

1 **High-resolution analysis of Merkel Cell Polyomavirus in Merkel Cell
2 Carcinoma reveals distinct integration patterns and suggests NHEJ
3 and MMBIR as underlying mechanisms**

4 Manja Czech-Sioli^{1†}, Thomas Günther^{2†}, Marlin Therre¹, Michael Spohn², Daniela Indenbirken²,
5 Juliane Theiss^{1,2}, Sabine Riethdorf³, Minyue Qi⁴, Malik Alawi⁴, Corinna Wülbeck⁵, Irene Fernandez-
6 Cuesta⁷, Franziska Esmek⁷, Jürgen C. Becker^{5, 6}, Adam Grundhoff^{2,*}, Nicole Fischer^{1,*}

7
8 ¹ Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-
9 Eppendorf, Hamburg, 20246, Germany

10 ² Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany

11 ³ Institute of Tumorbiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246,
12 Germany

13 ⁴ Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany

14 ⁵ Translational skin cancer research, German Cancer Consortium (DKTK), University Hospital Essen,
15 Essen, 45117, Germany

16 ⁶ Deutsches Krebsforschungszentrum, Heidelberg, Germany

17 ⁷ Institute of Nanostructure- and Solid State Physics (INF), Center for Hybrid Nanostructures (CHyN),
18 University of Hamburg, Hamburg, 22761, Germany

19

20 * To whom correspondence should be addressed. Tel: +49 40 7410 55171; Fax: +49 40 7410 53250;
21 Email: nfischer@uke.de

22 Present Address: Nicole Fischer, Institute for Medical Microbiology, Virology and Hygiene, University
23 Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany

24 Co-corresponding, Adam Grundhoff, Heinrich Pette Institute, Leibniz Institute for Experimental
25 Virology, Hamburg, 20252, Germany

26

27 [†] These authors contributed equally to this work

28 **Short title**

29 Integration of Merkel Cell Polyomavirus in Merkel Cell Carcinoma

30

31 **Abstract**

32 Merkel Cell Polyomavirus (MCPyV) is the etiological agent of the majority of Merkel Cell Carcinomas
33 (MCC). MCPyV positive MCCs harbor integrated, defective viral genomes that constitutively express
34 viral oncogenes. Which molecular mechanisms promote viral integration, if distinct integration patterns
35 exist, and if integration occurs preferentially at loci with specific chromatin states is unknown.

36 We here combined short and long-read (nanopore) next-generation sequencing and present the first
37 high-resolution analysis of integration site structure in MCC cell lines as well as primary tumor material.

38 We find two main types of integration site structure: Linear patterns with chromosomal breakpoints that
39 map closely together, and complex integration loci that exhibit local amplification of genomic sequences
40 flanking the viral DNA. Sequence analysis suggests that linear patterns are produced during viral
41 replication by integration of defective/linear genomes into host DNA double strand breaks via non-
42 homologous end joining, NHEJ. In contrast, our data strongly suggest that complex integration patterns
43 are mediated by microhomology-mediated break-induced replication, MMBIR.

44 Furthermore, we show by ChIP-Seq and RNA-Seq analysis that MCPyV preferably integrates in open
45 chromatin and provide evidence that viral oncogene expression is driven by the viral promoter region,
46 rather than transcription from juxtaposed host promoters. Taken together, our data explain the
47 characteristics of MCPyV integration and may also provide a model for integration of other oncogenic
48 DNA viruses such as papillomaviruses.

49

50 **Author summary**

51 Integration of viral DNA into the host genome is a key event in the pathogenesis of many virus-induced
52 cancers. One such cancer is Merkel cell carcinoma (MCC), a highly malignant tumor that harbors
53 monoclonally integrated and replication-defective Merkel cell polyomavirus (MCPyV) genomes.
54 Although MCPyV integration sites have been analyzed before, there is very little knowledge of the
55 mechanisms that lead to mutagenesis and integration of viral genomes. We used multiple sequencing
56 technologies and interrogation of chromatin states to perform a comprehensive characterization of

57 MCPyV integration loci. This analysis allowed us to deduce the events that likely precede viral
58 integration. We provide evidence that the mutations which result in the replication defective phenotype
59 are acquired prior to integration and propose that the cellular DNA repair pathways non-homologous
60 end joining (NHEJ) and microhomology-mediated break-induced replication (MMBIR) produce two
61 principal MCPyV integration patterns (simple and complex, respectively). We show that, although
62 MCPyV integrates predominantly in open chromatin regions, viral oncogene expression is independent
63 of host promoters and driven by the viral promotor region. Our findings are important since they can
64 explain the mechanisms of MCPyV integration. Furthermore, our model may also apply to
65 papillomaviruses, another clinically important family of oncogenic DNA viruses .

66 Introduction

67 Merkel cell carcinoma (MCC) is a rare but highly aggressive skin cancer occurring predominantly in
68 elderly and immunosuppressed patients. The tumor shows a high propensity to metastasize, which is
69 reflected in a poor 5 year survival rate [1-5]. The majority of MCCs (~60-80% in the northern hemisphere)
70 are causally linked to infection with Merkel cell polyomavirus (MCPyV). This notion is supported by the
71 following observations: (i) all tumor cells in MCC harbor monoclonally integrated viral genomes [3, 6,
72 7], (ii) these integrated viral genomes carry tumor-specific mutations (see below) that are not present in
73 viral episomes recovered from healthy individuals [3, 8, 9] and (iii) tumor cell viability is strictly
74 dependent upon constitutive expression of viral oncoproteins from integrated genomes [10].
75 Interestingly, virus positive MCCs (VP-MCCs), in contrast to virus negative MCCs (VN-MCCs) show a
76 rather low mutational burden in the host genome and lack typical cancer-driving alterations, indicating
77 that viral oncoprotein expression in VP-MCCs is not only necessary but also largely sufficient for
78 tumorigenesis [11-14].

79 In a healthy, immunocompetent person, the virus persists in an episomal form in a so-far unknown
80 reservoir that most likely is located in the skin [15, 16]. Reactivation of such pools in immunosuppressed
81 individuals is thought to favor the mutagenesis and genomic integration of viral DNA, two (presumably
82 rare and independent) events that represent a prerequisite for MCC pathogenesis. The MCC-specific
83 mutations present as point mutations and indels within the early region of the integrated viral genome
84 and unequivocally result in the expression of a truncated Large T (LT) protein, LTtrunc [8, 17]. These
85 truncated LT proteins are unable to support replication of viral DNA but preserve the ability to inactivate
86 the tumor suppressor Retinoblastoma protein (pRb) via an amino terminal LxCxE motif. Integration sites
87 vary between individual tumors and thus do not directly contribute to transformation. Furthermore, no
88 clear integration, hot spots or regions have been identified [2, 18-21]. The transforming potential of the
89 viral tumor antigens small T Antigen (sT) and LTtrunc have been the focus of a variety of studies [1, 22-
90 24]. However, the mechanisms contributing to tumor-specific viral early gene mutation, as well as those
91 that lead to viral integration are unclear. Likewise, it is unknown whether inactivating mutations occur
92 before or after the integration of viral genomes. Viral DNA integration is a key event in several DNA
93 tumor virus-associated cancers such as HPV-associated cervical cancer and HBV associated

94 hepatocellular carcinoma [8, 9, 11, 25-27]. In both cancer types, viral integration sites are randomly
95 distributed throughout the genome and integration is associated with deregulated viral oncogene
96 expression. In HBV-induced hepatocarcinoma, aberrant expression of the viral HBx gene contributes to
97 transformation. Similar to LTtrunc expression in MCC, in HPV-associated tumors oncoprotein E6/E7
98 expression is typically deregulated through a loss of E2 expression in HPV induced malignancies. Using
99 Fiber FISH technology, viral integration with focal amplification of flanking host regions was recently
100 demonstrated for the cell line 20861 (a subclone of the W12 cell line containing integrated HPV16 DNA)
101 [28]. The integration locus in these cells was furthermore shown to exhibit epigenetic changes, resulting
102 in the formation of super-enhancer elements which drive transcription of the viral oncoproteins.
103 Previous studies in MCC cell lines or primary material have used either DIPS-PCR, a ligation-mediated
104 PCR assay [18-20], or short-read second generation sequencing [21, 29, 30] to detect MCPyV
105 integration sites. While DIPS-PCR is rather labor-intensive and often fails to recover all breakpoints or
106 resolve the structure of integration sites, the recent development of hybrid capture probe enrichment
107 combined with short-read sequencing (capture sequencing) allows robust localization of viral integration
108 sites [30].
109 In this study, we have characterized the integration pattern of 11 MCC cell lines and one primary tumor
110 and its metastasis by second generation capture sequencing, third-generation nanopore sequencing,
111 and the recently developed nanochannel sequencing technique. We show that MCPyV integration
112 events can be assigned to one of two general groups based on their genomic arrangement: The first
113 group is characterized by relatively simple, linear integration patterns presenting as single or
114 concatemeric viral genomes flanked by host junctions that are positioned in close proximity two one
115 another, suggesting that integration did not result in a major loss or amplification of flanking host
116 sequences. In the second class, flanking cellular DNA is amplified, thus leading to more complex
117 integration patterns in which the virus-host junctions are thousands of base pairs apart from each other.
118 We provide evidence that host genomic amplifications in the latter group result from microhomology-
119 mediated break-induced replication (MMBIR) [31] and propose a model that explains the different
120 integration patterns of MCPyV in MCC.
121 Furthermore, we have performed ChIP-Seq analysis of histone modifications in the prototypic MCC cell
122 lines MKL-1 and WaGa and show that the epigenomes of these two cell lines are highly similar. By

123 cross-comparing the MCC histone modification landscape with ENCODE epigenome data across all
124 identified integration loci, we provide evidence that MCPyV integration predominantly occurs in open
125 chromatin that is devoid of constitutive heterochromatin marks. Our data furthermore suggest that the
126 integration does not significantly alter the epigenetic landscape of flanking host loci, and that
127 transcription from viral promoter elements is responsible for constitutive oncoprotein expression in MCC
128 cells.

129

130 **Results**

131 **Capture sequencing analysis of viral mutations and polymorphisms in MCC**

132 **cell lines and primary tumor material**

133 To allow high-resolution analysis of MCPyV integrates, we first enriched viral sequences and flanking
134 host fragments from VP-MCC cell lines by hybridization capture and subsequent Illumina short-read
135 sequencing (capture-sequencing). Hybridization capture was performed using 120mer SureSelect RNA
136 capture probes, tiled along the entire MCPyV genome with a single nucleotide shift. We included four
137 MCC cell lines with partially known integration sites identified by DIPS-PCR [20] (WaGa, LoKe, BroLi,
138 PeTa) and seven cell lines with so far unknown viral and cellular breakpoints (MKL-1, MKL-2, WoWe-2,
139 UKE-MCC-1a, UM-MCC-29, UKE-MCC-4a, UM-MCC-52). Furthermore, we included an MCC primary
140 tumor and its bone metastasis (MCC-47T and -M, respectively). Coverage plots of viral reads aligned to
141 the MCPyV genome (Genbank: JN707599) confirmed efficient enrichment and high read coverage
142 (between 9,500 and 310,000) across all samples (Fig 1).

143 Variant calling readily identified sample-specific mutations, including those that lead to MCC-specific
144 truncation of the large T open reading frame (marked by a red line in Fig 1; see Table 1 for the exact LT
145 truncating events in each sample). The seven samples shown in green harbor point mutations that
146 create a premature stop codon, whereas those shown in blue exhibit deletions (in case of PeTa and
147 MCC-47 combined with inversions) that result in frameshifts and subsequent LT truncation. As expected,
148 all truncating mutations preserve the LxCxE motif but remove the carboxyterminal origin-binding domain
149 and helicase domains [32].

150 The substantial read coverage levels achieved by capture sequencing additionally allowed us to perform
151 high-confidence variant calling to evaluate potential viral genome heterogeneity within samples (see S1

152 Table for a complete list of variants). According to this analysis, WaGa, BroLi, MKL-2, UM-MCC-29, and
153 UKE-MCC-4a each harbor distinct variant signatures with frequencies >99%, indicative of all viral copies
154 within each sample being identical. Similarly, we find identical integrated viral genomes in the primary
155 tumor MCC-47T and its descendent metastasis, MCC-47M. Interestingly, in three cell lines, we find
156 additional lower frequency variants: A duplication in UKE-MCC-1a (bp 1,372-1,398 at 9.2% frequency),
157 three point mutations in UM-MCC-52 (positions 1,708, 1,792 and 1,816 with frequencies of 15.8%, 20.2%
158 and 22.1%, respectively), four point mutations in WoWe-2 (positions 3,784, 3,791, 3,812, 3,827 with
159 frequencies of 74.3%, 74.8%, 80.4% and 80.5% respectively) and a deletion in UKE-MCC-4a (bp 2,053-
160 3,047 at ~33% frequency). These variants are not detected in any other sample, making contamination
161 unlikely and suggesting integration of different MCPyV variants, or diversification by mutations occurring
162 after the integration event.

163

164 **Analysis of virus-host breakpoints by short-read sequencing**

165 To pinpoint MCPyV integration sites we mapped virus-host fusion reads from capture sequencing of the
166 different MCC cell lines and the tumor and its metastasis to the human genome. In Fig 2A, we present
167 an overview of integration sites across the human genome. Table 1 lists precise nucleotide positions
168 and associated viral breakpoints, as well as genomic features at integration sites. S1 Fig shows the
169 sequences of all identified virus-host junctions. Most integration sites are found in introns, some in
170 intergenic or centromeric regions and one maps to an exon. Overall, we did not observe obvious
171 overrepresentation of distinct genomic loci among integration sites (Fig 2A), a finding which is in
172 accordance with previous studies [3, 18-20, 30, 33, 34]. Interestingly, however, we find that three cell
173 lines harbor viral integrates in Chr5. While the number of samples investigated here is too small to allow
174 calculation of statistical significance, we note that a recent study investigating a large cohort of VP-
175 MCCs had suggested that Chr5 might be more prone to MCPyV integrations [30], a notion which seems
176 to be supported by our observations.

177 We unambiguously identified a single integration locus with two virus-host junctions for the majority of
178 MCC cell lines (WaGa, MKL-1, BroLi, LoKe, MKL-2, PeTa, WoWe-2, UKE-MCC-1a, and UM-MCC-29).
179 The primary tumor and its descended metastasis (MCC-47) also show a single integration locus that is
180 identical between both samples. Based on nucleotide insertions at the virus-host junctions, we can

181 **Table 1: Integration sites of MCPyV in MCC samples.**

sample	source	integration site(s)										LT-truncating mutations			
		chr.	pattern	junctions confirmed	breakpoints in the human genome (hg38)				genome (JN707599)		copy number				
					left (L)	right (R)	distance	associated gene(s)	left (L)	right (R)	Cs ^a	NP ^b	ref ^c	position/type(s)	ref ^d
WaGa	cell line	6	Z	NP / Sanger	20,635,162	20,569,311	66kbp	CDKAL1 (intron)	1,508	3,516	1-3	1.7 ^e	[20]	G4122A STOP	[40]
MKL-1	cell line	5	linear	NP / Sanger	52,562,625	52,562,630	4 bp	intergenic	159	1,498	2-3	2.3	this study	3926-3971 del	[35]
BroLi	cell line	1	linear	Sanger	10,790,267	10,790,285	17 bp	CASZ1 (intron)	543	4,054	0.3	n.d.	[20]	544-4053 del	[20]
LoKe	cell line	2	Z	n.d.	197,433,173	197,314,282	120kbp	SF3B1 (intron) / ANKRD44 (upstream)	1,811	1,802	>1; n.a	n.d.	[20]	G4194A STOP	[20]
LoKe	cell line	2	Z	n.d.	197,433,173	197,314,282	120kbp	TTC9C (first exon) / ANKRD44 (upstream)	1,811	1,802	>1; n.a	n.d.	[20]	G4194A STOP	[20]
MKL-2	cell line	11	Z	Sanger	62,728,189	62,505,277	223kbp	AHNAK (intron)	647	640	0.99	n.d.	this study	G4130T STOP to 4115, 593- 4114 del	[40]
PeTa	cell line	11	linear	n.d.	25,063,416	25,063,435	18 bp	LUTZP2 (intron)	706	592	0.4	n.d.	[20]	4114 del	[20]
WoWe-2	cell line	13	Z	n.d.	71,546,428	71,480,943	65kbp	DACH1 (intron)	1,818	1,939	2-6	n.d.	this study	G4079T STOP	[20]
UKE-MCC-1a	cell line	9	Z	Sanger	136,432,020	136,133,905	300kbp	intergenic/INPP5E (intron)	1,663	1,654	10 ^f	n.d.	this study	4017-4159 del	this study
UM-MCC-29	cell line	5	linear	n.d.	51,618,447	51,618,453	5 bp	intergenic/centromer	738	1,519	2-11	n.d.	this study	3348-4020 del	this study
UKE-MCC-4a	cell line	20	Z ^g	NP	31,785,438 (L I)	31,665,275 (R I)	120kbp	BCL2L1 (exon) / TPX2 (intron)	397	4,225	n.a.	1.5 ^h	this study	G4130C STOP	this study
UKE-MCC-4a	cell line	20	linear ^g	NP	31,715,051 (L II)	31,749,139 (R II)	34kbp	BCL2L1 (intron) / TPX2 (intron)	2,261	3,755	n.a.	0.75	this study	G4130C STOP	this study
UM-MCC-52	cell line	4	Z	NP	189,965,715	189,948,666	17kbp	FRG1 (intron)/intergenic	1,136	3,916	n.a.	0.52	this study	(LTtrunc/sT	this study
UM-MCC-52	cell line	5	Z ⁱ	NP	150,404,900	150,238,240	167kbp	CAMK2A (intron) CD74 (intron)	1,855	2,470	4 ^f	≥3.9	this study	G4079C STOP	this study
MCC-47T	primary tumor	3	Z	Sanger	64,619,639	64,619,644	4bp	ADAMTS9 (intron)	5,290	5,193	10-11	n.d.	this study	1547-4119 inv, 4120-4165 and	this study
MCC-47M	metastas	3	Z	Sanger	64,619,639	64,619,644	4bp	ADAMTS9 (intron)	5,290	5,193	>1; n.a.	n.d.	this study	1547-4119 inv, 4120-4165 and	this study
MCC-47M	is	3	Z	Sanger	64,619,639	64,619,644	4bp	ADAMTS9 (intron)	5,290	5,193	>1; n.a.	n.d.	this study	4120-4165 and	this study

182 Listed are breakpoints in the host genome (hg38) and the viral genome (JN707599), LT truncating events, the integration pattern and integrated copy numbers.

183 ^aCapture sequencing184 ^bNanopore sequencing185 ^cprevious studies describing integration sites or virus-host junction186 ^dprevious studies describing LTtrunc mutation, indel187 ^e3.6 copies in total due to chr.6 duplication188 ^fcopy numbers were estimated by SNP frequency189 ^gComplex integration locus consisting of a Z-pattern integration at L I and R I with 120kbp host duplication containing an additional linear integration (L II and R II) with loss of 34kbp host DNA190 ^h~20 copies due to further locus amplification and possible Chr20 duplication191 ⁱZ pattern integration with an insertion of 5.7kbp inverted duplicated host DNA at the right side before amplification of 135kbp host DNA

192 distinguish three junction types. (i) junctions with no additional nucleotide insertions (MKL-2, PeTa, UM-
193 MCC-29, BroLi, WoWe-2 and MCC-47T/M); (ii) 2-3 bp insertions of heterologous origin at one of the
194 junctions (UKE-MCC-1a and LoKe) and (iii) 10-30 bp insertions of host (WaGa, originating from the
195 second junction) or viral (MKL-1 and UKE-MCC-1a) sequences that are found immediately at or close
196 to one of the junctions (see S1 Fig for more details).

197

198 **UM-MCC-52 and UKE-MCC-4a represent MCC cell lines with multiple
199 integration sites**

200 We found four virus-host junctions in UM-MCC-52 and UKE-MCC-4a, indicating the presence of two
201 integration sites. In UM-MCC-52, the two sites mapped to Chr4 and Chr5, with 1bp insertions at the
202 junctions on both chromosomes (Figs 1, 2A, S1 Fig, Table 1). While our variant analysis suggested that
203 a fraction (~19.4%) of viral genomes harbors three SNPs in VP1 (positions 1,708, 1,792 and 1,816), the
204 SNPs were not present in any of the junction reads and capture sequencing therefore did not allow us
205 to assign them to one of the loci (S2 Fig). In the cell line UKE-MCC-4a, all junction reads mapped to a
206 120kbp locus on Chr20 (Figs 1, 2A, S1 Fig and Table 1), again with heterologous nucleotide insertions
207 at the virus-host junctions (see S1 Fig for more detailed information). Mutations in the early viral region
208 were present in all reads while only ~30% of the reads contain a deletion at position 2053 to 3047 of the
209 viral genome. Interestingly, the viral breakpoint of one of the virus-host junctions is located within this
210 deletion, indicating it must be absent from the viral copy located at this junction (S3 Fig).

211

212 **Analysis of integration patterns by capture sequencing**

213 As shown in Figs 2B and -C, mapping of virus-host fusion reads to the reference human genome
214 produced two distinct alignment patterns, each with a characteristic coverage profile. The upper panels
215 in Figs 2B and -C show a schematic depiction of each coverage pattern, while representative data from
216 two cell lines belonging to each group (see S4 Fig for the residual samples belonging to the two groups
217 of coverage patterns) are shown underneath. A schematic depiction of the deduced integration site
218 structure is shown in the bottom panels.

219 In the first group, reads spanning the breakpoints mapped closely together (4-18 bp distance), with
220 inward-facing orientation of the fused viral sequences. The associated host coverage profiles present

221 as a split peak with a central gap that separates the breakpoints (see MKL-1 and BroLi as examples in
222 the center panels of Fig 2B). This pattern is suggestive of a linear viral integration event in which a few
223 bases of host DNA have been lost (Fig 2B, bottom panel). Similar patterns were identified for PeTa and
224 UM-MCC-29 cell lines (S4A Fig).

225 The second group is characterized by breakpoint-spanning reads that typically map in much greater
226 distance from one another (17kbp to 300kbp), with viral sequences that extend in an outward-facing
227 orientation (Fig 2C, top). The simplest explanation for such a coverage pattern is a duplication of the
228 host DNA between the two breakpoints, leading to an integration pattern resembling a “Z” shape (Fig
229 2C, bottom panel). Hence, reads originating from the left and right junctions of the integration site align
230 with the reference genome in a seemingly inverted manner, with the right junction reads preceding those
231 from the left junction. In addition to the WaGa and MKL-2 samples shown in the center panels of Fig
232 2C, the samples LoKe, WoWe-2, UKE-MCC-1a and MCC-47T and -M (tumor and metastasis) also show
233 a Z-pattern integration (S4B Fig). The MCC-47 samples differ from the others in that the duplicated host
234 sequence is only 6bp in length (S1, S4C, S5 Figs), indicating that duplication of tens or hundreds of kbp
235 is a frequent, but not a generally valid feature of this type of integration pattern.

236

237 **Calculation of MCPyV genome copy numbers based on capture sequencing**

238 **data**

239 Previous studies reported integration of multiple copies of MCPyV genomes arranged as concatemers
240 [20, 30, 34, 35]. We estimated the number of integrated MCPyV copies data by calculating the number
241 of virus-host junction reads relative to viral reads which encompass breakpoint positions, but do not
242 contain host junction sequences (referred to as fusion or virus-only reads, respectively, in the following).
243 In cells harboring a single integration locus virus-only reads must necessarily be derived from internal
244 virus copies, and the read count ratio thus can provide an estimate of concatemeric unit numbers.
245 In BroLi and MKL-2 we only find fusion reads at breakpoints, indicating integration of a single (partial)
246 viral copy. In the case of BroLi this integrate lacks two-thirds of the viral genome, whereas in MKL-2 only
247 6bp are missing. In contrast, we find high numbers of virus-only reads covering the breakpoints in WaGa,
248 MKL-1, LoKe, WoWe-2, UKE-MCC-1a, UM-MCC-29, MCC-47T and MCC-47M, suggesting the
249 presence of viral concatemers. Estimated copy numbers of viral genomes in integrated concatemers

250 are listed in Table 1 and range between two and 11 copies. For LoKe and UKE-MCC-1a copy numbers
251 could not be estimated due to breakpoints in the viral genome being too close to one another.
252 Interestingly, variant calling revealed that in UKE-MCC-1a, a duplication at viral position 1373-1398 is
253 only present in 9.2% of the reads, suggesting that only a fraction of the viral copies contains the
254 duplication. Sanger sequencing of an 800bp PCR product covering the virus-host junction revealed that
255 the copy closest to the left junction contains the 25bp duplication. This duplicated sequence is also
256 inserted directly at the junction (S1 Fig) suggesting that the duplication inside the viral genome was
257 acquired during the integration process, only in the viral copy closest to the virus-host junction. Based
258 on the frequency of the duplication (9.2%) we estimate an integration of 10 viral genomes in the case of
259 UKE-MCC-1a. The samples UKE-MCC-4a and UM-MCC-52 contain multiple integration sites. Thus, we
260 were unable to distinguish between virus-only reads derived from internal concatemer copies or the
261 other integration sites.

