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Abstract

Motivation: Genetic variations of expression quantitative trait loci (eQTLs) play a critical
role in influencing complex traits and diseases development. Two main factors that
affect the statistical power of detecting eQTLs are: 1) relatively small size of samples
available, and 2) heavy burden of multiple testing due to a very large number of variants
to be tested. The later issue is particularly severe when one tries to identify rrans-eQTLs
that are far away from the genes they influence. If one can exploit co-expressed genes
jointly in eQTL-mapping, effective sample size can be increased. Furthermore, using
the structure of the gene regulatory network (GRN) may help to identify trans-eQTLs
without increasing multiple testing burden.

Results: In this paper, we employ the structure equation model (SEM) to model both
GRN and effect of eQTLs on gene expression, and then develop a novel algorithm,
named sparse SEM, for eQTL mapping (SSEMQ) to conduct joint eQTL mapping and
GRN inference. The SEM can exploit co-expressed genes jointly in eQTL mapping and
also use GRN to determine trans-eQTLs. Computer simulations demonstrate that our
SSEMQ significantly outperforms eight existing eQTL mapping methods. SSEMQ is
further employed to analyze a real dataset of human breast tissues, yielding a number
of cis- and frans-eQTLs.

Availability: R package ssemQir is available on https://github.com/Ivis4ml/ssemQr.git.
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Introduction

A long-standing problem in genetics is to understand how genetic variation affects phenotypic
variation. As central dogma of molecular biology indicates, the information encoded in DNA
sequences flows through message RNA to protein. Consequently, DNA sequence polymorphisms
may influence final phenotypes through intermediate, molecular phenotypes such as gene expression
levels and protein structures. Understanding the genetic architecture of gene expression is therefore
of paramount importance to the understanding of the molecular origins of complex traits and
diseases (Albert and Kruglyak, 2015). eQTL mapping has been used to identify genetic variants that
affect gene expression. Genome-wide eQTL mapping needs to test a very large number of variants,
which results in a heavy burden of multiple testing and low statistical power. For this reason, many


https://doi.org/10.1101/2020.04.23.058735
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.058735; this version posted April 25, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2

eQTL mapping studies are limited to identify cis-eQTLs that are located close, typically within 1
megabases (Mb), to the genes (cis-eGenes) that they influence. This significantly reduces the number
of variants to be tested, which, together with the fact that cis-eQTLs typically have large effect sizes,
improve the power of detecting eQTLs. However, cis-eQTLs explain a relatively small fraction
of total gene expression heritability (Grundberg et al., 2012), and a substantial proportion of gene
expression heritability can be due to frans-eQTLs that are far away from the genes (trans-eGenes)
they influence, often on a different chromosome (Grundberg et al., 2012). Therefore, to better
understand the genetic base of gene expression, it is critical to identify trans-eQTLs.

Identification of trans-eQTLs is however challenging due to the heavy multiple testing burden
and the fact that the effect sizes of trans-eQTLs are typically small. A recent study shows that a
large number of eQTLs regulate gene expression in both a cis and frans manner, and that about
one third frans regulation is mediated by the expression of cis-eGenes (Yao et al., 2017). Several
methods have been developed recently to identify pairs of trans-eQTL and trans-eGenes that are
mediated by cis-eGenes, based on a mediation test (Shan et al., 2019; Yang et al., 2017, 2019)
or expression levels of possible mediator genes predicted from their cis-eQTLs (Liu et al., 2018;
Wheeler et al., 2019). However, a mediation test relies on frans-eQTL and trans-eGenes pairs
already detected by an existing method which may still suffer from a heavy multiple testing burden,
and the power of the methods relying on predicted gene expression levels may be affected negatively
by prediction errors in gene expression levels.

If the structure of the gene regulatory network (GRN) of the organism under consideration
is known or can be inferred from gene expression data available, once a pair of cis-eQTL and
cis-eGene is identified, the trans-eGenes mediated by the cis-eGene can be determined through the
GRN. In this paper, we employ the structure equation model (SEM) to model both GRN and effect
of eQTLs on gene expression, and then develop a novel algorithm, named sparse SEM for eQTL
mapping (SSEMQ), to conduct joint eQTL mapping and GRN inference. The algorithm outputs
cis-eQTLs and the GRN structure, which are further used to determine rrans-eGenes mediated
by cis-eGenes. As SSEMQ exploits correlated expression of multiple genes jointly, it effectively
increases the sample size, thereby improving the power of detecting eQTLs. As trans-eQTLs and
trans-eGenes are determined by the GRN, this approaches doe not increase multiple testing burden,
which can improve the power of detecting frans-eQTLs. Indeed, computer simulations demonstrate
that our SSEMQ significantly outperforms eight existing eQTL mapping methods. The SSEMQ
is further employed to analyze a genotype and gene expression dataset of human breast tissues
from the Genotype-Tissue Expression (GTEx) Project (Lonsdale et al., 2013), yielding a number of
cis- and trans-eQTLs. Of note, SEM was employed recently to conduct genome-wide association
studies (GWAS) (Momen et al., 2018; Wang et al., 2019).

Methods

2.1 SEM for eQTL mapping

We will consider the problem of identifying cis-eQTLs that are located within L bps of a gene
(cis-eGene), and possibly act as a trans-eQTLs to affect the expression of other remote genes
(trans-eGenes) through the mediation of the cis-eGene. The distance L depends on the organism
under consideration; it is typically 1 M bps for Homo sapiens (Kirsten et al., 2015), or 515 bps
for yeast S.cerevisiae (Sunnerhagen and Piskur, 2006). Figure 1 depicts such an example, where
the SNP is a cis-eQTL of the cis-eGene that regulates the expression of two remote genes trans-
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Figure 1. Regulatory Mechanisms of eQTLs considered in this paper. Genetic variants can
affect genes expressions through the following mechanisms: (1) SNP affects local gene expression
(cis-eGene); (2) SNP affects remote genes (trans-eGene) expressions by mediation of a cis-eGene.

eGene; and trans-eGene, directly, and trans-eGene; also regulates the expression of another gene,
trans-eGenes, through GRN. Therefore, the SNP is not only a cis-eQTL of the cis-eGene, but also a
trans-eQTL of trans-eGenes 1, 2, and 3. Of note, an eQTL can influence a trans-eGene through
other mechanisms, but they will not be considered in this paper.

