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Abstract 16 

Cell fate commitment occurs during early embryonic development, that is, the embryonic 17 
differentiation sometimes undergoes a critical phase transition or “tipping point” of cell fate 18 
commitment, at which there is a drastic or qualitative shift of the cell populations. In this study, we 19 
presented a novel computational approach, the single-cell graph entropy (SGE), to explore the gene-20 
gene associations among cell populations based on single-cell RNA sequencing (scRNA-seq) data. 21 
Specifically, by transforming the sparse and fluctuating gene expression data to the stable local network 22 
entropy, the SGE score quantitatively characterizes the criticality of gene regulatory networks among 23 
cell populations, and thus can be employed to predict the tipping point of cell fate or lineage 24 
commitment at the single cell level. The proposed SGE method was applied to five scRNA-seq datasets. 25 
For all these datasets of embryonic differentiation, SGE effectively captures the signal of the 26 
impending cell fate transitions, which cannot be detected by gene expressions. Some “dark” genes that 27 
are non-differential but sensitive to SGE values were revealed. The successful identification of critical 28 
transition for all five datasets demonstrates the effectiveness of our method in analyzing scRNA-seq 29 
data from a network perspective, and the potential of SGE to track the dynamics of cell differentiation.  30 

 31 

Keywords: single-cell graph entropy (SGE); critical transition; embryonic differentiation; dark 32 
gene; cell fate commitment. 33 
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 36 

1. Introduction 37 

Complex systems may switch abruptly to a contrasting state through a critical transition [1]. In recent 38 
years, detecting critical transitions for general systems, such as ecosystems systems [2-3], climates 39 
systems [4-5], financial systems [6,7], and epidemic model [8-9], has drawn more and more attentions. 40 
In biomedical fields, the rapid growth of single-cell datasets has shed new light on the complex 41 
mechanisms of cellular heterogeneity. In these single-cell experiments, the cell fate commitment 42 
represents a critical state transition or “tipping point” at which complex systems undergo a qualitative 43 
shift. Characterizing and predicting such critical transition is crucial for patient-specific disease 44 
modeling and drug testing [10]. Recent studies provided a plethora of statistical quantities such as 45 
variance, correlation coefficient, and coordination of gene expression, to detect a cell fate transition of 46 
embryonic differentiation [10,11]. However, these statistical quantities mainly focused on the analyses 47 
at the gene expression level, while single-cell RNA sequencing (scRNA-seq) may offer more 48 
information of an insight into the cell-specific network systems. In contrast to gene expression, cell-49 
specific network is a stable form against the time and condition [12], and thus reliably characterize the 50 
biological processes such as cell fate commitment. Such a network system is viewed as a nonlinear 51 
dynamical system with interacted variables/biomolecules, whose dynamics can be roughly divided into 52 
three stages, the before-transition stage, the critical stage at which cell fate commitment occurs, and 53 
the after-transition stage [13,14]. However, to characterize the dynamics of biological system and 54 
predict the critical stage from single-cell dataset is challenging. Comparing with conventional bulk-55 
cell information, single-cell analysis suffers from high dimensional, noisy, sparse and heterogeneous 56 
samples. 57 

In this study, from cell-specific network viewpoint, we presented a computational method, the 58 
single-cell graph entropy (SGE), to detect the signal of a critical transition or cell fate commitment 59 
during the embryonic differentiation process, and identify key genes that play important roles in 60 
embryonic development. The utilization of SGE is based on rewiring the cell-specific networks with 61 
statistical dependency, calculating a network entropy score for each localized network, combining and 62 
analyzing the dynamical change of the local indices (Fig. 1). Such method can be viewed as data 63 
transformation from the “unstable” gene expression of single cells to the relatively “stable” SGE value 64 
of gene associations (Figs. 1A-1B). This SGE value can be analyzed by any traditional scRNA-seq 65 
algorithm for cell clustering, dimension reduction and pseudo trajectory analysis by simply replacing 66 
the original gene expressions with the SGE values. Notably, the SGE method has capabilities beyond 67 
traditional expression-based methods, that is, SGE aims at exploring the dynamically differential 68 
information at a single-cell level, and thus identifying a critical stage during the progression of a 69 
biological system (Fig. 1C). Specifically, we detect the signature of an imminent critical transition by 70 
a significant increase of the SGE value, which indeed reflects the dynamic change of cell heterogeneity 71 
and coordination of gene expression. The proposed approach has been applied to five scRNA-seq 72 
embryonic differentiation datasets, including mouse embryonic fibroblasts (MEF) to neurons, neural 73 
progenitor cells (NPCs) to neurons, human embryonic stem cells (hESCs) to definitive endoderm cells 74 
(DECs), mouse hepatoblasts cells (MHCs) to hepatocytes and cholangiocytes cells (HCCs), and mouse 75 
embryonic stem cells (mESCs) to mesoderm progenitors (MPs) from the NCBI GEO database. For 76 
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 3 

these embryonic time-course differentiation datasets, the predicted cell fate transitions agree with the 77 
observation in original experiments. In these applications, from the dynamic perspective, it is also 78 
demonstrated that SGE has better performances than original gene expression in temporal clustering 79 
of cells, that is, the clustering analysis based on SGE score accurately distinguishes the cell 80 
heterogeneity over time while the gene expression fails. Based on the temporal clustering by SGE, the 81 
cell-lineage trajectories can be presented to further study the cell differentiation paths. Besides, in the 82 
analysis of these single-cell datasets, SGE uncovers a few “dark” genes, which are non-differential in 83 
gene expression but sensitive to SGE score and may play important roles in embryonic development 84 
(Fig. 1D). Therefore, the SGE method provides a new way to analyze the scRNA-seq data, and helps 85 
to track the dynamics of biological systems from the perspectives of network entropy. The successful 86 
application of SGE validated its effectiveness in single-cell analysis. 87 