262

263 **Analysis of potential integration locus amplification**

264 Studies for papillomavirus integration in cervical cancer showed that entire integration loci and flanking
265 host DNA can be amplified several times [26, 28, 36]. Since FISH analysis for the MCPyV genome
266 consistently yielded two signals in WaGa cells compared to one signal in MKL-1 cells [24, 37] we
267 investigated if the complete integration locus is amplified in WaGa cells. To calculate genomic host copy
268 number variations, we used input data from ChIP-Seq analysis performed in WaGa and MKL-1 cells
269 (see below), which resemble low coverage whole-genome sequencing data (WGS). Genome copy
270 calculation reveals amplification of the entire Chr6 (including MCPyV integration) in WaGa cells (Fig
271 3A). Analysis of relative genomic copy numbers 60kbp up- and downstream of the integration locus (i.e.
272 regions not affected by the duplication) suggests the presence of three copies of Chr6 (Fig 3B, left panel).
273 Since the duplicated regions are found in five copies, this implies that it is the Chr6 copy carrying MCPyV
274 which is duplicated. The two signals in WaGa cells observed by FISH analysis therefore represent Chr6
275 duplication rather than a specific amplification restricted to the integration locus. Although genomic
276 amplifications are observed in some chromosomes in MKL-1 cells, we do not detect amplification of the
277 entire Chr5, which carries the MCPyV integration site in this cell line (Fig 3A), or an amplification of host
278 regions directly flanking the integration (Fig 3B, right panel). Additionally, we calculated integrated viral

279 genome copy numbers for WaGa and MKL-1 from the ChIP-sequencing input data (Fig 3C), thereby
280 confirming the results obtained by our estimation based on the capture sequencing data (WaGa 1-3
281 copies, MKL-1 2-3 copies, see also Table 1).

282

283 **Nanochannel and Nanopore sequencing confirm integrated copy numbers and** 284 **reveal integration patterns of MCPyV in WaGa and MKL-1 cells**

285 Short-read capture sequencing provides exact information on breakpoint location and viral sequence
286 variants but is limited in terms of exact determination of integrated viral copy numbers and integration
287 patterns. To confirm estimated copy numbers and linear or Z integration patterns as deduced from
288 capture sequencing, we performed nanochannel and nanopore sequencing on a subset of samples.
289 Nanochannel sequencing employs optical mapping of single DNA molecules and allows for fast
290 determination of copy numbers and longitudinal sequence patterns within long DNA fragments [38]. The
291 method is based on hybridization of fluorescently labelled probes, which are hybridized with high-
292 molecular weight genomic DNA (HMW). The DNA is subsequently threaded through nanochannels, and
293 detectors lining the channel are used to measure fluorescent signals along the length of intact DNA
294 molecules. Nanochannel sequencing has kbp rather than bp resolution but does not require mechanic
295 manipulation or amplification during library preparation, thus reducing the risk of introducing
296 experimental artefacts. We analyzed HMW DNA from MKL-1 cells (a cell line with a linear integration
297 pattern), which was fluorescently labelled with two LT-specific ATTO647N- probes. Fig 4A shows the
298 measurement of a roughly 90kbp DNA fragment with a specific fluorescence peak detected over a period
299 of 1.8ms, which corresponds to a size of approximately 17kbp. The measurement is in very good
300 agreement with the 2-3 copy number estimation calculated from capture sequencing and ChIP-
301 sequencing input data, thus confirming these data via a completely independent method. We additionally
302 subjected HMW DNA from MKL-1 cells to Oxford Nanopore sequencing. As shown in Fig 4B (upper
303 panel), we obtained several reads mapping to the integration site, including a single 104kbp read, which
304 spans the entire MKL-1 integration locus and flanking sequences. Analysis of this read shows an
305 integrated concatemer with two complete (2x 5.4kbp) and one partial (4.1kbp) copies, thereby confirming
306 the results obtained by nanochannel sequencing as well as the linear integration and the junction
307 sequences as determined by capture sequencing.

308 We also performed nanopore sequencing on HMW DNA from WaGa cells as a representative of the
309 proposed Z-pattern integration (Fig 4B, lower panel). A 62kbp read covering the integration locus
310 confirmed the Z-pattern integration with a large duplication of the host DNA between the two junction
311 sites and the integration of two concatemeric viral copies (one complete and one partial genome). Again,
312 nanopore sequencing confirms the validity of copy number estimates calculated from short-read
313 sequencing (1.7 copies as determined by nanopore sequencing vs. 1-3 capture sequencing copy
314 number estimation).

315

316 **Nanopore sequencing uncovers complex integration patterns in the MCC cell 317 lines UM-MCC-52 and UKE-MCC-4a**

318 In the cell line UM-MCC-52, we identified two integration sites in chromosomes 4 and 5. Our capture
319 sequencing data are suggestive of a Z-pattern integration with duplications of 17 and 167kbp,
320 respectively (Fig 5A and -B). However, while the Chr4 site shows the typical read mapping pattern as
321 depicted in Fig 2C (Fig 5A), fusion reads from both Chr5 junctions have viral sequences that extend in
322 the same direction when mapped to the reference human genome (Fig 5B, upper panel). Since there is
323 no indication for an inversion within the MCPyV genome itself, these data are suggestive of a partial
324 inversion of the 167kbp host duplication downstream of the right (R) junction (Fig 5B, lower panel). To
325 verify this hypothesis and determine integrated viral copy numbers, we performed nanopore sequencing
326 on HMW DNA of UM-MCC-52 and detected several reads that cover the integration loci (Fig 5C and -
327 D). As expected, Chr4 shows a Z-pattern integration with a 17kbp host duplication. Interestingly, this
328 site harbors one partial MCPyV genome (bp 1,136 to 3,916) that only contains distal (3') fragments of
329 the LT and VP1 ORFs, whereas the entire NCCR and the proximal (5') early region encoding LTtrunc
330 and sT are missing (Fig 5C). This partial genome also contains the three SNPs at positions 1,708, 1,792
331 and 1,816 that had been identified in our capture sequencing analysis (S2 Fig). At the Chr5 site, we
332 detected integration of a concatemer containing at least three complete and one partial MCPyV
333 genomes (Fig 5D). As expected from short read sequencing, none of the viral genomes contains the
334 three SNPs present at the integrated viral genome at Chr4 but all harbor identical LT truncating
335 mutations. The SNP frequency (~19%) at Chr4 supports the presence of four MCPyV copies in Chr5.
336 Furthermore, the MinION reads confirm the suspected Z-pattern integration at Chr5 and show that

337 indeed a 5.7kbp inverted duplicated host sequence originating from further upstream is inserted at the
338 right virus-host junction followed by 135kbp of duplicated host DNA in direct orientation (Fig 5D). Taken
339 together these results suggest that in UM-MCC-52 two (likely independent) integration events occurred
340 on Chr4 and Chr5. The small fragment in Chr4 most likely does not contribute to transformation as it
341 lacks the viral oncogenes.

342 In the cell line UKE-MCC-4a, our capture sequencing had identified a very complex 120kbp integration
343 locus with four virus-host junctions (Fig 6A). The read orientation at the outmost junctions (R I and L I)
344 together with long distances between breakpoints (120kbp) suggests a Z-pattern integration between
345 these two junctions (site I in the following). The integrated viral genome at the inner junctions (L II and
346 R II) is in a reverse complement orientation compared to the junctions R I and L I and shows inward-
347 facing orientation of the viral sequences. Since there is no indication for an inversion within the MCPyV
348 genome, a second linear integration between L II and R II (site II in the following) seems likely. While
349 we hypothesized that a Z-pattern integration followed by a second linear insertion may have occurred
350 at this locus, we could not resolve its structure based on short read data alone. To determine the correct
351 structure of the MCPyV integration locus we again used Nanopore sequencing (Fig 6B). We obtained
352 several reads that clearly support a Z-pattern with the duplication of 120kbp host sequence at integration
353 site I (Fig 6B). One and a half MCPyV genomes are integrated at this site, but only the first copy harbors
354 the deletion of bp 2053 to 3047 we already identified in our short-read sequencing (S3 Fig). Inside the
355 120kbp host duplication 34kbp are deleted and one partial copy of MCPyV is inserted in a linear fashion
356 at site II. As expected from capture sequencing, this genome does not contain the deletion observed at
357 site I but shares its LT inactivating mutations. This suggests that sites I and II contain the same MCPyV
358 variant, and that deletion in the first copy of MCPyV at site I was likely acquired after the integration
359 event. Hence, in contrast to the two integration events in UM-MCC-52, in UKE-MCC-4a sites I and II
360 seem to be result from a single integration event. Downstream of the 120kbp duplication follows another
361 integration of MCPyV (site I' as it is identical to site I) with a second amplification of host DNA leading
362 to the observed order I - II - I' (Fig 6B). The increased coverage at the integration locus compared to the
363 host genome (Fig 6C) suggests additional amplification of the complete locus. From our MinION data,
364 we calculate a total of 20 copies for the complete locus (Fig 6D). Of note, the repetitive element is I - II,
365 so the integration locus starts with site I and ends with site I' as only reads from the sites I and I' continue
366 further into the host genome over the breakpoints of site II (positions of L II and R II). Reads from site II

367 that reach the positions of the junctions R I and L I always contain the site I or site I' integration,
368 respectively.

369

370 **Microhomologies between viral and host sequences at integration sites**

371 To understand the integration mechanism of MCPyV in more detail, we investigated the putative
372 presence of microhomologies, as previously reported for papillomavirus integration sites [36, 39]. We
373 therefore analyzed virus-host junctions from all integration sites in our study for matching bases between
374 virus and host. While the occurrence of short homologies of 3bp directly at the junction of most samples
375 is likely stochastic, we observed repetitive matching of short sequence stretches between virus and host
376 that are intercepted by non-matching sequences of variable length (Fig 7A, S1 Fig). To detect and
377 assess the matching sequences we developed a model that calculates homology scores for both sides
378 of each virus-host junction, dependent on the distance from the junction. The sequences at the junction
379 of viral and host origin are referred to as the virus side and the host side, respectively, in the following.
380 Statistical analysis shows that in the case of Z-pattern integration, the virus side has significantly higher
381 scores compared to scores obtained from 200 random sequences (Fig 7B). In contrast, the host side in
382 the Z-pattern and viral and host sides in the linear integration pattern do not show significant homology
383 compared to random sequences. These results suggest that in Z-pattern integration, microhomologies
384 between viral and host sequences on the virus side of the resulting junction contribute to integration of
385 MCPyV and that this initial integration step is different from linear integration.

386

387 **Viral gene expression in MCC cell lines**

388 Tumor cell proliferation in MCPyV positive MCCs is dependent on the constitutive expression of sT and
389 truncated LT [3, 33, 35, 40, 41]. During viral replication, the T-antigens are expressed from the early
390 viral promoter located in the non-coding control region (NCCR). Similar to previous results [30] we show
391 that MCPyV integrates into diverse genomic regions (exons, introns, intergenic, centromeric) raising the
392 question of whether the viral or an adjacent cellular promoter drives T-antigen expression. In addition,
393 we sought to investigate whether the integration may perturb cellular gene expression at, or in close
394 proximity to, the viral integration site. We therefore performed ChIP-Seq analysis of activating (H3K4-
395 me3) and repressive (H3K27-me3) histone marks in WaGa and MKL-1 cells. WaGa cells harbor the

396 viral integrate in the fourth intron of the gene CDKAL1, whereas in MKL-1 cells the viral genome is
397 integrated in an intergenic region that does not harbor any annotated genes within a 300kbp distance.
398 While we do not find H3K27-me3 to be present on integrated MCPyV, we find H3K4-me3 covering the
399 entire viral early region in both cell lines (Fig 8A). This is clearly different from replicating viral genomes
400 in PFSK-1 cells (Fig 8B) in which H3K4-me3 is present mainly on the NCCR and miRNA promoter region
401 [37]. In contrast, in WaGa and MKL-1 cells the H3K4-me3 signals start at the early promoter and reach
402 a plateau downstream of the LT/sT start codon, without the distinct enrichment observed at the miRNA
403 promoter of actively replicating episomes. To investigate if early viral gene expression is driven by viral
404 or cellular promoter elements we additionally performed transcriptome analysis of WaGa and MKL-1
405 cells. For this purpose, we mapped RNA-Seq reads to a reconstituted reference genome containing the
406 identified integration sites and analyzed splices connecting to the splice acceptor of the second LT exon
407 (S6 Fig). MKL-1 cells only showed canonical splice junctions between the first and second exons of LT
408 (S6A Fig), a result which was expected due to the large distance between the integration site and the
409 closest annotated host gene. In the case of WaGa we indeed detected some fusion reads between the
410 second exon of LT and the splice donor of CDKAL1 exon4 (S6A Fig), but reads containing the canonical
411 LT splice junction were 32 times more abundant. Together with the observed H3K4-me3 and RNA-Seq
412 read coverage patterns (Fig 8A and S6B Fig, respectively), this suggests that the great majority of early
413 MCPyV transcripts originate from viral promoter elements. Since the CDKAL1/LT fusion transcript
414 furthermore is predicted to generate an out-of-frame product, expression of LTtrunc is likely to entirely
415 depend on viral promoters.

416 Fig 8C shows H3K4-me3 and H3K27-me3 profiles across a 1mbp host region centered on the
417 integration sites in WaGa and MKL-1 cells. Profiles for each site are shown for both cell lines to allow
418 cross-comparison of epigenetic profiles. The overall profiles are almost identical, with the exception of
419 WaGa cells showing an additional H3K4-me3 peak upstream of the integration site (marked with an
420 asterisk in Fig 8C). The peak originates from H3K4-me3 signal at the right junction of the integrated
421 MCPyV that spreads into the host. Further analysis of RNA-Seq data from WaGa and MKL-1 cells did
422 not provide evidence for significant expression changes of CDKAL1 in WaGa compared to MKL-1 cells
423 (S6C Fig). This result suggests that integration and establishment of additional intronic H3K4-me3 marks
424 did not have immediate consequences for transcriptional regulation of the host gene.

425

426 **Epigenetic properties of MCC cell lines and MCPyV integration sites**

427 We further sought to compare the global patterns of H3K4-me3 signals observed in WaGa and MKL-1
428 cells to other cellular entities, aiming to identify cell types, which may have a similar overall profile of this
429 marks. Accordingly, we performed correlation and clustering analysis of the data from these two MCC
430 cell lines in comparison to selected tumor cell lines and primary cells obtained from the ENCODE
431 database. Our analysis revealed that both MCC cell lines show the highest correlation with each other.
432 Next closest by hierarchical clustering are HeLa cells, mesenchymal stem cells, endothelial cells of the
433 umbilical vein and fibroblasts of the dermis and lung (Fig 9A).

434 To investigate if MCPyV integration sites may possess general epigenetic features that may predispose
435 them for integration we compared H3K4-me3, H3K27-ac, H3K27-me3 and H3K9-me3 profiles from
436 selected cell lines and H3K4-me3 and H3K27-me3 profiles from MKL-1 and WaGa cells at the 13
437 MCPyV integration sites identified in our study (Fig 9B). We find that the integration loci are devoid of
438 the histone modification H3K9-me3 (heterochromatin) in all cell lines, indicative of viral integration
439 predominantly occurring in open chromatin structures. Similarly, most integration loci, except for BroLi,
440 UKE-MCC-1a and UM-MCC-52, are devoid of the facultative heterochromatin mark H3K27-me3 in the
441 majority of analyzed cell lines. The activating histone marks H3K27-ac and H3K4-me3 are present in
442 seven out of 13 integration loci in most cell lines. The H3K27-me3 and H3K4-me3 profiles from WaGa
443 and MKL-1 are in accordance with the majority of the other cell lines at most integration loci. These data
444 suggest that integration of MCPyV favors open chromatin loci, which show histone-marks that are in
445 general associated with active transcription. These features can be observed in the majority of cell lines
446 analyzed by us including the MCC cell lines WaGa and MKL-1.

447

448 **Discussion**

449 We here present a detailed analysis of MCPyV integration sites in 11 MCC cell lines and one primary
450 tumor and its subsequent metastasis. Our study identifies two principal groups of integration patterns:
451 (i) a linear integration of a single genome or viral genome concatemers and (ii) complex integration of
452 single viral genomes or concatemers with duplications of adjacent host regions (Z-pattern), sometimes
453 combined with additional rearrangements or amplifications. Within the linear integration groups, virus-

454 host junctions are in close proximity (4 -18bp in the samples studied here), whereas more distant
455 junctions (>17kbp in most cases) are typically observed for Z-pattern integrations.

456 In several cell lines, long contiguous nanopore sequencing reads (~40-100 kbp) spanning complete
457 integration loci provide direct evidence for the proposed integration site structure and permit exact
458 determination of viral copy numbers of integrated concatemers. We further show that short-read capture
459 sequencing allows distinction between integration of single viral genomes or concatemers, as well as
460 accurate estimation of viral copy numbers.

461 We identified a single viral integration site in all samples but UM-MCC-52 and UKE-MCC-4a. These
462 lines contain two integration sites each, but while viral sequences map to a single locus on Chr20 in
463 UKE-MCC-4a, they are found on different chromosomes in UM-MCC-52. In UM-MCC-52, Chr5 contains
464 a concatemeric integrate, whereas viral sequences integrated on Chr4 represent a partial genome that
465 lacks the entire NCCR and 5'-proximal coding regions of the late and early genes. Since this partial
466 genome contains three SNPs that are not found in concatemers on Chr5, it is likely that the two sites
467 result from two independent integration events, with only the viral sequences on Chr5 contributing to
468 transformation and tumorigenesis. Notably, we find that in all cases with viral concatemeric integrates,
469 including the complex locus in sample UKE-MCC-4a, each viral genome copy carries identical, sample-
470 specific LT-truncating mutations. This observation strongly supports the hypothesis that inactivating
471 mutations occur prior to integration [20, 30], a model for which direct corroborating evidence as provided
472 here has been missing thus far.

473 We furthermore propose that both LTtrunc mutations and viral concatemerization result from a similar
474 mechanism as it has been previously suggested for papillomavirus integration [42] (Fig 10A). During
475 the onset of viral DNA replication, polyoma- and papillomaviruses are thought to employ bidirectional
476 theta replication to amplify their genomes. In this replication mode, two replication forks move in opposite
477 direction along the episome, starting from the origin of replication in the viral NCCR. Normally, the
478 replication complexes dissociate from viral DNA after collision of the two replication forks. However, if
479 one of the forks stalls, the progressive fork may instead displace the 5'-end of the DNA synthesized by
480 the stalled replication fork, resulting in a switch to rolling circle amplification (RCA). While herpesviruses
481 encode factors (the viral terminase complex) which allow cleavage of unit length genomes from RCA
482 products [43], such factors are missing in papilloma- and polyomaviruses. The missing cleavage activity

483 therefore leads to the production of linear concatemers containing multiple viral genomes (with identical
484 mutations) in a head-to-tail orientation. Previous reports on SV40 furthermore indicate that DNA
485 replication stalls at preferred sites on the SV40 genome [44]. It is therefore conceivable that replication
486 fork convergence leads to replication stalling within the early region, which thereby may represent a
487 fragile site in which mutations, insertions and deletions occur resulting in truncated LT proteins. In
488 addition to the linear concatemeric genomes with identical variants observed in the majority of MCC cell
489 lines, we identified viral genomes with large inversions in the primary tumor MCC-47T, its descendent
490 metastasis and the cell line PeTa (S5 Fig). Indeed, an *in vitro* SV40 replication model previously
491 published by Ellen Fannings group [45] supports these observations. The study demonstrated that upon
492 inhibition of the DNA repair protein ATM, SV40 replication favors RCA due to the continuous replication
493 of one replication fork (Fig 10A, top). ATR inhibition, on the other hand, induces a dsDNA break when a
494 moving replication fork collides with a stalled fork, resulting in broken replication intermediates (Fig 10A,
495 bottom). Further recombination of such intermediates may lead to large inversions such as those that
496 result in LT truncation in MCC-47T and PeTa (S5 Fig). Indeed, studies of MCPyV demonstrated ATM
497 and ATR accumulation in viral replication centers and reported decreased viral DNA replication upon
498 inhibition of these factors [46]. Hence, limitation of ATM and ATR during replicative stress might be
499 responsible for the production of linear and defective MCPyV concatemers that we find integrated in the
500 host DNA of MCCs.

501 While the above model provides a convenient explanation for mutagenesis and concatemerization of
502 viral genomes, it does not explain how the integration process produces the distinct linear and Z-pattern
503 integration patterns observed in our study. Motivated by studies of HPV integration sites in cervical
504 cancer [39], we therefore searched for regions of microhomology between virus and host sequences at
505 or nearby the virus-host junctions. We observed that in samples with a Z-pattern integration, the
506 homology was significantly higher at the viral side of the junction compared to random sequences. This
507 is not the case at the host side of the junction or in linear integrations in general. The lack of
508 microhomologies on the virus side in linear integration also implies that the mechanisms leading to linear
509 or Z-pattern integration already differ during the initial integration step. Based on our findings we propose
510 a model in which two different pathways lead to the distinct MCPyV integration patterns observed in our
511 study (Fig 10B and C). In both pathways, linear mutated single viral genomes, concatemeric genomes

512 or recombined broken replication intermediates are the starting point (Fig 10A). We propose that Z-
513 pattern integration begins with microhomology-mediated end joining (MMEJ) of a defective viral genome
514 to a dsDNA break in the host DNA (Fig 10B). Therefor the viral DNA fragment is resected at the 5' end,
515 which distinguishes this pathway from nonhomologous end-joining (NHEJ) [47, 48]. The free 3' end of
516 the viral DNA aligns to a homologous region of a dsDNA break in the host genome which also underwent
517 5' resection. The other end of the viral genome invades, again mediated by microhomologies, the host
518 DNA upstream or downstream of the initial ds break. Subsequently, DNA synthesis starts using the host
519 DNA as a template. This process is termed microhomology-mediated break-induced replication (MMBIR)
520 and known to be involved in the amplification of large genomic regions (kbp to mbp range) in genetic
521 disorders [31, 49, 50]. MMBIR has also been suggested as a mechanism in papillomavirus integration
522 [39]. During MMBIR, the invading viral DNA strand is elongated in a so-called D-loop structure that uses
523 the host DNA strand as a template as it moves forward. We hypothesize that DNA-synthesis proceeds
524 until it reaches the position of the initial integration site of the viral DNA where two options exist. i) DNA
525 synthesis continues using the viral DNA as a template leading to further amplification of host DNA
526 together with viral DNA or ii) the nascent DNA strand connects to the other side of the original ds break
527 and terminates the reaction. Currently, we can only speculate about the nature and accuracy of the
528 mechanism mediating the ligation with the other side, as we obtained no reads covering these junctions.
529 Nevertheless, our data from WaGa cells do not suggest a second round of amplification as we do not
530 find appropriate copy numbers of viral and host DNA. To synthesize the complementary strand MMBIR
531 then uses a conservative mode of DNA replication using the newly synthesized strand as a template
532 [51, 52]. It is not clear if this occurs discontinuously by Okazaki fragments or continuously primed from
533 the other side of the ds break [49]. Eventually, MMBIR results in the amplification of kbp of host DNA
534 that we observe in Z-pattern integration. Furthermore, MMBIR could also explain the complex integration
535 loci we observed for UM-MCC-52 and UKE-MCC-4a as frequent cycles of strand invasions with
536 amplification of shorter stretches of DNA at each site have been reported for this mechanism [53]. S7
537 Fig shows the possible events that lead to the integration pattern in UM-MCC-52. Since we do not find
538 significant microhomologies between viral and host sequences in the case of linear integration of
539 MCPyV (Fig 10C), we propose that in this case viral sequences are integrated into a ds break of host
540 DNA by NHEJ.

541 We also performed ChIP-Seq analysis of the histone modifications H3K4-me3 and H3K27-me3 in MKL-1
542 and WaGa cells. Interestingly, we find that the two cell lines exhibit strikingly similar modification profiles,
543 suggesting that they share a distinct and MCC-specific epigenetic pattern. This notion is supported by
544 hierarchical clustering analysis of H3K4-me3 profiles, which demonstrates very close relationship of
545 MKL-1 and WaGa when compared to ENCODE datasets from 48 cell lines and primary cells. Of note,
546 among the latter we find HPV positive HeLa cells being most similar to the MCC lines. Since MCPyV-
547 and HPV-encoded oncoproteins interfere with similar cellular transformation, this may indicate that the
548 epigenetic profile of WaGa and MKL-1 cells is being dominantly shaped by the viral oncoproteins. The
549 next closest related H3K4-me3 profiles are from mesenchymal stem cells and fibroblasts of the lung and
550 dermis, a finding which may support previous suggestions on the origin of the cells giving rise to MCC
551 [54, 55]. We also find that neural cells cluster with the MCC cell lines, albeit more distantly than the cell
552 lines and types mentioned above. Interestingly, a recent study reported reversion of MCC tumor cells to
553 neuron-like cells after T-Antigen knockdown, suggesting neural precursor cells as putative MCC origin
554 [56].