Suppose that the expression levels of K genes in N individuals have been collected using e.g.
micro-array or RNA-Seq. Lety; = [yi1,yi2,...,vik]? denote the expression levels of K genes in
the ith individual, where i = 1,2,...,N. Suppose all SNPs in the genomes of N individuals have
been obtained. Denote the genotypes of n; SNPs within a distance of L bps to gene k in the ith
individual as Xjx = [Xik, , Xik, ...,xiknk]T, where x;; takes value from {0, 1} for haploid organisms or
from {0, 1,2} for diploid organisms. Define a J x 1 vector x; = [x/|, X}, ...,x]7, where J = g ny.
Since the expression level of a particular gene can be regulated by other genes and affectled1 by
eQTLs, we use the following SEM to model gene expression levels:

YiZBYi+FXi+H+3iai:1727---7N7 (D

where B € RX*K reflects the regulatory effects among genes; F € RX*/ captures the effect of

possible cis-eQTLs on gene expression levels; y € RX*! accounts for the model bias and &; € RK*!
is the residual error, which is assumed as an Gaussian random vector with zero mean and covariance
matrix 621, with I being the K x K identity matrix. Matrix B characterizes the structure of the
GRN, and it is assumed that there is no self-loops presented in GRN (Logsdon and Mezey, 2010),
which implies that diagonal entries of B are zero. Define a set S; = {m; + 1,m; + 2, ...,m; +n;} that
contains the indices of SNPs within a distance of L bps to the ith gene, where m; =0ifi =1 or

3.;11 n;jifi>1. Then F;; =0if j ¢ S;, whereas F;;,i = 1,...,K, j € S; are model parameters to be
estimated.

Of note, the same SEM was employed to infer GRNSs in (Cai et al., 2013; Logsdon and Mezey,
2010), where it is assumed that eQTLs of genes are known, and thus x; contains the genotypes of
known eQTLs. Here, eQTLs are unknown, therefore, x; contains the genotypes of all SNPs within
L bps of their corresponding genes. The goal of (Cai et al., 2013; Logsdon and Mezey, 2010) is
to estimate B, which gives the structure of the GRN. The main purpose here is eQTL-mapping,
which will be accomplished through joint estimation of B and F. After B and F are estimated, the
nonzero entries of F will yield cis-eQTLs and their corresponding cis-eGenes; Matrix B will tells
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gene regulated by cis-eGenes, as illustrated in Figure 1, which in turn give trans-eGenes mediated
by cis-eQTLs. Equivalently, we can form a matrix G = (I — B)~'F, and nonzero entries of G will
give all pairs of eQTLs and eGenes.

2.2 Sparsity-aware inference of SEM

Let Y = [y1,y2, ..., yn] be the gene expression data of N individuals, and X = [x1,Xa, ...,xy] € R/*N
be the genotype data. The SEM in (1) can be compactly written as Y = BY + FX + u1” +E, where
1 is a column vector whose elements are all 1, and E = [¢],...,en] € REXXN  Then, the negative
log-likelihood function can be written as

N NK
Z(F,B,u,0%) =~ o log |- B|> + T1og(27w2)

!
20?2

2)
|(1-B)Y —FX —p1” |7,

where | .| denotes matrix determinant and ||. ||r denotes the Frobenius norm. It is not difficult to

N
show that minimizing (2) with respect to (w.r.t.) u yields ft = (I—B)y —FX, wherex = Y x; / N,
i=1

N
y= _):1 yi/N.

Slince the expression level of a gene is regulated by a small number of other genes (Tegner
et al., 2003) and influenced by a small number of cis-eQTLs (Brem and Kruglyak, 2005; Fagny
et al., 2017), matrices B and F are expected to be sparse, meaning that most of their entries are zero.
Therefore, taking into account the sparsity property of B and F, we estimate B and F by solving the
following /;-penalized maximum likelihood estimation problem:

PN N
(F.B) = argmin{ — —log|I-B*+
FB 2

1

& Lo+ A[IBll1w }
subject to B;; = 0,F;; =0, ¢ S;,Vie{l,...K},

3)

(1-B)Y —FX||> +p||F

where X =X —x17, Y =Y —§17, || |[i,w = X;X;Wij| - ij and || . |l1,r = X; X 7ij] - |ij represent the
weighted /;-norm of a given matrix; A, p are two nonnegative parameters. Note that the total
number of unknown coefficients in B and F is p = K(K — 1) + KJ, which can be much larger than
the number of data sample N. The high dimensional optimization problem (3) is challenging, but
our SSEMQ algorithm to be presented later can handle the case where p > N. The weights w and
r introduced in the penalty terms are suggested by the adaptive lasso (Zou, 2006) to improve the
consistency and robustness of the estimates (Cai et al., 2013; Zhou and Cai, 2020); they are chosen
to be r;; = 1/|F;;| and w;; = 1/|B;;|, respectively, where F and B are preliminary estimates of F
and B, respectively, obtained from the following ridge regression:

. ! - ~
(F,B) = argmin _ ||(1— B)Y — FX|[7 + 7(||F[7 +[|B] )
FB 4)
subject to B;; = O,F,'j =0,/ §é Si,Vi e {1,...,K}.

The estimate 62 in (3) can be obtained as ||(I - B)Y — FX||%/NK.
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The major difference between optimization problem (3) here and the optimization problem
formulated for GRN inference in (Cai et al., 2013) is that the F matrix here contains many more
columns, and a regularization term p ||F||;  is added to the objective function. This term is necessary
for eQTL mapping, because x; in (1) contains all SNPs within L bps of gene i, some of which may
be eQTLs. While it is possible to modify the SML algorithm in (Cai et al., 2013) to solve (3), the
SML algorithm is very slow to handle this problem, because it employs an element-wise coordinate
descent method. In this paper, we will develop a new and much more efficient algorithm using a
block coordinate descent approach.

