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Abstract

Multi-omics datasets can provide molecular insights beyond the sum of individual omics.
Diverse tools have been recently developed to integrate such datasets, but there are limited
strategies to systematically extract mechanistic hypotheses from them. Here, we present
COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates
phosphoproteomics, transcriptomics, and metabolics datasets. COSMOS combines
extensive prior knowledge of signaling, metabolic, and gene regulatory networks with
computational methods to estimate activities of transcription factors and kinases as well as
network-level causal reasoning. COSMOS provides mechanistic hypotheses for
experimental observations across multi-omics datasets. We applied COSMOS to a dataset
comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and
cancerous tissue from nine renal cell carcinoma patients. We used COSMOS to generate
novel hypotheses such as the impact of Androgen Receptor on nucleoside metabolism and
the influence of the JAK-STAT pathway on propionyl coenzyme A production. We expect
that our freely available method will be broadly useful to extract mechanistic insights from

multi-omics studies.
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1. Introduction

“Omics” technologies measure at the same time thousands of biological molecules in
biological samples, from DNA, RNA and proteins to metabolites. Omics datasets are an
essential component of systems biology, and are made possible by the popularization of
analytical methods such as Next Generation Sequencing or Mass-Spectrometry. Omics data
have enabled the unbiased characterization of the molecular features of multiple human
diseases, particularly in cancer'. It is becoming increasingly common to characterize
multiple omics layers in parallel, with so-called “trans-omics analysis”, to gain biological
insights spanning multiple types of cellular processes*®. Consequently, many tools are

developed to analyze such data’™"

, mainly by adapting and combining existing “single
omics” methodologies to multiple parallel datasets. These methods identify groups of
measurements and derive integrated statistics to describe them, effectively reducing the
dimensionality of the datasets. These methods are useful to provide a global view on the

data, but additional processing is required to extract mechanistic insights from them.

To extract mechanistic insights from datasets, some methods (such as pathway enrichment
analysis) use prior knowledge about the players of the process being investigated. For
instance, differential changes in the expression of the genes that constitute a pathway gene
expression are used to infer the activity of that pathway. Methods that a priori define groups
of measurements based on known regulated targets (that we call footprints'?) of transcription
factors (TFs)™", kinases/phosphatases' and pathway perturbations'®, provide integrated
statistics that can be interpreted as a proxy of the activity of a molecule or process. These
methods seem to estimate more accurately the status of processes than classic pathway
methods '>'®". Since each of these types of footprint methods work with a certain type of
omics data, finding links between them could help to interpret them collectively in a
mechanistic manner. For example, one can use a network diffusion algorithm, such as
TieDIE'®, to connect different omics footprints together'. This approach provides valuable
insights, but diffusion (or random walk) based algorithms do not typically take into account
causal information (such as activation/inhibition) that is available and are important to extract
mechanistic information. TieDIE partially addressed this problem by focusing the diffusion
process on causally coherent subparts of a network of interest, but it is thus limited to local

causality.
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Recently, we proposed the CARNIVAL tool® to systematically generate mechanistic
hypotheses connecting TFs through global causal reasoning supported by Integer Linear
Programming. CARNIVAL connects activity perturbed nodes such as drug targets with
deregulated TFs activities by contextualizing a signed and directed Prior Knowledge Network
(PKN). We had hypothesized how such a method could potentially be used to actually

connect footprint based activity estimates across multiple omics layers'.

In this study, we introduce COSMOS (Causal Oriented Search of Multi-Omics Space), an
approach that builds on CARNIVAL to connect TF and kinase/phosphatases activities as
well as metabolite abundances with a novel PKN spanning across multiple omics layers
(Figure _1). COSMOS uses CARNIVAL’s Integer Linear Programming (ILP) optimization
strategy to find the smallest coherent subnetwork causally connecting as many deregulated
TFs, kinases/phosphatases and metabolites as possible. The subnetwork is extracted from a
novel integrated PKN spanning signaling, transcriptional regulation and metabolism of >
67000 edges. CARNIVAL’s ILP formulation effectively allows to evaluate the entire network's
causal coherence given a set of known TF, kinases/phosphatases activities and metabolite
abundances. While we showcase this method using transcriptomics, phosphoproteomics
and metabolomics inputs, COSMOS can theoretically be used with any other additional
inputs, as long as they can be linked to functional insights (for example, a set of deleterious
mutations). As a case study, we generated transcriptomics, phosphoproteomics, and
metabolomics datasets from kidney tumor tissue and corresponding healthy kidney tissue
out of nine clear cell renal cell carcinoma (ccRCC) patients. We estimated changes of
activities of TFs and kinase/phosphatases as well as metabolite abundance differences
between tumor and healthy tissue. We integrated multiple curated resources of interactions
between proteins, transcripts and metabolites together to build a trans-omics PKN. Next, we
contextualized the trans-omics PKN to a specific experiment. To do so, we identified causal
pathways from our prior knowledge that connect the observed changes in activities of TFs,
kinases, phosphatases and metabolite abundances between tumor and healthy tissue.
These causal pathways can be used as hypothesis generation tools to better understand the

molecular phenotype of kidney cancer.
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Figure 1 - Overview of analysis pipeline

From left to right: We sampled and processed 11 patient tumors and healthy kidney tissues from the
same kidney through RNA sequencing and 9 of those same patients through mass-spectrometry to
characterise their transcriptomics, phospho-proteomics, and metabolomics profiles. We calculated
differential abundance for each detected gene, phospho-peptide and metabolite. We estimated kinase
and transcription factor activities using the differential analysis statistics and footprint-based methods.
We used the estimated activities alongside the differential metabolite abundances to contextualise (i.
e. extract the subnetwork that better explains the phenotype of interest) a generic trans-omics causal

network.