555 Our analysis of the epigenetic chromatin states at integration breakpoint positions in MCC cell lines and
556 ENCODE datasets suggests that these regions are generally devoid of facultative or constitutive
557 heterochromatin marks such as H3K27-me3 and H3K9-me3, but instead tend to carry euchromatin
558 histone marks such as H3K4-me3. Similar to what has been reported for HPV [57, 58], our data thus
559 suggest that MCPyV predominantly integrates into transcriptionally active regions characterized by open
560 chromatin.

561 The ChIP-Seq analyses of activating and repressive histone marks in WaGa and MKL-1 cells further
562 allowed us to investigate how gene expression from integrated viral genomes may be regulated. At least
563 in these two cell lines, we do not find evidence for major alterations of overall host chromatin structure
564 at the integration site. While we do not find repressive H3K27-me3 marks on integrated MCPyV
565 genomes, we observe H3K4-me3 across the entire early region, a pattern which is markedly different
566 from the more distinct peaks on the NCCR and the viral miRNA promoter of actively replicating episomes.
567 Interestingly, a recent meta-analysis including >200 datasets from ChIP-Seq and ChIP-on-ChIP data
568 found that broader H3K4-me3 peaks predict cell identity and are positively correlated with transcriptional
569 consistency and precision [59]. While the exact molecular mechanisms which lead to formation of broad

570 H3K4-me3 peaks are not yet clearly defined, we hypothesize that by this mechanism of buffering
571 RNAPol II pausing, stable viral oncoprotein expression is ensured.
572 In summary, we here report the first high-resolution analysis of MCPyV integration patterns in Merkel
573 Cell Carcinoma using a combination of short- and long-read sequencing technologies. Our data strongly
574 suggest a central role of microhomologies and DNA repair pathways including NHEJ and MMBIR in
575 promoting either linear or Z-pattern integration. Our findings may not only explain MCPyV integration,
576 but also substantiate previously suggested modes of human papillomavirus integration and viral-host
577 DNA amplification mechanisms. Thus, our data suggest a common mechanism for papilloma- and
578 polyomaviruses integration and provide the basis for further experimental studies to investigate the
579 molecular events controlling this process.

580

581 **Methods**

582 **Cell lines and tumor tissues**

583 MCC cell lines WaGa [40], BroLi [40], LoKe [40], MKL-1 [60], MKL-2 [61], WoWe-2 [62], PeTa [62]
584 were described before and were cultivated in RPMI 1640 with 10% FCS, 100 U/mL penicillin and 0.1
585 mg/mL streptomycin. For BroLi cells 20% FCS was used. UKE-MCC-1a and UKE-MCC4a were
586 established in the department of dermatology at the Ruhr University of Essen. UM-MCC-29 and UM-
587 MCC-52 have been described previously [63]. MCC-47 primary tumor and the corresponding bone
588 metastasis tissue were isolated from an MCC patient (ID: 47) already described [64].

589

590 **DNA isolation**

591 Genomic DNA used in capture sequencing was isolated applying the DNeasy Blood and Tissue Kit
592 (Qiagen, Hilden, Germany) according to manufacturer's instructions. For the isolation of HMW DNA
593 used in nanochannel and nanopore sequencing cells were washed once in PBS, rotated for 10min at
594 4°C in nuclear extraction buffer 1 (50mM HEPES-KOH pH 7.5, 140mM NaCl, 1mM EDTA, 10% Glycerol,
595 0.5% Nonidet-P40, 0.25% Triton-X-100) and centrifuged for 5min at 2000xg. Pelleted cells were
596 resuspended in nuclear extraction buffer 2 (10mM Tris-HCl pH 8.0, 200mM NaCl, 1mM EDTA, 0.5mM
597 EGTA), rotated for 10min at 4°C followed by 5min at 2000xg. Pelleted nuclei were resuspended in
598 nuclear extraction buffer 3 (10mM Tris-HCl pH 8.0, 10mM NaCl, 10mM EDTA, 1% SDS, 200µg/mL

599 Proteinase K) and incubated overnight at 37°C. The mixture was subjected to two rounds of phenol
600 extraction, one round of Phenol/Chloroform/Isoamyl alcohol (25:24:1) extraction and 2 rounds of
601 chloroform washing steps. DNA was precipitated by adding 0.5 volumes of 2-propanol and 0.05 volumes
602 of 5M NaCl solution. DNA was wound up using a small glass rod, washed in 70% Ethanol, air-dried and
603 resuspended in TE-buffer (10mM Tris-HCl pH 8.0, 1mM EDTA).

604

605 **Capture sequencing**

606 Capture probe sequencing of genomic DNA from MCC cell lines and tissues was performed using the
607 SureSelectXT Target Enrichment System for Illumina Paired-End Multiplexed Sequencing Library
608 (Agilent Technologies, Santa Clara, CA, USA) according to manufacturer's instructions (protocol version
609 B5). MCPyV-specific capturing probes were generated by shifting 120nt windows across the circular
610 MCPyV genome (JN707599) with a step size of 1nt resulting in 5387 capture probes (S2 Table).
611 Concentrations of all generated capture samples were measured with a Qubit 2.0 Fluorometer (Thermo
612 Fisher Scientific, Waltham, Massachusetts, USA) and fragment lengths distribution of the final libraries
613 was analyzed with the DNA High Sensitivity Chip on an Agilent 2100 Bioanalyzer (Agilent Technologies).
614 All samples were normalized to 2nM and pooled equimolar. The library pool was sequenced on the
615 MiSeq (Illumina, San Diego, CA, USA) with 2x150bp, with approximately 1.3mio reads per sample.

616

617 **Integration site identification from capture sequencing data**

618 Illumina adapter sequences were removed from the capture sequencing short paired-end reads using
619 cutadapt v2.7 [65]. Reads were then aligned to the MCPyV reference genome (JN707599) and the
620 human reference genome (hg38) using minimap2 v2.14 [66] with the pre-set option --x sr. This option
621 aligns short reads that may include indels or mismatches, e.g. LT antigen stop or frameshift mutations.
622 Furthermore, the algorithm keeps unaligned parts of the reads and indicates these events as soft clipped
623 bases within the SAM format CIGAR string. Furthermore, the option to report secondary alignments on
624 virus and host was used to detect potential intra-viral fusions and rearrangements. After removal of PCR
625 duplicates using samtools v1.9 [67], soft clipped reads, which indicate potential virus-host junctions or
626 virus-virus rearrangements, were filtered by their respective CIGAR string. We set a minimum
627 requirement of at least three independent unique reads containing the same potential breakpoint

628 followed by the same consecutive soft clipped bases to detect putative virus-host junctions. The soft
629 clipped portions of the reads were then again aligned to the human reference genome (hg38) using
630 BLAST [68] and compared to the previous full length read alignments. The usage of those two different
631 alignment methods resulted in high confidence junction sites (Table 1). Detected virus-host junctions
632 were further confirmed by conventional PCR (S5 Table) and Sanger sequencing and/or Nanopore
633 sequencing in selected samples. As described below (see variant detection) the cell lines MKL-1, LoKe,
634 PeTa and WoWe-2 showed a contamination with WaGa DNA. For integration site detection in these cell
635 lines all fusion reads originating from the contamination with WaGa were excluded.

636

637 **Variant detection**

638 We used the aligned capture sequencing data to perform variant detection of viral integrates
639 simultaneously in all samples with freebayes v1.3.1 [69], which reports the counts of reference as well
640 as variant bases for each sample in vcf format. Frequencies were then calculated for each variant based
641 on the count ratio of variant to total reads covering that position. The results are given in the S1 Table.
642 Variants occurring with >99% frequency were counted as confidential variants. In four MCC cell lines
643 three mutations identified as WaGa specific mutations (3,109 A to G, 3,923 G to A, 4,122 G to A) were
644 detected in different frequencies (MKL-1: 9.5 to 18.6%; LoKe: 89% to 96.1%; PeTa: 78.1% to 96.1%;
645 WoWe-2: 1.6% to 4.2%), which are indicative of a contamination prior capture hybridization. In these
646 cell lines the WaGa specific variants were excluded and the cut-off for confidential variant detection was
647 lowered according to the percentage of WaGa contamination.

648

649 **Nanopore sequencing**

650 MinION sequencing libraries were generated from HMW DNA with the 1D genomic DNA by ligation kit
651 (SQK-LSK109, ONT) according to the manufacturer's instructions. MinION sequencing was performed
652 as per the manufacturer's guidelines using R9.4 flow cells (FLO-MIN106, ONT). MinION sequencing
653 was controlled using Oxford Nanopore Technologies MinKNOW software. Base calling was performed
654 using Guppy base calling Software v3.3.3 (ONT). Long reads were then aligned to the MCPyV reference
655 genome (JN707599) as well as the human genome (hg38) using minimap2 [66] with pre-set parameters

656 for MinION reads (-x map-ont). The S4 Table contains MinION sequencing details and summaries of
657 quality, read numbers and sequence lengths.

658

659 **Nanochannel Optical Mapping**

660 HMW DNA was labelled with two MCPyV specific probes (LT1: ATTO647N-GGCTCTCTG-
661 CAAGCTTTAGAGATTGCTCC; LT2: ATTO647N-GGCAACATCCCTCTGATGAAAGCTGCT-TTC)
662 using the following components in an 80 μ l reaction: 4 μ g HMW DNA, 10 μ M of each random
663 oligonucleotide pdN6, pdN8, pdN10, pdN12, pdN14, 16 μ l RT reaction buffer (5x), 0.5mM dNTPs, 1 μ M
664 LT1 and LT2 each. The reaction was incubated for 10min at 95°C, followed by a decrease to 45°C in
665 steps of 5°C per minute and 5min at 4°C. 4 μ l ReverTAid H Minus RT (Thermo Fisher Scientific) were
666 added, incubated for 45min at 42°C and the reaction purified with 15 μ l of MagAttract beads (Qiagen).
667 The labelled DNA was eluted with TE-buffer (10mM Tris-HCl pH 8.0, 1mM EDTA) and subsequently
668 stained with a non-selective intercalating dye (TOTO-3 Iodide (642/660), Thermo Fisher Scientific) in a
669 ratio of 1 dye every 5 bp to visualize the DNA fragments by fluorescence microscopy. The nanofluidic
670 devices for the measurement were made by direct imprinting in Ormostamp (a commercial, UV-curable
671 polymer, micro resist technology GmbH, Berlin, Germany) as explained elsewhere [70-72]. They
672 contain two U-shaped microchannels to deliver the molecules from the inlets into the nanochannels and
673 3D-tapered inlets to connect the micro and nanostructures, pre-stretch the molecules and avoid clogging.
674 The nanochannels are 280 nm wide, which is in the order of the DNA persistence length (50 nm); the
675 molecules are elongated and significantly stretched, (~25 % of their full contour-length in this particular
676 case). The flow of the molecules is observed in an inverted, fluorescent microscope (TiU, Nikon, Tokyo,
677 Japan) using an EM-CCD Camera (Evolve Delta, Photometrics, Tucson, AZ, USA) with a 100x oil
678 immersion objective. The real-time signal is obtained using a laser beam (λ =633nm, 0.2mW excitation
679 power) focused on the central part of the nanochannel by the objective. The emitted fluorescence signal
680 is recorded in real-time with a single photon counter (COUNT Module, Laser Components GmbH,
681 Olching, Germany), while the excitation signal is filtered out by using a spectral filter (692/40nm band-
682 pass filter, Semrock, Rochester, NY, USA). In this configuration, the molecules are detected as step-
683 like peaks in time scans, allowing for real-time read-out with high throughput. Peak analysis (as

684 photoluminescence intensity and duration time) gives information about the molecule length, as well as
685 its genome-dependent barcode.

686

687 **ChIP-Seq analysis**

688 ChIP assays were performed as previously described [37, 73] with the following changes. For each IP
689 100µL chromatin was pre-cleared with BSA blocked protein-G sepharose beads (GE Healthcare,
690 Chicago, IL, USA) and incubated for 16h at 4°C with 2µL α-H3K27me3 antibody (#07-449; Merck
691 Millipore, Burlington, MA, USA) or α-H3K4-me3 antibody (Rabbit monoclonal antibody (#04-745, clone
692 MC315; Merck Millipore). DNA was purified by phenol-chloroform extraction and ethanol precipitation.
693 ChIP and corresponding input libraries were prepared from 2–10 ng DNA using the NEXTflex Illumina
694 ChIP-Seq Library Prep Kit (#5143-02; Bioo Scientific, Austin, TX, USA) according to the manufacturer's
695 instructions. Illumina libraries were sequenced on a NextSeq 500 (Illumina) using single-read (1x75)
696 flow cells at a sequencing depth of 30Mio reads.

697 Quality filtered single end reads were aligned to the viral reference genomes of MCPyV (JN707599) and
698 human genomes (hg38) using Bowtie [74] with standard settings. Coverage calculation for visualization
699 purposes was performed with IGV-Tools [75]. Visualization was performed using IGV and EaSeq [76].

700

701 **RNA-Seq analysis**

702 RNA-Seq analysis of WaGa and MKL-1 cells was performed essentially as described previously [24].
703 Briefly, high quality RNA of both cell lines was subjected to Illumina compatible library preparation.
704 Libraries were then sequenced on an Illumina HiSeq2500 and analyzed using STAR splice aware read
705 mapping. DEseq2 was used to perform differential gene expression analysis.

706

707 **Chromosome copy number variation analysis**

708 Genome-wide chromosome copy number variation analysis in MKL-1 and WaGa cells was performed
709 with FREEC [77] using low coverage WGS data (ChIP-input). Sequencing data of female HDF cells
710 were used as normal chromosome set control (2n). Counting windows during FREEC analysis was set
711 to 50.000 bp. Visualization of genome-wide copy number variation data was then performed with circos

712 [78]. Color-coding of the shown circos plot indicates 2n (black), 1n (green) and >= 3n (red) chromosomal
713 regions.

714

715 **Analysis of host region amplification**

716 To calculate, how often the host region within the two WaGa specific integration sites is duplicated and
717 whether host regions preceding or following the integration site in MKL-1 exhibit differential copy
718 numbers, regions of 60kb in length (size of the host duplication in WaGa) were divided into overlapping
719 regions of 5kb with a shift size of 2.5kb. Reads from WaGa and MKL-1 low coverage WGS samples
720 (ChIP input) were counted using featureCounts [79]. All length normalized counting data were then
721 normalized within each sample to the median read counts of the measured region of Chr3, which
722 represents 2n in both cell lines according to copy number variation analysis described above.

723 To estimate the copy number of the host amplifications in UKE-MCC-4a we counted MinION reads (> 3
724 kbp) covering the host integration locus (R I to L I) on chr20 and compared it to random control loci of
725 the same size (120 kbp) on chromosomes 3, 4 and 5 using featureCounts. The number of selected
726 control regions varied between 12 and 40 sites per chromosome according to the respective
727 chromosome size. For comparison, the median value of chr3 control loci was set to 1.

728

729 **Calculation of concatemeric unit counts**

730 Numbers of MCPyV concatemers in WaGa, MKL-1, UKE-MCC-4a and UM-MCC-52 were derived
731 directly from nanopore sequencing reads spanning the entire integration. Besides, for MKL-1 and WaGa,
732 concatemer count numbers were calculated from low coverage WGS data (ChIP Input). The viral
733 reference genome was divided into overlapping 1kbp windows with a shift size of 0.5kbp and reads were
734 counted using featureCounts [79]. Length normalized counts were then additionally normalized to both,
735 the count data of Chr3 as well as the total number of integrations per cell (WaGa = 2 due to the host
736 duplication of Chr6; MKL1 = 1).

737 To estimate the viral genome numbers in concatemers of MCPyV integrates in the remaining samples
738 we counted the capture sequencing reads containing the 25 virus-specific bases at each virus-host
739 junction indicating the virus coverage (i.e. virus only plus fusion) next to the junction (A). Additionally,
740 we counted all junction-spanning reads containing 22 virus-specific followed by 3 host-specific bases

741 (B); note: this imbalance of viral and host bases is necessary to avoid capture sequencing-introduced
742 bias. The estimated number of concatemeric full-length units (F) from each breakpoint can be calculated
743 as $F = ||A/(A-B)-1||$. This formula is restricted to samples with more than one full-length unit and with
744 breakpoints separated by at least 25 bases. For each MCC sample, we presented the range of
745 estimation results of all detected breakpoints (Table 1).

746

747 **Correlation and cluster analysis of ChIP-Seq and ENCODE data**

748 All ENCODE [80] dataset information used in this study is given in the S3 Table. We remapped the
749 reads from WaGa and MKL-1 input and H3K4-me3 samples to maximize comparability with the
750 ENCODE data using the ENCODE ChIP-Seq-pipeline2 (<https://github.com/ENCODE-DCC/chip-seq-pipeline2>). The resulting pval bigWig data were then used for downstream analysis. For the subsequent
751 analysis H3K4-me3 enriched sites were detected in WaGa and MKL-1 using MACS2 peak calling [81].
752 We performed Person correlation and cluster analysis with 48 selected H3K4-me3 ENCODE data sets
753 (S3 Table) together with WaGa and MKL-1 using DeepTools v3.1.3 (multiBigwigSummary and
754 plotCorrelation) [82]. Analysis was restricted to the WaGa H3K4-me3 peak regions to reduce the
755 influence of background signal.

757

758 **Microhomology analysis**

759 Sequences upstream and downstream of breakpoints were selected for microhomology analysis. For
760 each breakpoint two sequences of 40bp, one of viral (seqVir) and one of human (seqHum) origin, were
761 obtained. Each seqVir was compared with the sequence of the corresponding region in the human
762 reference assembly (GRCh38). If a seqVir was observed upstream of the breakpoint and a seqHum
763 was downstream of the breakpoint, the seqVir was compared to the sequence 40bp upstream of the
764 seqHum in the human reference assembly (and vice versa). Likewise, each seqHum was compared
765 with sequences from the viral reference assembly (JN707599). Next all 3-mers co-occurring in both
766 sequences were identified. Paths connecting these k-mers were constructed maintaining the observed
767 order of k-mers in both sequences. Paths containing not at least one pair of overlapping kmers were
768 ignored. For each remaining path a score was calculated: $score = 2 \times bases_in_kmers - |positionviral + positionhuman| / 2$. Positionviral and positionhuman are the positions (0-based) of bases which are

770 located in kmers and which are closest to the breakpoint. Only the highest scoring paths were kept.
771 Thus, two scores for each side of a junction were obtained, one for the comparison of seqHum with the
772 viral reference sequence (scoreHum) and one for the comparison of seqVir with the human reference
773 sequence (scoreVir). Unpaired two-tailed t-tests were applied for comparing the scoresVir and
774 scoresHum of a selected group (linear or Z-pattern integration) with the scores obtained for 200
775 randomly selected genomic positions of the viral and the human reference sequence. To account for its
776 circularity, the viral reference sequence was correspondingly prefixed and suffixed with 40bp before
777 random selection. We excluded UKE-MCC-4a from the analysis due to its complex integration pattern,
778 UM-MCC-52 was categorized as Z-pattern integration.

779

780 **Data availability**

781 Sequencing data are accessible in the public repository ENA, accession number PRJEB36884.

782

783 **Acknowledgement**

784 We are grateful to Kerstin Reumann, Marion Ziegler and Christina Herrde for excellent technical support.

785

786 **Conflict of interest**

787 The authors state no conflict of interest.

788

789 **References**

- 790 1. Becker JC, Stang A, DeCaprio JA, Cerroni L, Lebbe C, Veness M, et al. Merkel cell carcinoma.
791 Nat Rev Dis Primers. 2017;3:17077. doi: 10.1038/nrdp.2017.77. PubMed PMID: 29072302; PubMed
792 Central PMCID: PMCPMC6054450.
- 793 2. Becker JC, Stang A, Hausen AZ, Fischer N, DeCaprio JA, Tothill RW, et al. Epidemiology,
794 biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer
795 Immunol Immunother. 2018;67(3):341-51. doi: 10.1007/s00262-017-2099-3. PubMed PMID:
796 29188306; PubMed Central PMCID: PMCPMC6015651.
- 797 3. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel
798 cell carcinoma. Science. 2008;319(5866):1096-100. Epub 2008/01/19. doi: 10.1126/science.1152586.
799 PubMed PMID: 18202256; PubMed Central PMCID: PMC2740911.
- 800 4. Lebbe C, Becker JC, Grob JJ, Malvehy J, Del Marmol V, Pehamberger H, et al. Diagnosis and
801 treatment of Merkel Cell Carcinoma. European consensus-based interdisciplinary guideline. Eur J
802 Cancer. 2015;51(16):2396-403. doi: 10.1016/j.ejca.2015.06.131. PubMed PMID: 26257075.

803 5. Miles BA, Goldenberg D, Education Committee of the American H, Neck S. Merkel cell
804 carcinoma: Do you know your guidelines? *Head Neck*. 2016;38(5):647-52. doi: 10.1002/hed.24359.
805 PubMed PMID: 26716756.

806 6. Fischer N, Brandner J, Fuchs F, Moll I, Grundhoff A. Detection of Merkel cell polyomavirus
807 (MCPyV) in Merkel cell carcinoma cell lines: cell morphology and growth phenotype do not reflect
808 presence of the virus. *Int J Cancer*. 2010;126(9):2133-42. Epub 2009/09/10. doi: 10.1002/ijc.24877.
809 PubMed PMID: 19739110.

810 7. Shuda M, Arora R, Kwun HJ, Feng H, Sarid R, Fernandez-Figueras MT, et al. Human Merkel
811 cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues
812 and lymphoid tumors. *Int J Cancer*. 2009;125(6):1243-9. Epub 2009/06/06. doi: 10.1002/ijc.24510.
813 PubMed PMID: 19499546.

814 8. Grundhoff A, Fischer N. Merkel cell polyomavirus, a highly prevalent virus with tumorigenic
815 potential. *Curr Opin Virol*. 2015;14:129-37. doi: 10.1016/j.coviro.2015.08.010. PubMed PMID:
816 26447560.

817 9. Wendzicki JA, Moore PS, Chang Y. Large T and small T antigens of Merkel cell polyomavirus.
818 *Curr Opin Virol*. 2015;11:38-43. doi: 10.1016/j.coviro.2015.01.009. PubMed PMID: 25681708;
819 PubMed Central PMCID: PMCPMC4456251.

820 10. Houben R, Schrama D, Alb M, Pfohler C, Trefzer U, Ugurel S, et al. Comparable expression
821 and phosphorylation of the retinoblastoma protein in Merkel cell polyoma virus-positive and
822 negative Merkel cell carcinoma. *Int J Cancer*. 2010;126(3):796-8. doi: 10.1002/ijc.24790. PubMed
823 PMID: 19637243.

824 11. DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. *Philos Trans R Soc Lond B
825 Biol Sci*. 2017;372(1732). doi: 10.1098/rstb.2016.0276. PubMed PMID: 28893943; PubMed Central
826 PMCID: PMCPMC5597743.

827 12. Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, et al. Mutational landscape of
828 MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.
829 *Oncotarget*. 2016;7(3):3403-15. doi: 10.18632/oncotarget.6494. PubMed PMID: 26655088; PubMed
830 Central PMCID: PMCPMC4823115.

831 13. Harms KL, Lazo de la Vega L, Hovelson DH, Rahrig S, Cani AK, Liu CJ, et al. Molecular Profiling
832 of Multiple Primary Merkel Cell Carcinoma to Distinguish Genetically Distinct Tumors From Clonally
833 Related Metastases. *JAMA Dermatol*. 2017;153(6):505-12. doi: 10.1001/jamadermatol.2017.0507.
834 PubMed PMID: 28403382; PubMed Central PMCID: PMCPMC5540059.

835 14. Harms PW, Collie AM, Hovelson DH, Cani AK, Verhaegen ME, Patel RM, et al. Next generation
836 sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations
837 and recurrent TP53 and RB1 inactivation. *Mod Pathol*. 2016;29(3):240-8. doi:
838 10.1038/modpathol.2015.154. PubMed PMID: 26743471; PubMed Central PMCID:
839 PMCPMC4769666.

840 15. Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. Merkel cell polyomavirus
841 and two previously unknown polyomaviruses are chronically shed from human skin. *Cell Host
842 Microbe*. 2010;7(6):509-15. doi: 10.1016/j.chom.2010.05.006. PubMed PMID: 20542254; PubMed
843 Central PMCID: PMCPMC2919322.

844 16. Liu W, Yang R, Payne AS, Schowalter RM, Spurgeon ME, Lambert PF, et al. Identifying the
845 Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. *Cell Host Microbe*.
846 2016;19(6):775-87. doi: 10.1016/j.chom.2016.04.024. PubMed PMID: 27212661; PubMed Central
847 PMCID: PMCPMC4900903.