2.3 Closed-form solution of Ridge regression

We first solve the ridge regression problem (4) row by row separately to find initial estimates of F
and B, and weights r and w for the optimization problem in (3). Let F; , B; and Y, be the i-th row
of F, B and Y, respectively; further denote F; g, as the 1 x n; vector whose elements are F; ;, j € S,
and B; _; as the 1 x (K — 1) vector formed by removing the ith element from B; . Then, the ridge
regression problem (4) can be decomposed into K separate problems as follow:

. . 1. _ y
(FESHBl}—i) = argmin EHYi,. -B; Y ; — Fi,SiXS[,. %
Fis; Bi—i (5)

+1(||Fis, |13+ IBi—ill3), i = 1,....K,

where X, is the submatrix obtained by deleting rows of X whose indices are not in S;, and
Y_; . is the matrix formed by removing the ith row of Y. Minimizing the objective function

in (5) w.r.t. Fi,Si yields Fi7Si = (YU - Bi,fi?fi )ngh (X5i7~)~(£,. + TI)_l. Then, substituting Fi,S,-

into (5) and minimizing w.r.t. B; _; gives Bi7_,- = ?—i,-Pini,. (?_,-7.P,Y_,-’, + 11)71’ where P; =
I-X{ (X5, X5 +1D)Xs, . After F;5; and B; ; are estimated, 62 is calculated as described
in section 2.3. The hyperparameter 7 in ridge regression (4) and (5) is determined by k-fold

cross-validation, with k typically being 5 or 10.

2.4 SSEMQ algorithm

In this section, we will develop the SSEMQ algorithm to solve the optimization problem in (3)
initialized with (F;s,,B;_;) from (5). The problem is non-convex due to the log-determinant
term %llog T— B|2, and non-smooth due to the /;-norm terms of F and B. Recently, a proximal
alternating linearized minimization (PALM) (Bolte et al., 2014) method was proposed to solve
general non-convex and non-smooth problems. We will apply the PALM approach to develop our
SSEMQ algorithm.

Without loss of generality, we define the proximal operator associated with a proper and lower-
semi-continuous function f(x) : R? — [—oo, 00| as proxf(‘)(z) = argmin, s { f(u) + 0t/2[u—
z||3}, where a € (0,+c0) and z € R? are given. If f(x) = A|x||1, where A > 0, then the lasso
proximal operator (Parikh et al., 2014) can be written as follows,

. . [a
prox(2) :argmln{E\IX—ZI\%+7L\|X\]1}. ©)
x€R4
Let x(A4) denote the solution of (6) for a given A, and x;(A) denote the ith element of x(A). Then,
xi(A) is given by the soft-thresholding operator as follows (Parikh et al., 2014):

5
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zi—sign(z)A/a, |z >A/a

. (7
0, Otherwise

xi(A) = S(zi,A/a) = {

where z; represents the ith element of z. For convenience, the solution of (6) can be written as

prox{;(') (z) = S(z,A /), where the soft-thresholding operator is applied to z in an element-wise
manner.

Define B ; as the ith column of B, B_;; as the vector formed by removing the ith element of
B ;. Letr; be the ith row of r, w_; be the ith column of w, and w_;; be the vector formed by
removing the ith element of w_;. To solve the optimization problem in (3) with PALM, we rewrite
the objective function as

M=

J(F,B) =H(F,B)+ Y (fi(Fi.)+gi(B.)), (8)

i=1

where H(F,B) = —Jlog|[T-B|> + 55;||(I- B)Y — FX|
A HB—i,i Lw_j;-

Using the inertial version of the PALM approach, our SSEMQ algorithm efficiently minimizes
J (F , B) via the block coordinate descent (BCD) method in an iterative fashion. Specifically, in each
cycle of the iteration, J (F ,B) is minimized successively w.r.t. a selected B ; or F; ,i=1,... K,
while all other blocks of variables in (F,B) are fixed. First, let us consider updating B_; in the
(t 4 1)th iteration with other variables in F and B being fixed. Let B(¢) denote the estimate of B
in the rth iteration, then B(¢ 4 1)_;; can be updated by lasso proximal operator defined in (6) as
follows:

2

() = 1
B(r+1)_;; = prox§ ) (B_;; - —VH(B_;,)), ©)

1
where I~3_,-7,- =B(1)_ii+ o (B(t)_,;/i —B(t— 1)_,",'), o; € [0,1], 1/7; is the step-size for block B_; ;
that will be given later, and VH(B_; ;) is the partial derivative of H w.r.t. B_;; at given B and F.
We can compute B(z +1)_;; in (9) from (7), if we know VH(B_; ;) and %, which will be derived in

the following.

Let us reorganize H(F,B) in (8) as a function of B_; ;, H(B_; ;), when other variables in B and F
are fixed. Define R; =Y — Zle,j;éiB-,J?L- —FX, and note that log |I - B| = log (c,-./i — c,-7,l-B,,~7,-),
where ¢;; is the (7,i)th co-factor of I — B, and ¢; _; contains co-factors of I — B corresponding

to B,,’J'. Then, H(B,i.j) is defined as H(B,i,i) = —Nlog (ci,i — Ci7,,’B,,’7i) + Ti‘z ‘B,i’,’ — R,’?L_‘ 12:,
and VH(B_;;) can be written as VH(B_;;) = % + é <B,,-,,-§~(l-,YiT7_ — R,Y;). In the

Supplementary text, we prove that VH(B_; ;) is Lipschitz continuous. More specifically, VH(B_; ;)
satisfies the property that ||VH(x) — VH(y)||< L;(F,B__;)||x —y||, where the Lipschitz constant
L;(F,B__;) depends on fixed variables in F and B, _;, and is derived in the Supplementary text as

N|c;; 2 1 .
LEB )= ls Ly (10)
ming_,, (ci;—¢i-iB_;)

Here, the value of minBﬂ.J (c,-./i —¢;B_ iy,-)z can be obtained by solving the optimization problem
shown in (S10) in supplementary text. The step size in (9) is then chosen as ¥ = L;(F,B__;).

6
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Now, we consider updating the ith row of F in the (z + 1)th iteration with other variables being
fixed. Since F is inside the |.]|% term, F; can be updated by using the standard lasso proximal
operator as follows,

o
F(t+1);5 = prox}i") (Fis, + FVH(FLS,.)), (11)
1

where F; 5, = F(t);.s5, + (%) (F(t)is, —F(t —1)i5,), with k1 = (14 /1 +4k?) /2, as suggested
in (Beck and Teboulle, 2009), and VH(F; s,) is the partial derivative of H w.r.t. F;s, with other
variables fixed, and it can be written as 1/62(Y; —B; ;Y_; —F; giX5i7,)X§’_. The step-size n;
can be found as n; = A;/672, with A; being the largest eigenvalue of matrix XS:',-X.Z‘; .

