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Abstract

Cell fate commitment occurs during early embryonic development, that is, the embryonic
differentiation sometimes undergoes a critical phase transition or “tipping point” of cell fate
commitment, at which there is a drastic or qualitative shift of the cell populations. In this study, we
presented a novel computational approach, the single-cell graph entropy (SGE), to explore the gene-
gene associations among cell populations based on single-cell RNA sequencing (scRNA-seq) data.
Specifically, by transforming the sparse and fluctuating gene expression data to the stable local network
entropy, the SGE score quantitatively characterizes the criticality of gene regulatory networks among
cell populations, and thus can be employed to predict the tipping point of cell fate or lineage
commitment at the single cell level. The proposed SGE method was applied to five scRNA-seq datasets.
For all these datasets of embryonic differentiation, SGE effectively captures the signal of the
impending cell fate transitions, which cannot be detected by gene expressions. Some “dark” genes that
are non-differential but sensitive to SGE values were revealed. The successful identification of critical
transition for all five datasets demonstrates the effectiveness of our method in analyzing scRNA-seq
data from a network perspective, and the potential of SGE to track the dynamics of cell differentiation.

Keywords: single-cell graph entropy (SGE); critical transition; embryonic differentiation; dark
gene; cell fate commitment.
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Predicting cell-fate commitment by SGE

1. Introduction

Complex systems may switch abruptly to a contrasting state through a critical transition [1]. In recent
years, detecting critical transitions for general systems, such as ecosystems systems [2-3], climates
systems [4-5], financial systems [6,7], and epidemic model [8-9], has drawn more and more attentions.
In biomedical fields, the rapid growth of single-cell datasets has shed new light on the complex
mechanisms of cellular heterogeneity. In these single-cell experiments, the cell fate commitment
represents a critical state transition or “tipping point” at which complex systems undergo a qualitative
shift. Characterizing and predicting such critical transition is crucial for patient-specific disease
modeling and drug testing [10]. Recent studies provided a plethora of statistical quantities such as
variance, correlation coefficient, and coordination of gene expression, to detect a cell fate transition of
embryonic differentiation [10,11]. However, these statistical quantities mainly focused on the analyses
at the gene expression level, while single-cell RNA sequencing (scRNA-seq) may offer more
information of an insight into the cell-specific network systems. In contrast to gene expression, cell-
specific network is a stable form against the time and condition [12], and thus reliably characterize the
biological processes such as cell fate commitment. Such a network system is viewed as a nonlinear
dynamical system with interacted variables/biomolecules, whose dynamics can be roughly divided into
three stages, the before-transition stage, the critical stage at which cell fate commitment occurs, and
the after-transition stage [13,14]. However, to characterize the dynamics of biological system and
predict the critical stage from single-cell dataset is challenging. Comparing with conventional bulk-
cell information, single-cell analysis suffers from high dimensional, noisy, sparse and heterogeneous
samples.

In this study, from cell-specific network viewpoint, we presented a computational method, the
single-cell graph entropy (SGE), to detect the signal of a critical transition or cell fate commitment
during the embryonic differentiation process, and identify key genes that play important roles in
embryonic development. The utilization of SGE is based on rewiring the cell-specific networks with
statistical dependency, calculating a network entropy score for each localized network, combining and
analyzing the dynamical change of the local indices (Fig. 1). Such method can be viewed as data
transformation from the “unstable” gene expression of single cells to the relatively “stable” SGE value
of gene associations (Figs. 1A-1B). This SGE value can be analyzed by any traditional scRNA-seq
algorithm for cell clustering, dimension reduction and pseudo trajectory analysis by simply replacing
the original gene expressions with the SGE values. Notably, the SGE method has capabilities beyond
traditional expression-based methods, that is, SGE aims at exploring the dynamically differential
information at a single-cell level, and thus identifying a critical stage during the progression of a
biological system (Fig. 1C). Specifically, we detect the signature of an imminent critical transition by
a significant increase of the SGE value, which indeed reflects the dynamic change of cell heterogeneity
and coordination of gene expression. The proposed approach has been applied to five scRNA-seq
embryonic differentiation datasets, including mouse embryonic fibroblasts (MEF) to neurons, neural
progenitor cells (NPCs) to neurons, human embryonic stem cells (hESCs) to definitive endoderm cells
(DECs), mouse hepatoblasts cells (MHCs) to hepatocytes and cholangiocytes cells (HCCs), and mouse
embryonic stem cells (mESCs) to mesoderm progenitors (MPs) from the NCBI GEO database. For
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77  these embryonic time-course differentiation datasets, the predicted cell fate transitions agree with the
78  observation in original experiments. In these applications, from the dynamic perspective, it is also
79  demonstrated that SGE has better performances than original gene expression in temporal clustering
80 of cells, that is, the clustering analysis based on SGE score accurately distinguishes the cell
81  heterogeneity over time while the gene expression fails. Based on the temporal clustering by SGE, the
82  cell-lineage trajectories can be presented to further study the cell differentiation paths. Besides, in the
83  analysis of these single-cell datasets, SGE uncovers a few “dark” genes, which are non-differential in
84  gene expression but sensitive to SGE score and may play important roles in embryonic development
85  (Fig. 1D). Therefore, the SGE method provides a new way to analyze the scRNA-seq data, and helps
86  to track the dynamics of biological systems from the perspectives of network entropy. The successful
87  application of SGE validated its effectiveness in single-cell analysis.