848 17. Chang Y, Moore PS. Merkel cell carcinoma: a virus-induced human cancer. *Annual review of
849 pathology*. 2012;7:123-44. Epub 2011/09/29. doi: 10.1146/annurev-pathol-011110-130227. PubMed
850 PMID: 21942528; PubMed Central PMCID: PMC3732449.

851 18. Laude HC, Jonchere B, Maubec E, Carlotti A, Marinho E, Couturaud B, et al. Distinct merkel
852 cell polyomavirus molecular features in tumour and non tumour specimens from patients with

853 merkel cell carcinoma. *PLoS Pathog.* 2010;6(8):e1001076. doi: 10.1371/journal.ppat.1001076.
854 PubMed PMID: 20865165; PubMed Central PMCID: PMCPMC2928786.

855 19. Martel-Jantin C, Filippone C, Cassar O, Peter M, Tomasic G, Vielh P, et al. Genetic variability
856 and integration of Merkel cell polyomavirus in Merkel cell carcinoma. *Virology.* 2012;426(2):134-42.
857 doi: 10.1016/j.virol.2012.01.018. PubMed PMID: 22342276.

858 20. Schrama D, Sarosi EM, Adam C, Ritter C, Kaemmerer U, Klopocki E, et al. Characterization of
859 six Merkel cell polyomavirus-positive Merkel cell carcinoma cell lines: Integration pattern suggest
860 that large T antigen truncating events occur before or during integration. *Int J Cancer.*
861 2019;145(4):1020-32. Epub 2019/03/16. doi: 10.1002/ijc.32280. PubMed PMID: 30873613.

862 21. Duncavage EJ, Magrini V, Becker N, Armstrong JR, Demeter RT, Wylie T, et al. Hybrid capture
863 and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-
864 embedded tissue. *J Mol Diagn.* 2011;13(3):325-33. doi: 10.1016/j.jmoldx.2011.01.006. PubMed
865 PMID: 21497292; PubMed Central PMCID: PMCPMC3077736.

866 22. Verhaegen ME, Mangelberger D, Harms PW, Eberl M, Wilbert DM, Meireles J, et al. Merkel
867 Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.
868 *Cancer Res.* 2017;77(12):3151-7. doi: 10.1158/0008-5472.CAN-17-0035. PubMed PMID: 28512245;
869 PubMed Central PMCID: PMCPMC5635997.

870 23. Verhaegen ME, Mangelberger D, Harms PW, Vozheiko TD, Weick JW, Wilbert DM, et al.
871 Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. *J Invest Dermatol.*
872 2015;135(5):1415-24. doi: 10.1038/jid.2014.446. PubMed PMID: 25313532; PubMed Central PMCID:
873 PMCPMC4397111.

874 24. Knips J, Czech-Sioli M, Spohn M, Heiland M, Moll I, Grundhoff A, et al. Spontaneous lung
875 metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice. *Int J
876 Cancer.* 2017;141(1):160-71. doi: 10.1002/ijc.30723. PubMed PMID: 28380668.

877 25. Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral carcinogenesis: factors
878 inducing DNA damage and virus integration. *Cancers (Basel).* 2014;6(4):2155-86. doi:
879 10.3390/cancers6042155. PubMed PMID: 25340830; PubMed Central PMCID: PMCPMC4276961.

880 26. McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-
881 associated cancers. *PLoS Pathog.* 2017;13(4):e1006211. doi: 10.1371/journal.ppat.1006211. PubMed
882 PMID: 28384274; PubMed Central PMCID: PMCPMC5383336.

883 27. Tu T, Budzinska MA, Shackel NA, Urban S. HBV DNA Integration: Molecular Mechanisms and
884 Clinical Implications. *Viruses.* 2017;9(4). doi: 10.3390/v9040075. PubMed PMID: 28394272; PubMed
885 Central PMCID: PMCPMC5408681.

886 28. Warburton A, Redmond CJ, Dooley KE, Fu H, Gillison ML, Akagi K, et al. HPV integration
887 hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives
888 high viral oncogene expression. *PLoS Genet.* 2018;14(1):e1007179. doi:
889 10.1371/journal.pgen.1007179. PubMed PMID: 29364907; PubMed Central PMCID:
890 PMCPMC5798845.

891 29. Slevin MK, Wollison BM, Powers W, Burns RT, Patel N, Ducar MD, et al. ViroPanel: Hybrid
892 Capture and Massively Parallel Sequencing for Simultaneous Detection and Profiling of Oncogenic
893 Virus Infection and Tumor Genome. *J Mol Diagn.* 2020. Epub 2020/02/19. doi:
894 10.1016/j.jmoldx.2019.12.010. PubMed PMID: 32068070.

895 30. Starrett GJ, Thakuria M, Chen T, Marcelus C, Cheng J, Nomburg J, et al. Clinical and molecular
896 characterization of virus-positive and virus-negative Merkel cell carcinoma. *Genome Med.*
897 2020;12(1):30. Epub 2020/03/20. doi: 10.1186/s13073-020-00727-4. PubMed PMID: 32188490;
898 PubMed Central PMCID: PMCPMC7081548.

899 31. Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for
900 the origin of human copy number variation. *PLoS Genet.* 2009;5(1):e1000327. doi:
901 10.1371/journal.pgen.1000327. PubMed PMID: 19180184; PubMed Central PMCID:
902 PMCPMC2621351.

903 32. Borchert S, Czech-Sioli M, Neumann F, Schmidt C, Wimmer P, Dobner T, et al. High-affinity Rb
904 binding, p53 inhibition, subcellular localization, and transformation by wild-type or tumor-derived
905 shortened Merkel cell polyomavirus large T antigens. *Journal of virology*. 2014;88(6):3144-60. Epub
906 2013/12/29. doi: 10.1128/JVI.02916-13. PubMed PMID: 24371076; PubMed Central PMCID:
907 PMC3957953.

908 33. Sastre-Garau X, Peter M, Avril MF, Laude H, Couturier J, Rozenberg F, et al. Merkel cell
909 carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in
910 oncogenesis. *J Pathol*. 2009;218(1):48-56. Epub 2009/03/18. doi: 10.1002/path.2532. PubMed PMID:
911 19291712.

912 34. Starrett GJ, Marcelus C, Cantalupo PG, Katz JP, Cheng J, Akagi K, et al. Merkel Cell
913 Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-
914 Associated Merkel Cell Carcinoma. *MBio*. 2017;8(1). doi: 10.1128/mBio.02079-16. PubMed PMID:
915 28049147; PubMed Central PMCID: PMCPMC5210499.

916 35. Shuda M, Feng H, Kwun HJ, Rosen ST, Gjoerup O, Moore PS, et al. T antigen mutations are a
917 human tumor-specific signature for Merkel cell polyomavirus. *Proceedings of the National Academy
918 of Sciences of the United States of America*. 2008;105(42):16272-7. Epub 2008/09/25. doi:
919 10.1073/pnas.0806526105. PubMed PMID: 18812503; PubMed Central PMCID: PMC2551627.

920 36. Oyervides-Munoz MA, Perez-Maya AA, Rodriguez-Gutierrez HF, Gomez-Macias GS, Fajardo-
921 Ramirez OR, Trevino V, et al. Understanding the HPV integration and its progression to cervical
922 cancer. *Infect Genet Evol*. 2018;61:134-44. Epub 2018/03/09. doi: 10.1016/j.meegid.2018.03.003.
923 PubMed PMID: 29518579.

924 37. Theiss JM, Gunther T, Alawi M, Neumann F, Tessmer U, Fischer N, et al. A Comprehensive
925 Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program
926 and Suggests a Role for mcv-miR-M1 in Episomal Persistence. *PLoS Pathog*. 2015;11(7):e1004974.
927 doi: 10.1371/journal.ppat.1004974. PubMed PMID: 26218535; PubMed Central PMCID:
928 PMCPMC4517807.

929 38. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping on nanochannel
930 arrays for structural variation analysis and sequence assembly. *Nat Biotechnol*. 2012;30(8):771-6. doi:
931 10.1038/nbt.2303. PubMed PMID: 22797562; PubMed Central PMCID: PMCPMC3817024.

932 39. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in
933 cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated
934 integration mechanism. *Nat Genet*. 2015;47(2):158-63. doi: 10.1038/ng.3178. PubMed PMID:
935 25581428.

936 40. Houben R, Shuda M, Weinkam R, Schrama D, Feng H, Chang Y, et al. Merkel cell
937 polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. *Journal of
938 virology*. 2010;84(14):7064-72. Epub 2010/05/07. doi: 10.1128/JVI.02400-09. PubMed PMID:
939 20444890; PubMed Central PMCID: PMC2898224.

940 41. Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS. Human Merkel cell polyomavirus small T
941 antigen is an oncoprotein targeting the 4E-BP1 translation regulator. *The Journal of clinical
942 investigation*. 2011;121(9):3623-34. Epub 2011/08/16. doi: 10.1172/JCI46323. PubMed PMID:
943 21841310; PubMed Central PMCID: PMC3163959.

944 42. Kusumoto-Matsuo R, Kanda T, Kukimoto I. Rolling circle replication of human papillomavirus
945 type 16 DNA in epithelial cell extracts. *Genes Cells*. 2011;16(1):23-33. doi: 10.1111/j.1365-
946 2443.2010.01458.x. PubMed PMID: 21059156.

947 43. Homa FL, Brown JC. Capsid assembly and DNA packaging in herpes simplex virus. *Rev Med
948 Virol*. 1997;7(2):107-22. doi: 10.1002/(sici)1099-1654(199707)7:2<107::aid-rmv191>3.0.co;2-m.
949 PubMed PMID: 10398476.

950 44. Tapper DP, DePamphilis ML. Preferred DNA sites are involved in the arrest and initiation of
951 DNA synthesis during replication of SV40 DNA. *Cell*. 1980;22(1 Pt 1):97-108. doi: 10.1016/0092-
952 8674(80)90158-0. PubMed PMID: 6253085.

953 45. Sowd GA, Li NY, Fanning E. ATM and ATR activities maintain replication fork integrity during
954 SV40 chromatin replication. *PLoS Pathog.* 2013;9(4):e1003283. doi: 10.1371/journal.ppat.1003283.
955 PubMed PMID: 23592994; PubMed Central PMCID: PMCPMC3617017.

956 46. Tsang SH, Wang X, Li J, Buck CB, You J. Host DNA damage response factors localize to merkel
957 cell polyomavirus DNA replication sites to support efficient viral DNA replication. *J Virol.*
958 2014;88(6):3285-97. Epub 2014/01/07. doi: 10.1128/JVI.03656-13. PubMed PMID: 24390338;
959 PubMed Central PMCID: PMCPMC3957940.

960 47. Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative
961 end-joining pathways. *J Biol Chem.* 2018;293(27):10536-46. Epub 2018/03/14. doi:
962 10.1074/jbc.TM117.000375. PubMed PMID: 29530982; PubMed Central PMCID: PMCPMC6036210.

963 48. Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. *Mutat*
964 *Res.* 2018;809:81-7. Epub 2017/07/30. doi: 10.1016/j.mrfmmm.2017.07.002. PubMed PMID:
965 28754468; PubMed Central PMCID: PMCPMC6477918.

966 49. Sakofsky CJ, Malkova A. Break induced replication in eukaryotes: mechanisms, functions, and
967 consequences. *Crit Rev Biochem Mol Biol.* 2017;52(4):395-413. Epub 2017/04/22. doi:
968 10.1080/10409238.2017.1314444. PubMed PMID: 28427283; PubMed Central PMCID:
969 PMCPMC6763318.

970 50. Malkova A, Ira G. Break-induced replication: functions and molecular mechanism. *Curr Opin*
971 *Genet Dev.* 2013;23(3):271-9. Epub 2013/06/25. doi: 10.1016/j.gde.2013.05.007. PubMed PMID:
972 23790415; PubMed Central PMCID: PMCPMC3915057.

973 51. Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y, Deem A, et al. Migrating bubble during
974 break-induced replication drives conservative DNA synthesis. *Nature.* 2013;502(7471):389-92. Epub
975 2013/09/13. doi: 10.1038/nature12584. PubMed PMID: 24025772; PubMed Central PMCID:
976 PMCPMC3804423.

977 52. Donnianni RA, Symington LS. Break-induced replication occurs by conservative DNA
978 synthesis. *Proc Natl Acad Sci U S A.* 2013;110(33):13475-80. Epub 2013/07/31. doi:
979 10.1073/pnas.1309800110. PubMed PMID: 23898170; PubMed Central PMCID: PMCPMC3746906.

980 53. Smith CE, Llorente B, Symington LS. Template switching during break-induced replication.
981 *Nature.* 2007;447(7140):102-5. Epub 2007/04/06. doi: 10.1038/nature05723. PubMed PMID:
982 17410126.

983 54. Kervarrec T, Aljundi M, Appenzeller S, Samimi M, Maubec E, Cribier B, et al. Polyomavirus-
984 Positive Merkel Cell Carcinoma Derived from a Trichoblastoma Suggests an Epithelial Origin of this
985 Merkel Cell Carcinoma. *J Invest Dermatol.* 2019. doi: 10.1016/j.jid.2019.09.026. PubMed PMID:
986 31759946.

987 55. Sunshine JC, Jahchan NS, Sage J, Choi J. Are there multiple cells of origin of Merkel cell
988 carcinoma? *Oncogene.* 2018;37(11):1409-16. doi: 10.1038/s41388-017-0073-3. PubMed PMID:
989 29321666; PubMed Central PMCID: PMCPMC5854515.

990 56. Harold A, Amako Y, Hachisuka J, Bai Y, Li MY, Kubat L, et al. Conversion of Sox2-dependent
991 Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. *Proc Natl*
992 *Acad Sci U S A.* 2019;116(40):20104-14. doi: 10.1073/pnas.1907154116. PubMed PMID: 31527246;
993 PubMed Central PMCID: PMCPMC6778204.

994 57. Bodelon C, Untereiner ME, Machiela MJ, Vinokurova S, Wentzensen N. Genomic
995 characterization of viral integration sites in HPV-related cancers. *Int J Cancer.* 2016;139(9):2001-11.
996 doi: 10.1002/ijc.30243. PubMed PMID: 27343048; PubMed Central PMCID: PMCPMC6749823.

997 58. Christiansen IK, Sandve GK, Schmitz M, Durst M, Hovig E. Transcriptionally active regions are
998 the preferred targets for chromosomal HPV integration in cervical carcinogenesis. *PLoS One.*
999 2015;10(3):e0119566. doi: 10.1371/journal.pone.0119566. PubMed PMID: 25793388; PubMed
1000 Central PMCID: PMCPMC4368827.

1001 59. Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K, Wong ED, et al. H3K4me3 breadth is
1002 linked to cell identity and transcriptional consistency. *Cell*. 2014;158(3):673-88. doi:
1003 10.1016/j.cell.2014.06.027. PubMed PMID: 25083876; PubMed Central PMCID: PMCPMC4137894.

1004 60. Rosen ST, Gould VE, Salwen HR, Herst CV, Le Beau MM, Lee I, et al. Establishment and
1005 characterization of a neuroendocrine skin carcinoma cell line. *Lab Invest*. 1987;56(3):302-12. Epub
1006 1987/03/01. PubMed PMID: 3546933.

1007 61. Martin EM, Gould VE, Hoog A, Rosen ST, Radosevich JA, Deftos LJ. Parathyroid hormone-
1008 related protein, chromogranin A, and calcitonin gene products in the neuroendocrine skin carcinoma
1009 cell lines MKL1 and MKL2. *Bone Miner*. 1991;14(2):113-20. Epub 1991/08/01. PubMed PMID:
1010 1717086.

1011 62. Houben R, Dreher C, Angermeyer S, Borst A, Utikal J, Haferkamp S, et al. Mechanisms of p53
1012 restriction in Merkel cell carcinoma cells are independent of the Merkel cell polyoma virus T
1013 antigens. *J Invest Dermatol*. 2013;133(10):2453-60. Epub 2013/04/09. doi: 10.1038/jid.2013.169.
1014 PubMed PMID: 23563200.

1015 63. Verhaegen ME, Mangelberger D, Weick JW, Vozheiko TD, Harms PW, Nash KT, et al. Merkel
1016 cell carcinoma dependence on bcl-2 family members for survival. *J Invest Dermatol*.
1017 2014;134(8):2241-50. doi: 10.1038/jid.2014.138. PubMed PMID: 24614157; PubMed Central PMCID:
1018 PMCPMC4181590.

1019 64. Riethdorf S, Hildebrandt L, Heinzerling L, Heitzer E, Fischer N, Bergmann S, et al. Detection
1020 and Characterization of Circulating Tumor Cells in Patients with Merkel Cell Carcinoma. *Clin Chem*.
1021 2019;65(3):462-72. Epub 2019/01/11. doi: 10.1373/clinchem.2018.297028. PubMed PMID:
1022 30626636.

1023 65. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
1024 2011. 2011;17(1):3. Epub 2011-08-02. doi: 10.14806/ej.17.1.200.

1025 66. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*.
1026 2018;34(18):3094-100. Epub 2018/05/12. doi: 10.1093/bioinformatics/bty191. PubMed PMID:
1027 29750242; PubMed Central PMCID: PMCPMC6137996.

1028 67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1029 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9. Epub 2009/06/10. doi:
1030 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PubMed Central PMCID:
1031 PMCPMC2723002.

1032 68. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol*
1033 *Biol*. 1990;215(3):403-10. Epub 1990/10/05. doi: 10.1016/S0022-2836(05)80360-2. PubMed PMID:
1034 2231712.

1035 69. Erik Garrison GM. Haplotype-based variant detection from short-read sequencing.
1036 arXiv:12073907. 2012.

1037 70. Esmek FM, Bayat P, Perez-Willard F, Volkenandt T, Blick RH, Fernandez-Cuesta I. Sculpturing
1038 wafer-scale nanofluidic devices for DNA single molecule analysis. *Nanoscale*. 2019;11(28):13620-31.
1039 Epub 2019/07/11. doi: 10.1039/c9nr02979f. PubMed PMID: 31290915.

1040 71. Fernandez-Cuesta I, Liang, X., Zhang, J., Dhuey, S., Olynick, D., & Cabrini, S. Fabrication of
1041 fluidic devices with 30 nm nanochannels by direct imprinting. *Journal of Vacuum Science and*
1042 *Technology B: Nanotechnology and Microelectronics*. 2011;29. doi: 10.1116/1.3662886.

1043 72. Fernandez-Cuesta I, West MM, Montinaro E, Schwartzberg A, Cabrini S. A nanochannel
1044 through a plasmonic antenna gap: an integrated device for single particle counting. *Lab Chip*.
1045 2019;19(14):2394-403. Epub 2019/06/18. doi: 10.1039/c9lc00186g. PubMed PMID: 31204419.

1046 73. Gunther T, Frohlich J, Herrde C, Ohno S, Burkhardt L, Adler H, et al. A comparative
1047 epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical
1048 mediators of rapid polycomb recruitment. *PLoS Pathog*. 2019;15(10):e1007838. doi:
1049 10.1371/journal.ppat.1007838. PubMed PMID: 31671162.

1050 74. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
1051 2012;9(4):357-9. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286; PubMed Central PMCID:
1052 PMCPMC3322381.

1053 75. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-
1054 performance genomics data visualization and exploration. *Brief Bioinform*. 2013;14(2):178-92. doi:
1055 10.1093/bib/bbs017. PubMed PMID: 22517427; PubMed Central PMCID: PMCPMC3603213.

1056 76. Lerdrup M, Johansen JV, Agrawal-Singh S, Hansen K. An interactive environment for agile
1057 analysis and visualization of ChIP-sequencing data. *Nat Struct Mol Biol*. 2016;23(4):349-57. Epub
1058 2016/03/02. doi: 10.1038/nsmb.3180. PubMed PMID: 26926434.

1059 77. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: a
1060 tool for assessing copy number and allelic content using next-generation sequencing data.
1061 *Bioinformatics*. 2012;28(3):423-5. Epub 2011/12/14. doi: 10.1093/bioinformatics/btr670. PubMed
1062 PMID: 22155870; PubMed Central PMCID: PMCPMC3268243.

1063 78. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an
1064 information aesthetic for comparative genomics. *Genome Res*. 2009;19(9):1639-45. Epub
1065 2009/06/23. doi: 10.1101/gr.092759.109. PubMed PMID: 19541911; PubMed Central PMCID:
1066 PMCPMC2752132.

1067 79. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
1068 sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-30. Epub 2013/11/15. doi:
1069 10.1093/bioinformatics/btt656. PubMed PMID: 24227677.

1070 80. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human
1071 genome. *Nature*. 2012;489(7414):57-74. Epub 2012/09/08. doi: 10.1038/nature11247. PubMed
1072 PMID: 22955616; PubMed Central PMCID: PMCPMC3439153.

1073 81. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis
1074 of ChIP-Seq (MACS). *Genome Biol*. 2008;9(9):R137. Epub 2008/09/19. doi: 10.1186/gb-2008-9-9-
1075 r137. PubMed PMID: 18798982; PubMed Central PMCID: PMCPMC2592715.

1076 82. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next
1077 generation web server for deep-sequencing data analysis. *Nucleic Acids Res*. 2016;44(W1):W160-5.
1078 Epub 2016/04/16. doi: 10.1093/nar/gkw257. PubMed PMID: 27079975; PubMed Central PMCID:
1079 PMCPMC4987876.

1080

1081

1082 Figures

1083 **Fig 1: Coverage of capture sequencing reads to the MCPyV genome.** Shown are log scale coverage
1084 plots of all viral reads aligned to the MCPyV genome (JN707599). The viral genome structure is
1085 illustrated in the lower panel. Red lines mark positions of LT truncations. Coverage plots shown in green
1086 represent samples with point mutations resulting in a stop codon and premature LT protein whereas
1087 coverage plots in blue show samples in which deletions or inversions cause frameshifts and subsequent
1088 premature stop codons. Dashed lines in black indicate breakpoints of the MCPyV genome into the host
1089 genome. In UKE-MCC-4a four breakpoints into Chr20 were detected. In UM-MCC-52 dashed lines mark
1090 breakpoints into Chr5 (blue) and Chr4 (black).

1091
1092 **Fig 2: MCPyV integration sites detected by capture sequencing.** (A): MCPyV integration sites in the
1093 human chromosomes. Depicted in blue is the distance between breakpoints on the host genome.
1094 Characteristics of the host genome at the breakpoints are indicated in brackets. (B) and (C): Schematic
1095 representation of the two characteristic groups of coverage profiles obtained by the mapping of virus-
1096 host fusion reads to the human genome. A schematic of virus-host fusion reads is depicted above the
1097 coverage patterns; red arrows indicate the direction of the MCPyV sequence in the fusion reads. (B)
1098 represents the first group characterised by short distances (4-18bp) between breakpoints on the host
1099 genome and inward-facing orientation of the fused viral sequences (upper panel). The middle panel
1100 shows coverage tracks from the cell lines MKL-1 and BroLi as examples. The bottom panel depicts a
1101 schematic model of the linear integration pattern deduced from the coverage profiles presented above.
1102 (C) represents the second group where host sequences in fusion reads map with large distances (17kbp
1103 to 300kbp) on the host genome and viral sequences show an outward-facing orientation. WaGa and
1104 MKL-2 coverage tracks are shown as examples with a schematic model of the integration pattern
1105 deduced from the coverage profiles above. Large host regions preceding the left virus-host junction are
1106 duplicated after the right virus-host breakpoint leading to a “Z” shape of the integration. Coverage tracks
1107 from all additional samples are provided in S4 Fig.

1108
1109 **Fig 3. Viral copy number calculation in WaGa and MKL-1 cells.** (A): Circos plot of copy number
1110 variations in WaGa and MKL-1 cells as calculated by FREEC using low coverage WGS data (ChIP-Seq
1111 input). The colour code indicates chromosome aberrations in fold haploid (black = 2n; green = 1n; red >=
1112 3n; white = 0n). Female HDF cells are shown as control with n = 2. The position of MCPyV integrations
1113 are shown in the innermost circle (black: MKL-1; red: WaGa). (B): Normalized relative genomic DNA
1114 copy numbers immediately upstream (integration -60kbp) and downstream (+60kbp) of the respective
1115 MCPyV integration sites are shown in comparison to three indicated genomic control sites of the same
1116 length (Chr3, 4 and 5). Additionally, the 60kbp host duplication of WaGa cells is shown. Normalized data
1117 are presented as box and whisker plots of 5kb shifting windows (shift size = 2.5kbp) across the
1118 respective region of interest with median (horizontal line) and average (indicated by “+”). (C):
1119 Concatemeric copy numbers within each integration site in WaGa and MKL-1 were calculated from
1120 ChIP-Seq input data as described in the materials and methods section. Normalized data are shown as

1121 a box and whiskers plot of 1kbp shifting windows (shift size 0.5kbp) across the MCPyV reference
1122 genome (JN707599).