The SSEM(z) algorithm is sugnmarized in Algorithm 1, and the convergence criterion is defined
F(t)-F(t—1 B(r)—-B(r—1 F(¢),B(¢))—-J(F(t—1),B(r—
. )I\F(t()\l?v e (ul)s(r—(l)n%)HF < & and SRR
are pre-defined small constants. Since the objective function in (3) is non-convex and non-smooth,
the SSEMQ algorithm can not guarantee to converge to the global minimal. However, we prove in
the supplementary text that SSEMQ always converges to a stationary point of the objective function.
The hyper parameters p and A can be determined by Bayesian information criterion (BIC) with grid
search, and expressions for their upper bounds are derived in the supplementary text. As mentioned
earlier, if eQTLs are known and only eQTLs are included in the SEM (1) or equivalently (2), then
term p||F||; r in (3) can be dropped, and the optimization problem (3) becomes the problem of GRN
inference. We can easily modify (10) so that the SSEMQ algorithm is applicable to GRN inference.
Note that SSEMQ employs a block coordinate descent (BCD) approach, because a column of
B is estimated in (9), and a row of F is estimated in (11). It turns our that this BCD approach
in conjunction with the proximal operator in (9) and (11) is much faster than the element-wise
coordinate descent approach used by the SML algorithm (Cai et al., 2013).

as )l < &,, where €, >0, ¢, >0

Computer Experiment

In this section, we conduct computer simulation studies to compare the performance of our SSEMQ
algorithm with that of eight existing methods. These methods include MatrixEQTL-Linear (Shabalin,
2012), MatrixEQTL-ANOVA (Shabalin, 2012), GMAC (Yang et al., 2017), ElasticNet (Friedman
et al., 2010), SIOL (Lee and Xing, 2012), GFLasso (Kim et al., 2009), LORs (Yang et al., 2013)
and MTLasso2G (Chen et al., 2012). MatrixEQTL-Linear and MatrixEQTL-ANOVA test the
association between each SNP and each gene with a linear regression model and an ANOVA model,
respectively; they can find both cis-eQTLs and trans-eQTLs. GMAC applies a mediation test to
the results of MatrixEQTL to determine trans-eQTLs mediated by cis-eGenes. Elastic Net, SIOL,
GFLasso, LORs, and MTLass02G all employ a linear regression model Y = FX + ul1” +E, where
Y = [y1,¥2,..-,yn] is an K X N matrix of gene expression level of N samples and K genes, X is an
J X N corresponding to the genotypes of J SNPs of N samples, and u is a constant vector. eQTL
mapping is performed by estimating F, through minimization of the following objective function:
O(F,u) = 3[|Y —FX — pu17||% + P(F, ), where the regularization term P(F, ) is a function of F
and hyperparameter A and is specific to different methods. Apparently, ElasticNet, SIOL, GFLasso,
LORS and MTLasso2G can find both cis- and trans-eQTLs. These methods use cross-validation
to determine the optimal value of hyperparameter A, and the SNPs corresponding to the nonzero
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Algorithm 1 Sparse SEM based eQTL mapping (SSEMQ)

Select 7" in (5) via cross-validation
Solve (5) with 7* to obtain (F,B), and compute &2.
SetW,'j:l/yBij‘,l‘ij:1/‘Fij’,k1:1. o
Initialize B(0) = B, F(0) = F, 62(0) = LI=BNY_FXIE
fortin1,2,...do
Compute o = (t —1)/(t+2), k1 = (1++/1+4k7) /2.
foriinl,....K do
Compute L;(F,B__;) from (10)
Set ¥ = Li(FaB.,fi)
Update B(z)_; ;, with (9)
Compute B_;; =B(r)_; i+ o (B(t) ;i — B(t — 1))
end for
foriinl,....K do
Compute 1; = A;/ 67
Update F(t); s, with (11).
Compute F(t); 5, = F(t); 5, + (12;11) (F(0)is, —F(t—1)is,)
end for o
Update 6(1)2 = |‘(I_B(t)3\¥l(_F(t)XHF
if convergence then
Break
end if
end for
Return {B =B(1),F =F(r)}
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entries of F are then identified as eQTLs. MatrixEQTL-Linear and MatrixEQTL-ANOVA output an
p-value for the association between each SNP and each gene, and eQTLs are determined with a
cutoff p-value. Here, we use a cutoff p-value such that the false discovery rate (FDR) is controlled
at 107*. Our SSEMQ employs BIC to determine hyperparameters A and p, and model parameters
B and F are estimated at the optimal values of A and p.

3.1 Synthetic genotype and gene expression data

We first simulated a large chromosome covered by evenly distributed SNPs. The distance between
the neighboring SNPs is 20 cM. Three SNPs were randomly selected from the 15 SNPs within 300
cM of a gene as cis-eQTLs of the gene. The genotype of all SNPs were generated from an F2 cross,
that was simulated based on the Stahl model using the R/gtl software package (Broman et al., 2003).
Values 0 and 2 were assigned to two homozygous genotypes, respectively and 1 to the heterozygous
genotype; and the genotype data matrix X of SNPs was generated. The effect sizes of eQTLs or
the nonzero entries of matrix F were generated from a random variable uniformly distributed over
interval [0.5,5] or [—5,—0.5]. The minor allele frequencies (MAF) of these SNPs were chosen to be
> 0.10. We simulated both directed acyclic graph (DAG) and directed cyclic graph (DCG) for GRNs.
Specially, the adjacency matrix A of a DAG or DCG of 30 or 100 genes with an expected number of
edges per gene ny = 1 was generated for the GRN, and the corresponding network coefficient matrix
B was generated from A as follows. For A;; = 0, we set B;; = 0; and for A;; = 1, we generated B;;
from a random variable uniformly distributed over interval [0.2,0.6] or [—0.6,—0.2]. Error term
E was independently sampled from the Gaussian distribution with zero mean and variance ¢~1,
where 02 € {0.10,0.25}; u was set to zero, and the sample size N varied from 80 to 500. Finally,
simulated gene expression data matrix Y was obtained as Y = (I—-B) ! (FX +E).