 88 

2. Materials and Methods 89 

2.1 Theoretical basis 90 

A cell fate transition (cell fate commitment) occurs during the dynamical process of the early 91 
embryonic differentiation [10, 15-17]. Generally, the dynamical process of early embryonic 92 
development can be regarded as the evolution of a nonlinear dynamical system, while the cell fate 93 
transition is viewed as a drastic or qualitative state shift at a bifurcation point [10]. Similar to disease 94 
progression [13, 18], this dynamical process is modeled as three states or stages (Figure 1C): (1) a 95 
before-transition stage with high resilience; (2) a critical stage, which is the tipping point or cell fate 96 
transition with low resilience; (3) an after-transition stage, which is another stable state with high 97 
resilience.  98 

In this study, the cell-specific networks were constructed based on a recently proposed statistical 99 
model [12], which provides a statistical dependency index (defined as Eq. (1)) to determine the gene 100 
associations at a single-cell level in a reliable manner. The statistic index ranges between -1 and 1. The 101 
positive statistical dependency value infers the statistically interacting relation between two genes, i.e., 102 
there is an edge between such two genes in the cell-specific network.  103 

2.2 Algorithm to predict the critical transition based on SGE  104 

Given the time series of single-cell RNA sequencing (scRNA-seq) data, the following algorithm is 105 
carried out to predict the critical transition.  106 

[Step 1] At each time point, the logarithm log(1 + 𝑥𝑥)  is applied to normalize the initial gene 107 
expression matrix with 𝑀𝑀 rows/genes and 𝑁𝑁 columns/cells, which is generated from the scRNA-seq 108 
data. 109 

[Step 2] Constructing a specific network for each cell. Make scatter diagrams for every two genes in a 110 
cartesian coordinate system where the vertical- and horizontal-axes are the expression values of the 111 
two genes, respectively. For example, there are 𝑁𝑁 plots in the scatter diagram for a gene pair (𝑔𝑔𝑖𝑖 , 𝑔𝑔𝑗𝑗) 112 

corresponding to the 𝑁𝑁 cells. Each plot represents a cell, whose horizontal coordinate is 𝐸𝐸𝑖𝑖
(𝑘𝑘) (the gene 113 
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expression of 𝑔𝑔𝑖𝑖 in cell 𝐶𝐶𝑘𝑘) and the vertical coordinate is 𝐸𝐸𝑗𝑗
(𝑘𝑘) (the gene expression of 𝑔𝑔𝑗𝑗 in cell 𝐶𝐶𝑘𝑘) 114 

(Fig. 1A). Then totally 𝑀𝑀 ⋅ (𝑀𝑀 − 1)/2 scatter diagrams are obtained by making scatter diagram for 115 
every two genes. In the scatter diagram of genes 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗, for the cell 𝐶𝐶𝑘𝑘, whether there is an edge 116 

between 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗 in the cell 𝐶𝐶𝑘𝑘 is determined by the statistical dependency index as follows. 117 

                                   𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘) =

𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑖𝑖,𝐸𝐸𝑗𝑗)

𝑁𝑁
− 𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑖𝑖)

𝑁𝑁
⋅ 𝑛𝑛

(𝑘𝑘)(𝐸𝐸𝑗𝑗)
𝑁𝑁

                                    (1) 118 

Two boxes near 𝐸𝐸𝑖𝑖
(𝑘𝑘) and 𝐸𝐸𝑗𝑗

(𝑘𝑘) are drawn based on the predetermined integers such as 0.1𝑁𝑁, which is 119 

proportional to the cell size 𝑁𝑁. The 𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑖𝑖)  and 𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑗𝑗) represent the number of the points (cells) in 120 

vertical box, horizontal box respectively (Fig. 1A). We then straightforwardly obtain the third box, 121 
which is the overlapping of the previous two boxes. Therefore, the value of 𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑖𝑖, 𝐸𝐸𝑗𝑗) can be 122 

obtained by counting the points (cells) in the third box. If the statistical dependency index i.e., Eq. (1) 123 
is greater than zero, there is an edge between 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗 in the cell 𝐶𝐶𝑘𝑘, otherwise there is no edge. By 124 

this way, we construct a cell-specific network 𝑁𝑁(𝑘𝑘) for cell 𝐶𝐶𝑘𝑘, where each edge between two genes 𝑔𝑔𝑖𝑖 125 

and 𝑔𝑔𝑗𝑗 is decided by the dependency index 𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘). 126 

[Step 3] Extracting each local network from the specific network. Specifically, for the cell 𝐶𝐶𝑘𝑘 , its 127 
specific network 𝑁𝑁(𝑘𝑘)  can be segmented into totally 𝑀𝑀  local networks. The local network 128 

𝐿𝐿𝐿𝐿𝑖𝑖
(𝑘𝑘)(𝑖𝑖 = 1, 2, 3, … ,𝑀𝑀) is centered at a gene 𝑔𝑔𝑖𝑖, whose 1st-order neighbors {𝑔𝑔1𝑖𝑖 ,   𝑔𝑔2𝑖𝑖 ,   … ,   𝑔𝑔𝑆𝑆𝑖𝑖 }  are the 129 

edges (Fig. 1B).  130 

[Step 4] Calculating the local SGE value 𝐻𝐻𝑖𝑖
(𝑘𝑘) for each local network. Given the local network 𝐿𝐿𝐿𝐿𝑖𝑖