1123

1124 **Fig 4. Nanochannel and nanopore sequencing determine viral integration patterns and copy**
1125 **numbers.** (A): Optical signature (“barcode”) of a DNA fragment from MKL-1 cells. Shown is the time
1126 dependent intensity of the photoluminescence (PL intensity) of a single DNA fragment (1, blue), with an
1127 additional ATTO647N fluorescence peak (2, red). The fragment has a length of ~ 90kbp, calculated after
1128 calibration with λ -DNA (48kbp) as a standard. The peak of ATTO647N fluorescence has a length of ~
1129 17 kbp, corresponding to three integrated MCPyV copies (two complete copies, 5.4kbp each, and one
1130 partial copy with 4.1kb length). (B): Reads from nanopore sequencing for MKL-1 (upper panel) and
1131 WaGa (lower panel) mapped to the integration site of each cell line with an overview of the genomic
1132 locus in the reference genome (bottom), the integration locus as observed in the cell line (middle) and
1133 a close up on the integrated viral genome (top). For MKL-1, one read (104kbp in size) and three shorter
1134 reads cover the integration site. The long read confirms the linear integration of three concatemeric
1135 MCPyV copies (two full and one partial). For WaGa one 62kbp read covers the integration site. The read
1136 confirms the integration of two concatemeric MCPyV copies (one full and one partial) and the Z-pattern
1137 integration with duplication of the host sequence at the integration site. L and R indicate the left and
1138 right virus-host junction while (L) and (R) mark the position of the left and right junction sites in the host
1139 reference genome according to Table 1.

1140

1141 **Fig 5. Complex integration pattern of UM-MCC-52.** (A)+(B): MCPyV-host fusion reads from capture
1142 sequencing of sample UM-MCC-52 were mapped to the human genome. Shown is the coverage at the
1143 breakpoints in the host genome on Chr4 (A) and Chr5 (B). Red arrows indicate the direction of the viral
1144 sequences in the virus-host fusion reads. (RC)= Reverse complement orientation of MCPyV genome
1145 compared to the other junctions. Deduced integration patterns are shown below with a Z-pattern
1146 containing amplification of 17kbp host DNA in Chr4. The integration into Chr5 in addition to a Z-pattern
1147 must contain further inversions based on the read directions. As there is no indication for an inversion
1148 in the MCPyV genome, parts of host DNA at the right junction (R) must be inverted. (C)+(D): Reads
1149 from nanopore sequencing of UM-MCC-52 are mapped to both integration sites (Chr4, (C) and Chr5,
1150 (D)). In Chr4 0.52 MCPyV copies with three specific SNPs (bp 1,708; 1,792; 1,816; not present at the

1151 Chr5 integration) are integrated as a Z-pattern with duplication of 17kbp host DNA. In Chr5, MCPyV is
1152 integrated as a concatemer of at least 3.9 copies. MinION reads proof a Z-pattern integration with an
1153 insertion of 5.7kbp inverted duplicated host sequence at the right side that originates from 38kbp
1154 upstream of the 135kbp host sequence that is duplicated afterwards. Dashed coloured arrows indicate
1155 the complex structure of the integration locus. Duplicated host transcripts are shown in grey. L and R
1156 indicate the left and right virus-host junction while (L) and (R) mark the position of the left and right
1157 junction sites in the host reference genome according to Table 1.

1158

1159 **Fig 6. Complex integration pattern of UKE-MCC-4a.** (A): MCPyV-host fusion reads from capture
1160 sequencing of sample UKE-MCC-4a were mapped to the human genome. Shown is the coverage at the
1161 four breakpoints in the host genome (R I, L II, R II and L I), red arrows indicate the direction of the viral
1162 sequences in the virus-host fusion reads. 81 Reads at junction R II are mapped by BLAST only (not by
1163 aligner). MCPyV reads that are reverse complementary (RC) fused to the host sequences (compared
1164 to the other breakpoints) are identified at L II and R II. (B): MinION reads >40kbp aligning to the
1165 integration site with an overview of the genomic locus in the reference genome (bottom), the integration
1166 locus as observed in UKE-MCC4a (middle) and a close up on the integrated viral genome at both
1167 integration sites (site I and site II) as confirmed by MinION reads (top). Site I shows a Z-pattern
1168 integration (amplification of 120kbp host DNA between R I and L I) of 1.5 concatemeric copies of MCPyV
1169 harboring a deletion of 996 bp only in the first of the two consecutive MCPyV copies. Site II shows a
1170 linear integration of 0.75 copies MCPyV (without the deletion) with a loss of 34kbp host DNA between L
1171 II and R II. The patterned read confirms the insertion of site II in the duplicated host DNA between R I
1172 and L I as well as a second insertion of site I (I') with duplicated host DNA after the first Z-loop. The dark
1173 blue MinION reads confirm the order I – II – I' since they continue from site I and site I' into the host
1174 genome over the host positions of L II and R II of integration site II. The amplification unit is I – II
1175 (approximately 10-20 repeated units, see B and calculation in C). Dashed colored arrows highlight the
1176 structure of the complex integration product. Duplicated host features are shown in grey. L and R
1177 indicate the left and right sites of the virus-host junctions I and II while (L) and (R) mark the position of
1178 the left and right junction sites I and II in the host reference genome according to Table 1. (C): Coverage
1179 of MinION reads (with a size > 3 kbp) indicates amplification of the entire integration region. (D): Copy
1180 number calculation from MinION reads > 3 kbp in the integration region relative to multiple random

1181 regions on the indicated host chromosomes. Assuming a chromosome number of n=2 (most likely 3 for
1182 chr20) there may be either 10 large locus amplification units on both chromosomes of chr20 or 20 copies
1183 on only one chromosome of chr20.

1184

1185 **Fig 7. Microhomologies between virus and host sequences.** (A): Virus-host junctions of the LoKe
1186 cell line. Sequences at the virus-host junction (in grey) were derived from capture sequencing and
1187 aligned to reference sequences for the human genome (hg38) and MCPyV (JN707599). Depicted are
1188 40bp upstream and downstream from the virus-host junction (indicated by a black line, extended for 3bp
1189 at the right junction due to an insertion). Human sequences are shown in blue and viral sequences in
1190 black letters. Microhomologies are illustrated in red. Microhomology scores were calculated between
1191 the virus and host sequences for the virus side (viral sequence of the junction) and the host side (host
1192 sequence of the junction). All additional samples can be found in S1 Fig. (B): Scores from the virus and
1193 host side of samples showing Z-pattern or linear integration were compared to scores obtained for 200
1194 random viral and host sequences. The virus side of Z-pattern integration shows significantly higher
1195 homology scores (p<0.05, dashed line). The host side and the linear integration pattern are not
1196 significantly different.

1197

1198 **Fig 8. Histone modification pattern in MKL-1 and WaGa cells.** (A): Coverage of the activating histone
1199 mark H3K4-me3 and the repressive histone mark H3K27-me3 on integrated MCPyV obtained by ChIP-
1200 Seq of WaGa and MKL-1 cells. (B): H3K4-me3 ChIP-Seq data from a replication assay (RA) performed
1201 in PFSK-1 cells were published before [37] and are included for comparison. Dashed lines represent
1202 breakpoints into the host genome, red lines the truncating event in LT. Note: The viral reference genome
1203 JN707599 is presented starting with nucleotide 2,470 for better visualization of ChIP-Seq patterns (see
1204 annotation of X-axis). (C): ChIP-Seq data for H3K4-me3 and H3K27-me3 from WaGa (upper panel) and
1205 MKL-1 cells (lower panel). The left and the right panel represent the two host genomic regions (1mbp)
1206 of the WaGa (left) and MKL-1 (right) integration sites. The corresponding junctions (L and R, marked by
1207 arrows) are indicated. The asterisk marks an additional H3K4-me3 signal which is not present in MKL-
1208 1. The signal is located within the 66kbp host duplication and flanks junction R. It originates from the
1209 H3K4-me3 signal of the early region of the integrated MCPyV genome that harbors the right breakpoint

1210 (R, see A) and extends into the host chromatin. Host duplication in WaGa is visible by the marked
1211 enhanced ChIP input signal.

1212
1213 **Fig 9. Epigenetic properties of MCC cell lines and MCPyV integration sites.** (A): Correlation and
1214 clustering of H3K4-me3 profiles from WaGa and MKL-1 in comparison to 48 selected tumor cell lines
1215 and primary cells obtained from the ENCODE database. Correlation and clustering were performed
1216 using DeepTools and are based on MACS2 identified H3K4-me3 peak regions in the WaGa cell line.
1217 (B): Cellular chromatin environment at integration sites of MCC cell lines (350kbp window). Heat maps
1218 represent ENCODE ChIP-Seq signals of different cell types and cell lines (n is given beneath each
1219 modification) and include MKL-1 (M) and WaGa (W) data as indicated for H3K4-me3 and H3K27-me3
1220 (please note increased track height of MKL-1 and WaGa for better visualization). Start and end of the
1221 bars in the integration track indicate positions of the left and right junctions of the respective integration
1222 site. Endogenous positive control regions were included for each histone modification using the same
1223 magnification (GAPDH: H3K4-me3 and H3K27-ac; ZNF268: H3K9-me3; HOXC13: H3K27-me3).

1224
1225 **Fig 10. MCPyV integration model.** (A): DNA replication of MCPyV is bidirectional (theta amplification)
1226 with replication forks starting at the ori (blue) and moving into opposite directions. Stalling replication
1227 forks (yellow star) can result in aberrant defective viral genomes. Top: Stalling replication forks induce
1228 mutations (black bolt) in the early region of the viral genome. The remaining fork induces unidirectional
1229 rolling circle amplification (RCA) resulting in large linear concatemers of mutated viral genomes. Bottom:
1230 Collision of a moving fork with a stalled fork leads to a dsDNA break at the moving fork. Recombination
1231 at the converging forks results in viral genomes with large inversions that truncate the early region. Both
1232 scenarios (RCA and break with recombination) yield linear defective (concatemeric) viral genomes. (B):
1233 (I) a linear viral genome is recognized as ds DNA break and undergoes resection of the 5' ends by the
1234 host machinery. The same mechanism resects the 5' end of a dsDNA break in the host DNA. (II)
1235 Homologies between viral and host sequences are used by microhomology-mediated end joining
1236 (MMEJ) to ligate the viral genome to a dsDNA break in the host genome. (III) The 3' ss end of the viral
1237 genome invades a homologous host region and (IV) starts DNA synthesis in a D-loop structure
1238 (microhomology-mediated break-induced replication, MMBIR). (V) DNA synthesis reaches the original
1239 ds break with the viral genome and (VI) connects with the other side of the ds break by an unknown

1240 mechanism. (VII) The complementary strand is synthesized in a conservative mode using the newly
1241 synthesized strand as a template resulting in (VIII) an amplification of several kbp of host sequence
1242 surrounding the MCPyV integration site and a Z-pattern integration. (C): Without resection of 5' ends a
1243 defective linear viral genome is integrated into a ds break of host DNA by nonhomologous end-joining
1244 (NHEJ). The integration mechanism is independent of homologies between viral and host sequences
1245 and results in a linear integration pattern.

1246

1247

1248 **Supporting information**

1249 **S1 Fig. Virus-host junctions from integration sites of all samples with microhomologies between**
1250 **virus and host sequences.** Sequences at the virus-host junction (in grey) were derived from capture
1251 sequencing and aligned to reference sequences for the human genome (hg38) and MCPyV (JN707599).
1252 L=left side of the integrated viral genome, R= right side. Depicted are 40 bps upstream and downstream
1253 from the virus-host junction (indicated by a black line). In the case of insertions at the junction,
1254 sequences were extended for the length of the insertion. Human sequences are depicted in blue and
1255 viral sequences in black letters. Detected microhomologies (see material and methods) are marked in
1256 red.

1257

1258 **S2 Fig. Reads from capture sequencing of sample UM-MCC-52 are aligned to the MCPyV genome**
1259 **(JN707599).** Grey color represents perfect matching of read and reference sequence. Blue, red, green
1260 and orange show mutations in the read sequence to the bases C, T, A and G respectively. Breakpoints
1261 into the host genome are indicated at the top reflected by longer stretches of mismatching bases. Lower
1262 panels show magnification of alignment. Mutations at bp 1,792 and 1,816 (G to C, left panel, red arrows)
1263 are not present in reads leading into Chr5. Reads that contain these mutations also contain a G to C
1264 transition at bp 1,708 (green arrow). Mutations in LT including the inactivating mutation (stop) are
1265 present in all captured sequences (right panel).

1266

1267 **S3 Fig. Reads derived from capture sequencing of sample UKE-MCC-4a are aligned to the MCPyV**
1268 **genome (JN707599).** Color code is identical to S2 Fig. Breakpoints into the host genome are indicated

1269 at the top and can be recognized by longer stretches of mismatching bases. Bp 2,053 to 3,047 are
1270 deleted in approximately one third of the reads covering the region. This region also contains a
1271 breakpoint into the host genome indicating an integration of two versions of MCPyV (one with and one
1272 without a deletion). Mutations in LT including the inactivating mutation (stop) are present in all captured
1273 sequences.

1274

1275 **S4 Fig. Coverage profiles of the of the cell lines LoKe, PeTa, WoWe-2, UKE-MCC-1a, UM-MCC-29**
1276 **and MCC-47T/M.** MCPyV-host fusion reads from capture sequencing were mapped to the human
1277 genome. (A): PeTa and UM-MCC-29 show a coverage profile characteristic for a linear integration
1278 pattern. (B): LoKe, WoWe-2 and UKE-MCC-1a show a coverage profile characteristic for a Z-pattern
1279 integration. (C): The sample MCC-47 (tumor and metastasis) shows a coverage profile with short
1280 distance (4bp) of breakpoints on the host genome but outward-facing orientation of viral sequences.
1281 The result is a Z-pattern integration with duplication of 6bp of host DNA as depicted in the right panel.
1282 Reads for both junctions of the tumor and the left junction of the metastasis are mapped by BLAST only.

1283

1284 **S5 Fig. Rearranged MCPyV genome and integration locus of sample MCC-47T/M.** (A): Rearranged
1285 MCPyV genome derived from capture sequencing of sample MCC-47 (primary tumor and metastasis)
1286 compared to MCPyV wild type (JN707599). For better comparison, both genomes are depicted as
1287 episomes. Breakpoints into the host genome are indicated (bp 5,193 and 5,290). Bp 1547-4119 are
1288 inverted with 1,547 fused to 4,166 and 4,119 to 991 causing a frameshift in LT that leads to a stop at
1289 position 4,166. The C-terminal part of LT fused to VP2 is also out of frame, which causes a stop at the
1290 beginning of the LT C-terminus. (B): Integration locus of MCC-47 derived from capture sequencing (chr3:
1291 64,619,639-44). The rearranged MCPyV genome is integrated as a concatemer with at least one
1292 complete viral genome being flanked by partial genomes that connect into the host genome. 6bp of host
1293 sequence are duplicated at the integration site.

1294

1295 **S6 Fig. RNA-Seq analysis of WaGa and MKL-1 integration locus.** (A): Counts of host, virus and host-
1296 virus-fusion splice junction reads connecting to the splice acceptor of the second LT exon in MKL-1 and
1297 WaGa cells. In WaGa cells, we additionally counted splices between exons 4 and 5 of CDKAL1 (splice
1298 3). It is likely that the transcripts harboring these splices originate from the copy of chr6 that does not

1299 contain the viral integrate. All detected splice events use annotated donor and acceptor sites as
1300 indicated. (B): RNA-Seq coverage at the integration locus. Detected splices are indicated by arcs. For
1301 further details, see legend to Figure 4. (C): Normalized RNA-Seq data of CDKAL1. Three RNA-Seq
1302 datasets of WaGa and MKL-1 (one dataset generated in this study and two datasets previously
1303 published [24]) were combined and subjected to standard DEseq2 analysis. Shown are Deseq2
1304 normalized counts of CDKAL1 (n=3, mean + SEM). The slight Log2 fold change of 0.15 between both
1305 cell lines was found to be not significant (ns) by DEseq2 analysis.

1306

1307 **S7 Fig. Model for MCPyV integration in the complex integration locus of UM-MCC-52 on Chr5. (I)**
1308 Mutated concatemeric MCPyV genomes (at least 4 copies of MCPyV in this case) are produced by RCA
1309 and undergo 5' resection by the host machinery. (II) Ligation to a ds break in the host DNA at the left
1310 side (L) is achieved by MMEJ. (III) The viral genome loops back and invades with its 3' end a
1311 homologous host region and (IV) starts DNA synthesis in a D-loop structure (MMBIR). Different to the
1312 general model, the 3' end of the viral genome aligns to the forward not the reverse strand. (V) DNA
1313 synthesis continues until it reaches site a and the D-loop disassembles. (VI) The newly synthesized
1314 strand invades again the host DNA (site b), this time aligning to the reverse strand. (VII) DNA replication
1315 can now proceed until it reaches L where it connects to the original ds break by an unknown mechanism
1316 (VIII). (IX) The complementary strand is synthesized in a conservative mode using the newly
1317 synthesized strand as a template. (X) For UM-MCC-52 the result is an amplification of several kbp of
1318 host sequence between L and b as well as an inverted sequence between site a and R.

1319

1320 **S1 Table. Variants in MCC sample derived MCPyV sequences compared to reference JN707599**
1321 **obtained by capture sequencing.** The upper panel contains larger rearrangements and deletions. The
1322 lower panel contains small indels as well as SNPs. Blue fields indicate variants that occur in >99% of
1323 reads. Orange fields contain variants present in a subset of reads.

1324

1325 **S2 Table. Capture probes for MCPyV used in capture sequencing of MCC samples.**