2. Results

2.1 Building the multi-omics dataset

To build a multi-omics dataset of renal cancer, we performed transcriptomics,
phosphoproteomics, and metabolomics analyses of renal nephrectomies and adjacent
normal tissues of renal cancer patients (for details on the patients see methods). First, we
processed the different omics datasets to prepare for the analysis. For the transcriptomics
dataset, 15919 transcripts with average counts > 50 were kept for subsequent analysis. In
the phosphoproteomics dataset, 14243 phosphosites detected in at least four samples were
kept. In the metabolomics dataset 107 metabolomics detected across 16 samples were kept.
Principal Component Analysis (PCA) of each omics dataset independently showed a clear

separation of healthy and tumor tissues on the first component (transcriptomics : 40% of
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explained variance (EV), phosphoproteomics : 26% of EV, metabolomics : 28% of EV,

Supplementary Figure 1), suggesting that tumor sample displayed molecular deregulations

spanning across signaling, transcription and metabolism. Each omics dataset was
independently submitted to differential (tumor vs healthy tissue) analysis using LIMMA?'. We
obtained 6699 transcript and 21 metabolites significantly regulated with False Discovery
Rate (FDR) < 0.05. While only 11 phosphosites were found under 0.05 FDR, 447
phosphosites had an FDR < 0.2. This result confirmed that tumor samples displayed
molecular deregulations spanning across signaling, transcription, and metabolism but that
TF dysregulation is more pervasive. The differential statistics for all transcripts,

phospho-proteins and metabolites were then used for further downstream analysis.

2.3 Footprint based transcription factor, kinase and phosphatase activity estimation

We then performed computational footprint analysis to estimate the activity of proteins
responsible for changes observed in specific omics datasets. For transcriptomics and
phosphoproteomics data, this analysis estimates transcription factor and
kinases/phosphatase activity, respectively. 32586 Transcription Factor (TF) to target
interactions (i. e. transcript under the direct regulation of a transcription factor) were obtained
from DOROTHEA", a meta-resource of TF-target interactions. Those TF-target interactions
span over 452 unique ftranscription factors. In parallel, 33616 interactions of
kinase/phosphosphate and their phosphosite targets (i. e. phosphopeptides directly
(de)phosphorylated by specific kinases(phosphatases)) were obtained from Omnipath®
kinase substrate network, a meta resource focused on curated information on signaling
processes. Only TFs and kinases/phosphatases with at least 25 and 5 detected substrates,
respectively, were included. This led to the activity estimation of 229 TFs and 174 kinases. In
line with the results of the differential analysis, where fewer phosphosites were deregulated
than transcripts, TF activities displayed a stronger deregulation than kinases. TF activity
scores reached a maximum of eight standard deviations (sd) for Transcription Factor AP-2
Gamma (TFAP2C) (compared to the null score distribution) while kinase activity scores
reached a maximum of 4.6 sd for Casein Kinase 2 Alpha 1 (CSNK2A1). In total, 102 TFs
and kinases/phosphatase had an absolute score over 1.7 sd (p-val<0.05) and were
considered significantly deregulated in kidney tumor samples. The presence of several
known signatures of ccRCC corroborated the validity of our analysis. For instance, hypoxia
(HIF1A, EPAS1), inflammation (STAT1/2) and oncogenic (MYC, Cyclin Dependent Kinase 2

and 7 (CDK2/7)) markers were up-regulated in tumors compared to healthy tissues (Figure
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2). Furthermore, among suppressed TFs we identified, HNF4A has been previously

associated with ccRCC?.
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Figure 2 TF, kinase and phosphatase activities that change the most between cancer and
healthy tissue

A) Bar plot displaying the Normalised Enrichment Score (NES, proxy of activity change) of the 30
most changing TF, kinase and phosphatases activities between kidney tumor and adjacent healthy
tissue. Blue/red color represent the sign of the activity change (negative/positive, respectively). B)
Right panel shows the 10 most changing RNA abundances of the STATZ2 regulated transcripts. Left
panel shows the change of abundances of all STATZ2 regulated transcripts that were used to estimate
its activity change. X axis represents log fold change of regulated transcripts multiplied by the sign of
regulation (-1 for inhibition and 1 for activation of transcription). Y axis represents the significance of
the log fold change (-log10 of p-value). C) Right panel shows the 10 most changing phospho-peptide
abundances of the CDK7 regulated phospho-peptides. Left panel shows the change of abundances of

all CDK7 regulated phospho-peptides that were used to estimate its activity change.

2.4 Causal network analysis

We set out to find potential causal mechanistic pathways that could explain the changes we
observed in TF, kinases/phosphatase activities, and metabolic abundances. Thus, we
developed a systematic approach to search in public databases, via OmniPath, for plausible
causal links between significantly deregulated TFs, kinases/phosphatases and metabolites.
In brief, we investigated if changes in TF, kinase/phosphatase activities, and metabolite

abundance can explain each other with the support of literature-curated molecular
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interactions. An example of such a mechanism can be the activation of the transcription of
MYC gene by STAT1. Since both STAT1 and MYC display increased activities in tumors,
and there is evidence in the literature that STAT1 can regulate MYC transcription®?°, it may

indicate that this mechanism is responsible for this observation.

First, we needed to map the deregulated TFs, kinases and metabolites on a causal prior
knowledge network spanning over signaling pathways, gene regulation, and metabolic
networks. Hence, we combined multiple sources of experimentally curated causal links
together to build a trans-omics causal prior knowledge network (trans-omics PKN). This
trans-omics PKN must include direct causal links between proteins (kinase to kinase, TF to
kinase, TF to metabolic enzymes, etc...), between proteins and metabolites (reactants to
metabolic enzymes and metabolic enzymes to products) and between metabolites and
proteins (allosteric regulations). High confidence (>= 900 combined score) allosteric
regulations of the STITCH database® were used as the source of causal links between
metabolites and enzymes (Figure 3A). The directed signed interactions of the Omnipath
database were used as a source of causal links between proteins (Figure 3B). The human
metabolic network Recon3D? (without cofactors and hyper-promiscuous metabolites, see
methods) was converted to a causal network and used as the source of causal links
between metabolites and metabolic enzymes (Figure 3C). The resulting trans-omics PKN
consists of 69517 interactions and contains causal paths linking TF/kinase/phosphatase with
metabolites and vice-versa in a machine readable format. This network is available at

http://metapkn.omnipathdb.org/.
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Figure 3 - Graphical explanation of trans-omics PKN sources

Schematic representation of the trans-omics generic network (trans-omics PKN) created combining
STITCHdb, Omnipath and Recon3D. A) STITCHdb provides information on inhibition/activation of
enzyme activities mediated by metabolites. B) Omnipath provides information inhibition/activation of
enzyme activities mediated by other enzymes based mainly on curated resources. C) Recon3D
provides information on reactants and products associated with metabolic enzymes. To make this
information compatible with the causal edges from Omnipath and STITCH, the interactions of
recon3D are converted so that reactants “activate” their metabolic enzymes, which themselves

“activate” their products.