(𝑘𝑘) 131 
centered at a gene 𝑔𝑔𝑖𝑖, its local SGE can be obtained as follow. 132 

                            𝐻𝐻𝑖𝑖
(𝑘𝑘) =  − 1

log(𝑆𝑆)∑ 𝑝𝑝𝑖𝑖,𝑗𝑗
(𝑘𝑘)𝑆𝑆

𝑗𝑗=1 log(𝑝𝑝𝑖𝑖,𝑗𝑗
(𝑘𝑘))                                                             (2)                                   133 

with                  134 

          𝑝𝑝𝑖𝑖,𝑗𝑗
(𝑘𝑘) =

𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘)⋅𝐸𝐸𝑗𝑗

(𝑘𝑘)

∑ 𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘)⋅𝐸𝐸𝑗𝑗

(𝑘𝑘)𝑆𝑆
𝑗𝑗=1

                                                 (3)       135 

where 𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘) represents the weight coefficient between the center gene 𝑔𝑔𝑖𝑖 and a neighbor 𝑔𝑔𝑗𝑗𝑖𝑖 , which is 136 

determined by Eq. (1). The value 𝐸𝐸𝑗𝑗
(𝑘𝑘) represents the gene expression of a neighbor 𝑔𝑔𝑗𝑗𝑖𝑖  in 𝐶𝐶𝑘𝑘  and 137 

constant 𝑆𝑆 is the number of neighbors in the local network 𝐿𝐿𝐿𝐿𝑖𝑖
(𝑘𝑘). Clearly, the local SGE value (Eq. 138 

(2)) has been normalized to the number of nodes in a local network. After this step, the sparse gene 139 
expression matrix from the scRNA-seq data is transformed into a non-sparse graph entropy matrix 140 
(Figs. 1A and 1B), by taking the gene association into consideration. Thus, the local SGE value Eq. (2) 141 
is dependent not only on the expression of the center gene of a local network but also on the 142 
contribution from the neighboring genes.  143 

[Step 5] Calculating the cell-specific SGE value 𝐻𝐻(𝑘𝑘) based on a group of genes with highest local 144 
SGE values, i.e.,  145 
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                                   𝐻𝐻(𝑘𝑘) = ∑ 𝐻𝐻𝑖𝑖
(𝑘𝑘)𝑇𝑇

𝑖𝑖=1                   (4)                                                            146 

where constant 𝑇𝑇 is an adjustable parameter representing the number of top 5% genes centered in its 147 
local networks with the highest local SGE values. In Eq. (4), 𝐻𝐻(𝑘𝑘) can be considered as the SGE score 148 
of the cell 𝐶𝐶𝑘𝑘 and detect the early-warning signals of the cell fate transition. At each time point, the 149 
mean SGE score of a certain cell population is also employed in the tipping point detection. The mean 150 
SGE score of the top 5% genes with the largest local SGE values (Eq. (4)) was taken as the cell-specific 151 
graph entropy at a time point. In Supplementary_material_1 (Figure S1), it shows that different choices 152 
of 𝑇𝑇 do not alter the identification of tipping point.  153 

When the system approaches the vicinity of the critical point, the signaling genes or dynamical 154 
network biomarker (DNB) molecules exhibit obviously collective behaviors with fluctuations, which 155 
leads to that the dependent relations of DNB members in a critical transition state are different from 156 

those in a before-transition state. Moreover, the local SGE score 𝐻𝐻𝑖𝑖
(𝑘𝑘)

 in Eq. (2) or the index 𝐻𝐻(𝑘𝑘)
 in 157 

Eq. (4) sharply increases when the system is near the critical stage (Fig. 1C). Thus, the SGE score can 158 
provide the early-warning signals of the cell fate transition. 159 

 160 

3. Results 161 

3.1 SGE predicting cell fate transitions for embryonic time-course differentiation 162 

To demonstrate the effectiveness of SGE, the proposed method has been applied to five time-course 163 
datasets of embryonic differentiation from GEO database (http://www.ncbi.nlm.nih.gov/geo/), 164 
including MEF-to-Neurons data (ID: GSE67310) [19], NPCs-to-Neurons data (ID: GSE102066) [20], 165 
hESCs-to-DECs data (ID: GSE75748) [21], MHCs-to-HCCs data (ID: GSE90047) [22], and mESCs-166 
to-MPs data (ID: GSE79578) [23] . The detailed description and sources of the datasets is given in 167 
Supplementary_material_1. The SGE score of each single cell was calculated according to the 168 
algorithm in Materials and Methods section. At each time point, the mean SGE score was taken to 169 
quantitatively measure the criticality of the cell population at this time point. An SGE curve across all 170 
time points was then employed to predict any possible cell fate transition of embryonic time-course 171 
differentiation. 172 