1326

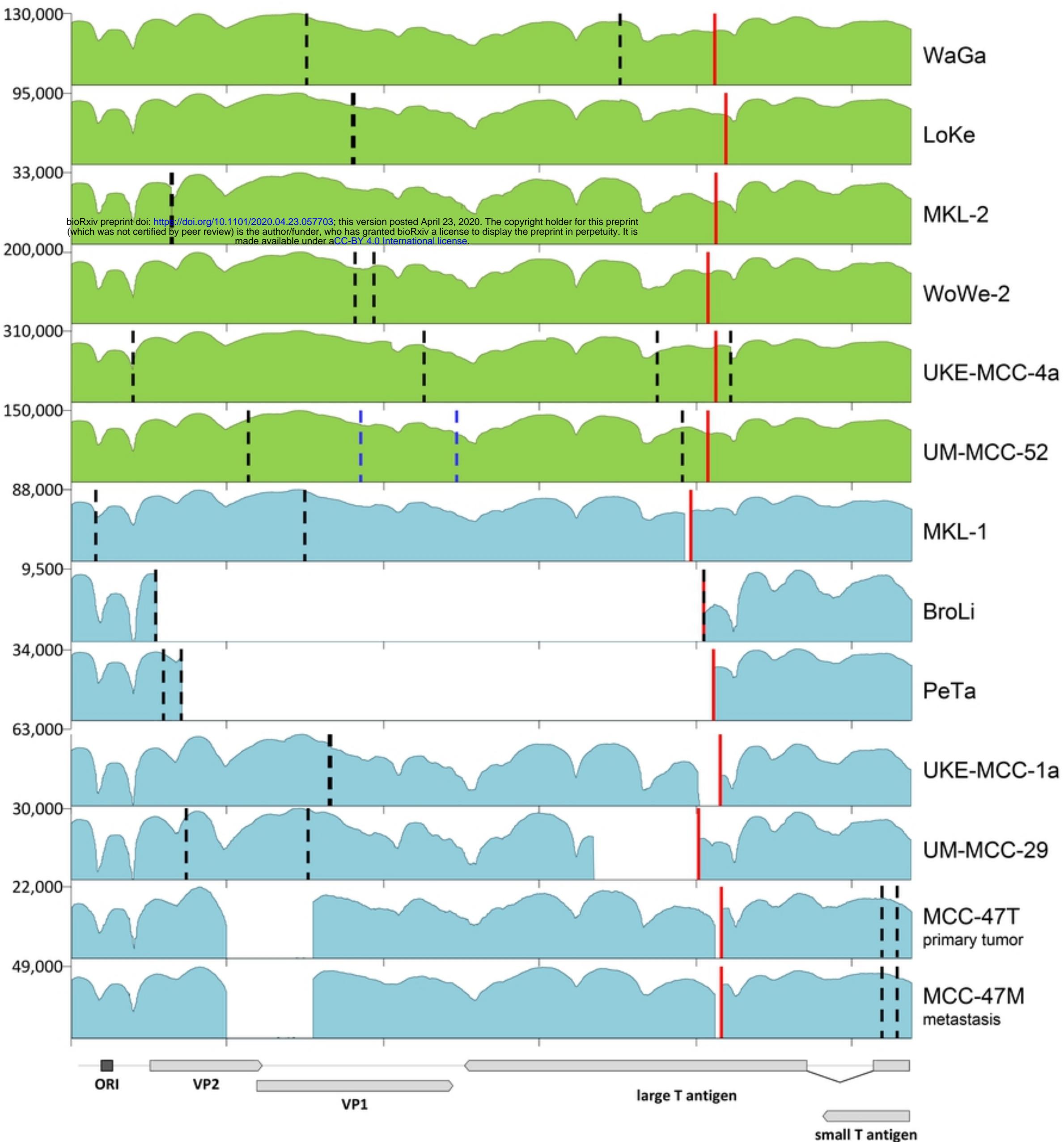
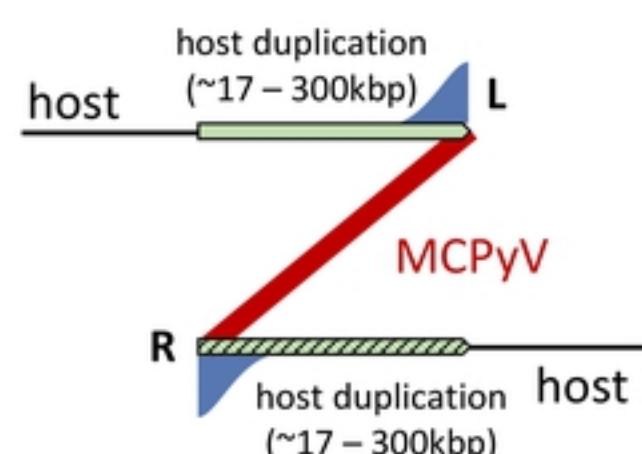
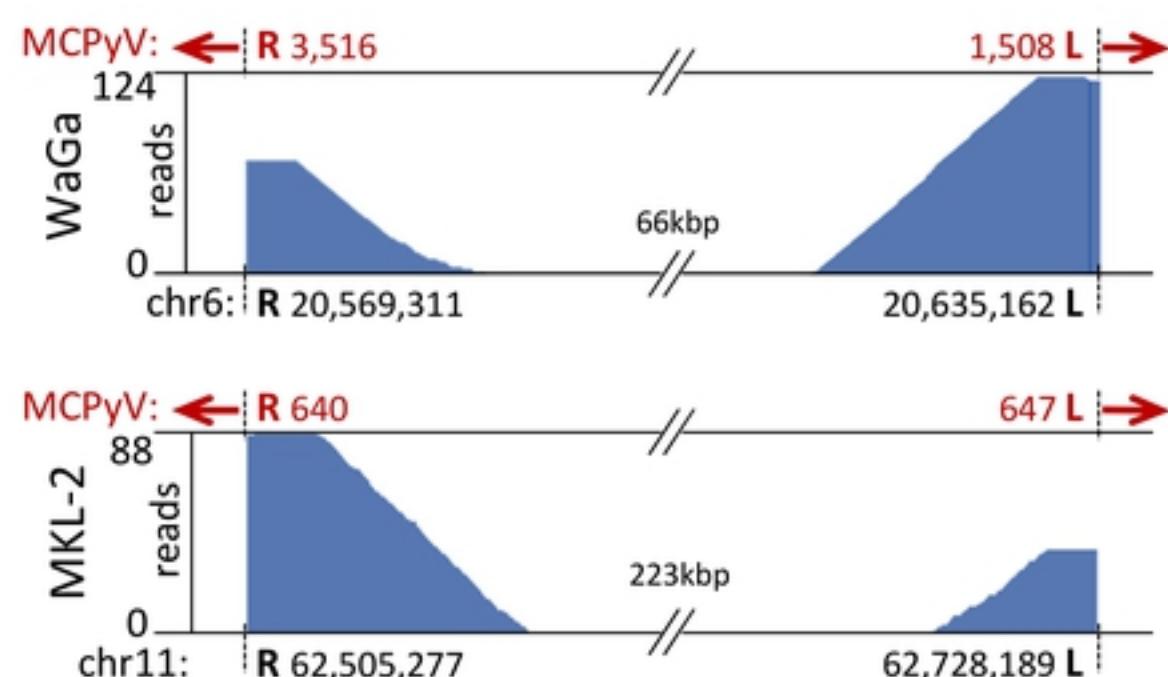
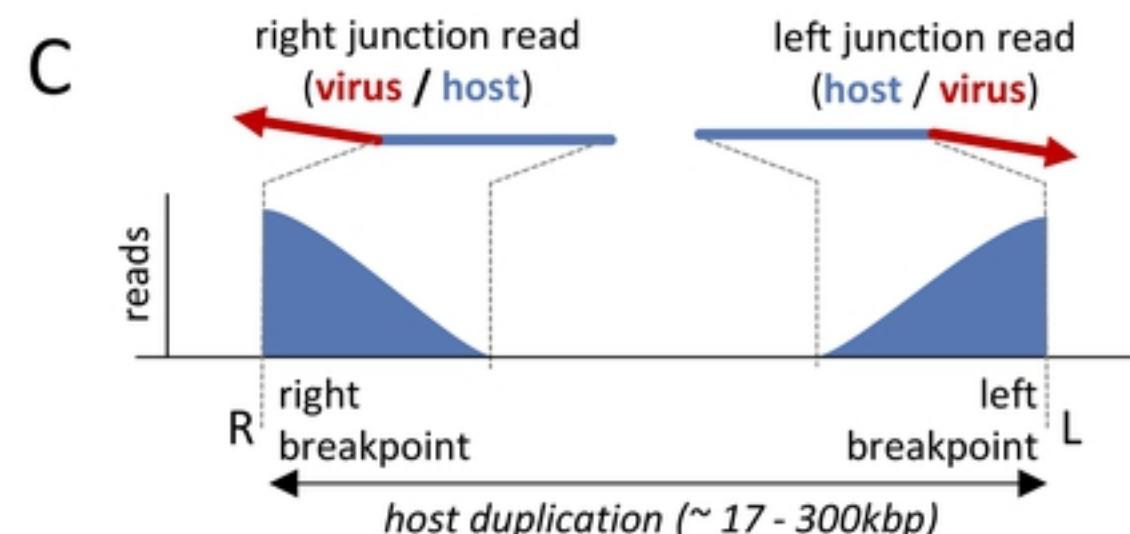
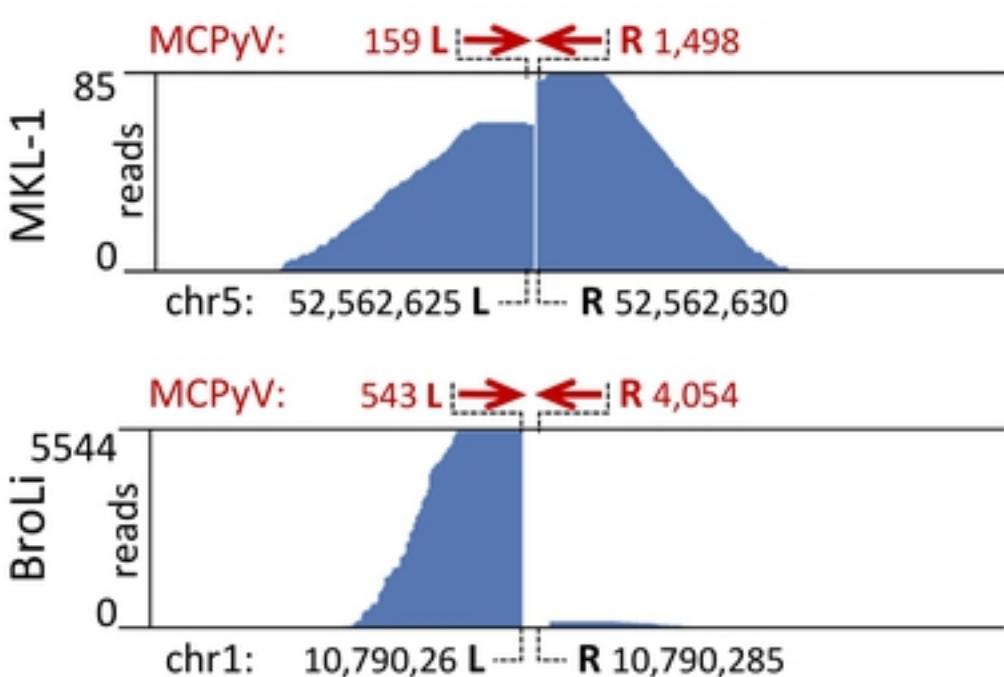
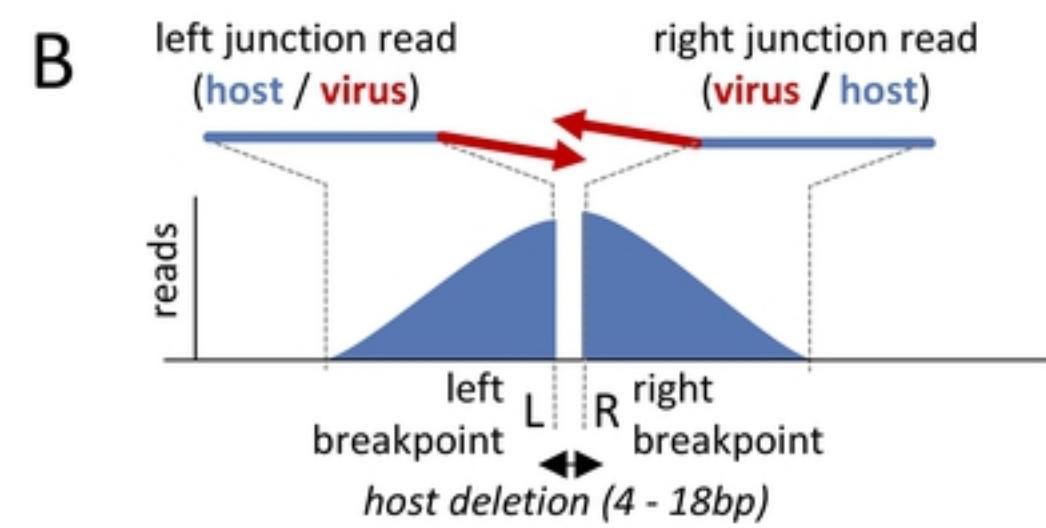
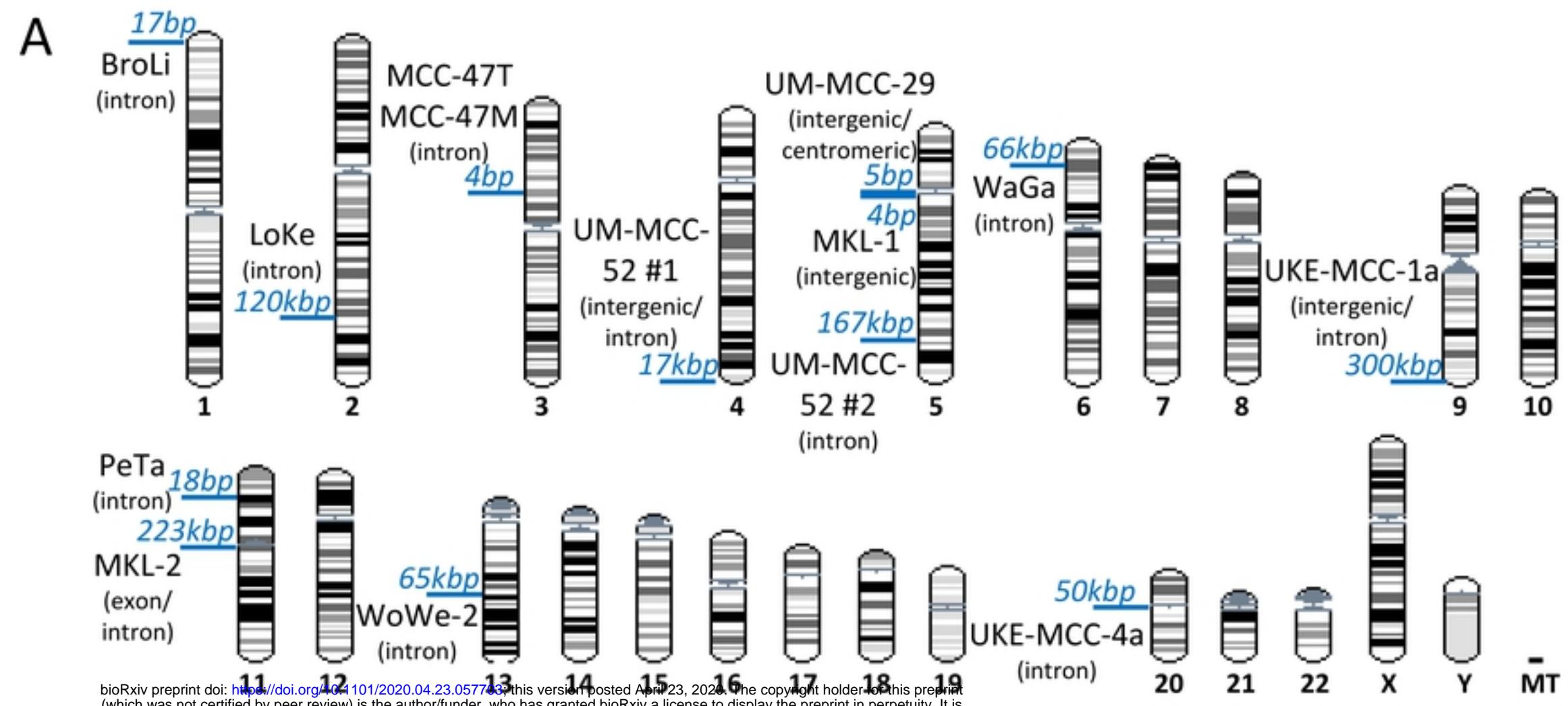
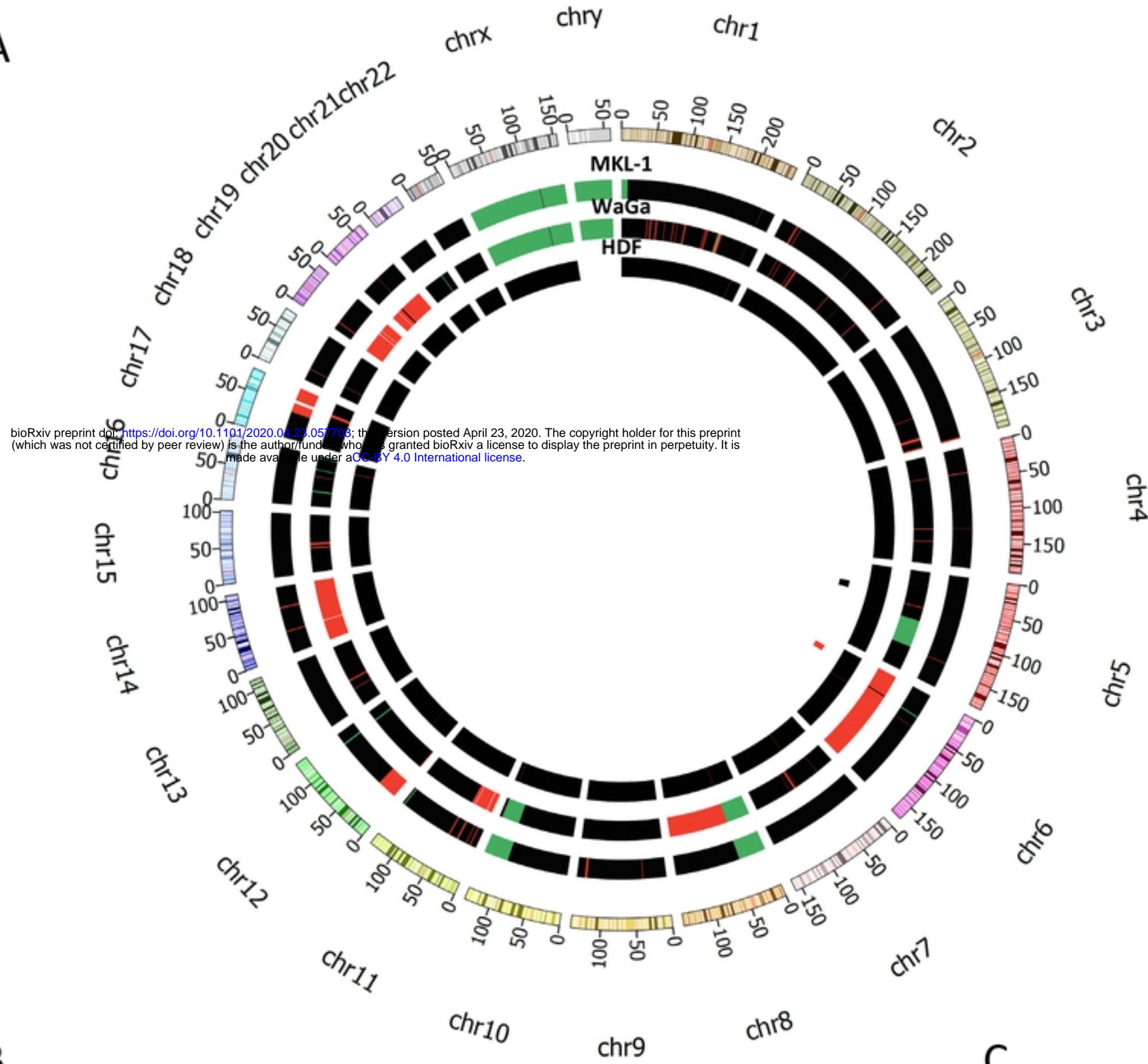
1327 **S3 Table. ENCODE data sets included in Figure 9.**

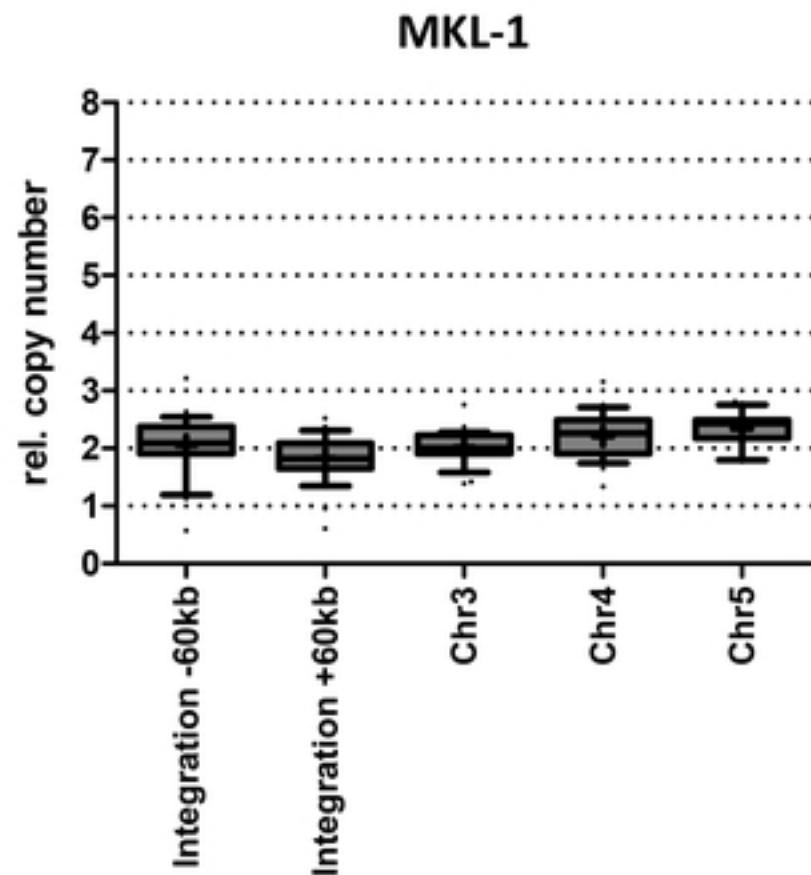
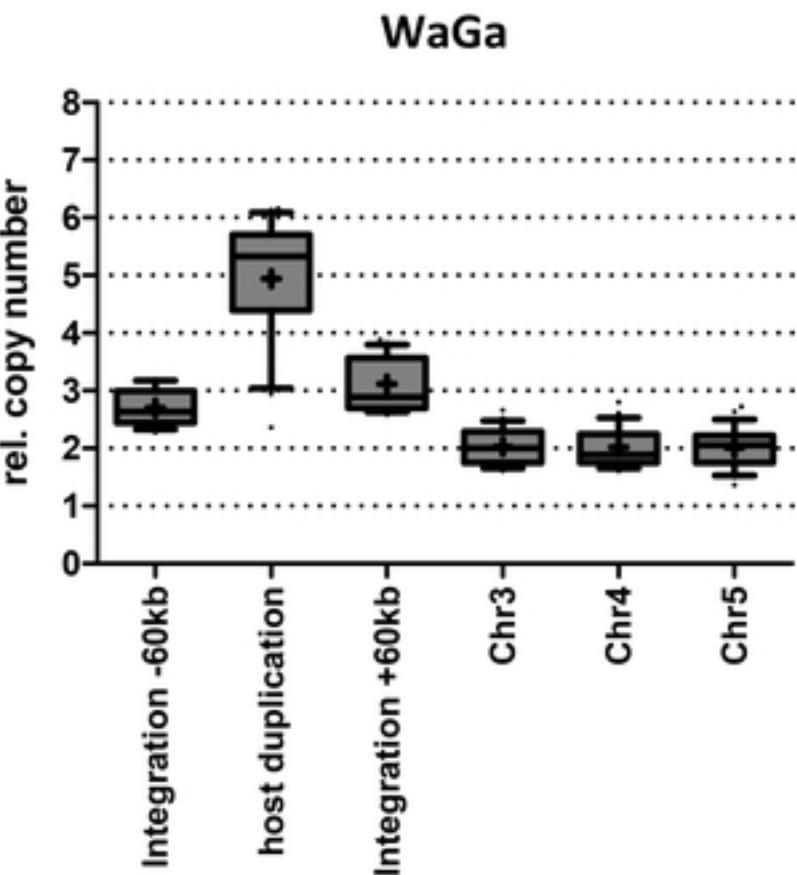
1329 **S4 Table. Statistics of nanopore sequencing.**

1330

1331 **S5 Table. Primers used for sanger sequencing.**

1332

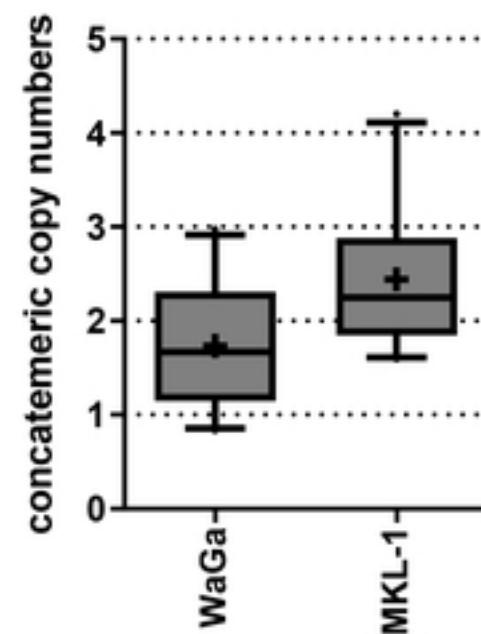
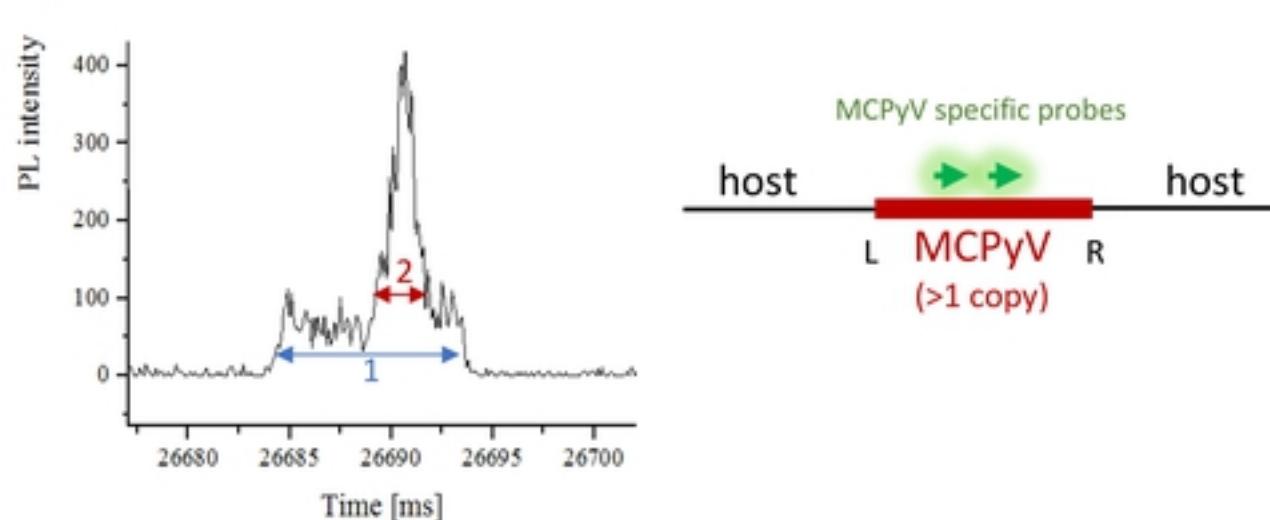









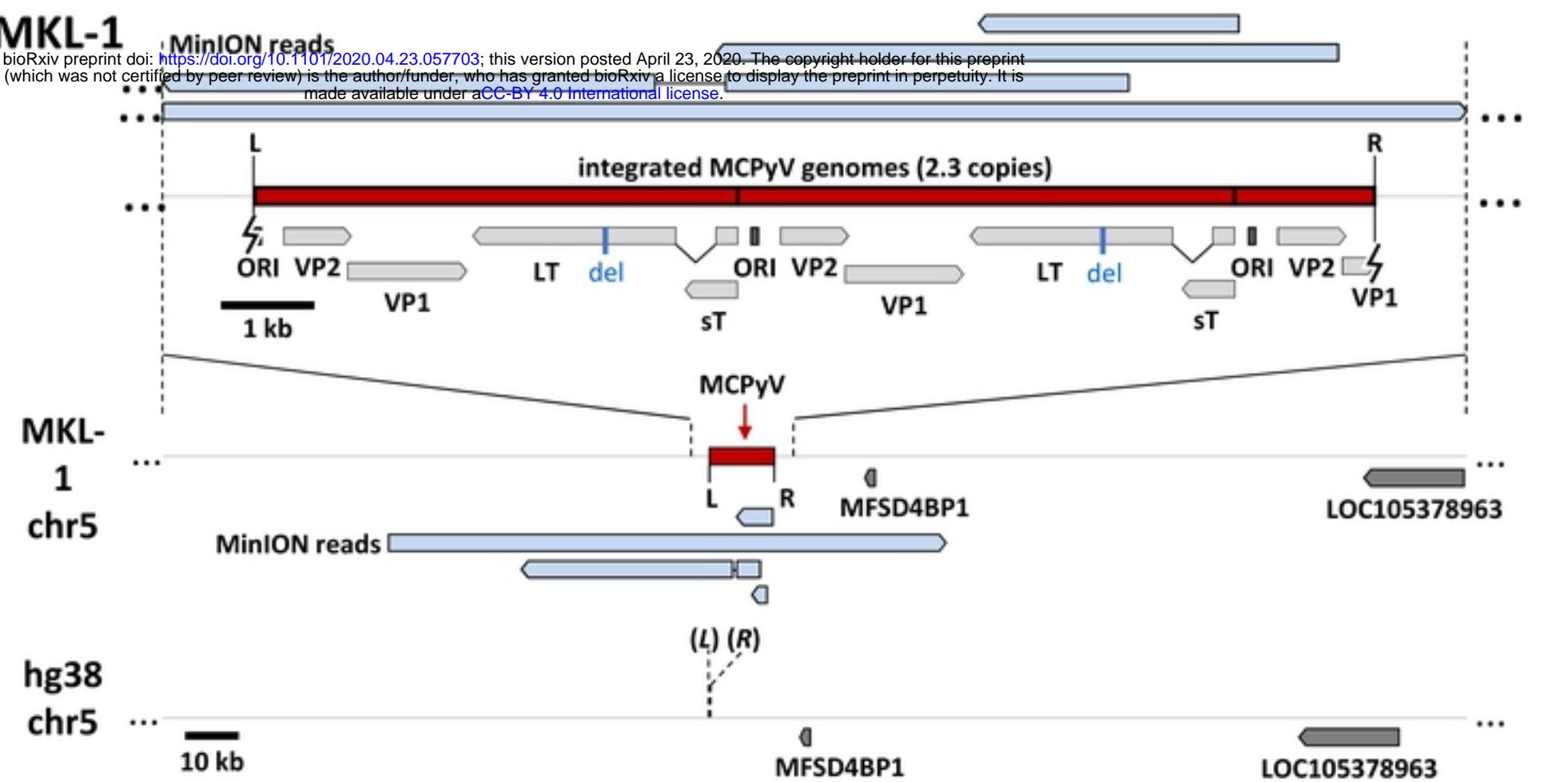
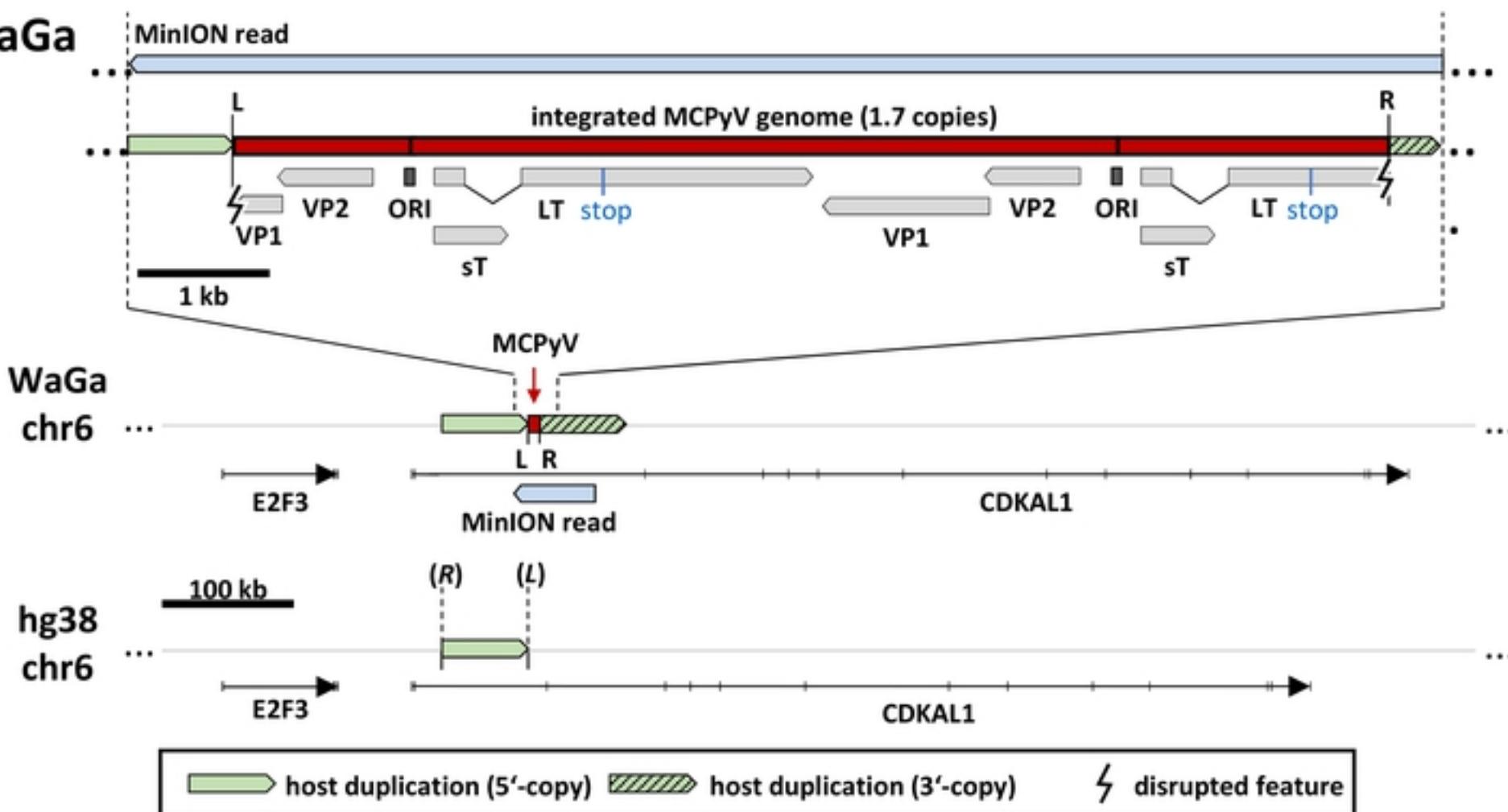


