changes in females compared to
males are better able to model AD-related changes. Further, given the distinct transcriptomic
signature observed in males and females, stratifying by sex may aid future efforts to identify
biomarkers in AD.

Diagnostic tests currently available for AD, including A position emission tomography
(PET), lack accuracy or are implemented through invasive and painful procedures such as lumbar
puncture>®°, Diagnostic tests for AD that are more accurate and less invasive are worthwhile for
preventing undue uncertainty and physical discomfort experienced by patients. Our machine
learning AD prediction model based on clinical and blood transcriptomic features has the
potential to complement currently available clinical AD diagnostic tests, and improve the
accuracy of these tests, particularly for women, with minimal additional discomfort for patients.

Based on the nature of our analyses, there are a number of limitations to note. We analyzed
publicly available datasets, which were limited in sample size and contained annotation
differences. This provided challenges in selecting cases from controls and restricted our ability to

answer certain questions. For instance, the Allen Brain Atlas dataset provided only a binary
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classification for apoE (apoE4: Y/N). This confined our analysis to only look at the presence of
apoE4, instead of looking at difference across different genotype combinations. Next, we did not
stratify our analysis by age or disease stage, so we cannot describe whether these transcriptomic
signatures differ with age or disease severity. Additionally, since we aggregated bulk tissue from
different brain regions in our analysis, we cannot infer sex differences across brain region.
Consequently, using bulk tissue transcriptomics reduces our resolution of the more complex
interactions and contributions of different brain cell types in AD. Future approaches to better
characterize sex-specific changes in AD would involve stratification by brain regions, age and
disease stage, apoE genotype, as well as an analysis of single cell AD datasets.

In conclusion, the major finding of this study is a distinct, sex-specific transcriptomic
signature in the brains and whole blood of patients with AD. Gene expression meta-analysis and
network-based analyses revealed an immune signature in the brains and whole blood of females
with AD that was absent in males. Our analyses also revealed more pronounced neurosignaling
and metabolism signatures in the brains whole blood of females with AD than in males with AD.
Stratification by sex improved machine-learned based classification of AD using whole-blood
transcriptomic data. Results from this work will help to better understand molecular etiologies
underlying sex differences in AD and pave the way for sex-specific biomarker and therapeutic

development in AD.
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Figure Legends

Figure 1: Meta-analysis Overview

Diagram depicting the study overview including all datasets used and analyses performed. Data
sets were obtained via searching GEO or PubMed for the keyword Alzheimer’s Disease. Samples
with neurological conditions other Alzheimer’s, including Parkinson’s Disease and Huntington’s
Disease, and single cell preparations were excluded from analysis. Datasets were merged using
the ComBat package in R. WGCNA was used for network analyses. CIBERSORT was used for
cell type deconvolution. The linear SVM was trained to classify AD and control patients using
the transcriptomic signature obtained via meta-analysis of blood studies. The performance of a
molecular model consisting of gene expression, age, sex and apoE4 status was compared to that
clinical model with age, sex and apoE4 status as features.

Figure 2: Cross-Tissue Sex Specific Differential Gene Expression

A. Four-way plot with fold change in males vs fold change in females depicting differentially
expressed genes in the brain. Differential expression was defined using a fold change > 1.2 and
FDR P < 0.05. Covariates of age and sex were included in statistical analyses. B. In the brain, a
total of 631 genes were uniquely dysregulated in females with AD while 166 genes were uniquely
dysregulated in males with AD. Common to both males and females in the brain were 343 genes.
C. Four-way plot with fold change in males vs fold change in females depicting differentially
expressed genes in the blood. Differential expression was defined using a fold change > 1.2.
Covariates of age, sex, and education were included in statistical analyses D. A total of 542 genes
were uniquely dysregulated in females with AD while 31 genes were uniquely dysregulated in
males with AD in blood. Common to both males and females in the brain were 55 genes. E Fold
change plot depicting genes that are dysregulated in both blood and brain tissues. Genes are
colored by sex indicating if the gene is dysregulated in male samples (1 gene; red) or female
samples (31 genes; blue). F. Enrichment analysis of the commonly dysregulated genes depicted
in E. An adjusted P -value cutoff of 0.1 was used for significance to increase power.

Figure 3: Network Analysis in the Brain.

WGCNA was used to construct gene network separately for males and females in the brain.
Networks were randomly assigned colors. A. A description of the disease-associated gene
networks (termed modules) produced using WGCNA. Significant disease-associated modules
were identified by associating module eigengene to case/control status adjusting for age and
apoE4 status (P < 0.05). KEGG enrichment analysis of significant was conducted using an
adjusted P value threshold of 0.05. The direction in AD is computed using the case/control
coefficient of the model associating module eigengene to case/control status. Modules with
significant apoE4:disease interaction effect were identified by adding the interaction term
apoE4:disease to the previous model (P < 0.05) B. Heatmap depicting the degree of module
overlap assessed using a hypergeometric test between male and female disease-associated
modules. The black module in males had significant overlap (P < 0.05) with the pink and yellow
modules. Estimate refers to the case/control coefficient in the model module eigengene ~ age +
apoE4 + case/control status. C. Hub genes from female disease-associated modules. Hub genes
were defined as genes with gene significance (the correlation between the gene expression and
case/control status) greater than 0.2 and module membership (the correlation between gene
expression and module eigengene) greater than 0.8. Hub genes were restricted to those that were
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differentially expressed in AD vs control. Protein-protein interactions between hub gene
visualization was performed using the STRING v11 database. Edge color represents the type of
interaction evidence for protein-protein interaction (cyan: known interaction from curated
databases; turquoise: experimentally determined; green: gene-neighborhood predicted interaction;
red: gene-fusions predicted interaction; blue: gene co-occurrence predicted interaction; green-
yellow: text mining; black: co-expression; light purple: protein homology. D. Hub genes among
modules with significant apoE4:disease interaction effect. Protein-protein interaction between
hub genes was visualized using STRING v11 with edge colors representing the same as in C.