3.2 Accuracy of predicted cis-eQTLs

For each network configuration, 20 replicates of X, F and B were simulated , which were used to
generate Y. Our SSEMQ algorithm and other seven methods mentioned earlier, excluding GMAC,
were applied to Y and X to determine eQTLs. SSEMQ includes all SNPs within 300 cM of genes
and outputs a set of cis-eQTLs based on the nonzero entries of the estimated F. For other seven
methods, predicted eQTLs that are within 300 cM of a gene were identified as cis-eQTLs. The
power of detection (PD) and the false discovery rate (FDR) were obtained by averaging the result
from 20 replicates of the simulated data.

Figure 2 depicts the PD and FDR of predicted cis-eQTLs for the GRN of K = 100 genes. It is
observed that the PD of our SSEMQ is much better than that of MatrixEQTL-Linear, MatrixEQTL-
ANOVA, SIOL and MTLasso2G, and it is similar to that of Elastic Net, GFLasso and LORS. The
FDR of SSEMQ is much smaller than that of all other seven methods across all sample sizes tested.
The PD and FDR of cis-eQTLs for other DAG and DCG network configurations are shown in Figures
S1-S3 and Figures S4-S6, respectively. Observations similar to those in Figure 2 can be seen from
those figures. Interestingly, our SSEMQ and all the other methods based on penalized multiple linear
regression outperform the single SNP methods, MatrixEQTL-Linear and MatrixEQTL-ANOVA, in
terms of both PD and FDR. A similar observation was seen in (Lee and Xing, 2012).

We further compare the performance of different methods using precision and recall (PR)
curves. Possible cis-eQTLs were ranked according to their p-values for MatrixXEQTL-Linear and
MatrixEQTL-ANOVA, the absolute values of nonzero entries of F in SSEMQ, and the absolute
values of regression coefficients for other methods. Precision and recall of cis-eQTLs were then

9
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Figure 2. PD and FDR of cis-eQTLs for DAG (top) and DCG (bottom) with K = 100 genes.
The noise variance 6 = 0.25. PD and FDR were obtained from 20 network replicates.
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Figure 3. Precision-Recall curves of predicted cis-eQTLs. The number of samples N = 80 and
noise variance 62 = 0.25. The GRN has K = 100 genes with a DAG (a) or DCG (b) structure.

calculated from the ranked SNPs under different cutoffs for SNPs to be considered as predicted
cis-eQTLs. PR curves of predicted cis-eQTLs are shown in Figure 3 for the case 62 = 0.25 and in
Figure S7 for the case 62 =0.1. The area under PR Curve (AUPRC) for each method is listed in
Table 1. It is observed that SSEMQ outperforms all other methods for all simulation settings, and
that the single SNP methods, MatrixEQTL-Linear and MatrixEQTL-ANOVA, offer much worse
performance than other multiple SNP methods.

3.3 Accuracy of predicted rrans-eQTLs

While matrix F estimated by our SSEMQ algorithm yields cis-eQTLs, we can also obtain trans-
eQTLs from F and B as follows. From SEM in (1), we have y; = (I—B) " 'Fx; + (I—-B) ! (u +
&;),i=1,...,N. If we define matrix G = (I — B)~!'F, it is clear nonzero entries of the kth row of
G gives all eQTLs of gene &, and the trans-eQTLs of gene k are then obtained by excluding the
cis-eQTLs that have been identified from F. GMAC determines the trans-eQTLs with a mediation
test based on cis-eQTLs, cis-eGenes and trans-eGenes identified with MatrixEQTL (Shabalin,
2012). For other seven methods, predicted eQTLs that are not located within 300 cM of a gene
were designed as trans-eQTLs.

Figure 4 and S8 show the PR curves of predicted trans-eQTLs for 62 = 0.25 and 0.1, respectively.
Table 1 lists the AUPRC:s calculated from PR curves in Figure 4 and S8. It is seen from these results
that our SSEMQ algorithm outperforms significantly all other methods. The performance of GMAC
is slightly better than MatrixEQTL as expected. The performance of SSEMQ and MatrixEQTL
for trans-eQTLs is slightly worse than that for cis-eQTLs, whereas the performance of other five
methods for trans-eQTLs is significantly worse than that for cis-eQTLs. Performance of all methods
is slightly better when the GRN is DAG than when the GRN is a DCG.

11
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Figure 4. Precision-Recall curves of predicted rrans-eQTLs. The number of samples N = 80 and
noise variance 62 = 0.25. The GRN has K = 100 genes with a DAG (a) or DCG (b) structure.

Of note, for our SSEMQ algorithm, there are P. = 1,500 unknown entries in F and P, =
K?—K= 9,900 unknown entries in B to be estimated, when the GRN contains K = 100 genes.
For other methods based on multiple linear regression, the F matrix has P = 100 x 1500 = 15,000
unknown. Therefore, the number of unknown coefficients to be estimated in SNP analysis is much
greater than the number of data sample N. Due to the regularization technique used in SSEMQ and
multiple regression methods, our SSEMQ algorithm and these multiple SNP methods can handle
the problem of “large p and small N”.

3.4 Accuracy of GRN inference

Assuming that eQTLs are known, we employed SEM to infer one GRN (Cai et al., 2013) or jointly
infer two GRN (Zhou and Cai, 2020). Here eQTLs are unknown and our main purpose is eQTL
mapping, although the GRN is also inferred as a byproduct. In fact, GRN inference helps to identify
trans-eQTLs. We have shown the performance of SSEMQ on eQTL-mapping in previous two
sections. Here we will show the performance of SSEMQ in GRN inference. As described earlier,
we simulated genotypes X of a set of SNPs, and the adjacency matrix A of the GRN, and then
generated network matrix B and gene expression data Y. We applied SSEMQ to the simulated data
X and Y, and estimated B. Setting the nonzero entries of estimated B to one, we obtained estimated
adjacency matrix A of the GRN. Comparing A and A, we obtained PD and FDR of detected edges
of the GRN, which are shown in Figure S9 for DAG networks and in Figure S10 for DCG networks.
Both figures show that the PD is close to one and FDR is very small, close to zero especially when
sample size N > 150.
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Table 1. AUPRC of predicted eQTLs. The number of samples N = 80 and noise variance
62 =0.10 and 0.25. The GRN has K = 100 genes with a DAG or DCG structure.