Fig1

A

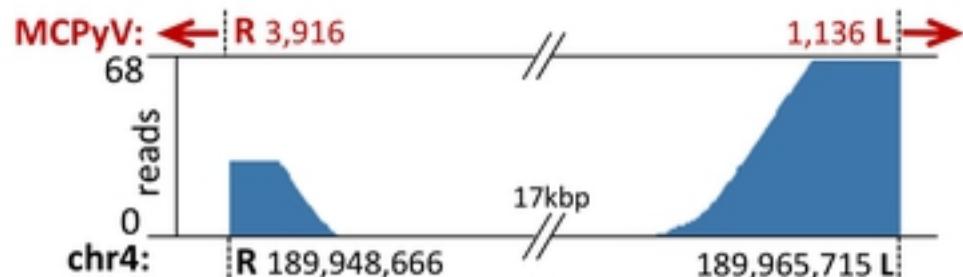
B

C

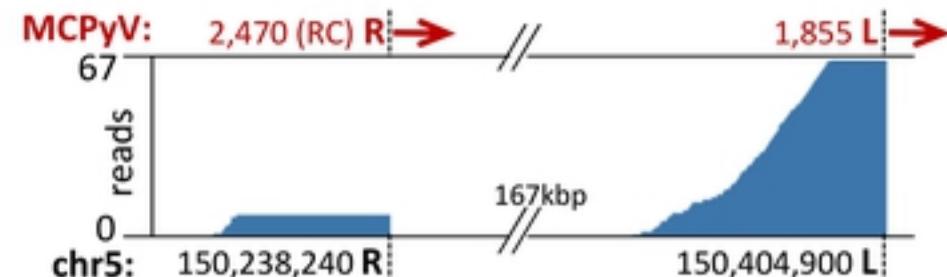





Fig3

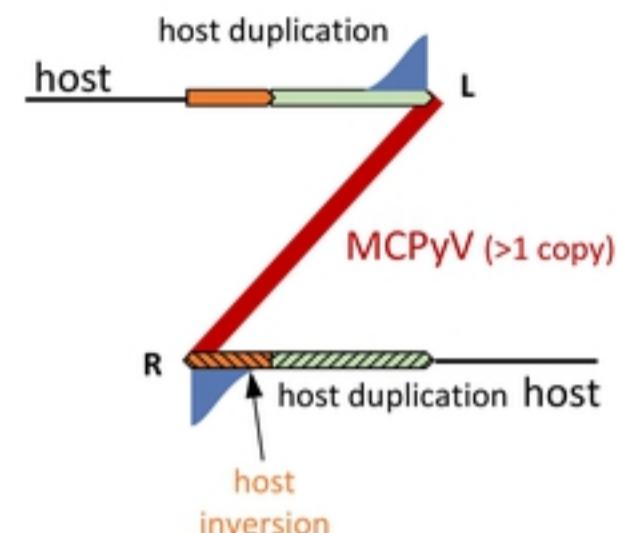
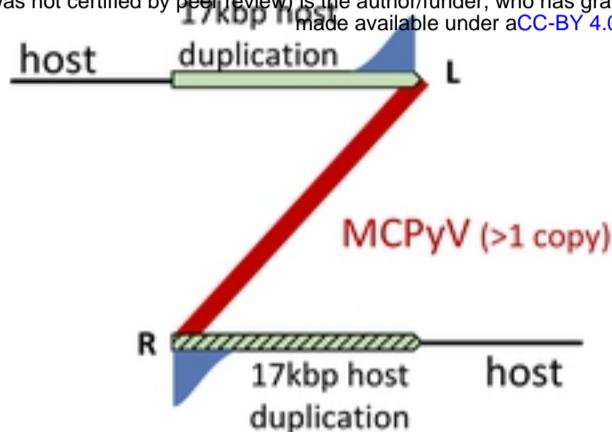
A

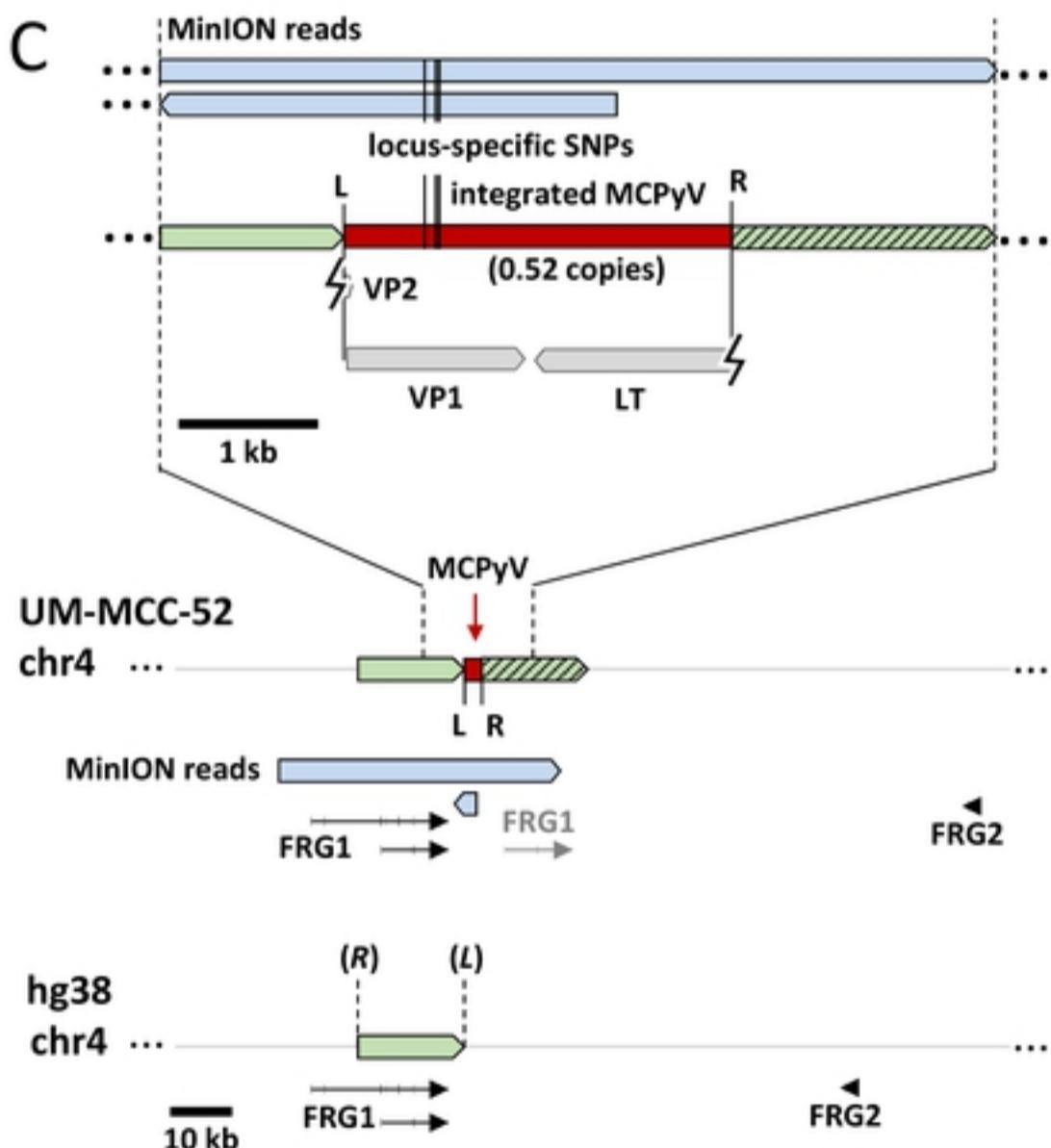

DNA	time	base pairs
Lambda DNA	5 ms	48 000 bp
1 (DNA fragment)	9.5 ms	91 200 bp
2 (Peak, MCPyV)	1.8 ms	17 280 bp

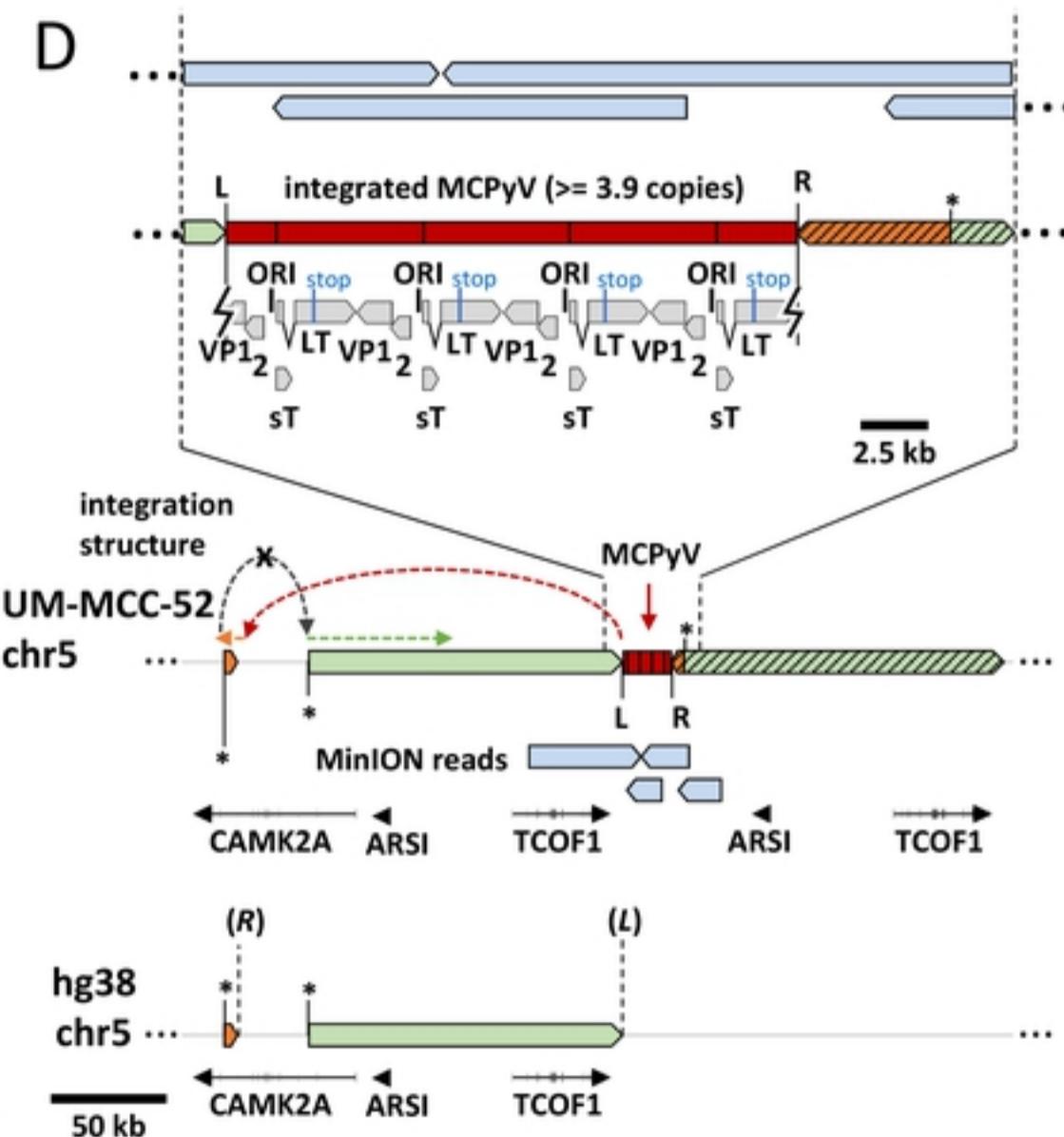
B**MKL-1**


bioRxiv preprint doi: <https://doi.org/10.1101/2020.04.23.2057703>; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

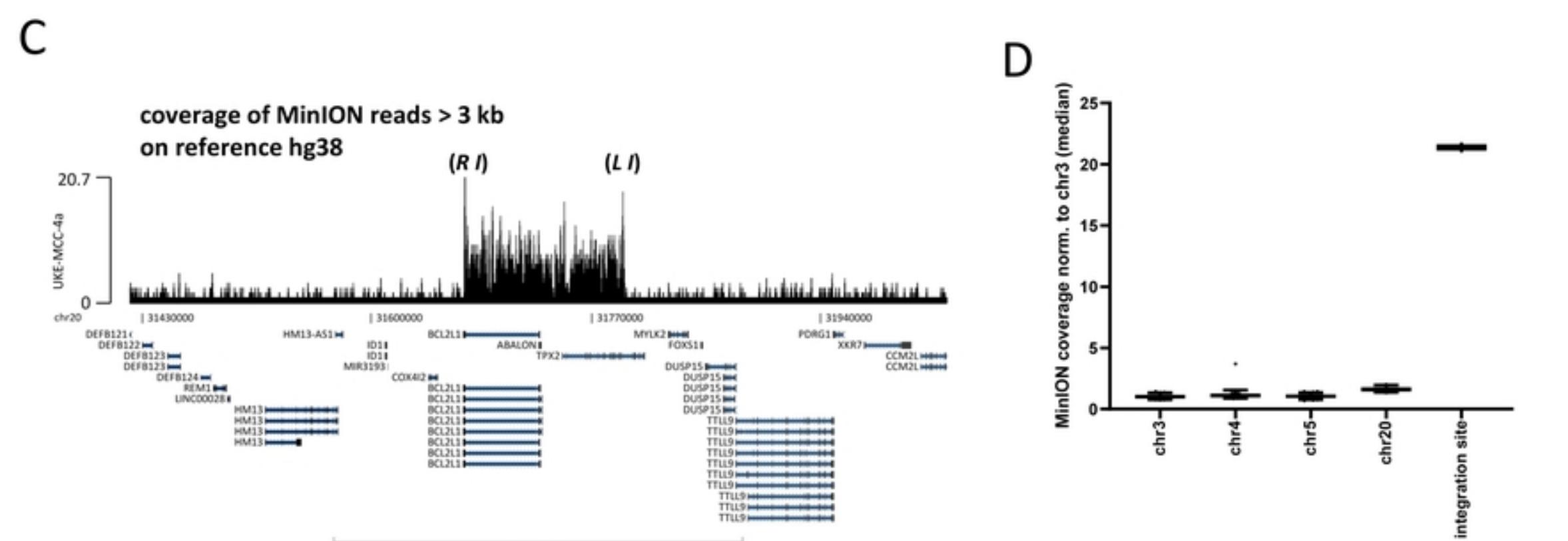
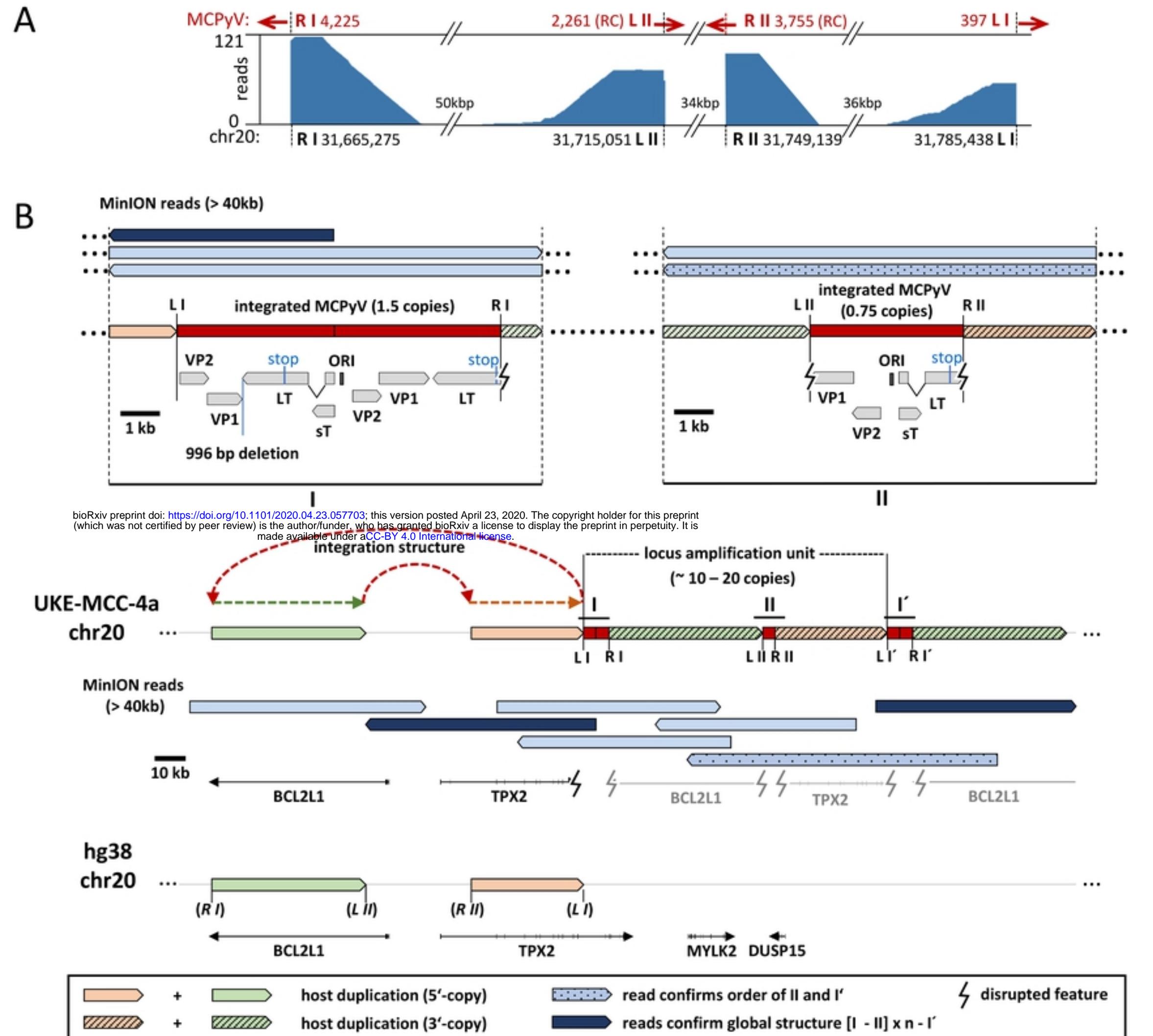
WaGa**Fig4**



A


B


bioRxiv preprint doi: <https://doi.org/10.1101/2020.04.23.2057703>; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C

D

host duplication (5'-copy)	host inversion duplication (5'-copy)	x host sequence deletion in host inversion site
host duplication (3'-copy)	host inversion duplication (3'-copy)	* host/host fusion sites
		⚡ disrupted feature

Fig5

LoKe

A

R: hg38 (chr2: 197,314,282)/ JN707599 (1802); lower case letters=insertion from unknown origin, scores: virus (32)/host (19)

chr2: TGACACTGCT TCTGAATTAAATGCTAATTCCCTGAGGGATTGCAAAACACCACTGGATCCACCAATCAAAATGGGGATCTATGGTAG
MCPyV: TCTATAGGATAATTCCATCTTATCTAATTTCGTTAGCTTGTTGATCTAGGCCCTGATTTAGGTGTCATTTTCTTCC
MCPyV/chr2: TCTATAGGATAATTCCATCTTATCTAATTTCGTTAGCTTGATCTAGGCCCTGATTTAGGTGTCATTTTCTTCC

L: hg38 (chr2: 197,433,173)/ JN707599 (1811); scores: host (32)/virus (32)

chr2: CAACAAGCTATGTCAGTATTATGTGTATTCTACTAAACATTTATCATCCCCTGACATATCCCCTAGGGATGGGCACAGA
MCPyV: ACACCATACTTCTATAGGATAATTCCATCTTATCTAATTTCGTTAGCTTGATCTAGGCCCTGATTTAGGTG
chr2/MCPyV: CAACAAGCTATGTCAGTATTATGTGTATTCTACTAAACATTTGCTTAGCTTGATCTAGGCCCTGATTTAGGTG

