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ABSTRACT

Nutrient-dependent body size plasticity differs between the sexes in most species,
including mammals. Previous work in Drosophila showed that body size plasticity was
higher in females, yet the mechanisms underlying the sex difference in body size
plasticity remain unclear. Here, we discover that a protein-rich diet augments body size
in females and not males because of a female-specific increase in activity of the
conserved insulin/insulin-like growth factor signaling pathway (11S). This increased IS
activity was triggered by a diet-induced increase in stunted, and required Drosophila
insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly,
we show that sex determination gene transformer regulates the diet-induced increase in
stunted and 1IS activity, and mediates the sex difference in body size plasticity. This
identifies one sex-specific mechanism underlying the nutrient-dependent regulation of
[IS activity and body size plasticity, providing vital insight into conserved mechanisms

that mediate sex differences in phenotypic plasticity.
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INTRODUCTION

In insects, as in many animals, the rate of growth during development is
influenced by environmental factors such as nutrient availability (Boulan et al., 2015;
Edgar, 2006; Hietakangas & Cohen, 2009; Nijhout, 2003; Nijhout et al., 2014). When
nutrients are abundant, the rate of growth is high and body size is large (Beadle et al.,
1938; Edgar, 2006; Mirth & Shingleton, 2012; Nijhout, 2003; Robertson, 1963). When
nutrients are scarce, the rate of growth is lower and body size is smaller (Beadle et al.,
1938; Edgar, 2006; Mirth & Riddiford, 2007; Mirth & Shingleton, 2012; Nijhout, 2003;
Robertson, 1963). This ability of an organism or genotype to adjust its body size in line
with nutrient availability is a form of phenotypic plasticity (Agrawal, 2001; Garland &
Kelly, 2006). While the capacity of individuals to display nutrient-dependent changes to
body size depends on many factors, one important factor that affects phenotypic
plasticity is whether an animal is male or female (Stillwell et al., 2010; Teder &
Tammaru, 2005). For example, studies in Drosophila found that the magnitude of
changes to wing cell size and cell number in a nutrient-poor diet were larger in females
compared with males (Alpatov, 1930). Additionally, recent studies that systematically
manipulated dietary carbohydrates and protein confirmed that the magnitude of diet-
induced changes to some morphological traits was larger in female flies (Shingleton et
al., 2017). While these studies clearly establish a sex difference in nutrient-dependent
phenotypic plasticity, the genetic and molecular mechanisms underlying this increased
trait size plasticity in females remain unclear.

Clues into the genes and pathways that may underlie the increased nutrient-
dependent phenotypic plasticity in female flies have emerged from over 20 years of
studies on nutrient-dependent growth in Drosophila (Andersen et al., 2013; Boulan et al.,
2015; Edgar, 2006; Koyama & Mirth, 2018; Mirth & Piper, 2017). In particular, these
studies have identified the conserved insulin/insulin-like growth factor signaling pathway
(IIS) as a key regulator of nutrient-dependent growth in Drosophila (Bohni et al., 1999;
Britton et al., 2002; Chen et al., 1996; Fernandez et al., 1995; Grewal, 2009; Teleman,
2009). In nutrient-rich conditions, insulin-producing cells (IPCs) in the larval brain

release Drosophila insulin-like peptides (dILPs) into the circulation (Brogiolo et al., 2001;
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Géminard et al., 2009; lkeya et al., 2002; Rulifson et al., 2002). These dILPs bind the
Insulin-like Receptor (InR; FBgn0283499) on target cells to induce receptor
autophosphorylation and recruitment of adapter proteins such as InR substrate Chico
(chico; FBgn0024248) and Lnk (Lnk; FBgn0028717) (Almudi et al., 2013; Bohni et al.,
1999; Chen et al., 1996; Poltilove et al., 2000; Werz et al., 2009). These adapter
proteins, when phosphorylated, enable the recruitment of a regulatory subunit of the
Drosophila homolog of phosphatidylinositol 3-kinase (Pi3K21B; FBgn0020622) that
recruits and activates the catalytic subunit of Pi3K (Pi3K92E; FBgn0015279). This
activated Pi3K complex catalyzes the production of phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) from phosphatidylinositol (4,5)-bisphosphate (PIP;) (Leevers et al.,
1996). The increased abundance of PIP; in the plasma membrane recruits and
activates signaling proteins such as phosphoinositide-dependent kinase 1 (Pdk1;
FBgn0020386) and Akt (Akt; FBgn0010379), which influence diverse cellular processes
to enhance cell, tissue, and organismal growth (Cho et al., 2001; Grewal, 2009; Rintelen
et al., 2001; Verdu et al., 1999). On the other hand, in nutrient-restricted conditions,
dILP release from the IPCs is reduced (Géminard et al., 2009), and plasma membrane
Pi3K recruitment, PIP3 levels, and Pdk1- and Akt-dependent signaling are all reduced
(Britton et al., 2002; Nowak et al., 2013). Together, these changes diminish cell, tissue,
and organismal growth (Arquier et al., 2008; Britton et al., 2002; Géminard et al., 2009;
Honegger et al., 2008; Okamoto et al., 2013; Rulifson et al., 2002; Zhang et al., 2009).
Indeed, the potent growth-promoting ability of IIS activation is demonstrated by studies
in Drosophila showing that genetic manipulations that increase IIS activity augment
growth during development (Arquier et al., 2008; Goberdhan et al., 1999; Honegger et
al., 2008; lkeya et al., 2002; Nowak et al., 2013; Okamoto et al., 2013; Oldham et al.,
2002), whereas genetic mutations that lower IS activity strongly reduce cell, organ, and
body size (Bohni et al., 1999; Brogiolo et al., 2001; Chen et al., 1996; Colombani et al.,
2003; Gao et al., 2000; Gronke et al., 2010; Leevers et al., 1996; Murillo-Maldonado et
al., 2011; Rulifson et al., 2002; Weinkove et al., 1999; Zhang et al., 2009). Because
increased IIS activity is sufficient to bypass the reduced cell growth normally observed
upon nutrient restriction (Britton et al., 2002; Géminard et al., 2009; Nowak et al., 2013),