. 2 cis-eQTLs trans-eQTLs
Algorithm " 'DAG | DCG | DAG | DCG
0.10 | 0.998 | 0.998 | 0.887 | 0.856

SSEMQ 0.25 | 0.990 | 0.988 | 0.867 | 0.807
0.10 | - 10353 ] 0353

GMAC 025| - — 10340 | 0.337

. 0.10 | 0.384 | 0.380 | 0.291 | 0.285
MatrixEQTLinear | 195 | 0.382 | 0.382 | 0.293 | 0.282
. 0.10 | 0.384 | 0.379 | 0.291 | 0.285
MatrixEQTLaNovA | 25 | 0382 | 0.382 | 0.293 | 0.282
ElasticNet 0.10 | 0.967 | 0.969 | 0.330 | 0.283
0.25 | 0.963 | 0.963 | 0.285 | 0.242

0.10 | 0.900 | 0.925 | 0.201 | 0.206

MTLass02G 0.25 [ 0.920 | 0.865 | 0.215 | 0.219
SIOL 0.10 | 0.875 | 0.881 | 0.320 | 0.273
0.25 | 0.873 | 0.878 | 0.318 | 0.274

0.10 | 0.965 | 0.967 | 0.313 | 0.272

LORS 0.25 | 0.960 | 0.961 | 0.280 | 0.246
GFLasso 0.10 | 0.960 | 0.963 | 0.314 | 0.273
0.25 | 0.962 | 0.962 | 0.280 | 0.254
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Real data analysis

We applied our SSEMQ algorithm to perform eQTL mapping with the genotype and gene expression
data of human breast tissues from the GTEx Project v6p release (Lonsdale et al., 2013). This dataset
contains expression levels of 24,283 genes and genotypes of 11,959,411 unique SNPs in 183
individuals. To obtain informative genes for QTL mapping, we calculated the coefficient of
variation (CoV) of the RPKM expression values of each gene in 183 samples. Genes with an
average RPKM < 0.1 and CoV < 1.0 were excluded, which resulted in a set of 884 protein coding
genes. Then, the Y matrix of the SEM (1) was formed with log-transformed and quantile-normalized
RPKMs (Lonsdale et al., 2013) of the 884 genes across 183 samples. SNPs with a minor allele
frequency (MAF) of 5% or less were removed. SNPs located within 1M base pairs (bps) to each of
the 884 protein coding genes were extracted. GTEx has performed cis-eQTL mapping with FastQTL
(Ongen et al., 2016) and provided p-values for all SNPs. Retaining those SNPs with a p-value
< 0.10, we obtained 23,934 SNPs as candidate cis-eQTLs for the 884 genes. The genotypes of
these SNPs were transformed to values {0, 1,2} using the following mappings: 0/0 — 0,0/1 — 1
and 1/1 — 2; these values were used to form the X matrix in the SEM (1).

Figure 5. The sub-network of 28 genes associated with the first hot-spot that includes the mediator
eGene JCHAIN and four cis-eQTLs (4-72208873_G_A_b37, 4_71469529_C_T_b37,

471219731 _G_T_b37,4.71226021_A_G_b37). The size of a gene node is proportional to its degree,
the number of edges that the gene connects to. The top 10 genes with highest degrees are labeled.

We then applied the SSEMQ algorithm to the data matrices X and Y to obtain estimates
of B and F, B and F. To find cis- and rrans-eQTLs more reliably, we employed the stability
selection technique (Meinshausen and Biihimann, 2010) to determine the nonzero entries of F and
G= (I—-B)~'F. Stability selection was described in the Supplementary text. Pairs of cis-eQTL
and cis-eGenes were identified from the nonzero entries of F, while pairs of trans-eQTL and trans-
eGenes were determined from the nonzero entries of G. In total, we found 3,239 eQTL/eGene pairs,
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among which 2,048 are cis-eQTL/cis-eGene pairs of 752 genes, and 1,191 are trans-eQTL/trans-
eGene pairs of 464 genes. We found that 92.58% (699/755) of the significant cis-eQTL-cis/eGene
pairs detected by GTEx at FDR < 0.1 (p-value ;0.0007) were included in our cis-eQTL-cis/eGene
pairs.

An eQTL that is associated with a relatively large number of genes is referred to as a hot-spot
(Yang et al., 2013). Since all trans-eQTLs and trans-eGenes identified here are mediated by
cis-eGenes, we refer cis-eGene and its cis-eQTLs that are associated with a large number of trans-
eGenes to as a hot-spot. We performed gene ontology (GO) enrichment analysis for the set of genes
associated with each hot-spot. The top 30 hot-spots with largest number of genes and significantly
enriched GO terms (adjusted p-value < 107) are listed in supplementary table S1. The number of
trans-eGenes associated with these 30 hot-spots is > 6. The first hot-spot contains four cis-eQT's
(4-72208873_G_A_b37,4_71469529 _C_T_b37, and 4_71219731_G_T_b37, 471226021 _A_G_b37),
cis-eGene JCHAIN, and 27 downstream trans-eGenes. We extracted the sub-network of JCHAIN
and its 27 downstream genes determined by B, and plotted the network in Figure 5. The top ten
genes with highest degrees in the network are SYT8, OXTR, SLC34A2, FOLR1, PIGR, MZB1,
KLKS, MMP7, and ELFS5. Interestingly, six of these ten genes were found to be related to immunity.
JCHAIN gene encodes the joining chain of polymeric IgA and IgM (Max et al., 1986). SLC34A2
was reported to induce abnormal alveolar type II (AT II) cells to transform into cancer cells, and
the AT II cells possess immune functions of synthesizing factors of immune regulation (Yang
etal.,2014). FOLRI1 is known as a tumor-associated antigen (Lu et al., 2004; Lu and Low, 2003),
which helps immunoglobulins target tumor cells and stimulates immune response. PIGR is a
polymeric immunoglobulin receptor gene; it binds polymeric IgA and IgM and transports them
from the basolateral surface of the epithelium to the apical side (Turula and Wobus, 2018). MZBI is
expressed in innatelike B cells, and is involved in the regulation of IgM and IgA’s response (Suzuki
et al., 2019). ELF5 gene is a key transcriptional determinant of tumor subtypes and has been found
to help recognition of antibodies (Piggin et al., 2020).