88

89 2. Materials and Methods

90 2.1 Theoretical basis

91 A cell fate transition (cell fate commitment) occurs during the dynamical process of the early
92  embryonic differentiation [10, 15-17]. Generally, the dynamical process of early embryonic
93  development can be regarded as the evolution of a nonlinear dynamical system, while the cell fate
94  transition is viewed as a drastic or qualitative state shift at a bifurcation point [10]. Similar to disease
95  progression [13, 18], this dynamical process is modeled as three states or stages (Figure 1C): (1) a
96  before-transition stage with high resilience; (2) a critical stage, which is the tipping point or cell fate
97 transition with low resilience; (3) an after-transition stage, which is another stable state with high
98 resilience.

99 In this study, the cell-specific networks were constructed based on a recently proposed statistical
100  model [12], which provides a statistical dependency index (defined as Eq. (1)) to determine the gene
101  associations at a single-cell level in a reliable manner. The statistic index ranges between -1 and 1. The
102  positive statistical dependency value infers the statistically interacting relation between two genes, i.¢.,
103 there is an edge between such two genes in the cell-specific network.

104 2.2 Algorithm to predict the critical transition based on SGE

105  Given the time series of single-cell RNA sequencing (scRNA-seq) data, the following algorithm is
106  carried out to predict the critical transition.

107  [Step 1] At each time point, the logarithm log(1 + x) is applied to normalize the initial gene
108  expression matrix with M rows/genes and N columns/cells, which is generated from the scRNA-seq
109  data.

110  [Step 2] Constructing a specific network for each cell. Make scatter diagrams for every two genes in a
111  cartesian coordinate system where the vertical- and horizontal-axes are the expression values of the
112 two genes, respectively. For example, there are N plots in the scatter diagram for a gene pair (g;, g;)

113 corresponding to the N cells. Each plot represents a cell, whose horizontal coordinate is E i(k) (the gene
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114  expression of g; in cell C}) and the vertical coordinate is Ej(k) (the gene expression of g; in cell Cy)

115  (Fig. 1A). Then totally M - (M — 1)/2 scatter diagrams are obtained by making scatter diagram for
116  every two genes. In the scatter diagram of genes g; and g;, for the cell C;, whether there is an edge

117 between g; and g; in the cell Cy is determined by the statistical dependency index as follows.

L0 _nOEE)  a®E) n®e)

118 Y - - - (D

119  Two boxes near Ei(k) and Ej(k) are drawn based on the predetermined integers such as 0.1N, which is
120  proportional to the cell size N. The n®(E;) and n® (E ;) represent the number of the points (cells) in
121 vertical box, horizontal box respectively (Fig. 1A). We then straightforwardly obtain the third box,
122 which is the overlapping of the previous two boxes. Therefore, the value of n®(E, Ej) can be

123  obtained by counting the points (cells) in the third box. If the statistical dependency index i.e., Eq. (1)
124 is greater than zero, there is an edge between g; and g; in the cell C, otherwise there is no edge. By

125  this way, we construct a cell-specific network N for cell C,,, where each edge between two genes g;

126  and g; is decided by the dependency index rl.’(]’-().

127  [Step 3] Extracting each local network from the specific network. Specifically, for the cell Cy, its
128  specific network N® can be segmented into totally M local networks. The local network
129 LNi(k)(i =1,2,3,..,M) is centered at a gene g;, whose 1%-order neighbors {gi, g, .., gi} are the
130  edges (Fig. 1B).

131 [Step 4] Calculating the local SGE value Hl.(k) for each local network. Given the local network LNi(k)
132 centered at a gene g;, its local SGE can be obtained as follow.

() _ 1 k k
133 Hi” = —m&sﬂ pE_,)log(pE_,)) (2)
134 with
®)_ (k)

(k) "ijEj
135 p; =1 (3)

T

(®)

136 where; j~ represents the weight coefficient between the center gene g; and a neighbor gj"-, which is

137  determined by Eq. (1). The value Ej(k) represents the gene expression of a neighbor g]i- in C; and

138  constant S is the number of neighbors in the local network LNi(k). Clearly, the local SGE value (Eq.
139  (2)) has been normalized to the number of nodes in a local network. After this step, the sparse gene
140  expression matrix from the scRNA-seq data is transformed into a non-sparse graph entropy matrix
141  (Figs. 1A and 1B), by taking the gene association into consideration. Thus, the local SGE value Eq. (2)
142  is dependent not only on the expression of the center gene of a local network but also on the
143 contribution from the neighboring genes.