We then used the trans-omics PKN to systematically search causal paths between the
deregulated TFs, kinases/phosphatases and metabolites. The CARNIVAL® tool uses Integer
Linear Programming (ILP) to find causal paths between perturbations and deregulated TFs
using a PKN and infers the state of intermediate nodes when it is unknown. Here we use
CARNIVAL with our trans-omics PKN to find the smallest sign-coherent subnetwork
connecting as many deregulated TFs, kinases/phosphatases, and metabolites as possible.
CARNIVAL is first used to find causal paths going from TFs/kinases/phosphatases to the
metabolites (the ‘forward network’). Then, in order to complete the loop, CARNIVAL is used

to go from metabolites to TFs/Kinases/phosphatases (‘backward network’).

When applied to our kidney cancer data, the two resulting (forward and backward) networks

are then combined into a single network of 250 signed directed interactions (Supplementary
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Figure 2). These interactions are directly interpretable as mechanistic hypotheses. We
present some of them using official symbol nomenclature for genes and metabolites. For
example, it appears that Androgen Receptor (AR) activity inhibition could be responsible for
the observed downregulation of uridine, adenine, and inosine metabolism by
down-regulating the expression of ACPP, DBI, and SMS metabolic enzymes (Figure 4A). Of
note, AR expression has a protective role in ccRCC progression #2°. Interestingly, the
COSMOS network shows adenine depletion could lead to adenosine depletion (since
adenosine can be produced from adenine). Adenosine is a known activator of the C-X-C
Motif Chemokine Receptor 4 (CXCR4) *°*' so its depletion could lead to the predicted
down-regulation of CXCR4 activity. The combined AR and CXCR4 down-regulation might
indicate that these tumors are not metastatic ****. The COSMOS network also shows that
CXCRA4 regulates Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Gamma
(PIK3CG), which itself regulates 3-Phosphoinositide Dependent Protein Kinase 1 (PDPK1).
Thus, CXCR4 down-regulation could then explain PDPK1 activity down-regulation through
the inhibition of PIK3CG. COSMOS further proposes that the activation of JAK kinase would
be a good explanation for the apparent activation of STAT transcription factors in the tumor,
leading to activation of IRF1 and MYC (Eigure 4B). Interestingly, JAK2 was found to be
amplified in ccRCC *. The STAT3 activation could explain the depletion of
o-propanoylcarnitine due to the downregulation of metabolic enzymes responsible for the
transport of its precursor, Sterol Carrier Protein 2 (SCP2). CDK2 could itself explain the
activity of ATM and TP53 through Forkhead Box M1 (FOXM1) and Aurora Kinase B
(AURKB) signaling, leading to the activation of Dual specificity
tyrosine-phosphorylation-regulated kinase 2 (DYRK2), HIF1A and the accumulation of
L-Glutamine (Figure 4C). FOXM1 was recently highlighted as a particularly important driver
of metabolic changes in ccRCC®*. Finally, the COSMOS network shows that the
down-regulation of PDPK1 appears as a good explanation for L-Citrulline accumulation and
ethanolamine depletion, by indirectly modulating the activity of Nitric Oxide Synthase 1
(NOS1) and Phospholipase D1 (PLD1) metabolic enzymes (Figure 4D). Furthermore,
PDPK?1 directly controls the activity of the Protein Kinase C protein family (PRKCA, PRKCD,
PRKCE and PRKACA). These kinases are known to be involved in metastasis progression
3.3 Their down-regulation predicted by COSMOS further supports the idea that these
tumors are not metastatic. These results demonstrate how the pipeline can be used to
extract relevant mechanistic hypotheses explaining the enzymatic and metabolic

deregulations at signaling and transcriptional levels.
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Figure 4 - Systematically generated mechanistic hypotheses explaining changing TF, kinase,
phosphatase activities and metabolic abundances

COSMOS generates mechanistic hypotheses which are represented in the form of a context specific
causal network. This network links the significant changes in estimated enzyme activities and
metabolic abundance (192 nodes and 250 edges). Diamond shapes represent TFs , hexagon shape
represents kinases and phosphatases, octagon shape represents metabolic enzymes and ellipse
shape represents metabolites. Blue/red color represents inhibited/activated enzyme activities and
depleted/accumulated metabolites. Edges with arrowheads represent activatory interactions and
T-shaped ones represent inhibitory interactions. A full-page version of this figure is available as

Supplementary Figure 2 A) ,B) ,C) and D) represent subnetworks extracted to zoom on specific

hypotheses. For example, B) represents how AR activity can lead to the inhibition of nucleotides and
isovaleryl carnitine synthesis observed in tumors compared to healthy tissues, in turn explaining the
inhibited activity of PDPK1.
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2.5 Consistency analysis

Due to the combined effect of experimental noise and incompleteness of prior knowledge
(kinase/substrate interactions, TF/targets interactions and meta PKN), it is critical to assess
the performance of the pipeline presented above. We first looked if some of the generated
hypotheses (see 2.3) were supported by parts of the datasets that were not directly used by

CARNIVAL (Supplementary Figure 3). We couldn’t estimate the True Negative Rate of