and that mutations blunting 1IS pathway activity decrease growth even in nutrient-rich
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106  conditions (Bohni et al., 1999; Brogiolo et al., 2001; Chen et al., 1996; Leevers et al.,
107  1996), studies in Drosophila have established a role for IIS in promoting organismal

108  growth downstream of nutrient input. While this highlights the vital role that Drosophila
109 studies have played in elucidating the mechanisms by which IIS couples nutrient input
110  with cell, tissue, and organismal growth, it is important to note that most studies in this
111  area used a mixed-sex population of larvae. Given that cell and body size are

112 significantly different between male and female flies (Alpatov, 1930; Brown & King, 1961;
113  Okamoto et al., 2013; Partridge et al., 1994; Rideout et al., 2015; Sawala & Gould, 2017;
114 Testa et al., 2013), more knowledge is needed of nutrient-dependent changes to body
115  size and IIS activity in each sex.

116 Recent studies have begun to make progress in this area by studying 1S

117  regulation and function in both sexes in a single dietary context (reviewed in Millington &
118 Rideout, 2018). One study on late third instar larvae reported sex differences in dilp

119 mRNA levels, in IIS activity, and in the release of dILP2, an important growth-promoting
120 dILP, from the IPCs (Rideout et al., 2015). Similarly, transcriptomic studies have

121  detected male-female differences in mRNA levels of genes associated with 11S function
122 (Mathews et al., 2017; Rideout et al., 2015), and revealed links between IIS and the sex
123  determination hierarchy gene regulatory network (Castellanos et al., 2013; Chang et al.,
124  2011; Clough et al., 2014; Fear et al., 2015; Garner et al., 2018; Goldman & Arbeitman,
125 2007). As evidence of sex-specific |IS regulation continues to accumulate, several

126  reports have also identified sex-limited and sex-biased phenotypic effects caused by
127  changes to IIS function. For example, changes to IIS activity show sex-biased effects on
128 larval growth and final body size (Gronke et al., 2010; Rideout et al., 2015; Shingleton et
129  al., 2005; Testa et al., 2013). In adults, widespread sex-specific and sex-biased

130 changes to gene expression were observed in flies with altered diet and IS activity

131  (Camus et al., 2019; Graze et al., 2018). Further, sex differences exist in how changes
132 to diet and IIS activity affect life span (Bjedov et al., 2010; Clancy et al., 2001,

133  Giannakou et al., 2004; Gronke et al., 2010; Regan et al., 2016; Tatar et al., 2001;

134  Woodling et al., 2020; Wu et al., 2020). Together, these studies illuminate the utility of
135  Drosophila in revealing sex-specific |IS regulation and describing the physiological

136  impact of this regulation. Yet, more studies are needed to discover the molecular
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mechanisms underlying sex-specific IIS regulation, and to extend these studies beyond
a single nutritional context.