144  [Step 5] Calculating the cell-specific SGE value H® based on a group of genes with highest local
145  SGE values, i.e.,
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146 H®O =37 g® (4)

147  where constant T is an adjustable parameter representing the number of top 5% genes centered in its
148  local networks with the highest local SGE values. In Eq. (4), H®) can be considered as the SGE score
149  of the cell C; and detect the early-warning signals of the cell fate transition. At each time point, the
150  mean SGE score of a certain cell population is also employed in the tipping point detection. The mean
151  SGE score of the top 5% genes with the largest local SGE values (Eq. (4)) was taken as the cell-specific
152  graph entropy at a time point. In Supplementary material 1 (Figure S1), it shows that different choices
153  of T do not alter the identification of tipping point.

154 When the system approaches the vicinity of the critical point, the signaling genes or dynamical
155  network biomarker (DNB) molecules exhibit obviously collective behaviors with fluctuations, which
156  leads to that the dependent relations of DNB members in a critical transition state are different from

157  those in a before-transition state. Moreover, the local SGE score Hi(k) in Eq. (2) or the index H®) in

158  Eq. (4) sharply increases when the system is near the critical stage (Fig. 1C). Thus, the SGE score can
159  provide the early-warning signals of the cell fate transition.

160

161 3. Results

162 3.1 SGE predicting cell fate transitions for embryonic time-course differentiation

163  To demonstrate the effectiveness of SGE, the proposed method has been applied to five time-course
164  datasets of embryonic differentiation from GEO database (http://www.ncbi.nlm.nih.gov/geo/),
165 including MEF-to-Neurons data (ID: GSE67310) [19], NPCs-to-Neurons data (ID: GSE102066) [20],
166  hESCs-to-DECs data (ID: GSE75748) [21], MHCs-to-HCCs data (ID: GSE90047) [22], and mESCs-
167  to-MPs data (ID: GSE79578) [23] . The detailed description and sources of the datasets is given in
168  Supplementary material 1. The SGE score of each single cell was calculated according to the
169  algorithm in Materials and Methods section. At each time point, the mean SGE score was taken to
170  quantitatively measure the criticality of the cell population at this time point. An SGE curve across all
171  time points was then employed to predict any possible cell fate transition of embryonic time-course
172 differentiation.

173 For MEF-to-Neurons data, the mean SGE score abruptly increases from day 5 to day 20, as shown
174  asthe red curve in Fig. 2A. This significant change of SGE score provides the early-warning signal to
175  an upcoming cell fate transition after day 20. This computational result agrees with the observation in
176  original experiment, i.e., the differentiation of mouse embryonic intermediate cells into induced neuron
177  (iN) occurs at day 22 [19]. Besides, to demonstrate the robustness of the proposed method in terms of
178  the cells, the box plot of the cell-specific graph entropy was shown based on the samples of each time
179  point. It is seen that the median values of the red box plot of SGE score in Fig. 2A also illustrates clear
180  signal for the tipping point, which demonstrates that the SGE score is featured with robustness against
181  sample noises. It is seen as the blue curve in Fig. 2A, the mean gene expression of the differential genes
182  fails to provide any effective signals for cell fate transition. Therefore, the signature of a critical
183  transition from MEF to neurons is identified by SGE at single-cell resolution of the cell populations.
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184 When applied to NPCs-to-Neurons data, i.e., a 30-day time-course differentiation experiment of
185  neural progenitor cells into neurons, as shown as the red curve in Fig. 2B, the mean SGE score abruptly
186  increases and reaches a peak at day 1, suggesting there is a cell fate transition after day 1. This signal
187  also coincides with the observation in original experiment, in which it showed that the cells at day 1
188  were the least heterogeneous and after day 1 the transcriptional heterogeneity increased, reaching the
189  largest heterogeneity among the neurons at day 30 eventually [20]. In addition, the median values of
190 the red box plot of SGE score in Fig. 2B also demonstrated the robust performance of SGE score in
191  detecting the early warning signal of a qualitative state transition. In contrast to SGE score, the mean
192 gene expression fails to detect the early-warning signals of cell fate transition (the blue curve in Fig.
193  2B).

194 For hESCs-to-DECs data, the peak of the SGE score (the red curve in Fig 2C) appears at 36 h,
195  which indicates an imminent cell fate transition after 36 h. Indeed, the differentiation induction into
196  definite endoderm (DE) at 72 h, and the differentiation trajectory toward a DE fate commitment after
197 36 h, have been recorded in literatures [21,24], which validated the SGE signals. The robustness of
198  SGE score in predicting the critical transition of the differentiation trajectory toward a DE fate can be
199  showed by the median values of the box plot (the red box plot in Fig. 2C). Moreover, in terms of mean
200  gene expression, there is no significant difference among six points time (the blue curve in Fig. 2C).