For MEF-to-Neurons data, the mean SGE score abruptly increases from day 5 to day 20, as shown 173 
as the red curve in Fig. 2A. This significant change of SGE score provides the early-warning signal to 174 
an upcoming cell fate transition after day 20. This computational result agrees with the observation in 175 
original experiment, i.e., the differentiation of mouse embryonic intermediate cells into induced neuron 176 
(iN) occurs at day 22 [19]. Besides, to demonstrate the robustness of the proposed method in terms of 177 
the cells, the box plot of the cell-specific graph entropy was shown based on the samples of each time 178 
point. It is seen that the median values of the red box plot of SGE score in Fig. 2A also illustrates clear 179 
signal for the tipping point, which demonstrates that the SGE score is featured with robustness against 180 
sample noises. It is seen as the blue curve in Fig. 2A, the mean gene expression of the differential genes 181 
fails to provide any effective signals for cell fate transition. Therefore, the signature of a critical 182 
transition from MEF to neurons is identified by SGE at single-cell resolution of the cell populations. 183 
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When applied to NPCs-to-Neurons data, i.e., a 30-day time-course differentiation experiment of 184 
neural progenitor cells into neurons, as shown as the red curve in Fig. 2B, the mean SGE score abruptly 185 
increases and reaches a peak at day 1, suggesting there is a cell fate transition after day 1. This signal 186 
also coincides with the observation in original experiment, in which it showed that the cells at day 1 187 
were the least heterogeneous and after day 1 the transcriptional heterogeneity increased, reaching the 188 
largest heterogeneity among the neurons at day 30 eventually [20]. In addition, the median values of 189 
the red box plot of SGE score in Fig. 2B also demonstrated the robust performance of SGE score in 190 
detecting the early warning signal of a qualitative state transition. In contrast to SGE score, the mean 191 
gene expression fails to detect the early-warning signals of cell fate transition (the blue curve in Fig. 192 
2B). 193 

For hESCs-to-DECs data, the peak of the SGE score (the red curve in Fig 2C) appears at 36 h, 194 
which indicates an imminent cell fate transition after 36 h. Indeed, the differentiation induction into 195 
definite endoderm (DE) at 72 h, and the differentiation trajectory toward a DE fate commitment after 196 
36 h, have been recorded in literatures [21,24], which validated the SGE signals. The robustness of 197 
SGE score in predicting the critical transition of the differentiation trajectory toward a DE fate can be 198 
showed by the median values of the box plot (the red box plot in Fig. 2C). Moreover, in terms of mean 199 
gene expression, there is no significant difference among six points time (the blue curve in Fig. 2C). 200 

As the red curve shown in Fig. 2D, for MHCs-to-HCCs data, the drastic increase of average SGE 201 
appeared from E11.5 to E12.5 and reaches its peak at E12.5, after which hepatoblast-to-hepatocyte and 202 
cholangiocytes transition occurs [22]. Moreover, the median values of the red box plot of SGE score 203 
in Fig. 2D stably exhibits an obvious signal at the tipping point (E12.5), which demonstrates that SGE 204 
accurately predicts the cell fate transition for embryonic time-course differentiation. It is seen from the 205 
blue curve in Fig. 2D that the mean gene expression fails to provide any signal for the tipping point. 206 

The SGE method has been applied to mESCs-to-MPs data, which is obtained from an experiment 207 
of a retinoic acid (RA)-driven differentiation of pluripotent mouse embryonic stem cells (mESCs) to 208 
lineage commitment [23]. It is seen from the red curve in Fig. 2E, the mean SGE score reaches its peak 209 
at 24 h, signaling an upcoming critical transition after 24 h. Actually, there are cells exiting from 210 
pluripotency between 24 h and 48 h of retinoic acid exposure and then differentiating into endoderm 211 
around 48 h [23]. Further, the median values of the box red plot of SGE score in Fig. 2E also indicates 212 
that the 24 h is a tipping point. But in terms of gene expression, it shows little significant difference 213 
among four points time (the blue curve in Fig. 2E).  214 

The successfully prediction of the cell fate transitions during embryonic cell differentiation in 215 
these five datasets validates the effectiveness and accuracy of SGE method. 216 

 217 

3.2 The dynamical change of local SGE scores 218 

At the identified transition point, the group of top 5% genes with the largest local SGE values were 219 
taken as the signaling genes for further functional and biological analysis. These signaling genes can 220 
be regarded as a set of DNB and may be highly associated with the cell fate commitment during the 221 
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embryonic development. First, the signaling genes were mapped to protein-protein interaction (PPI) 222 
network, from which the maximal connected subgraph was taken to study the dynamical network 223 
evolution. For MEF-to-Neurons data, we show the dynamical evolution of signaling genes at the 224 
network level (Fig. 3A). It is seen that a significant change of the network structure occurs at day 20, 225 
signaling an upcoming cell fate transition. Besides, the landscape of the local SGE score for signaling 226 
and non-signaling genes was illustrated as in Fig. 3D, from which it is clear that the local SGE scores 227 
of the signaling genes abruptly increase in a collective manner around day 20. For MHCs-to-HCCs 228 
data, as shown in Fig. 3B, there is an obvious change in the network structure at embryonic day 12.5 229 
(E12.5), signaling the cell fate transitions of the differentiation into hepatocytes and cholangiocytes 230 
after E12.5 [22]. The whole dynamics of signaling-gene network across all 7 time points is presented 231 
in Supplementary_material_1 (Figure S2A). Therefore, the network signature of a critical transition 232 
during embryonic cell differentiation is illustrated, which may benefit the understanding of molecular 233 
associations among cell populations. Moreover, to show the global view of the signaling genes, the 234 
landscape of local SGE scores was presented in Fig. 3E, in which the peak of local SGE scores for 235 
signaling genes appeared at E12.5. For hESCs-to-DECs data, there is a drastic change in the network 236 
structure at 36 h (Fig. 3C), signaling the cell fate transitions of the differentiation induction into the 237 
definite endoderm at 72 h [21]. The dynamical evolution of the PPI network across all 6 time points is 238 
provided in Supplementary_material_1 (Figure S2B). Moreover, to show the evolution of the signaling 239 
genes in a global view, the landscape of local SGE score is presented in Fig. 3F, in which the peak local 240 
SGE of signaling genes appears at 36 h. Clearly, by exploring the dynamical change of gene 241 
associations, SGE offers an insight of critical transition during the embryonic differentiation from the 242 
perspective of network dynamics.  243 