Additional insights into potential mechanisms underlying the sex difference in
nutrient-dependent trait size plasticity come from studies on the regulation of cell, tissue,
and body growth by sex determination genes. In flies, sex is determined by the number
of X chromosomes. In XX females, a functional splicing factor called Sex-lethal (Sxl;
FBgn0264270) is produced (Bell et al., 1988; Bridges, 1921; Cline, 1978; Salz &
Erickson, 2010). SxlI protein binds to the pre-mRNA of transformer (tra, FBgn0003741),
SxI's most well-known target gene, where the Sxl-dependent splicing of fra pre-mRNA
allows a functional Tra protein to be produced in females (Belote et al., 1989; Boggs et
al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). In XY males, no functional Sxl
protein is produced (Cline & Meyer, 1996; Salz & Erickson, 2010). As a result, fra pre-
MRNA undergoes default splicing, and no functional Tra protein is produced in males
(Belote et al., 1989; Boggs et al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). An
extensive literature shows that the presence of functional Sxl and Tra proteins in
females accounts for most aspects of female sexual development, behavior, and
physiology (Anand et al., 2001; Billeter et al., 2006; Brown & King, 1961; Camara et al.,
2008; Christiansen et al., 2002; Clough et al., 2014; Dauwalder, 2011; Demir & Dickson,
2005; Goodwin et al., 2000; Hoshijima et al., 1991; Hudry et al., 2016, 2019; Ito et al.,
1996; Millington & Rideout, 2018; Neville et al., 2014; Nojima et al., 2014; Pavlou et al.,
2016; Pomatto et al., 2017; Regan et al., 2016; Rezaval et al., 2014, 2016; Rideout et
al., 2010; Ryner et al., 1996; Sturtevant, 1945; von Philipsborn et al., 2014). Recently,
roles for Sxl and Tra in regulating the sex difference in body size were also described.
While Drosophila females are normally significantly and visibly larger than male flies,
females lacking neuronal Sx/ are significantly smaller than control females, and no
longer different in size from males (Sawala & Gould, 2017). Interestingly, Sx/ function in
specific neurons, the IPCs and GAD1-GAL4-positive neurons, mediate its effects on
female growth during development (Sawala & Gould, 2017). Similarly, females lacking a
functional Tra protein were significantly smaller than control females; however, these fra
mutant females were still larger than males (Brown & King, 1961; Mathews et al., 2017,

Rideout et al., 2015). Together, these studies indicate a requirement for both Tra and
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Sxl in promoting a larger body size in females, providing vital insight into the intersection
between the sex determination pathway and the regulation of body size. However,
much remains to be discovered about the mechanisms by which Sxl and Tra impact
body size. Moreover, it remains unclear whether sex determination genes contribute to
the male-female difference in diet-induced trait size plasticity, as previous studies on
sex determination genes used a single nutritional context.

In the present study, we aimed to improve knowledge of the genetic and
molecular mechanisms that contribute to male-female differences in nutrient-dependent
plasticity in Drosophila. Our detailed examination of nutrient-dependent body size
plasticity revealed increased phenotypic plasticity in females in response to a protein-
rich diet, in line with prior studies on trait size plasticity (Shingleton et al., 2017).
Importantly, we show that a nutrient-dependent upregulation of 1S activity in females
and not in males in a protein-rich context is responsible for the increased body size
plasticity in females. Mechanistically, we show that a nutrient-dependent upregulation of
stunted (sun; FBgn0014391) mRNA levels in females triggers the diet-induced increase
in IS activity, as females lacking sun do not augment IS activity or body size in a
protein-rich diet. Importantly, we show that sex determination gene fra is required for the
nutrient-dependent increase in sun mRNA, IS activity, and phenotypic plasticity in
females, and that ectopic fra expression in males enhances nutrient-dependent body
size plasticity via sun-mediated regulation of IIS activity. Together, these results provide
new insight into the molecular mechanisms that govern male-female differences in body
size plasticity, and identify a previously unrecognized role for sex determination gene tra

in regulating nutrient-dependent phenotypic plasticity.

RESULTS

High levels of dietary protein are required for increased nutrient-dependent body

size plasticity in females

Previous studies identified a sex difference in nutrient-dependent plasticity in several

morphological traits (Shingleton et al., 2017; Stillwell et al., 2010; Teder & Tammaru,
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2005). To determine whether sex differences in nutrient-dependent body size plasticity
exist in Drosophila, we measured pupal volume, an established readout for Drosophila
body size (Delanoue et al., 2010), in white’'"® (w; FBgn0003996) males and females
reared on diets of varying nutrient quantity. We found that pupal volume in w’’"® female
larvae raised on the 2-acid diet (1x) (Lewis, 1960) was significantly larger than
genotype-matched females raised on a diet with half the nutrient quantity (0.5x) (Fig.
1A). In w'""® males, pupal volume was also significantly larger in larvae raised on the 1x
diet compared with the 0.5x diet (Fig. 1A). No significant sex-by-diet interaction was
detected using a two-way analysis of variance (ANOVA) (sex:diet interaction p = 0.7048;
S1 Table), suggesting that nutrient-dependent body size plasticity was not different

118 males and

between the sexes in this context. We next compared pupal volume in w
females raised on the 1x diet with larvae cultured on a diet with twice the nutrient
content (2x). Pupal volume in w'’’® females was significantly larger in larvae raised on

the 2x diet compared with larvae cultured on the 1x diet (Fig. 1A). In w'"™

males, the
magnitude of the nutrient-dependent increase in pupal volume was smaller compared
with female larvae (Fig. 1A; sex:diet interaction p <0.0001; S1 Table). This suggests
that in nutrient-rich conditions, there is a sex difference in body size plasticity, where
nutrient-dependent phenotypic plasticity is higher in females. To represent the normal
body size responses of each sex to nutrient quantity, we plotted reaction norms for

pupal volume in w'’"®

males and females raised on different diets (Fig. 1B). The body
size response to increased nutrient quantity between 0.5x and 1x was not different
between the sexes (Fig. 1B); however, the body size response to increased nutrient
quantity between 1x and 2x was larger in females than in males (Fig. 1B). Importantly,
these findings were not specific to pupal volume, as we reproduced our findings using
adult weight as an additional readout for body size (Fig. 1C, D). Thus, our findings
demonstrate that while phenotypic plasticity is similar between the sexes in some
nutritional contexts, body size plasticity is higher in females than in males in a nutrient-
rich environment.