201 As the red curve shown in Fig. 2D, for MHCs-to-HCC:s data, the drastic increase of average SGE
202 appeared from E11.5 to E12.5 and reaches its peak at E12.5, after which hepatoblast-to-hepatocyte and
203 cholangiocytes transition occurs [22]. Moreover, the median values of the red box plot of SGE score
204  in Fig. 2D stably exhibits an obvious signal at the tipping point (E12.5), which demonstrates that SGE
205  accurately predicts the cell fate transition for embryonic time-course differentiation. It is seen from the
206  blue curve in Fig. 2D that the mean gene expression fails to provide any signal for the tipping point.

207 The SGE method has been applied to mESCs-to-MPs data, which is obtained from an experiment
208  of a retinoic acid (RA)-driven differentiation of pluripotent mouse embryonic stem cells (mESCs) to
209  lineage commitment [23]. It is seen from the red curve in Fig. 2E, the mean SGE score reaches its peak
210 at 24 h, signaling an upcoming critical transition after 24 h. Actually, there are cells exiting from
211 pluripotency between 24 h and 48 h of retinoic acid exposure and then differentiating into endoderm
212 around 48 h [23]. Further, the median values of the box red plot of SGE score in Fig. 2E also indicates
213 that the 24 h is a tipping point. But in terms of gene expression, it shows little significant difference
214  among four points time (the blue curve in Fig. 2E).

215 The successfully prediction of the cell fate transitions during embryonic cell differentiation in
216  these five datasets validates the effectiveness and accuracy of SGE method.
217

218 3.2 The dynamical change of local SGE scores

219 At the identified transition point, the group of top 5% genes with the largest local SGE values were
220  taken as the signaling genes for further functional and biological analysis. These signaling genes can
221 be regarded as a set of DNB and may be highly associated with the cell fate commitment during the
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222 embryonic development. First, the signaling genes were mapped to protein-protein interaction (PPI)
223 network, from which the maximal connected subgraph was taken to study the dynamical network
224 evolution. For MEF-to-Neurons data, we show the dynamical evolution of signaling genes at the
225 network level (Fig. 3A). It is seen that a significant change of the network structure occurs at day 20,
226  signaling an upcoming cell fate transition. Besides, the landscape of the local SGE score for signaling
227  and non-signaling genes was illustrated as in Fig. 3D, from which it is clear that the local SGE scores
228  of the signaling genes abruptly increase in a collective manner around day 20. For MHCs-to-HCCs
229  data, as shown in Fig. 3B, there is an obvious change in the network structure at embryonic day 12.5
230  (E12.5), signaling the cell fate transitions of the differentiation into hepatocytes and cholangiocytes
231 after E12.5 [22]. The whole dynamics of signaling-gene network across all 7 time points is presented
232 in Supplementary material 1 (Figure S2A). Therefore, the network signature of a critical transition
233 during embryonic cell differentiation is illustrated, which may benefit the understanding of molecular
234 associations among cell populations. Moreover, to show the global view of the signaling genes, the
235  landscape of local SGE scores was presented in Fig. 3E, in which the peak of local SGE scores for
236  signaling genes appeared at E12.5. For hESCs-to-DECs data, there is a drastic change in the network
237  structure at 36 h (Fig. 3C), signaling the cell fate transitions of the differentiation induction into the
238  definite endoderm at 72 h [21]. The dynamical evolution of the PPI network across all 6 time points is
239  provided in Supplementary material 1 (Figure S2B). Moreover, to show the evolution of the signaling
240  genes in a global view, the landscape of local SGE score is presented in Fig. 3F, in which the peak local
241  SGE of signaling genes appears at 36 h. Clearly, by exploring the dynamical change of gene
242 associations, SGE offers an insight of critical transition during the embryonic differentiation from the
243  perspective of network dynamics.

244

245 3.3 Temporal clustering and pseudo-trajectory analysis

246 The data transformation from the gene expression matrix to the SGE matrix not only helps to detect
247  the critical transitions of embryonic development, but provides a better way to perform clustering
248  analysis on cells during a biological process and thus explore dynamical information of cell populations.
249  The t-distributed stochastic neighbor embedding (t-SNE), a nonlinear method to perform dimension-
250  reduction [25], is applied to carried out dimension-reduction analysis and visualization, which has been
251  extensively used in the analysis of scRNAseq data. A group of biomarkers are composed by top 5%
252 genes with the largest local SGE value and top 5% genes with the smallest local SGE value in tipping
253  point. We compare the clustering performance between SGE and gene expression (EXP) based on
254  biomarkers. For MEF-to-Neuron, MHCs-to-HCCs and hESCs-to-DECs data, the clustering analyses
255  are shown in Figs. 4A-4B, Figs. 4D-4E and Figs. 4G-4H, the clustering analysis based on SGE can
256  distinguish the state of cells at different time points while the gene expression fails. Moreover, from
257  the results as shown in the Figure S3 of Supplementary material 1, the SGE method succeeded in
258  distinguishing different cell types in three states, i.e., before-transition, critical-transition and after-
259 transition state, but the gene expression fails to make such distinction. The result of dimension-
260 reduction and visualization for NPCs-to-Neurons data and mESCs-to-MPs data is given in
261  Supplementary material 1 (Figure S4). Besides, the heatmap of SGE value for biomarkers stratified

7


https://doi.org/10.1101/2020.04.22.055244
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055244; this version posted April 24, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Predicting cell-fate commitment by SGE

262 by three states (before-transition, critical-transition and after-transition state) while the heatmap of gene
263  expression value fails (see Supplementary material 2 for details). The best possible clustering analysis
264  result of all datasets are obtained from the SGE method, which illustrates that SGE has a superior
265  performance than the original gene expression.