  244 

3.3 Temporal clustering and pseudo-trajectory analysis 245 

The data transformation from the gene expression matrix to the SGE matrix not only helps to detect 246 
the critical transitions of embryonic development, but provides a better way to perform clustering 247 
analysis on cells during a biological process and thus explore dynamical information of cell populations. 248 
The t-distributed stochastic neighbor embedding (t-SNE), a nonlinear method to perform dimension-249 
reduction [25], is applied to carried out dimension-reduction analysis and visualization, which has been 250 
extensively used in the analysis of scRNAseq data. A group of biomarkers are composed by top 5% 251 
genes with the largest local SGE value and top 5% genes with the smallest local SGE value in tipping 252 
point. We compare the clustering performance between SGE and gene expression (EXP) based on 253 
biomarkers. For MEF-to-Neuron, MHCs-to-HCCs and hESCs-to-DECs data, the clustering analyses 254 
are shown in Figs. 4A-4B, Figs. 4D-4E and Figs. 4G-4H, the clustering analysis based on SGE can 255 
distinguish the state of cells at different time points while the gene expression fails. Moreover, from 256 
the results as shown in the Figure S3 of Supplementary_material_1, the SGE method succeeded in 257 
distinguishing different cell types in three states, i.e., before-transition, critical-transition and after-258 
transition state, but the gene expression fails to make such distinction. The result of dimension-259 
reduction and visualization for NPCs-to-Neurons data and mESCs-to-MPs data is given in 260 
Supplementary_material_1 (Figure S4). Besides, the heatmap of SGE value for biomarkers stratified 261 
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by three states (before-transition, critical-transition and after-transition state) while the heatmap of gene 262 
expression value fails (see Supplementary_material_2 for details). The best possible clustering analysis 263 
result of all datasets are obtained from the SGE method, which illustrates that SGE has a superior 264 
performance than the original gene expression.  265 

           To further validate the SGE performance, the pseudo-trajectory analysis was performed on the 266 
scRNA-seq data. Based on the temporal cell clustering by SGE, the three-dimensional representations 267 
of cell-lineage trajectories for three datasets are shown in Fig. 4C, Fig. 4F and Fig. 4I. The z-axis 268 
represents SGE potency estimation, while the x and y axes correspond to the t-SNE components. In 269 
Fig. 4C, we present the differentiation trajectories from MEF to neurons where MEF differentiated into 270 
neurons after 20 days. For MHCs-to-HCCs data, SGE predicted the dynamic differentiation trajectories 271 
from MHCs to HCCs (Fig. 4F). The MHCs-to-HCCs transition occurs immediately after embryonic 272 
day 12.5 (E12.5), which is consistent with the results of the original experimental observation [22]. 273 
Thus, the dynamics of cell fate decisions from MHCs to HCCs are revealed by such pseudo-temporal 274 
trajectories of SGE score, characterizing the underlying critical transition of the biological system 275 
during early embryonic development. When applied to hESCs-to-DECs data, the developmental 276 
trajectories of cell differentiation from hESCs to DECs are shown in Fig. 4I. The differentiation toward 277 
DECs appears after 36 h, which coheres with the experimental results [21]. These results demonstrate 278 
that the SGE-based potency estimation can track the dynamic changes in cell potency, as well as the 279 
specific time point at which the cell fate commitment or the differentiation into distinct cell types 280 
occurs.  281 

 282 

3.4 Discovering “dark genes” by SGE score 283 

In the biomedical field, differentially expressed genes play important roles in finding new biomarkers, 284 
key regulators and drug targets. However, some non-differentially expressed genes may also be 285 
involved in the essential biological processes, and should not be ignored. Actually, references showed 286 
that such genes are enriched in key functional pathways and performs well in prognosis [26] and may 287 
play biological roles in endothelial cells (EC) [12]. During the analysis of the above single-cell datasets, 288 
some genes were also discovered as the “dark” genes, which were non-differential in gene expression, 289 
but sensitive to SGE scores. These genes show a significant difference between the critical point and 290 
non-critical point at the network level, rather than at the gene expression level. We performed the 291 
differential SGE analysis on the five embryonic time-course differentiation datasets. The SGE and gene 292 
expression (EXP) were compared based on the signaling genes (top 5% genes with the largest local 293 
SGE score). Figures 5A-5C showed some “dark genes” of MEF-to-Neuron, MHCs-to-HCCs, and 294 
hESCs-to-DECs data. Other “dark genes” for these three datasets were respectively presented in 295 
Supplementary_material_3, Supplementary_material_4, and Supplementary_material_5. The results 296 
for the mESCs-to-MPs data and NPCs-to-Neurons data are respectively provided in 297 
Supplementary_material_6 and Supplementary_material_7. It is obvious that there are no significantly 298 
differential changes at the gene expression level, but significantly differential changes at the network 299 
entropy (SGE) level. Some “dark genes” have been reported to be associated with embryonic 300 
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development, which illustrates that these “dark genes” play important roles in embryonic development. 301 
For these three datasets, the “dark genes” which are associated with embryonic development are 302 
demonstrated in Table 1-3, respectively. 303 