Conclusion

In this paper, we have developed an efficient algorithm, named SSEMQ, for eQTL mapping. The
algorithm outputs cis-eQTL and cis-eGene pairs and the GRN structure, which are further used to
determine trans-eQTL and trans-eGene pairs mediated by cis-eGene pairs. Computer simulations
showed that SSEMQ offered better performance on identifying both cis- and trans-eQTLs than
eight existing methods. The superior performance on cis-eQTL mapping is due to the fact that
correlated expression levels of genes influenced by the same eQTL is exploited jointly, while the
superior performance on trans-eQTL mapping is due to the GRN inference. The SSEMQ algorithm
was further employed to analyze a real dataset of human breast tissues, yielding a number of eQTLs
and eGenes. GO enrichment analysis of the networks of eGenes shows that genes influenced by the
same set of eQTLs may be involved in certain common biological processes and functions.
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Supplementary Text S

Hyperparameter selection
We use K-fold cross-validation (CV) to determine the value of 7 for ridge regression (5) and
values of A and p for SSEMQ, where K typically equals to 5 or 10. We search T over a se-
quence of 50 values increasing from 1076 to 10? evenly on the logarithm scale, and the optimal
value of 7 is chosen to minimize the predication error calculated from the test data. We em-
ploy a grid search strategy to determine the optimal values of A and p. We first determine the
maximum value of A, namely Anax, then choose a set of k| values for A, denoted as sequence
S, = {Z,max,(xlﬁmax,oclz/'lmax,...,oc{“_lﬂ,max}, where 0 < o; < 1. For each value of A € §;, we
find the maximum value of p, namely pmax(A), and then choose a set of k; values for p, de-
noted as Sp(A) = {Pmax(A), 02Pmax(A), 02Pmax (1), .., 042 prmax (1)}, where 0 < ot < 1. This
gives a set of K = kkp pairs of (A, p), and Bayesian information criterion (BIC) is used to tune
hyperparameters (A, p). The optimal values of A and p are chosen to minimize the BIC scores.
Next, we derive the maximum values of A and p. The value Ay, yields B = 0, and can be
found from the result in (Cai et al., 2013) as follows:

N L (VYT F(Ap, p) XY,
I .mlaxKl Gz( . (Amax, P) )lj|7 S1)
l’]: Iy ij

where F(Amax, p) is obtained through (11) iteratively after setting B = 0. The maximum value of p
at a given A value, denoted as pmax (A ), yields F = 0; and pmax(Amax) can be found as follows:

|(YXT),]
pmaX ()anax) i=1 7II1‘2[1()7(]€SI Gzrl] ( )

For each 1 in S, we obtain ppx(A) as follows:

o .
() = max 1O = BPmax (A)¥YXT )i

. . 3 ; (S3)
i=1,....K,jeS; (O v

where B(pmax(4)) can be obtained from (4) with F = 0 or equivalently the following optimization
problem:

(1-B)Y||;+2|B

. N 1
B(Pmax(1)) = arg];nln{ — Elog |I—B|2 + 262

l,w} (S4)
subject to B;; =0,Vi € {1,...,K}.

When the number of unknown is large, tuning hyperparameters with BIC is generally faster than
the CV. Therefore, the hyperparameters (A, p) of SSEMQ are selected by minimizing the following
BIC score:

BIC(%,p) = 22 (B(1,p). F(1,p)) +log (N)df(A,p), (s5)

where B(A,p) and F(A,p)) are estimates of Band F at (1,p), Z(B(A,p),F(A,p)) is the negative
log-likelihood defined in (2), and df(A,p) is the total number of nonzero elements in B(A,p) and

F(2.p)).
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Convergence analysis

When the objective function in an optimization problem is non-convex and non-smooth, it is
possible that the coordinate descent method fails to converge. We next prove that the SSEMQ
algorithm converges to a stationary point, because the objective function satisfies the conditions
for the convergence of the PALM method specified in (Bolte ez al., 2014). Specifically, we prove
J(F,B) in (8) has the following properties:

1. infH(F,B) > —oo, when B € domH = {B : det(I—-B) # 0}, inf f;(F; ) > —ccand infg;(B.;) >
—ooi=1,..K

2. VH(B_;;),i =1,...,n, is Lipschitz continuous with a Lipschitz constant L;(F,B__;) for
B € domH:
IVH(x) — VH(y)||< Li(F,B_-) [Ix— |,

and VH(F;s,),i = 1,...,n is Lipschitz continuous with a Lipschitz constant AXSA X7 / 62.

3. H(F,B) has continuous first and second derivatives when B € dom H.

4. J(F,B) satisfies the Kurdyka-F.ojasiewicz(KL) property.

Note that properties 1-3 are identical to the properties in assumption B of (Bolte et al., 2014).
Based on the result in (Stephen Boyd and Lieven Vandenberghe, 2004), these four properties
guarantee that SSEMQ algorithm converges to a critical point. First, it is apparent that H(F,B) > —oo
and therefore J(F,B) > —eo, VB € domH. Second, it is not difficult to show that H(F,B) is
differentiable w.r.t. B; _;,i = 1,...,n and the first-order and second-order derivatives are continuous
in dom HL. Therefore, property 3 is satisfied.