To narrow down macronutrients that account for the increased body size
plasticity in females, we changed individual food ingredients and measured body size in

w'""® males and females. We first altered dietary yeast, as previous studies show that
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yeast is a key source of protein and an important determinant of larval growth (Britton et
al., 2002; Géminard et al., 2009; Robertson, 1963). In w'’’® females raised on a diet
with yeast content that corresponds to the amount in the 2x diet (2Y diet), pupal volume
was significantly larger than in females raised on a diet containing half the yeast content
(1Y) (Fig. 1E). It is important to note that the yeast content of the 1Y diet is within the
range of many larval growth studies (Ghosh et al., 2014; Koyama & Mirth, 2016;
Marshall et al., 2012; Sawala & Gould, 2017), and therefore does not represent a

nutrient-restricted diet. In w'’"®

males, the magnitude of the nutrient-dependent increase
in pupal volume was smaller than in females (Fig. 1E; sex:diet interaction p = 0.0001;
S1 Table), suggesting that nutrient-dependent body size plasticity is higher in females in
a yeast-rich context. Indeed, when we plot reaction norms for pupal volume in both
sexes, the magnitude of the yeast-dependent change in pupal volume (Fig. 1F) and
adult weight (Fig. 1G, H) was larger in females than in males. This sex difference in
phenotypic plasticity in a yeast-rich context was reproduced in Canton-S (CS), a wild-
type strain (Fig. S1A, B), and using wing length as an additional measure of growth (Fig.
S2A). Thus, our findings indicate that the male-female difference in nutrient-dependent
body size plasticity persists across multiple genetic backgrounds, and confirms that
body size is a robust trait to monitor nutrient-dependent phenotypic plasticity.

Given the sex difference in body size plasticity in response to altered yeast
content, we hypothesized that yeast may trigger increased nutrient-dependent body size
plasticity in females. To test this, we raised larvae on diets with altered sugar (Fig. S3A)
or calorie content (Fig. S3B). Because we observed no sex:diet interaction for either
manipulation (sex:diet interaction p = 0.6536 and p = 0.3698, respectively; S1 Table),
this suggests dietary yeast mediates the sex difference in nutrient-dependent body size
plasticity. To test whether protein is the macronutrient in yeast that enables sex-specific
phenotypic plasticity, we pharmacologically limited protein breakdown by culturing
larvae on the 2Y diet supplemented with either a broad-spectrum protease inhibitor
(protease inhibitor cocktail; PIC) or a serine protease-specific inhibitor (4-(2-
aminoethyl)benzenesulfonyl fluoride hydrochloride; AEBSF). We found a significant
body size reduction in both sexes treated with protease inhibitors (Fig. S4A, B), in line

with previous studies (Erkosar et al., 2015); however, the inhibitor-induced decrease in


https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.054239; this version posted April 24, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

261  pupal volume was larger in female larvae than in males (sex:treatment interaction p =
262 0.0029 [PIC] and p<0.0001 [AEBSF]; S1 Table). This indicates that yeast-derived

263  dietary protein is the macronutrient that augments nutrient-dependent body size

264  plasticity in females. While one potential explanation for the male-female difference in
265 body size plasticity is a sex difference in food intake or length of the growth period, we

118 male and female

266  found no male-female differences in either phenotype between w
267 larvae cultured on 1Y or 2Y (Fig. S5A-C). Moreover, the larger body size of female

268 larvae does not explain their increased nutrient-dependent body size plasticity, as a

269  genetic manipulation that augments male body size did not enhance phenotypic

270 plasticity (Fig. S6A, B). Taken together, our data reveals female larvae have enhanced
271  body size plasticity in a nutrient-rich context, and identifies abundant dietary protein as a
272  prerequisite for females to maximize body size.

273

274 A nutrient-dependent upregulation of IIS activity is required for body size

275 plasticity in females

276

277  In a mixed-sex population of Drosophila larvae, 11S activity is positively regulated by

278 nutrient availability to promote growth (Bohni et al., 1999; Britton et al., 2002; Chen et
279 al.,, 1996; Fernandez et al., 1995; Grewal, 2009; Teleman, 2009). We therefore

280 examined nutrient-dependent changes to IIS activity in larvae raised on 1Y and 2Y (Fig.
281 2A-D). Previous studies have shown that high levels of IIS activity repress mRNA levels
282  of several genes, including InR, brummer (bmm, FBgn0036449), and eukaryotic

283 initiation factor 4E-binding protein (4E-BP, FBgn0261560) (Alic et al., 2011; Junger et
284 al., 2003; Kang et al., 2017; Puig & Tjian, 2005; Zinke et al., 2002). In w'""® females, we
285 found that the mRNA levels of InR, bmm, and 4E-BP were significantly lower in larvae
286 reared on 2Y than in larvae raised on 1Y (Fig. 2A). This suggests IIS activity is