266 To further validate the SGE performance, the pseudo-trajectory analysis was performed on the
267  scRNA-seq data. Based on the temporal cell clustering by SGE, the three-dimensional representations
268  of cell-lineage trajectories for three datasets are shown in Fig. 4C, Fig. 4F and Fig. 41. The z-axis
269  represents SGE potency estimation, while the x and y axes correspond to the t-SNE components. In
270  Fig. 4C, we present the differentiation trajectories from MEF to neurons where MEF differentiated into
271  neurons after 20 days. For MHCs-to-HCCs data, SGE predicted the dynamic differentiation trajectories
272 from MHCs to HCCs (Fig. 4F). The MHCs-to-HCCs transition occurs immediately after embryonic
273 day 12.5 (E12.5), which is consistent with the results of the original experimental observation [22].
274 Thus, the dynamics of cell fate decisions from MHCs to HCCs are revealed by such pseudo-temporal
275  trajectories of SGE score, characterizing the underlying critical transition of the biological system
276  during early embryonic development. When applied to hESCs-to-DECs data, the developmental
277  trajectories of cell differentiation from hESCs to DECs are shown in Fig. 41. The differentiation toward
278  DECs appears after 36 h, which coheres with the experimental results [21]. These results demonstrate
279  that the SGE-based potency estimation can track the dynamic changes in cell potency, as well as the
280  specific time point at which the cell fate commitment or the differentiation into distinct cell types
281  occurs.

282

283 3.4 Discovering “dark genes” by SGE score

284  In the biomedical field, differentially expressed genes play important roles in finding new biomarkers,
285  key regulators and drug targets. However, some non-differentially expressed genes may also be
286  involved in the essential biological processes, and should not be ignored. Actually, references showed
287  that such genes are enriched in key functional pathways and performs well in prognosis [26] and may
288  play biological roles in endothelial cells (EC) [12]. During the analysis of the above single-cell datasets,
289  some genes were also discovered as the “dark” genes, which were non-differential in gene expression,
290  but sensitive to SGE scores. These genes show a significant difference between the critical point and
291  non-critical point at the network level, rather than at the gene expression level. We performed the
292  differential SGE analysis on the five embryonic time-course differentiation datasets. The SGE and gene
293  expression (EXP) were compared based on the signaling genes (top 5% genes with the largest local
294  SGE score). Figures 5A-5C showed some “dark genes” of MEF-to-Neuron, MHCs-to-HCCs, and
295  hESCs-to-DECs data. Other “dark genes” for these three datasets were respectively presented in
296  Supplementary material 3, Supplementary material 4, and Supplementary material 5. The results
297 for the mESCs-to-MPs data and NPCs-to-Neurons data are respectively provided in
298  Supplementary material 6 and Supplementary material 7. It is obvious that there are no significantly
299  differential changes at the gene expression level, but significantly differential changes at the network
300 entropy (SGE) level. Some “dark genes” have been reported to be associated with embryonic
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301  development, which illustrates that these “dark genes” play important roles in embryonic development.
302  For these three datasets, the “dark genes” which are associated with embryonic development are
303 demonstrated in Table 1-3, respectively.

304

305 3.5 Revealing vital biological signals by common dark genes.

306  Based on genes with differential SGE values, we found 6 common signaling genes (CSGs) for human
307 embryo development among NPCs-to-Neurons data and hESCs-to-DECs data (Figure S6A of
308  Supplementary material 1) and other 14 among the mouse embryo development datasets (the Figure
309  S6B of Supplementary material 1). To evaluate their function in embryo development, the Reactome
310 and KEGG pathway enrichment analysis is performed for these overlap genes.

311 For NPCs-to-Neurons data and hESCs-to-DECs data, it has been confirmed that common
312 signaling genes, such as LOCR and HLTF (Fig. 5C), play a relatively important role in embryonic
313  differentiation. LOCR, as an important molecule in the phosphatidylinositol signaling system, acts as
314  asignal transduction element in consensus genes and may also participates in the regulation of TNFR1
315  signaling, interacts with the TNFR1-induced NFkappaB signaling pathway, and activates tumor
316  necrosis factor receptor 1 (TNFR1). Multiple signal transduction pathways can be triggered to induce
317 inflammation, cell proliferation, survival, or cell death [51-53]. At the same time, to respond to a wide
318 range of extracellular stimuli, thereby promoting differentiation, proliferation, cell motility, cell
319  survival, and some other important cellular behavior [54-56], LOCR and HLTF together act as the RAF
320 / MAP kinase cascade element in the RAS-RAF-MEK-ERK pathway to participate in controlling
321  downstream MAPK1 /MAPK3 signaling by directly activating MAP2K and MAPK, and MAPK3 and
322 MAPKI1 will be phosphorylated by MAP2Ks 1 and 2.