CARNIVAL in this multi-omics context. Indeed, nodes that are not integrated in the final
subnetwork by CARNIVAL are simply not considered informative to explain the relationship
between the input protein activities and metabolites. Yet, that doesn’t inform us on their
actual functional state. Consequently, we focused on the True Positive Rate (TPR), for which
we had reasonable estimates. The TF activity displayed by CARNIVAL can come from two
distinct sources. The first source consists of the original footprint based activity estimation
(using DOROTHEA and transcript abundances of target genes). The second source consists
of actual CARNIVAL activity predictions based on molecular signal propagation through
activating/inhibiting links (not using transcript abundances) connecting TF, kinases and
phosphatases together. This is the case as some TFs can serve as intermediate links to
connect upstream perturbations with downstream nodes. Consequently, in the case of a TF,
CARNIVAL will implicitly model its action on the direct downstream targets. Thus, for every
TF/target regulation of the CARNIVAL network, we checked whether the change of
abundance of the target transcripts was actually coherent with the predicted activity of the
TF displayed by CARNIVAL. We tested this over a range of differential transcript abundance
t-value threshold between 0 and 2. Nine transcripts were regulated by TF whose activity
was predicted by CARNIVAL only (second source), that is, the transcripts were not used as
inputs to build the COSMOS model. Out of those nine transcripts, the TPR ranged between
0.62 and 0.15 depending on the t-value threshold (n = 13) (Supplementary Figure 4). It

performed better than a random baseline for considered t-value thresholds ranging from 0 to
1.7.

Another way to estimate the performance is to check if the CARNIVAL mechanistic
hypotheses correspond to correlations observed in tumor tissues. Thus, on the one hand, a
topological driven coregulation network was generated from the CARNIVAL network. The
assumption behind this network is that direct downstream targets of the same enzymes
should be co-regulated. On the other hand, a data driven correlation network of TFs, kinases

and phosphatases was generated from tumor tissues alone. Assuming thresholds of
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absolute values of correlation ranging between 0 and 1 to define true positive co-regulations,
the comparison between the topological driven coregulation network and the data driven
correlation network yielded a TPR of ranging between 0.6 and 0 (n = 157) for the carnival

predictions (Supplementary Figure 4). It performed consistently better than a random

baseline over the considered range of correlation coefficient thresholds. These results
indicate that while some of the causal links predicted by CARNIVAL are potentially valid,
some of them don’t find direct support in the data at hand. Thus, we sought to investigate if

some of the mechanistic hypotheses could be experimentally validated.

3. Discussion

In this paper, we present COSMOS, an analysis pipeline to systematically generate
mechanistic hypotheses by integrating multi-omics datasets with a broad range of curated
resources of interactions between protein, transcripts and metabolites. We have first shown
how TF, kinase and phosphatase activities could be coherently estimated from
transcriptomics and phosphoproteomics datasets using footprint based analysis. This is a
critical step before further mechanistic exploration. Indeed, transcript and phosphosite
usually offer limited functional insights by themselves as their relationship with
corresponding protein activity is usually not well characterised. Yet, they can provide
information on the activity of the upstream proteins regulating their abundances. Thus, the
functional state of kinases, phosphatases, and TFs is estimated from the observed
abundance change of their known targets, i. e. their molecular footprint. Thanks to this
approach, we could simultaneously characterise protein functional states in tumors at the
level of signaling pathway and transcriptional regulation. Key actors of hypoxia response,
inflammation pathway and oncogenic genes were found to have especially strong alteration
of their functional states, such as HIF1A, EPAS1, STAT1/2, MYC and CDK2. Loss of VHL is
a hallmark of ccRCC, and is directly linked to the stability of the HIF (HIF1A and EPAS1)

39-41

proteins found deregulated by our analysis®™™'. Finding these established signatures of

ccRCC to be deregulated in our analysis is a confirmation of the validity of this approach.

We then used CARNIVAL with a novel trans-omics causal Prior Knowledge Network
spanning signaling, transcription and metabolism to systematically find potential
mechanisms linking deregulated protein activities and metabolite concentrations. To the best
of our knowledge, this is the first attempt to integrate these three omics layers together in a
systematic manner using causal reasoning. Previous methods studying signaling pathways

with multi-omics quantitative datasets " connected TFs with kinases and they were limited
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by the preselected locally coherent subnetwork of the TieDIE algorithm. Introducing global
causality with CARNIVAL along with metabolomics data allows us to obtain a direct
mechanistic interpretation of links between proteins at different regulatory levels and
metabolites. The goal of our approach is to find a coherent set of such mechanisms
connecting as many of the observed deregulated protein activities and metabolite
concentrations as possible. Using CARNIVAL is particularly interesting as all the proposed
mechanisms between pairs of molecules (proteins and metabolites) have to be plausible not
only in the context of their own pairwise interaction but also with respect to all other
molecules that we wish to include in the model. For example, the proposed activation of
MYC by STAT1 is further supported by IRF1 activation, because STAT1 is also known to
activate IRF1. CARNIVAL allows us to scale this type of reasoning up to the entire PKN with

all significantly deregulated protein activities and metabolites.

With our dataset, the resulting network showed that AR inhibition, a known tumor suppressor
in kidney cancer **, would be a good candidate to explain the inhibition of nucleotide
metabolism. It also predicted a depletion of adenine and consequently the down-regulation
of PDPK1 activity through CXCR4 (Figure 4A). Footprint analysis showed a down-regulation
of PDPK1 (that is, the abundance of phosphorylation on its direct target phosphosites is
decreasing) activity, which is surprising since its expression is usually associated with slower
proliferation of kidney tumor cells***. Yet, the observed coordinated depletion of adenine,
hypoxanthine and inosine strongly support the estimated down-regulation of PDPK1 activity.
A consequence of PDPK1 activity down-regulation could also be the up-regulation of
citrulline production by NOS1 (Figure 4C). COSMOS additionally predicted how JAK-STAT
pathway activation could lead to an inhibition of the production of propanoyl-carnitine (Figure
4B). Diminution of carnitine and its derivative have been indeed previously observed in
kidney cancer as a consequence of cachexia*. Finally we could show the importance of
CDK2 as a master regulator of many kinases and transcription factors such as MYC,
AURKB, E2F4 and consequently TP53 and ATM activities (Figure 4D). In particular, AURKB,
which directly controls TP53 and ATM activities, appears to be a promising marker of kidney

cancer*8,

Then we assessed the performances of the approach in two ways. First, we used some of
the data that was not directly used by CARNIVAL (i. e. genes that were not used for TF
activity estimation and correlation between TF/kinase/phosphatase activities) to check the

coherence of CARNIVAL predictions. Second, we used a tumor specific correlation network
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of TF and kinase activities to compare it to the co-regulation predicted by CARNIVAL. This
yielded encouraging results, though imperfect, underscoring the fact that the mechanisms

proposed by COSMOS - like those by any similar tool - are hypotheses.