287  significantly higher in females raised on 2Y than in females cultured on 1Y. To confirm
288 this, we used the localization of a ubiquitously-expressed green fluorescent protein

289 (GFP) fused to a pleckstrin homology (PH) domain (GFP-PH) as an additional readout
290 of IIS activity. Because high levels of IIS activity raise the level of PIP3 at the plasma

291 membrane, and PH domains bind specifically to PIP3, larvae with elevated IIS activity

10
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show increased membrane localization of GFP-PH (Britton et al., 2002). We observed a
significantly higher membrane localization of GFP-PH in females cultured on 2Y than in
female larvae raised on 1Y (Fig. 2B), indicating enhanced IIS activity in females raised

on 2Y. Inw'’"®

males, we observed no significant difference in the mRNA levels of InR,
bmm, and 4E-BP between larvae grown on 2Y compared with larvae cultured on 1Y
(Fig. 2C). Further, there was no significant difference in GFP-PH membrane localization
between males raised on 2Y and males reared on 1Y (Fig. 2D). Together, these results
suggest that IIS activity was enhanced by a protein-rich diet in female larvae but not in
males, revealing a previously unrecognized sex difference in diet-induced changes to
[IS activity.

To determine whether this increased IIS activity is required in females for the
ability to maximize body size in response to dietary protein, we measured pupal volume
in larvae heterozygous for a hypomorphic mutation in the InR gene (InRF'%/+) that were
raised in either 1Y or 2Y. Previous studies have shown that while overall growth is
largely normal in InRE"%/+ heterozygous animals, growth that requires high levels of IS
activity is blunted (Chen et al., 1996; Rideout et al., 2012, 2015). In w’""® control
females, larvae cultured on 2Y were significantly larger than larvae raised on 1Y (Fig.
2E); however, the magnitude of this protein-dependent increase in pupal volume was
smaller in InRE"%/+ females (Fig. 2E; genotype:diet interaction p<0.0001; S1 Table). This
suggests that nutrient-dependent body size plasticity was reduced in InRE"%/+ females.

18 control

Indeed, while we observed a sex difference in phenotypic plasticity in the w
genotype (sex:diet interaction p<0.0001 S1 Table), the sex difference in nutrient-
dependent body size plasticity was abolished in the InRE"%/+ genotype (Fig. 2E, F:
sex:diet interaction p = 0.7104; S1 Table). Together, these results indicate that the
nutrient-dependent upregulation of IIS activity in females is required for their increased
phenotypic plasticity, and suggest that the sex difference in body size plasticity arises

from the female-specific ability to enhance IIS activity in a protein-rich context.

dilp2 is required for the nutrient-dependent upregulation of IIS activity and body

size plasticity in females

11
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Previous studies have identified changes to the production and release of dILPs as
important mechanisms underlying nutrient-dependent changes to IIS activity and body
size (Colombani et al., 2003; Géminard et al., 2009; Zhang et al., 2009). For example,
the mRNA levels of dilp3 and dilp5, but not dilp2, decrease in response to nutrient
withdrawal (Colombani et al., 2003; Géminard et al., 2009; Ikeya et al., 2002), and the
release of dILPs 2, 3, and 5 from the IPCs is altered by changes in nutrient availability
(Géminard et al., 2009; Kim & Neufeld, 2015). Interestingly, a recent study showed that
late third-instar female larvae have increased dILP2 secretion compared with age-
matched males when the larvae were raised in a diet equivalent to 2Y (Rideout et al.,
2015). Given that dILPZ2 is an important growth-promoting dILP (Gronke et al., 2010;
Ilkeya et al., 2002), we tested whether dilp2 was required in females for the nutrient-
dependent upregulation of IS activity. In control w'’’® females, mRNA levels of 4E-BP
and /InR were significantly lower in larvae raised on 2Y than in larvae reared on 1Y (Fig.
3A and Fig. S7A), suggesting a nutrient-dependent increase in IS activity. In contrast,
MRNA levels of 4E-BP and InR were not significantly lower in dilp2 female larvae raised
on 2Y compared with genotype-matched females cultured on 1Y (Fig. 3A and Fig. S7A).
In w'""® and dilp2 males, mRNA levels of 4E-BP were not significantly lower in larvae
raised on 2Y compared with genotype-matched larvae cultured on 1Y (Fig. 3B), trends
we also observed using InR (Fig. S7B). This data suggests that dilp2 is required for the
nutrient-dependent upregulation of IIS activity in females in a protein-rich context.