323 In addition, LCOR participates in TCF dependent signaling in response to WNT signal together
324  with MGA. The WNT pathway is one of the most important signaling pathways in cells for cell
325  proliferation. In the classical WNT signaling pathway, the binding of WNT ligands to frizzled protein
326  (FZD) and lipoprotein receptor-related protein (LRP) receptors leads to the destruction of complex
327  inactivation, the stabilization and nuclear translocation of B-catenin and subsequent activation of
328  TCF/LEF-dependent transcription. Transcriptional activation in response to classical WNT signaling
329  controls cell fate, stem cell proliferation, and self-renewal, and promotes tumorigenesis [57-59].

330 As an important transcription factor, HLTF has both helicase and E3 ubiquitin ligase activities.
331  We have noticed that it is directly involved in Ras activation upon Ca2 + influx through the NMDA
332 receptor [60]. Ras catalyzes its effector substrate to regulate a series of important functions related to
333  cell growth, differentiation, and apoptosis. Besides, HLTF, together with MAG, also plays an important
334  role in the cell cycle. Also, as described in the GSE102066 article [20], HLTF is also directly involved
335 in the neurobiological process of negative regulation of NMDA receptor-mediated neuronal
336 transmission, which might also be one of the key regulators of brain / spinal neuron differentiation after
337 24 hours. It should be noted that the role of these gene products in the pathway also belongs to the
338  upstream of signaling. For example, that LOCR and HLTF play a direct role in controlling downstream
339 MAPK pathway when they participate the RAF / MAP kinase cascade signal cascade process. At the
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340 same time, this kinase cascade, as a downstream effector of FLT3 Signaling, communicates FLT3
341  Signaling with the MAPK pathway. Beyond that, RAF / MAP kinase cascade is also important in
342  CREBI phosphorylation through NMDA receptor-mediated activation of RAS signaling, which may
343  also lead cell proliferation.

344 Among the 14 common signaling genes across MHCs-to-HCCs, MEF-to-Neurons and mESCs-
345  to-MPs datasets, it has been seen that some genes, including POLR2D, ATP6V1B2 and CTTN (Figs.
346  5A-5B), also participate in mouse embryonic differentiation. POLR2D directly participates in RNA
347  Polymerase Il transcription initiation as the main component of RNA polymerase 2, which is a
348  necessary step for gene expression. The formation of an open complex exposes the template strand to
349  the catalytic center of RNA polymerase II. This will promote the formation of the first phosphodiester
350 bond, which marks the start of transcription [61]. The initiation of transcription is the main regulatory
351  point of gene expression [62]. As well-known already, in the absence of the transcription process, the
352  development of early embryonic cells generally depends on the mRNA inherited mother [63]. This
353  means that the initiation of transcription may indicate that the embryonic cell initiates their own distinct
354  transcription process, and the embryonic cell officially enters the autologous development process.
355  This is exactly consistent with the pluripotent withdrawal process mentioned in the GSE79578 article
356  [22],s0o POLR2D may contribute to this process. Besides, ATP6V1B2 directly participates in the amino
357  acid-activated mTOR receptor pathway by participating in processing upstream amino acid stimulation
358  signals and transmitting to the regulator and then activating the downstream mTOR effector pathway.
359  The mTOR can regulate neuronal proliferation, survival, growth, and function, this is crucial for the
360 developmental process, and relaxing the control of mTOR at any stage of development may have
361  harmful consequences [64]. This process may indicate that ATP6V1B2 may be a key gene for cell fate
362  determination explored in the data article of GSE67310 [19]. At the same time, the CTTN gene is a
363  part of the cell tight junction component, responding extracellular pressure and activating downstream
364  actin assembly. The actin assembly dynamics is strictly controlled by time and space [65], while the
365  actin-assembled cytoskeleton has various physiological and pathological functions for cell migration,
366  differentiation, embryonic development [66]. Therefore, CTTN may play an important role in
367 embryonic development by regulating actin assembly.