 304 

3.5 Revealing vital biological signals by common dark genes. 305 

Based on genes with differential SGE values, we found 6 common signaling genes (CSGs) for human 306 
embryo development among NPCs-to-Neurons data and hESCs-to-DECs data (Figure S6A of 307 
Supplementary_material_1) and other 14 among the mouse embryo development datasets (the Figure 308 
S6B of Supplementary_material_1). To evaluate their function in embryo development, the Reactome 309 
and KEGG pathway enrichment analysis is performed for these overlap genes. 310 

        For NPCs-to-Neurons data and hESCs-to-DECs data, it has been confirmed that common 311 
signaling genes, such as LOCR and HLTF (Fig. 5C), play a relatively important role in embryonic 312 
differentiation. LOCR, as an important molecule in the phosphatidylinositol signaling system, acts as 313 
a signal transduction element in consensus genes and may also participates in the regulation of TNFR1 314 
signaling, interacts with the TNFR1-induced NFkappaB signaling pathway, and activates tumor 315 
necrosis factor receptor 1 (TNFR1). Multiple signal transduction pathways can be triggered to induce 316 
inflammation, cell proliferation, survival, or cell death [51-53]. At the same time, to respond to a wide 317 
range of extracellular stimuli, thereby promoting differentiation, proliferation, cell motility, cell 318 
survival, and some other important cellular behavior [54-56], LOCR and HLTF together act as the RAF 319 
/ MAP kinase cascade element in the RAS-RAF-MEK-ERK pathway to participate in controlling 320 
downstream MAPK1 / MAPK3 signaling by directly activating MAP2K and MAPK, and MAPK3 and 321 
MAPK1 will be phosphorylated by MAP2Ks 1 and 2.  322 

In addition, LCOR participates in TCF dependent signaling in response to WNT signal together 323 
with MGA. The WNT pathway is one of the most important signaling pathways in cells for cell 324 
proliferation. In the classical WNT signaling pathway, the binding of WNT ligands to frizzled protein 325 
(FZD) and lipoprotein receptor-related protein (LRP) receptors leads to the destruction of complex 326 
inactivation, the stabilization and nuclear translocation of β-catenin and subsequent activation of 327 
TCF/LEF-dependent transcription. Transcriptional activation in response to classical WNT signaling 328 
controls cell fate, stem cell proliferation, and self-renewal, and promotes tumorigenesis [57-59].  329 

As an important transcription factor, HLTF has both helicase and E3 ubiquitin ligase activities. 330 
We have noticed that it is directly involved in Ras activation upon Ca2 + influx through the NMDA 331 
receptor [60]. Ras catalyzes its effector substrate to regulate a series of important functions related to 332 
cell growth, differentiation, and apoptosis. Besides, HLTF, together with MAG, also plays an important 333 
role in the cell cycle. Also, as described in the GSE102066 article [20], HLTF is also directly involved 334 
in the neurobiological process of negative regulation of NMDA receptor-mediated neuronal 335 
transmission, which might also be one of the key regulators of brain / spinal neuron differentiation after 336 
24 hours. It should be noted that the role of these gene products in the pathway also belongs to the 337 
upstream of signaling. For example, that LOCR and HLTF play a direct role in controlling downstream 338 
MAPK pathway when they participate the RAF / MAP kinase cascade signal cascade process. At the 339 
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same time, this kinase cascade, as a downstream effector of FLT3 Signaling, communicates FLT3 340 
Signaling with the MAPK pathway. Beyond that, RAF / MAP kinase cascade is also important in 341 
CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling, which may 342 
also lead cell proliferation. 343 

Among the 14 common signaling genes across MHCs-to-HCCs, MEF-to-Neurons and mESCs-344 
to-MPs datasets, it has been seen that some genes, including POLR2D, ATP6V1B2 and CTTN (Figs. 345 
5A-5B), also participate in mouse embryonic differentiation. POLR2D directly participates in RNA 346 
Polymerase II transcription initiation as the main component of RNA polymerase 2, which is a 347 
necessary step for gene expression. The formation of an open complex exposes the template strand to 348 
the catalytic center of RNA polymerase II. This will promote the formation of the first phosphodiester 349 
bond, which marks the start of transcription [61]. The initiation of transcription is the main regulatory 350 
point of gene expression [62]. As well-known already, in the absence of the transcription process, the 351 
development of early embryonic cells generally depends on the mRNA inherited mother [63]. This 352 
means that the initiation of transcription may indicate that the embryonic cell initiates their own distinct 353 
transcription process, and the embryonic cell officially enters the autologous development process. 354 
This is exactly consistent with the pluripotent withdrawal process mentioned in the GSE79578 article 355 
[22], so POLR2D may contribute to this process. Besides, ATP6V1B2 directly participates in the amino 356 
acid-activated mTOR receptor pathway by participating in processing upstream amino acid stimulation 357 
signals and transmitting to the regulator and then activating the downstream mTOR effector pathway. 358 
The mTOR can regulate neuronal proliferation, survival, growth, and function, this is crucial for the 359 
developmental process, and relaxing the control of mTOR at any stage of development may have 360 
harmful consequences [64]. This process may indicate that ATP6V1B2 may be a key gene for cell fate 361 
determination explored in the data article of GSE67310 [19]. At the same time, the CTTN gene is a 362 
part of the cell tight junction component, responding extracellular pressure and activating downstream 363 
actin assembly. The actin assembly dynamics is strictly controlled by time and space [65], while the 364 
actin-assembled cytoskeleton has various physiological and pathological functions for cell migration, 365 
differentiation, embryonic development [66]. Therefore, CTTN may play an important role in 366 
embryonic development by regulating actin assembly. 367 