B

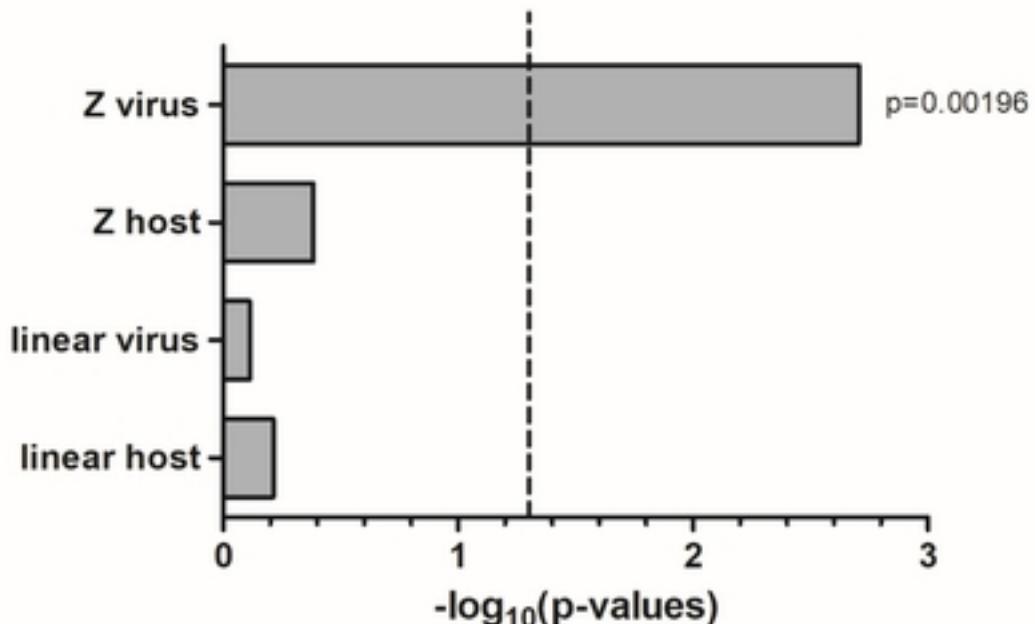
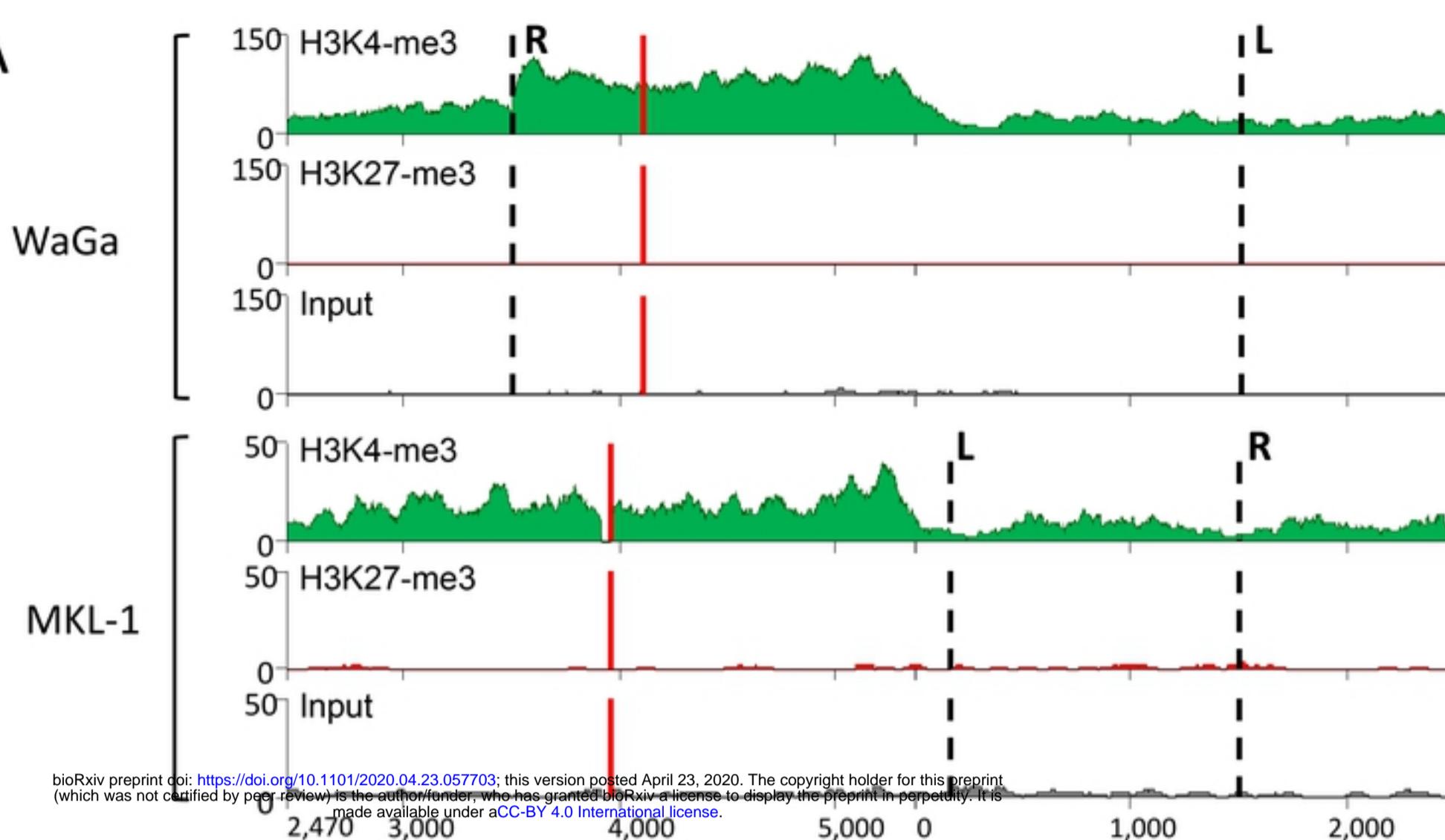
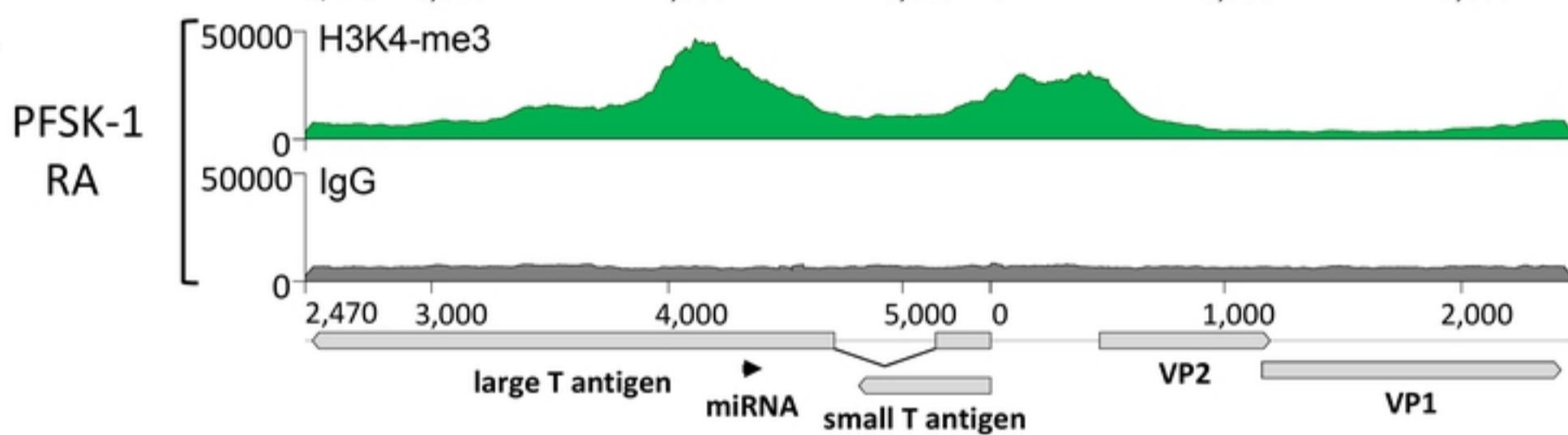




Fig7

A

B

C

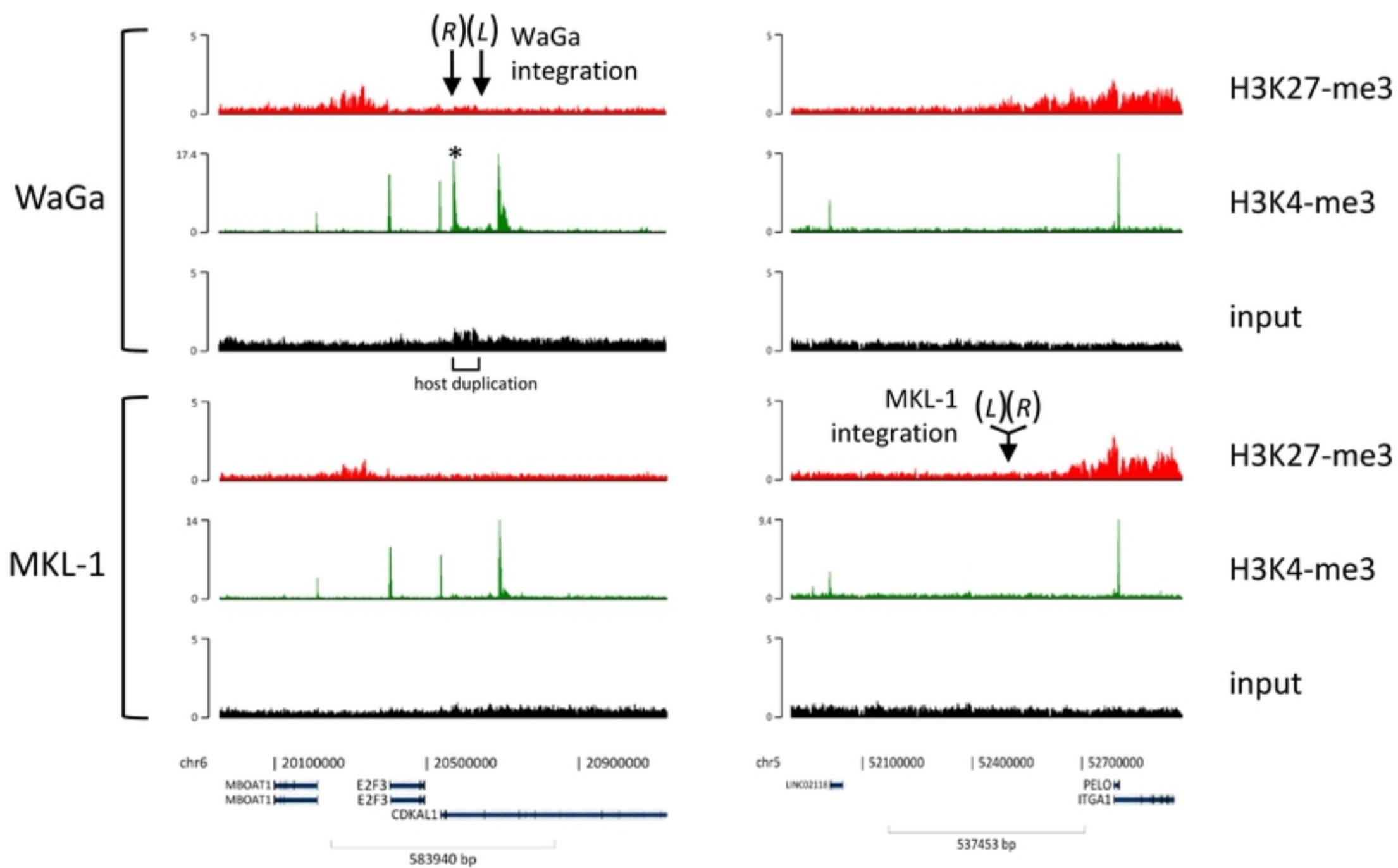
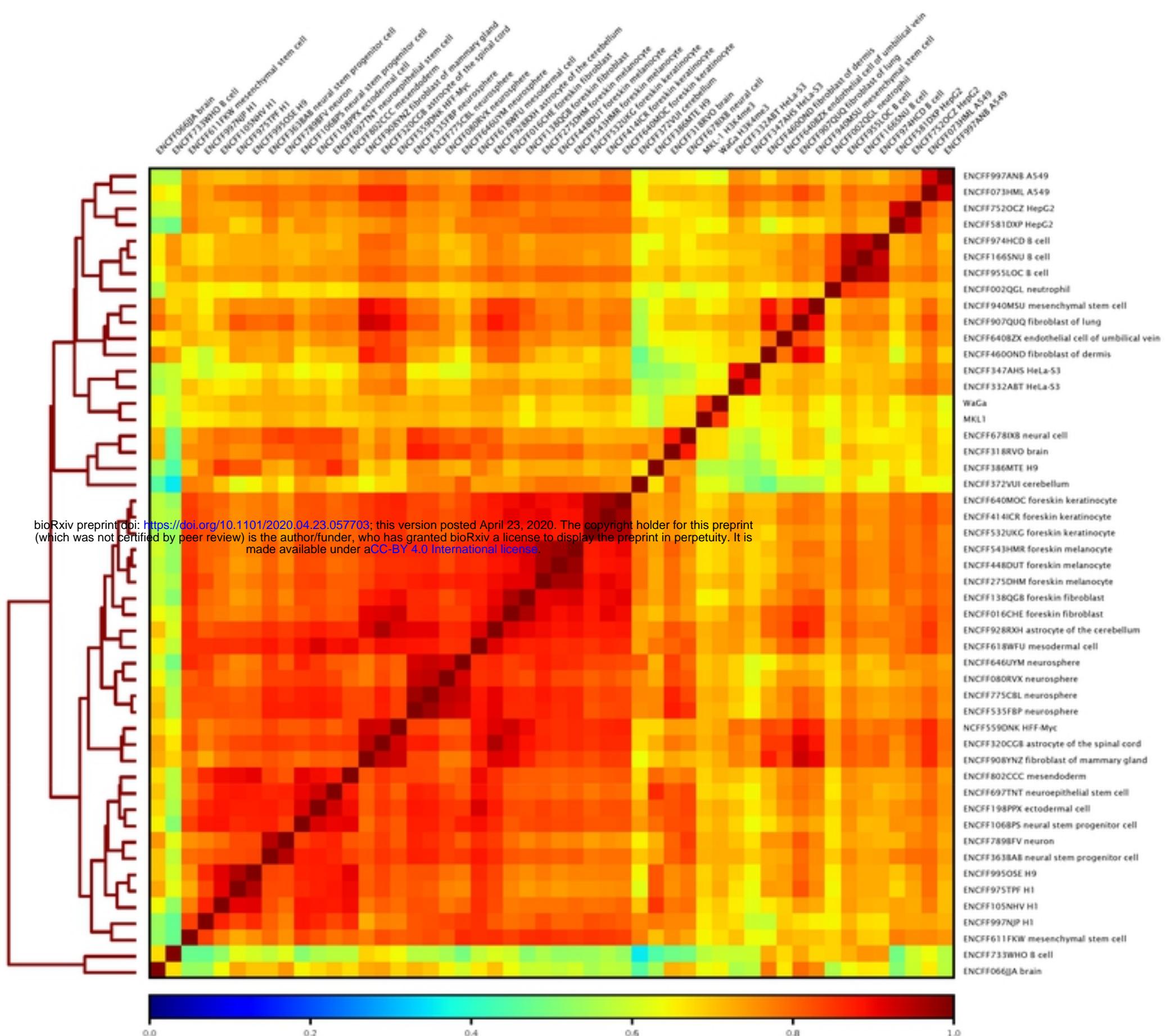



Fig8

A

B

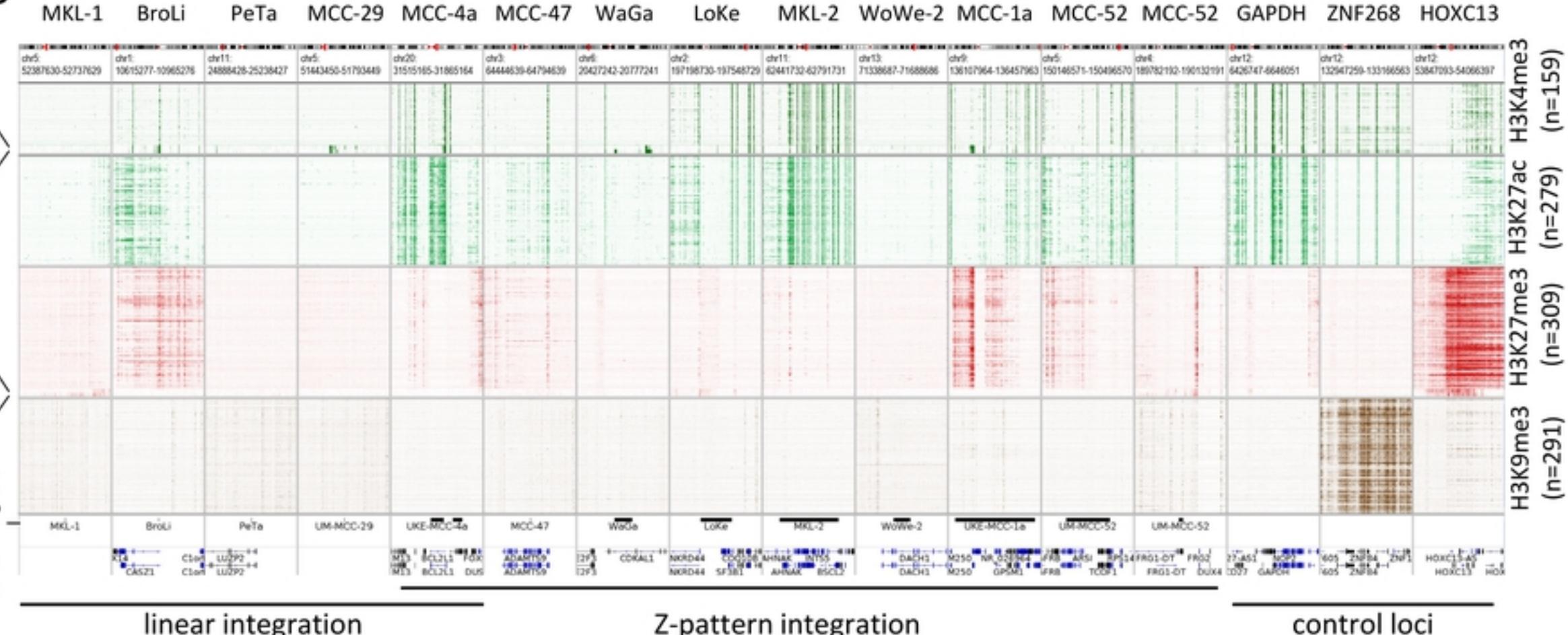
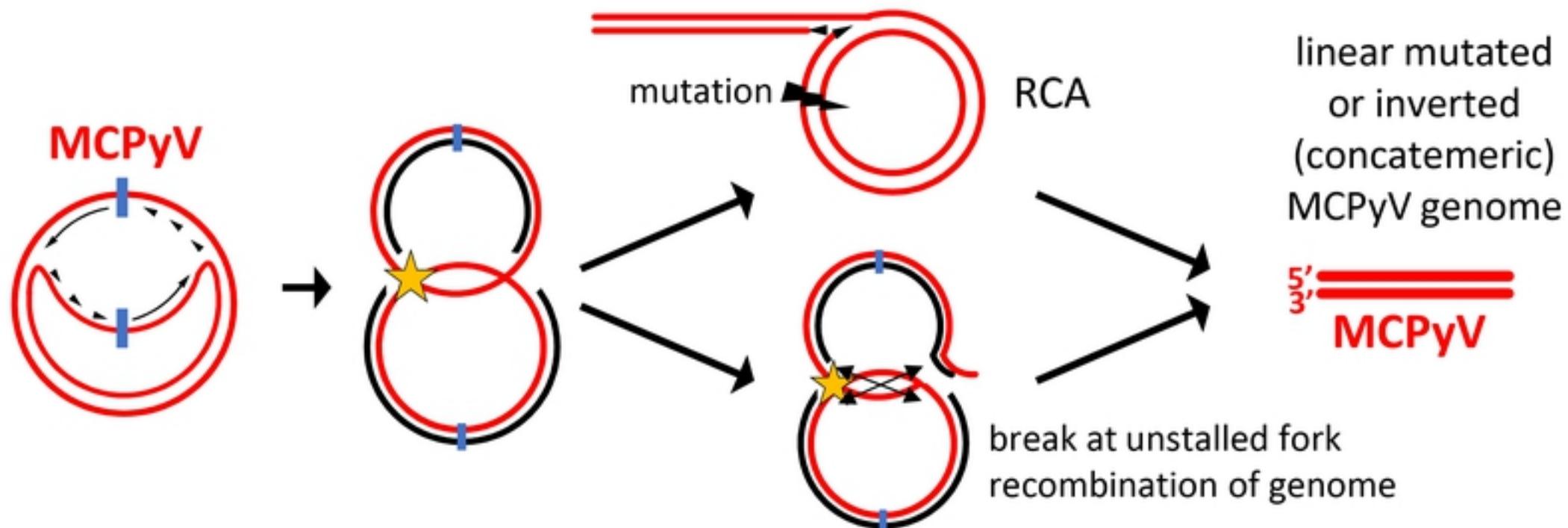
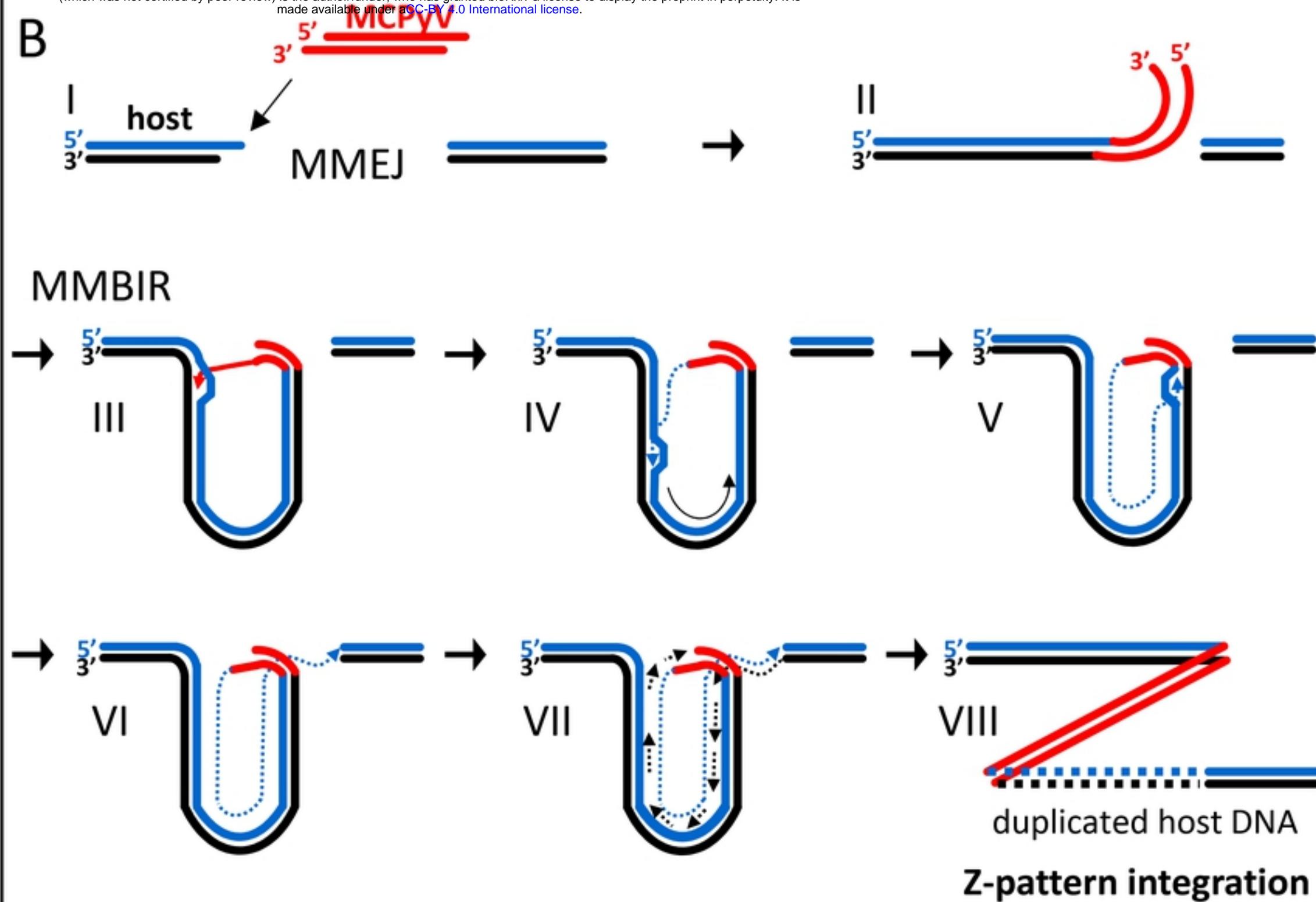
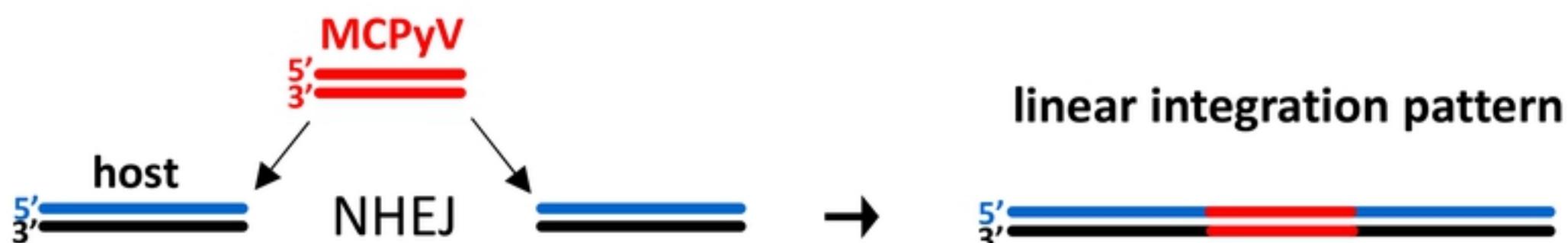





Fig9

A**B****C**