There are three main known limits to the predictions of COSMOS. First, the input data is
incomplete. Only a limited fraction of all potential phosphosites and metabolites are detected
by mass spectrometry. This means that we have no information on a significant part of the
PKN; part of the unmeasured network is kept in the analyses and the values are estimated
as intermediate ‘hidden values’. Second, not all regulatory events between TFs, kinase and
phosphatases and their targets are known, and activity estimation is based only on the
known regulatory relationships. Thus, many TFs, kinase and phosphatases are not included
because they have no curated regulatory interactions or no detected substrates in the data.
Third, and conversely, COSMOS will find putative explanations within the existing prior
knowledge that may not be the true mechanism, in particular if the latter is not captured in

our knowledge.

These problems mainly originate from the importance that is given to prior knowledge in this
method. Since prior knowledge is never perfect, the next steps of improvement could consist
in finding ways to extract more knowledge from the observed data to weight in the
contribution of prior knowledge. For instance, one could use the correlations between
transcripts, phosphosites and metabolites to quantify the interactions available in databases
such as Omnipath. Importantly, any other omics that relate to active molecules (such as
miRNAs or metabolic enzyme fluxes) or can be used to estimate protein activities through
footprint approaches (such as DNA accessibility or PTMs other than phosphorylation) can be
seamlessly integrated. Moreover, COSMOS was designed to work with bulk omics datasets,
and it will be very exciting to find ways of applying this approach to single cell datasets.
Encouragingly, the footprint methods that bring data into COSMOS seem fairly robust to the
characteristics of single-cell RNA data such as dropouts®. Finally, we expect that in the
future data generation technologies will increase coverage and our prior knowledge will
become more complete, reducing the mentioned limitations. In the meantime, we believe
that COSMOS is already a useful tool to extract causal mechanistic insights from multi-omics

studies.
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4. Methods

4.1. Sample collection and processing

We included a total of 22 samples from 11 renal cancer patients (6 men, age 65.0+/-14.31, 5
women, age 65.2+/-9.257(mean+/-SD)) for transcriptomics and a subset of 18 samples from
9 of these patients (6 men, age 65+/-14.31; 3 women, age 63.33+/-11.06(mean+/-SD)) for
metabolomics and phosphoproteomics analysis. Patients underwent nephrectomy due to
renal cancer. We processed tissue from within the cancer and a distant unaffected area of
the same kidney. The tissue was snap-frozen immediately after nephrectomy within the
operation room. The clinical data of the included patients is outlined in supplementary table

1. Histological evaluation showed clear renal cell carcinoma in all patients.

Ethics

The local ethics committee of the University Hospital RWTH Aachen approved all human
tissue protocols for this study (EK-016/17). The study was performed according to the
declaration of Helsinki. Kidney tissues were collected from the Urology Department of the
University Hospital Eschweiler from patients undergoing partial/- or nephrectomy due to

kidney cancer. All patients gave informed consent.

Human tissue Processing
Kidney tissues were sampled by the surgeon from normal and tumor regions. The tissue was
snap-frozen on dry-ice or placed in prechilled University of Wisconsin solution (#BTLBUW,

Bridge to Life Ltd., Columbia, U.S.) and transported to our laboratory on ice.

RNA Isolation, library preparation, NGS sequencing

RNA was extracted according to the manufacturer’s instructions using the RNeasy Mini Kit
(QIAGEN). For rRNA-depleted RNA-seq using 1 and 10 ng of diluted total RNA, sequencing
libraries were prepared with KAPA RNA HyperPrep Kit with RiboErase (Kapa Biosystems)
according to the manufacturer's protocol. Sequencing libraries were quantified using
quantitative PCR (New England Biolabs, Ipswich, USA), equimolar pooled, final pool is
normalized to 1,4 nM and denatured using 0.2 N NaOH and neutralized with 400nM Tris pH
8.0 prior to sequencing. Final sequencing was performed on a Novaseq6000 platform

(INumina) according to the manufacturer's protocols (lllumina, CA, USA).
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Metabolomics

Snap-frozen tissue specimens were cut and weighed into Precellys tubes prefilled with
ceramic beads (Stretton Scientific Ltd., Derbyshire, UK). An exact volume of extraction
solution (30% acetonitrile, 50% methanol and 20% water) was added to obtain 40 mg
specimen per mL of extraction solution. Tissue samples were lysed using a Precellys 24
homogeniser (Stretton Scientific Ltd., Derbyshire, UK). The suspension was mixed and
incubated for 15 minutes at 4 °C in a Thermomixer (Eppendorf, Germany), followed by
centrifugation (16,000 g, 15 min at 4°C). The supernatant was collected and transferred into
autosampler glass vials, which were stored at -80 °C until further analysis.

Samples were randomised in order to avoid bias due to machine drift and processed blindly.
LC-MS analysis was performed using a Q Exactive mass spectrometer coupled to a Dionex
U3000 UHPLC system (both Thermo Fisher Scientific). The liquid chromatography system
was fitted with a Sequant ZIC-pHILIC column (150 mm x 2.1 mm) and guard column (20 mm
x 2.1 mm) from Merck Millipore (Germany) and temperature maintained at 45 °C. The mobile
phase was composed of 20 mM ammonium carbonate and 0.1% ammonium hydroxide in
water (solvent A), and acetonitrile (solvent B). The flow rate was set at 200 yL/min with the
gradient described previously®. The mass spectrometer was operated in full MS and polarity
switching mode. The acquired spectra were analysed using XCalibur Qual Browser and

XCalibur Quan Browser software (Thermo Scientific).