 368 

 369 

4. Discussion and conclusion 370 

Predicting a cell fate or lineage transition for cell differentiation is a task of biological and clinical 371 
importance [11]. Understanding of such cell fate commitment may help to construct individual-specific 372 
disease modeling, and design therapies with great specificity for complex diseases relevant to cell 373 
differentiation [77]. Most of the existing methods applied in analyzing scRNA-Seq data are based on 374 
the gene expression and its statistical quantities. However, gene expressions are generally considered 375 
too unstable to characterize the dynamics of biological process [12,78,79]. In this study, we developed 376 
the SGE method to explore the dynamic information of gene-gene associations from scRNA-Seq data, 377 
and thus predict the cell fate transition during early embryonic development. The proposed method has 378 
been applied to five single-cell RNA sequencing datasets and successfully identified the critical stage 379 
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or tipping point of the impending cell fate transition. For instance, the significant change of SGE score 380 
indicates the critical point (day 20) of MEF-to-Neuron data before the differentiated into induced 381 
neurons, the critical point (36 h) of hESCs-to-DECs data prior to the differentiation induction into 382 
definite endoderm (DE), and the tipping point (E12.5) of MHCs-to-HCCs data before the 383 
differentiation into hepatocytes and cholangiocytes. 384 

By transforming the sparse gene expression matrix from the scRNA-seq data into a non-sparse 385 
graph entropy matrix, SGE offers a new computational insight to the single cell analysis, and helps to 386 
discover the signal of the underlying cell fata commitment. Firstly, for each gene, SGE method 387 
provides a gene-specific local SGE score, which transforms the data from unstable gene expression 388 
form to relatively stable network entropy (SGE) form. Therefore, rather than the originally measured 389 
gene expression data, we use the transformed SGE for further analysis, which can reliably characterize 390 
the status of the dynamical biological process. The analysis results in this study illustrate the better 391 
performance of SGE than the original gene expression in both indicating critical transitions and cell 392 
clustering of temporal information. Secondly, the change of SGE scores also identifies the pseudo-393 
temporal trajectories of cell differentiation, which helps to analyze the differentiation potency of cells. 394 
Clearly, the dynamics of cell fate decisions are revealed by such SGE-based trajectories, thus 395 
characterizing the underlying critical transition of the biological system during early embryonic 396 
development. Besides, SGE helps to uncover “dark genes”, which are non-differential in gene 397 
expression but sensitive to SGE score. Such non-differential genes were often ignored by the traditional 398 
differential gene expression analyses. However, some non-differential genes may also be involved in 399 
the key biological activities of cells and play important roles in embryonic development. Notably, the 400 
SGE method is model-free, that is, the SGE strategy requires neither feature selection nor 401 
model/parameter training. In summary, SGE opens a new way to predict a cell fate transition at the 402 
single-cell level, which is helpful in tracking cell heterogeneity and elucidating molecular mechanism 403 
of embryonic cell differentiation. 404 

 405 
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Figure legends 603 

Figure 1: The schematic illustration of single-cell graph (SGE). (A) Draw scatter diagrams for every 604 
two genes, where each point represents a cell, and the expression values of the two genes in the 𝑁𝑁 cells 605 
are mapped to the horizontal axis and the vertical axis respectively. Then 𝑀𝑀 genes lead to 𝑀𝑀 ⋅ (𝑀𝑀 −606 
1)/2 scatter diagrams. In the scatter diagram of genes 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗, there is an edge between 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗 607 

in the cell 𝐶𝐶𝑘𝑘 if the statistical dependency (𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘) in Eq. (1)) is greater than zero, otherwise there is no 608 

edge. The 𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑖𝑖)  and 𝑛𝑛(𝑘𝑘)(𝐸𝐸𝑗𝑗)  represent the number of the points (cells) in vertical box and 609 

horizontal box respectively. (B) Construct the cell-specific network by weight 𝑟𝑟𝑖𝑖,𝑗𝑗
(𝑘𝑘) for cell 𝐶𝐶𝑘𝑘 . Then 610 

extract each local network from the cell-specific network. We calculate a local SGE score for each 611 
local network based on Eq. (2) and then get 𝑀𝑀 local SGE scores corresponding to 𝑀𝑀 local networks. 612 
(C) Critical transition can be predicted through the significant increase of SGE, i.e., the SGE keeps 613 
smooth when the system is in before-transition stage, while it increases abruptly when the system 614 
approaches the critical stage. (D) Different from the traditional biomarkers based on differential-615 
expression genes, our SGE method uncovers some “dark genes”, which are sensitive to network 616 
entropy (SGE), but non-differential at the gene expression level. 617 

Figure 2: Predicting cell fate transitions in five embryonic differentiation datasets. (A) MEF-to-618 
Neurons data (B) NPCs-to-Neurons data (C) hESCs-to-DECs data (D) MHCs-to-HCCs data and (E) 619 
mESCs-to-MPs data. The significant increase of SGE score as shown in the red curve indicates the 620 
imminent cell fate transition, while signaling genes at the gene expression level fails to provide any 621 
effective signals for the tipping point (the blue curve).  622 

Figure 3: The dynamic evolution of gene regulatory networks and local SGE scores. Based on the 623 
SGE method, the key gene regulatory networks were reconstructed for the signaling genes (top 5% 624 
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genes with the largest local SGE score) based on scRNA-seq data, where the color of each node 625 
represents the mean local SGE value (Eq.(2)) and the color of each edge represents the statistical 626 
dependency index (𝑟𝑟 in Eq.(1)). The dynamical evolution of gene regulatory networks for (A) MEF-627 
to-Neurons data, which illustrates a significant change of the gene-gene associations at day 5 during 628 
the embryonic differentiation from MEF to neurons; (B) MHCs-to-HCCs data, in which the most 629 
significant change of the gene-gene associations occurs at E12.5. (C) hESCs-to-DECs data, which 630 
shows a significant change appearing at 36 h. The landscape of local SGE scores illustrates the dynamic 631 
evolution of network entropy in a global view for (D) MEF-to-Neurons data, (E) MHCs-to-HCCs data, 632 
and (F) hESCs-to-DECs data. 633 