368

369

370 4. Discussion and conclusion

371  Predicting a cell fate or lineage transition for cell differentiation is a task of biological and clinical
372 importance [11]. Understanding of such cell fate commitment may help to construct individual-specific
373  disease modeling, and design therapies with great specificity for complex diseases relevant to cell
374  differentiation [77]. Most of the existing methods applied in analyzing scRNA-Seq data are based on
375  the gene expression and its statistical quantities. However, gene expressions are generally considered
376  too unstable to characterize the dynamics of biological process [12,78,79]. In this study, we developed
377  the SGE method to explore the dynamic information of gene-gene associations from scRNA-Seq data,
378  and thus predict the cell fate transition during early embryonic development. The proposed method has
379  been applied to five single-cell RNA sequencing datasets and successfully identified the critical stage
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380 or tipping point of the impending cell fate transition. For instance, the significant change of SGE score
381 indicates the critical point (day 20) of MEF-to-Neuron data before the differentiated into induced
382  neurons, the critical point (36 h) of hESCs-to-DECs data prior to the differentiation induction into
383  definite endoderm (DE), and the tipping point (E12.5) of MHCs-to-HCCs data before the
384  differentiation into hepatocytes and cholangiocytes.

385 By transforming the sparse gene expression matrix from the scRNA-seq data into a non-sparse
386  graph entropy matrix, SGE offers a new computational insight to the single cell analysis, and helps to
387  discover the signal of the underlying cell fata commitment. Firstly, for each gene, SGE method
388  provides a gene-specific local SGE score, which transforms the data from unstable gene expression
389  form to relatively stable network entropy (SGE) form. Therefore, rather than the originally measured
390  gene expression data, we use the transformed SGE for further analysis, which can reliably characterize
391 the status of the dynamical biological process. The analysis results in this study illustrate the better
392  performance of SGE than the original gene expression in both indicating critical transitions and cell
393  clustering of temporal information. Secondly, the change of SGE scores also identifies the pseudo-
394  temporal trajectories of cell differentiation, which helps to analyze the differentiation potency of cells.
395  Clearly, the dynamics of cell fate decisions are revealed by such SGE-based trajectories, thus
396  characterizing the underlying critical transition of the biological system during early embryonic
397  development. Besides, SGE helps to uncover “dark genes”, which are non-differential in gene
398  expression but sensitive to SGE score. Such non-differential genes were often ignored by the traditional
399  differential gene expression analyses. However, some non-differential genes may also be involved in
400 the key biological activities of cells and play important roles in embryonic development. Notably, the
401 SGE method is model-free, that is, the SGE strategy requires neither feature selection nor
402  model/parameter training. In summary, SGE opens a new way to predict a cell fate transition at the
403  single-cell level, which is helpful in tracking cell heterogeneity and elucidating molecular mechanism
404  of embryonic cell differentiation.

405
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603  Figure legends

604  Figure 1: The schematic illustration of single-cell graph (SGE). (A) Draw scatter diagrams for every
605  two genes, where each point represents a cell, and the expression values of the two genes in the N cells
606  are mapped to the horizontal axis and the vertical axis respectively. Then M genes lead to M - (M —
607  1)/2 scatter diagrams. In the scatter diagram of genes g; and g;, there is an edge between g; and g;

608 in the cell Cy if the statistical dependency (ri,(]’.c) in Eq. (1)) is greater than zero, otherwise there is no
609 edge. The n®(E;) and n® (E;) represent the number of the points (cells) in vertical box and
610  horizontal box respectively. (B) Construct the cell-specific network by weight 71',(]]‘{) for cell C. Then

611  extract each local network from the cell-specific network. We calculate a local SGE score for each
612  local network based on Eq. (2) and then get M local SGE scores corresponding to M local networks.
613  (C) Critical transition can be predicted through the significant increase of SGE, i.e., the SGE keeps
614  smooth when the system is in before-transition stage, while it increases abruptly when the system
615  approaches the critical stage. (D) Different from the traditional biomarkers based on differential-
616  expression genes, our SGE method uncovers some “dark genes”, which are sensitive to network
617  entropy (SGE), but non-differential at the gene expression level.

618  Figure 2: Predicting cell fate transitions in five embryonic differentiation datasets. (A) MEF-to-
619  Neurons data (B) NPCs-to-Neurons data (C) hESCs-to-DECs data (D) MHCs-to-HCCs data and (E)
620 mESCs-to-MPs data. The significant increase of SGE score as shown in the red curve indicates the
621  imminent cell fate transition, while signaling genes at the gene expression level fails to provide any
622  effective signals for the tipping point (the blue curve).

623  Figure 3: The dynamic evolution of gene regulatory networks and local SGE scores. Based on the
624  SGE method, the key gene regulatory networks were reconstructed for the signaling genes (top 5%
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625  genes with the largest local SGE score) based on scRNA-seq data, where the color of each node
626  represents the mean local SGE value (Eq.(2)) and the color of each edge represents the statistical
627  dependency index (7 in Eq.(1)). The dynamical evolution of gene regulatory networks for (A) MEF-
628  to-Neurons data, which illustrates a significant change of the gene-gene associations at day 5 during
629  the embryonic differentiation from MEF to neurons; (B) MHCs-to-HCCs data, in which the most
630  significant change of the gene-gene associations occurs at E12.5. (C) hESCs-to-DECs data, which
631  shows a significant change appearing at 36 h. The landscape of local SGE scores illustrates the dynamic
632  evolution of network entropy in a global view for (D) MEF-to-Neurons data, (E) MHCs-to-HCCs data,
633  and (F) hESCs-to-DECs data.