Phosphoproteomics

Snap frozen tissues were heat inactivated (Denator T1 Heat Stabilizor, Denator) and
transferred to a GndCl solution (6 M GndCl, 25 mM Tris, pH 8.5, Roche Complete Protease
Inhibitor tablets (Roche)) and homogenized by ceramic beads using 2 steps of 20 s at 5500
rom (Precellys 24, Bertin Technologies). The tissues were heated for 10 min at 95°C
followed by micro tip sonication on ice and clarified by centrifugation (20 min, 16,000g, 4°C).
Samples were reduced and alkylated by adding 5 mM tris(2-carboxyethyl)phosphine and 10

mM chloroacetamide for 20 min at room temperature.

Lysates were digested by Lys-C (Wako) in an enzyme/protein ratio of 1:100 (w/w) for 1 hour,
followed by a dilution with 25 mM tris buffer (pH 8.5), to 2 M guanidine-HCI and further
digested overnight with trypsin (Sigma-Aldrich; 1:100, w/w). Protease activity was quenched
by acidification with TFA, and the resulting peptide mixture was concentrated on C18 Sep
Pak Cartridges (Waters). Peptides were eluted with 40% ACN followed by 60% ACN. The
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combined eluate was reduced by SpeedVac, and the final peptide concentration was
estimated by measuring absorbance at A280 on a NanoDrop (Thermo Fisher Scientific).
Peptide (300 ug) from each sample was labeled with 1 of 11 different TMT reagents
according to the manufacturer’s protocol (Thermo Fisher Scientific) for a total of four TMT
sets. Each set comprised 10 samples and a common internal reference (composed of equal

amounts of digested material from all samples).

After labeling, the samples were mixed and phosphopeptides were further enriched using
titanium dioxide beads (5 um Titansphere, GL Sciences, Japan). TiO2 beads were
pre-incubated in 2,5-dihydroxybenzoic acid (20 mg/mL) in 80% ACN and 1% TFA (5 yL/mg
of beads) for 20 min. Samples were brought to 80% ACN and 5% TFA. 1.5 mg beads (in 5uL
of DHB solution) were added to each sample, which was then incubated for 20 min while
rotating. After incubation, the beads were pelleted and fresh TiO2 beads were added to the
supernatant for a second enrichment step. Beads were washed with five different buffers: (1)
80% ACN and 6% TFA, (2) 10% ACN and 6% TFA, (3) 80% ACN and 1% TFA, (4) 50%
ACN and 1% TFA, (5) 10% ACN and 1% TFA. The final washing step was performed on a
C8 stage tip, from which the phosphopeptides were with 20 yL 5% NH4OH followed by 20
ML 10% NH4O0H with 25% ACN. Eluted peptides were fractionated using a reversed-phase
Acquity CSH C18 1.7 ym 1 x 150 mm column (Waters, Milford, MA) on an UltiMate 3000
high-pressure liquid chromatography (HPLC) system (Dionex, Sunnyvale, CA) operating at
30 pL/min. Buffer A (56 mM ammonium bicarbonate) and buffer B (100% ACN) were used.
Peptides were separated by a linear gradient from 5% B to 35% B in 55 min, followed by a

linear increase to 70% B in 8 min and 12 fractions were collected in a concatenated manner.

The peptide solution was adjusted in volume to an appropriate concentration and kept in
loading buffer (5% ACN and 0.1% TFA) prior to autosampling. An in-house packed 15 cm,
75 ym ID capillary column with 1.9 um Reprosil-Pur C18 beads (Dr. Maisch, Ammerbuch,
Germany) was used with an EASY-nLC 1200 system (Thermo Fisher Scientific, San Jose,
CA). The column temperature was maintained at 40 °C using an integrated column oven
(PRSO-V1, Sonation, Biberach, Germany) and interfaced online with a Q Exactive HF-X
mass spectrometer. Formic acid (FA) 0.1% was used to buffer the pH in the two running
buffers used. The gradients went from 8 to 24% acetonitrile (ACN) in 50 minutes, followed by
24 to 36% in 10 minutesThis was followed by a washout by a 1/2 min increase to 64% ACN,

which was kept for 4.5 min. Flow rate was kept at 250 nL/min. Re-equilibration was done in
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parallel with sample pickup and prior to loading with a minimum requirement of 0.5 uL of
0.1% FA buffer at a pressure of 600 bar.

The mass spectrometer was running in data-dependent acquisition mode with the spray
voltage set to 2 kV, funnel RF level at 40, and heated capillary at 275 °C. Full MS resolutions
were set to 60 000 at m/z 200 and full MS AGC target was 3E6 with an IT of 25 ms. Mass
range was set to 375-1500. AGC target value for fragment spectra was set at 1E5, and
intensity threshold was kept at 2E5. Isolation width was set at 0.8 m/z and a fixed first mass
of 100 m/z was used. Normalized collision energy was set at 33%. Peptide match was set to

off, and isotope exclusion was on.

Raw MS files were analyzed by MaxQuant software version 1.6.0.17 using the Andromeda
search engine. Proteins were identified by searching the higher-energy collisional
dissociation (HCD)-MS/MS peak lists against a target/decoy version of the human UniProt
protein database (release April 2017) using default settings. Carbamidomethylation of
cysteine was specified as fixed modification, and protein N-terminal acetylation, oxidation of
methionine, pyro-glutamate formation from glutamine, and phosphorylation of serine,
threonine, and tyrosine residues were considered as variable modifications. The “maximum
peptide mass” was set to 7500 Da, and the “modified peptide minimum score” and “modified
maximum peptide score” were set to 25. Everything else was set to default values. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via
the PRIDE partner repository. Data are available via ProteomeXchange with identifier
PXD018218 with the following reviewer account details: Username:
reviewer81921@ebi.ac.uk Password: 4HEEtg6X