Figure 4: Network Analysis in Whole Blood.

WGCNA was used to construct gene network separately for males and females in whole blood.
Networks were randomly assigned colors. A. A description of the disease-associated gene
networks (termed modules) produced using WGCNA. Significant disease-associated modules
were identified by associating module eigengene to case/control status adjusting for age and
apoE4 status and education (P < 0.05). KEGG enrichment analysis of significant was conducted
using an adjusted P value threshold of 0.05. The direction in AD is computed using the
case/control coefficient of the model associating module eigengene to case/control status.
Modules with significant apoE4:disease interaction effect were identified by adding the
interaction term apoE4:disease to the previous model (P < 0.05) B. Hub genes from female
disease-associated modules. Hub genes were defined as genes with gene significance (the
correlation between the gene expression and case/control status) greater than 0.2 and module
membership (the correlation between gene expression and module eigengene) greater than 0.8.
Hub genes were restricted to those that were differentially expressed in AD vs control. Protein-
protein interactions between hub gene visualization was performed using the STRING vl1
database. Edge color represents the type of interaction evidence for protein-protein interaction
(cyan: known interaction from curated databases; turquoise: experimentally determined; green:
gene-neighborhood predicted interaction; red: gene-fusions predicted interaction; blue: gene co-
occurrence predicted interaction; green-yellow: text mining; black: co-expression; light purple:
protein homology.

Figure 5: Cell Type Analysis in Whole Blood.

A. Cell types included in the panel of 22 reference cell types in CIBERSORT. B. Heatmap
depicting cell type expression between cases and controls. apoE4 carrier status, sex, and
case/control status is annotated for each sample. Only cell types that are significantly different
between cases and controls in pooled male and female, male-only or female-only analyses are
shown. C. Bar charts depicting cell type expression for individual cell types that are significantly
between cases and controls in pooled male and female, male-only or female-only analyses are
shown. Significance was assessed by associated cell type proportion to case/control status,
adjusting for age, sex (in the pooled male and female model) and apoE4 status. P < 0.05 was
deemed significant.

Figure 6: Linear SVM Clinical + Molecular Model in Whole Blood.

A-C. Receiver operating characteristic (ROC) curves depicting performance of each linear SVM
model on a test set composed of 25% of samples. Features include gene expression data obtained
via meta-analysis, age, sex, education, and apoE4 status. Three models were fit for male and
female pooled samples (A), female samples only (B), and male samples only (C).
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D-F. Feature importance plots for features with non-zero importance in the combined male and
female model (D), female model (E), and male model (F). A positive feature importance means
that the expression of that feature increases the likelithood of being classified as AD (risk factor).
A negative feature importance means that expression of the feature expression reduces the
likelihood of being classified as AD (protective factor). G. Comparison of non-zero features
between combined male and female model, female model and male model.

Supplementary Figure Legends:

Figure S1: Brain Data PCA

Principal component plots (PCA) of brain samples before (top) and after batch (bottom)
correction. PCA plots depict principal component 1 and 2 and are colored by study (left), sex
(middle) and apoE4 status (right).

Figure S2: Blood Data PCA

Principal component plots (PCA) of blood samples before (top) and after batch (bottom)
correction. PCA plots depict principal component 1 and 2 and are colored by study (left), sex
(middle) and apoE4 status (right).

Figure S3: Non-stratified Differential Gene Expression

A. Volcano plot depicting fold changes and p values from samples in the brain. Analyses were
adjusted for sex, apoE4 status, and age. An adjusted P value <0.05 and log FC > 1.2 was deemed
significant. In the brain, a total of 662 genes were upregulated and 430 genes were downregulated
in patients with AD compared to controls. B. Volcano plot depicting fold changes and P values
from samples in the blood. Analyses were adjusted for sex, apoE4 status, age, and education. An
adjusted P value < 0.05 was deemed significant. In blood, 339 genes were upregulated and 360
genes were downregulated in patients with AD compared to controls.

Figure S4: Linear SVM Clinical Model

A-C. Receiver operating characteristic (ROC) curves depicting performance of each linear SVM
model on a test set composed of 25% of samples. Features include age, sex, education, and apoE4
status. Three models were fit for male and female pooled samples (A), female samples only (B),
and male samples only (C). D-F. Feature importance plots for features with non-zero importance
in the combined male and female model (D), female model (E), and male model (F). A positive
feature importance means that the expression of that feature increases the likelihood of being
classified as AD (risk factor). A negative feature importance means that expression of the feature
expression reduces the likelihood of being classified as AD (protective factor).
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