To determine whether the inability to augment IIS activity on 2Y affects nutrient-
dependent body size plasticity in females, we measured body size in w’’"® and dilp2

mutant larvae cultured on either 1Y or 2Y. In w'""®

control females, adult weight was
significantly higher in flies cultured on 2Y compared with flies raised on 1Y (Fig. 3C);
however, this nutrient-dependent increase in adult weight was not observed in dilp2
mutant females (Fig. 3C; genotype:diet interaction p = 0.0024; S1 Table). In w'’"®
control males and dilp2 mutant males, there was no significant increase in adult weight
in flies raised on 2Y compared with genotype-matched flies cultured on 1Y (Fig. 3D;
genotype:diet interaction p = 0.935; S1 Table). Indeed, in contrast to the sex difference

1118

in nutrient-dependent body size plasticity in the w'''® genotype (sex:diet interaction

p<0.0001; S1 Table), the sex difference in phenotypic plasticity was abolished in the
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dilp2 mutant genotype (sex:diet interaction p = 0.0827; S1 Table). Importantly, we
replicated all these findings using pupal volume (Fig. 3E, F), and reproduced the
female-specific effects of dilp2 loss by globally overexpressing a UAS-dilp2-RNAi
transgene (Fig. S7C). Further, changes to dilp mRNA levels in males and females
lacking dilp2 (Fig. S8A, B), and protein-dependent changes to dilp mRNA levels (Fig.
S9A, B), were similar in both sexes. Thus, our data reveals a previously unrecognized
female-specific requirement for dilp2 in triggering a nutrient-dependent increase in IIS

activity and body size in a protein-rich context.

A nutrient-dependent increase in stunted mRNA levels is required for enhanced

lIS activity and body size plasticity in females

Nutrient-dependent changes in dILP secretion from the IPCs, and consequently 1S
activity, are mediated by humoral factors that are regulated by dietary nutrients (Britton
& Edgar, 1998; Delanoue et al., 2016; Koyama & Mirth, 2016; Rajan & Perrimon, 2012;
Rodenfels et al., 2014; Sano et al., 2015). For example, in a mixed-sex population of
larvae, dietary protein augments mRNA levels of Growth-blocking peptides 1 and 2
(Gbp1, FBgn0034199; Gbp2, FBgn0034200), CCHamide-2 (CCHa2; FBgn0038147),
unpaired 2 (upd2; FBgn0030904), and sun (Delanoue et al., 2016; Koyama & Mirth,
2016; Rajan & Perrimon, 2012; Sano et al., 2015). Increased levels of these humoral
factors promote the secretion of IPC-produced dILPs to enhance IIS activity and growth
(Delanoue et al., 2016; Koyama & Mirth, 2016; Meschi et al., 2019; Rajan & Perrimon,
2012; Sano et al., 2015). To determine whether any humoral factors contribute to the
sex-specific increase in 1IS activity in a protein-rich diet, we examined mRNA levels of
each factor in larvae of both sexes raised on either 1Y or 2Y. In w'""® females, sun
MRNA levels in larvae reared on 2Y were significantly higher than in larvae cultured on
1Y (Fig. 4A). In contrast, mRNA levels of Gbp1, Gbp2, CCHaZ2, and upd2 were not
significantly higher in female larvae reared on 2Y compared with 1Y (Fig. S10A). Thus,
while previous studies have shown that mRNA levels of all humoral factors were
severely reduced by a nutrient-restricted diet or nutrient withdrawal (Delanoue et al.,
2016; Koyama & Mirth, 2016; Rajan & Perrimon, 2012; Sano et al., 2015), our study
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suggests that for most factors, augmenting dietary protein beyond a widely-used level
does not further enhance mRNA levels. In males, there was no significant increase in
sun mRNA levels (Fig. 4B), or any other humoral factors (Fig. S10B), in larvae reared
on 2Y compared with 1Y. Thus, there is a previously unrecognized sex difference in the
regulation of sun mMRNA levels in a protein-rich context. Given that sun has previously
been shown to promote 1IS activity by enhancing dILP2 secretion (Delanoue et al.,
2016), we hypothesized that the female-specific increase in sun mRNA levels in 2Y
triggers the nutrient-dependent upregulation of IIS activity in females. To test this, we
overexpressed UAS-sun-RNAi in the larval fat body using r4-GAL4, and cultured the
animals on either 1Y or 2Y. Importantly, overexpression of the UAS-sun-RNAi
transgene significantly decreased sun mRNA levels in both sexes (Fig. S10C, D), where
GAL4 expression was similar between the sexes in 1Y and 2Y (Fig. S10E). In control
r4>+ and +>UAS-sun-RNAi females, we observed a significant decrease in InR, bmm,
and 4E-BP mRNA levels in larvae cultured on 2Y compared with genotype-matched
larvae reared on 1Y (Fig. 4C). In contrast, the nutrient-dependent decrease in InR, bmm,
and 4E-BP mRNA levels was absent in r4>UAS-sun-RNAi females (Fig. 4C). In r4>+,
+>UAS-sun-RNAI, and r4>UAS-sun-RNAi males, we found no consistent indications of
increased IIS activity in larvae cultured on 2Y compared with genotype-matched larvae
raised on 1Y (Fig. S11A). Together, this data suggests that in females a protein-rich diet
stimulates a nutrient-dependent increase in sun mRNA that enhances IIS activity. In
males, the 2Y diet did not augment sun mRNA levels, suggesting one reason for the
lack of a nutrient-dependent increase in IIS activity.