4.2 Data normalisation and differential analysis

In the phosphoproteomics dataset, 19285 unique phosphosites were detected across 18
samples. Visual inspection of the raw data PCA first 2 components indicated two major
batches of samples. Thus, each batch was first normalised using the VSN R package®'*2.
We removed p-sites that were detected in less than 4 samples, leaving 14243 unique p-site
to analyse. Visual inspection of the PCA first two components of the normalised data
revealed that the first batch of samples could itself be separated in 3 batches (4 batches
across all samples). Thus, we used the removeBatchEffect function of LIMMA to remove the
linear effect of the 4 batches. Differential analysis was performed using the standard

sequence of ImFit, contrasts.fit and eBayes functions of LIMMA, with FDR correction.
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For the transcriptomics data, counts were extracted from fast.q files using the RsubRead R
package and GRCh37 (hg19) reference genome. Technical replicates were averaged, and
genes with average counts under 50 across samples were excluded, leaving 15919 genes
measured across 22 samples. In order to allow for logarithmic transformation, 0 count values
were scaled up to 0.5 (similar to the voom function of LIMMA). Counts were then normalised
using the VSN R package function and differential analysis was performed with LIMMA
package, in the same way as the phosphoproteomics data.

For the metabolomics data, 107 metabolites were detected in 16 samples. Intensities were
normalised using the VSN package. Differential analysis was done using limma in the same
manner as for phosphoproteomics and transcriptomics. All data is available at
https://github.com/saezlab/COSMQOS.

4.3 Footprint based analysis

TF-target collection was obtained from DOROTHEA A,B and C interaction confidence levels
through the Omnipath webservice using the URL

“http://omnipathdb.org/interactions?datasets=tfrequlons&tfrequlons levels=A,B.C&genesym

bols=1&fields=sources.tfrequlons_level” (version of 2020 Feb 05). For the enrichment

analysis, the viper algorithm™ was used with the limma moderated t-value as gene level
statistic®®. The eset.filter parameter was set to FALSE. Only TFs with at least 25 measured

transcripts were included.

Kinase-substrate collection was obtained using the default resource collection of Omnipath,

with the URL “http://omnipathdb.org/ptms?fields=sources.references&genesymbols=1"

(version of 2020 Feb 05). For the enrichment analysis, the viper algorithm was used with the
limma limma moderated t-value as phosphosite level statistic. The eset.filter parameter was
set to FALSE. Only TFs with at least 5 measured transcripts were included. All data is
available at https://github.com/saezlab/COSMOS.

4.4 Meta PKN construction

In order to propose mechanistic hypotheses spanning through signaling, transcription and
metabolic reaction networks, multiple types of interactions have to be combined together in a
single network. Thus, we built a meta Prior Knowledge Network (PKN) from three online
resources, to incorporate three main types of interactions. The three types of interactions are
protein-protein interactions, metabolite-protein allosteric interactions and metabolite-protein

interactions in the context of a metabolic reaction network. Protein-protein interaction were
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imported from omnipath with the URL http://omnipathdb.org/interactions?genesymbols=1
(version of 2019 Feb 05), and only signed directed interactions were included (is_stimulation
or is_inhibition columns equal to 1). Metabolic-protein allosteric interactions were imported
from the STITCH database (version of 2019 November 06), with combined confidence score
>= 900 after exclusion of interactions relying mainly on text mining.

For metabolic-protein interactions in the context of metabolic reaction network, Recon3D

was downloaded from https://www.vmh.life/#downloadview (version of 2019 Feb 19). Then,

the gene rules (“AND” and “OR”) of the metabolic reaction network were used to associate
reactants and products with the corresponding enzymes of each reaction. When multiple
enzymes were associated with a reaction with an “AND” rule, they were combined together
as a single entity representing an enzymatic complexe. Then, reactants were connected to
corresponding enzymatic complexes or enzymes by writing them as rows of Simple
Interaction Format (SIF) table of the following form : reactant;1;enzyme. In a similar manner,
products were connected to corresponding enzymatic complexes or enzymes by writing
them as rows of Simple Interaction Format (SIF) table of the following form

enzyme;1;product. Thus, each row of the SIF table represents either an activation of the
enzyme by the reactant (i.e. the necessity of the presence of the reactant for the enzyme to
catalyse it's reaction) or an activation of the product by an enzyme (e.i. the product presence
is dependent on the activity of its corresponding enzyme). Most metabolite-protein
interactions in metabolic reaction networks are not exclusive, thus measures have to be
taken in order to preserve the coherence of the reaction network when converted to the SIF
format. First, metabolites that are identified as “Coenzymes” in the Medical Subject Heading
Classification (as referenced in the Pubchem online database) were excluded. Then, we
looked at the number of connections of each metabolite and searched the minimum
interaction number threshold that would avoid excluding main central carbon metabolites.
Glutamic acid has 338 interactions in our Recon3D SIF network and is the most connected
central carbon metabolite, thus any metabolites that had more than 338 interactions was
excluded. An extensive list of Recon3D metabolites (pubchem CID) with their corresponding
number of connections is available in supplementary table 2. Metabolic enzymes catalyzing
multiple reactions were uniquely identified for each reaction to avoid cross-links between
reactants and products of different reactions. Finally, exchange reactions were further
uniquely identified according to the relevant exchanged metabolites, as to avoid confusion

between transformation of metabolites and simply exchanging them between compartments.
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Finally, each network (protein-protein, allosteric metabolite-protein and reaction network
metabolite-protein) was combined into a single SIF table. This network is available at

http://metapkn.omnipathdb.orag/.