634  Figure 4: Comparison of clustering performance and pseudo-temporal trajectories of cell
635  differentiation. Temporal clustering performance (t-SNE) between SGE and EXP and the
636  differentiation trajectories for (A)-(C) MEF-to-Neurons data, (D)-(F) MHCs-to-HCCs data, and (G)-
637  (I) hESCs-to-DECs data. Nodes in different colors represent cells from different time points. Clearly,
638  SGE distinguishes the temporal cell state better than EXP. The differentiation trajectories can be
639  accurately predicted by SGE scores.

640  Figure 5: The embryonic time-course differentiation analysis based on “dark genes”. (A)
641 POLR2D, ATP6VI1B2 and CTTN, and HINT1. (B) WTAP, RAB14, ARPC3, and UAPI1. (C) HLTF,
642 LOCR, TMODI, and ZEB2. It is obvious that there has no significantly differential changes at the gene
643  expression level, but significantly differential changes at the SGE level. The SGE of dark genes show
644  their peaks at the tipping point, which reveals embryonic development.

645
646
647

648 Table

649  Table 1. The information of important “dark genes” in MEF-to-Neurons data

Gene Location Family Relation with embryonic development

POLDIP2 Cytoplasm other POLDIP2 knockout results in perinatal lethality, reduced cellular growth
and increased autophagy of mouse embryonic fibroblasts [27].

HINT1 Nucleus enzyme Deletion of the HINT1 gene enhances the growth of mouse embryonic
fibroblasts [28].

EIF4G2 Cytoplasm translation EIF4G2 expression plays an important role in mouse embryo development
regulator [29] (Buim et al., 2005).
EGLN1 Cytoplasm enzyme EGLNI1 is required for embryonic development [30].
DAD1 Cytoplasm other Deletion of DAD1 in mouse embryo development induces an apoptosis-

associated embryonic death [31].
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BECN1 Cytoplasm other The MiR-291a/b-5p can inhibit autophagy by targeting BECN1 during
mouse preimplantation embryo development [32].
BAG1 Cytoplasm other BAGT is essential for differentiation and survival of hematopoietic and
neuronal cells [33].
PPP2R2D Nucleus other PPP2R2D is correlated with embryonic growth and development [34].

Table 2. The information of important “dark genes” in MHCs-to-HCCs data

Gene Location Family Relation with embryonic development
WTAP Nucleus other WTAP is required for differentiation of endoderm and mesoderm in the
mouse embryo [35].
TCEA3 Nucleus transcription TCEA3 can regulate the pluripotent differentiation potential of mouse
regulator embryonic stem cells via the leftyl-nodal-smad2 pathway [36].
RAB14 | Cytoplasm enzyme RAB14 molecule is critical for early embryonic development by transporting
FGF receptor [37].
LGR4 Plasma transmembrane Combined deletion of LGR4 and LGRS impairs embryonic mouse
Membrane receptor development with a dominant role of LGR4 [38].
CDKo6 Nucleus kinase CDKG6 has sub-type specific and cell cycle regulation-independent functions
utilized during embryonic development and differentiation of stem cells [39].
CASP3 | Cytoplasm peptidase CASP3 promotes the differentiation of murine embryonic stem cell by
cleaving the pluripotency factor Nanog [40].
ARPC3 | Cytoplasm other ARPC3 is essential for mouse preimplantation embryo development [41].
UAP1 Nucleus enzyme Defective FANCD2 regulated by UAP1 leads to the increase in chromosomal
instability in mESCs and mouse embryonic lethality [42].

Table 3. The information of important “dark genes” in hESCs-to-DECs data

Gene Location Family Relation with embryonic development
TMODI1 | Cytoplasm enzyme Absence of TMODI in differentiating embryonic stem cells leads to delayed
myofibril assembly [43].
DOK4 Plasma other DOK4 plays an important role during embryonic dorsal root ganglia neurons
Membrane development [44].
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ZEB2 Nucleus translation ZEB2 expression is essential for embryonic hematopoietic stem and progenitor
regulator cell (HSPC) differentiation in the fetal liver [45].
ZNF521 Nucleus transcriptio ZNF521 can efficiently drive embryonic stem cells to neural progenitors [46].
n regulator
Z1C2 Nucleus transcriptio | ZIC2 is an enhancer-binding factor required for embryonic stem cell specification
n regulator [47].
VPS41 | Cytoplasm | transporter VPS41 is essential for embryonic development [48].
SCML2 Nucleus | transcriptio SCML2 plays an essential role in the modulation of self- renewal and
n regulator differentiation of embryonic stem (ES) cells [49].
FGF2 Extracellul growth FGF2 switches the outcome of BMP4-induced human embryonic stem cell
ar Space factor differentiation [50].
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