We next asked whether the female-specific increase in sun and its regulation of
[IS activity contribute to nutrient-dependent body size plasticity. In r4>+ and +>UAS-
sun-RNA:i control females, adult weight was significantly higher in flies cultured on 2Y
compared with genotype-matched flies raised on 1Y (Fig. 4D). In contrast, the nutrient-
dependent increase in adult weight was abolished in r4>UAS-sun-RNAi females (Fig.
4D; genotype:diet interaction p = 0.0014; S1 Table). This indicates r4>UAS-sun-RNAi
females have reduced nutrient-dependent body size plasticity, a finding we confirmed
using pupal volume (Fig. S11B). In r4>+, +>UAS-sun-RNAI, and r4>UAS-sun-RNAi

male flies raised on 2Y, adult weight was not significantly higher than in genotype-
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matched males raised on 1Y (Fig. 4E; genotype:diet interaction p = 0.9278; S1 Table).
Additionally, we replicated all these findings using pupal volume (Fig. S11C).
Importantly, in contrast to the sex difference in nutrient-dependent body size plasticity
we observed in the r4>+ and +>UAS-sun-RNAi control genotypes (sex:diet interaction p
=0.011 and p = 0.0005, respectively; S1 Table), the sex difference in phenotypic
plasticity was abolished in the r4>UAS-sun-RNAi genotype (sex:diet interaction p =
0.8749; S1 Table). This suggests that the female-specific increase in sun mRNA levels
is required for the sex difference in nutrient-dependent plasticity. A sex-specific role for
sun was further supported by the fact that we reproduced the female-specific effects of
sun knockdown on body size using an additional GAL4 line (Fig. S12A), and by the fact
that no other humoral factors caused sex-specific effects on body size (Fig. S12B, C).
Further, while we show that fat body-specific sun overexpression was sufficient to
increase body size in both sexes (Fig. S13A, B), body size plasticity in these larger
males was not significantly different from control males (genotype:diet interaction p =
0.4959, S1 Table), in line with our earlier data showing that augmenting body size in
males was not sufficient to confer phenotypic plasticity (Fig. S6B). Thus, our data
suggests that the female-specific ability to upregulate sun in the 2Y diet enhances IIS
activity to promote a larger body size, revealing the mechanism by which females, and

not males, augment body size in a protein-rich context.

Sex determination gene transformer promotes nutrient-dependent body size

plasticity in females

We next investigated the increased ability of females to enhance IIS activity and
augment body size in a protein-rich context. Given that previous studies have implicated
sex determination gene fra in regulating body size in a diet equivalent to the 2Y diet
(Rideout et al., 2015), and identified links between tra and IIS activity in this context
(Rideout et al., 2015), we explored a role for fra in regulating the sex difference in the
nutrient-dependent upregulation of IS activity and body size plasticity. In control w8
females, 4E-BP mRNA levels were significantly lower in larvae raised on 2Y compared

with larvae cultured on 1Y (Fig. 5A); however, this nutrient-dependent decrease in 4E-
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BP mRNA levels was absent in tra mutant females (tra’/Df(3L)st-j7) (Fig. 5A). Similarly,

while sun mRNA levels in w'’"®

control females were significantly higher in larvae raised
on 2Y compared with 1Y (Fig. 5B), this nutrient-dependent increase in sun mRNA levels
was absent in tra mutant females (Fig. 5B). Thus, fra is required in females for the
nutrient-dependent increase in sun mMRNA and IIS activity in a protein-rich context. To
determine whether the inability of tfra mutant females to upregulate sun mRNA levels
and IS activity impacts nutrient-dependent body size plasticity, we measured body size

118 controls and tra mutants raised in 1Y and 2Y. In control w'’"® females, adult

inw
weight was significantly higher in flies raised on 2Y compared with flies cultured on 1Y
(Fig. 5C); however, this nutrient-dependent increase in adult weight was not observed in
tra mutant females (Fig. 5C; genotype:diet interaction p<0.0001; S1 Table), a finding we
reproduced using pupal volume (Fig. S14A). This indicates that tra mutant females have
reduced nutrient-dependent body size plasticity compared with control females. In

control w'""®

and tra mutant males, adult weight was not significantly higher in flies
raised on 2Y compared with genotype-matched flies reared on 1Y (Fig. 5D;
genotype:diet interaction p = 0.4507). Importantly, we replicated all these findings using
pupal volume (Fig. S14B). Given that we observed a sex difference in nutrient-

dependent body size plasticity in the w'""®

genotype (sex:diet interaction p<0.0001; S1
Table), but not in the tra mutant strain (sex:diet interaction p = 0.6598; S1 Table), our
data reveals a previously unrecognized requirement for tra in regulating the sex
difference in nutrient-dependent phenotypic plasticity.