4.5 Meta PKN contextualisation

Given a set of nodes with corresponding activities (-1, 0 or 1) and a causal PKN, CARNIVAL
finds the smallest coherent signed subnetworks connecting as many of the given nodes as
possible. CARNIVAL needs a set of starting and end nodes to look for paths in between.
TFs, kinases and phosphatases absolute normalised enrichment scores greater than 1.7
standard deviation were considered deregulated. Coherently, metabolites with uncorrected
p-values smaller than 0.05 were considered deregulated. These values were chosen as they
allow to generate a set of input of comfortable size to run CARNIVAL. Then, we first set the
deregulated kinases, phosphatases and TFs as starting points and deregulated metabolites
as end points (forward run). This direction represents regulations first going through the
signaling and transcriptional part of the cellular network and stops at deregulated
metabolites in the metabolic reaction network. However, since metabolite concentration can
also influence the activity of kinases and TFs through allosteric regulations, we also ran
CARNIVAL by setting deregulated metabolites as starting points and deregulated TFs,
kinases and phosphatases as end points (backward run). For the forward run, after 7200
second of run time, CARNIVAL yielded a network of 76 edges, a feasible solution which
proved to be within the 11.24% gap from the optimal. For the backward run, CARNIVAL
found a solution within the 2.44% gap from the optimal after 7200 second of run time,

yielding a network of 177 edges.

Since there were no incoherences in the predicted activity signs between the common part
of the two resulting networks, they were simply merged together, resulting in a combined

network of 250 unique edges.

4.6 Coherence between CARNIVAL mechanistic hypotheses and omics measurements

To assess the robustness of CARNIVAL predictions, we used two different methods. First,
the CARNIVAL network contains cases where a protein activity is modelled by CARNIVAL
as up- or down-regulated under the control of a TF. If such hypotheses are correct, then one
would expect to see the abundance of the corresponding transcript of the proteins to be
coherently up or down-regulated (since the control of the TF is carried through regulation of

transcript abundance) (Supplementary Figure 3). Thus, a True Positive (TP) is defined as a
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carnival node that is directly downstream of a TF and has the same sign (-1 or 1) as a
significantly deregulated corresponding transcript. Transcripts with LIMMA moderated
absolute t-values ranging between 0 and 2 were considered as significantly deregulated.
Since CARNIVAL predictions are discrete (-1, 0, 1), we can’t make a classic receiving
operator curve. Furthermore, we are lacking knowledge of True Negative. Indeed, node
activities set to 0 by CARNIVAL cannot be interpreted because measurements and activities
inputs only cover a fraction of the PKN and consequently most of the PKN nodes will be set
to O by default. We showed that the TPR were relatively stable between 0 and 1.7, and more
volatile between 1.7 and 2, likely due to the number of significantly deregulated transcripts

considered becoming too small (see Supplementary Figure 4A). To estimate the baseline

TPR of a random algorithm, we consider the following question : If i take any transcript that
was measured and randomly assign it a value of 1 (or -1), what is the probability that the
transcript will indeed be significantly up-regulated (or down-regulated), for given a t-value
threshold. This probability can be simply estimated from the actual proportion of transcripts
that are significantly up-related. For absolute t-values ranging between 0 and 1.7 (number of
transcripts = 13), carnival TPR was consistently higher than the random baseline, but
performed equal or worse than random above 1.7, again likely due to the number of
significantly deregulated transcripts considered becoming too small.

Second, when multiple nodes are co-regulated by a common parent node in the CARNIVAL
network, we can assume that the activity of the co-regulated nodes should be correlated.
Thus, we create a correlation network with the TF and kinase/phosphatase activities
estimated at a single sample level. To estimate the single sample level activities, normalised
RNA counts and phosphosite intensities were scaled (minus mean over standard deviation)
across samples. Thus, the value of each gene and phosphosite is now a z-score relative to
an empirical distribution generated from the measurements across all samples. We used
these z-scores as input for the viper algorithm to estimate kinase/phosphatases and TF
activities at single sample level. Thus, the resulting activity scores in a sample are relative to
all the other samples. Then, a correlation network was built using only tumor samples. Thus,
the correlation calculated this way represents co-regulations that are supported by the
available data in tumor (number of coregulations = 157. We defined the ground truth for
co-regulations as over a range of absolute correlation coefficients between 0 and 1 with a
0.01 step. Thus, a True Positive here is a co-regulation predicted from the topology of the
carnival network that also has a corresponding absolute correlation coefficient in tumor

samples above the given threshold. Since defining a ground truth in such a manner can yield
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many false positives (a correlation can often be spurious), the TPR of COSMOS was always

compared to a random baseline.
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Supplementary Figure 1

PCA of Metabolomics, Phosphoproteomics and transcriptomics datasets for tumor and
healthy tissues samples. For each omics dataset, PCA is run independently on normalised
datasets and the first two components are plotted. Each omics shows a clear separation

between tumor and healthy tissue.
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Supplementary Figure 2
Causal network summarising the mechanistic hypotheses systematically generated by

CARNIVAL. (see Figure 4 for legend). The network comprises 250 edges. It represents the

propagation of signals connecting the deregulated kinases, phosphatases, TFs and

metabolites in kidney cancer.
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Supplementary Figure 3

Coherence assessment between CARNIVAL hypotheses and underlying data. On the left,
the predicted activity TF targets of the COSMOS network are compared to the actual t-value
(tumor - healthy) of their corresponding transcript to determine true positive rate (TPR). On
the right, coregulations predicted by COSMOS are compared against a correlation network
of kinase/TF activities to determine TPR.

A) os ‘ B) o
g
\
1 A
05 ————— ‘ L : N
| | \
i P—— 04 \
| \ \ =
1 group \ s
- | R \ group
E %\— baseline ¢ \ i\
= | A 1 baseline
L CARNIVAL — \ !
\ CARNIVAL
W Nl
L \ \
03 I 0.2 \ Py
n N LN
| e N
N e
~ \\\ o
02 L [\
0\
\ 2
o 0o =

0.0 05 1.0 15 20
0.00 0.25 0.50 0.75 1.00
threshold
thresheld

Supplementary Figure 4
Exploration of TPR stability in function of the chosen t-value/correlation threshold. A) For
TF/transcriptomics data coherence. True positive rates are estimated over a range of t-value

between 0 and 2 with 0.1 steps. B) For the correlation/topology coherence. True positive
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rates are estimated over a range of Pearson correlation between 0 and 1 with 0.01 steps. In
A) and B) COSMOS (CARNIVAL) performance is compared to a random baseline.

COSMOS consistently outperforms the random baseline.
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