Third, we proved in next section that VH(B_; ;) is Lipschitz continuous with constant L;(F,B__;)
given in (10). Moreover, based on assumption B(iii) of (Bolte et al., 2014), L;(F,B__;) guarantees
that proximal steps in the SSEMQ algorithm remain well-defined, because we have

inf{L;(F,B._)} > Y, [3/6° (S6)
Finally, we proved that property 4 holds. The non-smooth functions f;(F; ) and g;(B ;) in

J(F,B) are lasso penalty terms w.r.t. F; and B_;, and they are semi-algebraic as shawn in (Yangyang
Xu and Wotao Yin, 2013). The ¢;-norm ||(I—B)Y — FXH? is apparently semi-algebraic. We next
prove that —%log II—B|? is semi-algebraic too. We can regard —%llog II—B|? as a composite
function of B as follows

N
— > log[1- B> = (g0 F)(B)

8() = 5 logdet() (87)

F()=@@-) 1),
Function g(-) is locally convex function (Stephen Boyd and Lieven Vandenberghe, 2004). Based on
the result in (Yangyang Xu and Wotao Yin, 2013), it is not difficult to show that g(-) satisfies the
KL property, and it can be shown that function F : R"*" — R"*" is continuously differentiable in
domJ. As all terms of J(F,B) are KL functions, the sum of theses KL functions should satisfy the

KL property (Guoyin Li and Ting Kei Pong, 2017). This completes the proof that J(F,B) satisfies
properties 1-4.
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Derivation of the Lipschitz constant of VH(B_, ;)

cii—¢_B_;j; ' &2

Based on H(F, B) defined in (8), it is not difficult to find VH(B_; ;) = — < 4 L (B_i Y Y~
R,Yg) , which has the following property:

—N(y_x)ciT—icifi 1 o
| VH(x) W2l “(ci,i_Ci,—ix)(cgi—ci’f,’y)+_62(y )Y, Y7
$8)
Nllei-ill3 1 o (
< ) Y ) B 7
(mindet(I_B)2+62H ill2 ) ly —x||

—i,i

where ?i, is the 1 x N vector for i-th row of Y. From (S8), it is apparent that Lipschitz constant

Li(F,B__;) of VH(B_;;) is: N||c; ] |%/glindet(l —-B)2+ #HY,H% To calculate L;(F,B__;), we

need to minimize det(I — B)? w.r.t B_;;, when B ;,j=1,2,...,n,j#i, are fixed, which will be
derived as follows.

Defining ® =1 —B, and let 6 ; be the i-th column of ® and ®__; be the sub-matrix of ©® that
excludes 0 ;. Then, we can write det(®)? as follows,

det(©)* = det(@O") = det(®”_;0 ;) x 0",(I-0__;(0’_® _))"'0’ )6, (89

where ©_; _; is the sub-matrix of ® excluding the ith row and the ith column. Letting b; =B_; ;,
we can rewrite det(®)? as

det(®”_ ;0 ;) (1+|[bi|[5— (@i—i—b]©_; _;)(®7_© ;) 1(®] ;—0", b))).  (S10)
Minimizing det(®)? in (S10) w.r.t. b; yields

. _ -1 -1
b=-(1-0", 0" e _)'e._) o__(0 06 _) o . (S11)
Substituting b; into (S10) gives the minimum value of det(®)?. In practice, to ensure numerical
stability, we modify the b; in (S11) as follows,

b=-(1-0", @' e _)'e, .+ e (e e ) e, (S12)
where { is a small positive constant. This modification can be regarded as minimizing det(®)?in
(S12) subject to the constraint ||b;||2 < ¢, where c is a positive constant. This is a reasonable
assumption because in real GRNSs, entries of B are bounded. In our implementation, we chose
¢ = 10716 and we did not observe any numerical instability in all of our numerical experiments.

Stability selection

In real data analysis, we employed the stability selection technique (Meinshausen and Biihlmann,
2010) to determine reliably the nonzero entries of F and G = (I — B)~'F, which were then used

to determine cis- and trans-eQTLs. We first determined the optimal hyperparameter (4,p) by
minimizing the BIC score in (S5). We then randomly divided the dataset (Y, X) into two subset of
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equal size, and inferred B and F with our SSEMQ algorithm using each subset of the data and the
optimal hyperparameter values (i,ﬁ). We repeated this process N times, which yielded 2N B, F,
and G. We chose N = 50. Let ¢;; and #;; be the total number of nonzero F;; and G;;, respectively,
in 2N B and F matrices. Then, f(F);; = ¢;;/(2N) and f(G);; = t;;/(2N) give the frequencies of
nonzero F; ;and G, j» respectively. Those | ;’s and G, i’s with f(F);j > e and f(G);;j > e, Where
Thhe 1S constant in the interval [0.6,0.9] (Meinshausen and Biithlmann, 2010), were deemed to be
nonzero. We used 7y, = 0.6 in our data analysis
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Supplementary Figure
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Figure S1. PD and FDR of cis-eQTLs for DAG with K = 30 genes. The number of samples N
varies from 80 to 500 and noise variance 62 = 0.10. PD and FDR were obtained from 20 network

replicates.
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Figure S2. PD and FDR of cis-eQTLs for DAG with K = 30 genes. The number of samples N
varies from 80 to 500 and noise variance 62 = 0.25. PD and FDR were obtained from 20 network
replicates.
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Figure S3. PD and FDR of cis-eQTLs for DAG with K = 100 genes. The number of samples N
varies from 80 to 500 and noise variance 62 = 0.10. PD and FDR were obtained from 20 network

replicates.
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Figure S4. PD and FDR of cis-eQTLs for DCG with K = 30 genes. The number of samples N
varies from 80 to 500 and noise variance 62 = 0.10. PD and FDR were obtained from 20 network
replicates.
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Figure S5. PD and FDR of cis-eQTLs for DCG with K = 30 genes. The number of samples N
varies from 80 to 500 and noise variance 62 = 0.25. PD and FDR were obtained from 20 network
replicates.
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Figure S6. PD and FDR of cis-eQTLs for DCG with K = 100 genes. The number of samples N
varies from 80 to 500 and noise variance 62 = 0.10. PD and FDR were obtained from 20 network
replicates.
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Figure S7. Precision-Recall curves of predicted cis-eQTLs. The number of samples N = 80 and
noise variance 62 = 0.1. The GRN has K = 100 genes with a DAG (a) or DCG (b) structure.
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Figure S8. Precision-Recall curves of predicted rrans-eQTLs. The number of samples N = 80
and noise variance 6% = 0.10. The GRN has K = 100 genes with a DAG (a) or DCG (b) structure.
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Figure S9. PD and FDR of detected network edges for the DAG networks. The number of
sample N varies from 80 to 500 and noise variance 6> = 0.10 and 0.25. PD and FDR were

obtained from 20 simulated network replicates.
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Figure S10. PD and FDR of detected network edges for the DCG networks. The number of
sample N varies from 80 to 500 and noise variance 6> = 0.10 and 0.25. PD and FDR were

obtained from 20 simulated network replicates.
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