Figure 4: Comparison of clustering performance and pseudo-temporal trajectories of cell 634 
differentiation. Temporal clustering performance (t-SNE) between SGE and EXP and the 635 
differentiation trajectories for (A)-(C) MEF-to-Neurons data, (D)-(F) MHCs-to-HCCs data, and (G)-636 
(I) hESCs-to-DECs data. Nodes in different colors represent cells from different time points. Clearly, 637 
SGE distinguishes the temporal cell state better than EXP. The differentiation trajectories can be 638 
accurately predicted by SGE scores. 639 

Figure 5: The embryonic time-course differentiation analysis based on “dark genes”. (A) 640 
POLR2D, ATP6V1B2 and CTTN, and HINT1. (B) WTAP, RAB14, ARPC3, and UAP1. (C) HLTF, 641 
LOCR, TMOD1, and ZEB2. It is obvious that there has no significantly differential changes at the gene 642 
expression level, but significantly differential changes at the SGE level. The SGE of dark genes show 643 
their peaks at the tipping point, which reveals embryonic development. 644 

 645 

 646 

 647 

Table  648 

Table 1. The information of important “dark genes” in MEF-to-Neurons data 649 

Gene Location Family Relation with embryonic development 

POLDIP2 Cytoplasm other POLDIP2 knockout results in perinatal lethality, reduced cellular growth 
and increased autophagy of mouse embryonic fibroblasts [27]. 

HINT1 Nucleus enzyme Deletion of the HINT1 gene enhances the growth of mouse embryonic 
fibroblasts [28]. 

EIF4G2 Cytoplasm translation 
regulator 

EIF4G2 expression plays an important role in mouse embryo development 
[29] (Buim et al., 2005). 

EGLN1 Cytoplasm enzyme EGLN1 is required for embryonic development [30]. 

DAD1 Cytoplasm other Deletion of DAD1 in mouse embryo development induces an apoptosis-
associated embryonic death [31]. 
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BECN1 Cytoplasm other The MiR-291a/b-5p can inhibit autophagy by targeting BECN1 during 
mouse preimplantation embryo development [32]. 

BAG1 Cytoplasm other BAG1 is essential for differentiation and survival of hematopoietic and 
neuronal cells [33]. 

PPP2R2D Nucleus other PPP2R2D is correlated with embryonic growth and development [34]. 

 650 

Table 2. The information of important “dark genes” in MHCs-to-HCCs data 651 

Gene Location Family Relation with embryonic development 

WTAP Nucleus other WTAP is required for differentiation of endoderm and mesoderm in the 
mouse embryo [35]. 

TCEA3 Nucleus transcription 
regulator 

TCEA3 can regulate the pluripotent differentiation potential of mouse 
embryonic stem cells via the lefty1-nodal-smad2 pathway [36]. 

RAB14 Cytoplasm enzyme RAB14 molecule is critical for early embryonic development by transporting 
FGF receptor [37]. 

LGR4 Plasma 
Membrane 

transmembrane 
receptor 

Combined deletion of LGR4 and LGR5 impairs embryonic mouse 
development with a dominant role of LGR4 [38]. 

CDK6 Nucleus kinase CDK6 has sub-type specific and cell cycle regulation-independent functions 
utilized during embryonic development and differentiation of stem cells [39]. 

CASP3 Cytoplasm peptidase CASP3 promotes the differentiation of murine embryonic stem cell by 
cleaving the pluripotency factor Nanog [40]. 

ARPC3 Cytoplasm other ARPC3 is essential for mouse preimplantation embryo development [41]. 

UAP1 Nucleus enzyme Defective FANCD2 regulated by UAP1 leads to the increase in chromosomal 
instability in mESCs and mouse embryonic lethality [42]. 

 652 

Table 3. The information of important “dark genes” in hESCs-to-DECs data 653 

Gene Location Family Relation with embryonic development 

TMOD1 Cytoplasm enzyme Absence of TMOD1 in differentiating embryonic stem cells leads to delayed 
myofibril assembly [43]. 

DOK4 Plasma 
Membrane 

other DOK4 plays an important role during embryonic dorsal root ganglia neurons 
development [44]. 
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 654 

ZEB2 Nucleus translation 
regulator 

ZEB2 expression is essential for embryonic hematopoietic stem and progenitor 
cell (HSPC) differentiation in the fetal liver [45]. 

ZNF521 Nucleus transcriptio
n regulator 

ZNF521 can efficiently drive embryonic stem cells to neural progenitors [46]. 

ZIC2 Nucleus transcriptio
n regulator 

ZIC2 is an enhancer-binding factor required for embryonic stem cell specification 
[47]. 

VPS41 Cytoplasm transporter VPS41 is essential for embryonic development [48]. 

SCML2 Nucleus transcriptio
n regulator 

SCML2 plays an essential role in the modulation of self- renewal and 
differentiation of embryonic stem (ES) cells [49]. 

FGF2 Extracellul
ar Space 

growth 
factor 

FGF2 switches the outcome of BMP4-induced human embryonic stem cell 
differentiation [50]. 
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