To determine whether lack of a functional Tra protein in males explains their
reduced nutrient-dependent body size plasticity, we overexpressed UAS-tra" in all
tissues using daughterless (da)-GAL4. We first asked whether fra overexpression
impacted the nutrient-dependent regulation of sun mRNA and IIS activity. In control
da>+ and +>UAS-tra” males, there was no significant decrease in InR, bmm, or 4E-BP
MRNA levels in larvae reared in 2Y compared with larvae raised in 1Y (Fig. 5E). In
contrast, there was a significant nutrient-dependent decrease in mRNA levels of InR
and bmm in da>UAS-tra” males (Fig. 5E). Similarly, while sun mRNA levels in control
da>+ and +>UAS-tra” males were not significantly higher in larvae raised on 2Y

compared with larvae reared on 1Y (Fig. 5F), there was a nutrient-dependent increase
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in sun mRNA levels in da>UAS-tra” males (Fig. 5F). This suggests the presence of a
functional Tra protein in males confers the ability to upregulate sun mRNA levels and 1S
activity in a protein-rich context. Next, we asked whether expressing a functional Tra
protein in males would augment nutrient-dependent body size plasticity. In control da>+
and +>UAS-tra” males, there was no significant increase in adult weight in flies raised
on 2Y compared with genotype-matched flies reared on 1Y (Fig. 5G); however, there
was a nutrient-dependent increase in da>UAS-tra” males (Fig. 5G; genotype:diet
interaction p = 0.0038; S1 Table), a finding we reproduced using pupal volume (Fig.
S15A). Thus, da>UAS-tra” males have increased phenotypic plasticity compared with
control males, revealing a new role for tra in regulating nutrient-dependent body size
plasticity. In females, we observed a significant increase in both adult weight and pupal
volume in da>+, +>UAS-tra", and da>UAS-tra" flies raised on the 2Y diet compared with
genotype-matched females cultured on the 1Y diet (Fig. S15B, C). Because one study
suggested high levels of Tra overexpression could cause lethality (Siera & Cline, 2008),
we reproduced these findings using a recently published strain of flies in which adult
males and females lacking tra (tra”®), and adult males and females carrying a cDNA
encoding the female-specific Tra protein knocked into the tra locus (tra” ™)

produced from the same cross (Hudry et al., 2016, 2019). In line with tra’/Df(3L)st-j7
1118

, are
females, tra*® females had reduced body size plasticity compared with control w’’’® and
tra” *™ females in a protein-rich context (Fig. S15D; genotype:diet interaction p<0.0001
S1 Table). As with da>UAS-tra” males, we found that tra” "N males, which express
physiological levels of a functional Tra protein, showed increased nutrient-dependent
body size plasticity compared with control w'’"® and tra"® males (Fig. S15E;
genotype:diet interaction p<0.0001; S1 Table). Importantly, the sex difference in

1118

nutrient-dependent body size plasticity that we observed in the w ' '° genotype (sex:diet

interaction p<0.0001) was abolished in the tra“® and tra” “™N

genotypes (p = 0.5068 and
p = 0.3168, respectively; S1 Table). Together, our findings reveal a new role for tra in
regulating the sex difference in nutrient-dependent body size plasticity.

These findings suggest that a functional Tra protein confers the ability to adjust
body size in a protein-rich context via regulation of sun mRNA and IIS activity. To test

this, we examined whether the ability to adjust sun mRNA levels is required for Tra’s
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509 effects on phenotypic plasticity. Because animals homozygous for null mutations in sun
510 are larval lethal (Kidd et al., 2005), and sun is located on the X chromosome which

511 precludes studies on flies heterozygous for a sun mutant allele, we examined nutrient-
512 dependent body size plasticity in da>UAS-tra” animals heterozygous for a hypomorphic
513 allele of spargel (srl, FBgn0037248), the Drosophila homolog of peroxisome proliferator-
514  activated receptor gamma coactivator 1-alpha (PGC-1a). A previous study showed that
515 srl/PGC-1q, an essential gene, was required for normal sun mRNA levels (Delanoue et
516 al., 2016). Therefore, we predicted that heterozygous loss of srl/PGC-1a would blunt the
517 nutrient-dependent increase in sun mRNA levels without compromising viability. While
518  adult weight in da>UAS-tra” males and females was significantly higher in flies raised
519 on 2Y compared with flies cultured in 1Y (Fig. 6A, B), as in Fig. 5G and Fig. S15C, the
520 nutrient-dependent increase in adult weight was abolished in da>UAS-tra” males and
521 females carrying a mutant allele of sri/PGC-1a (srl’) (Fig. 6A, B; genotype:diet

522 interaction p = 0.0146 and p = 0.0008, respectively). This finding suggests that nutrient-
523  dependent body size plasticity was reduced in da>UAS-tra",sri"/+ flies compared with
524  controls. Therefore, when taken together, our results indicate that the nutrient-

525 dependent upregulation of sun is important for tra’s ability to promote growth in a

526  protein-rich context, revealing one mechanism by which Tra regulates body size

527 plasticity.

528

529 Increased nutrient-dependent body size plasticity in females promotes fecundity
530 in a protein-rich context

531

532  Previous studies have shown that plentiful nutrients during development maximize body
533 size to promote fertility in Drosophila females (Bergland et al., 2008; Green & Extavour,
534 2014; Gronke et al., 2010; Hodin & Riddiford, 2000; Mendes & Mirth, 2016; Robertson,
535 1957a, 1957b; Sarikaya et al., 2012; Tu & Tatar, 2003), and that high levels of IIS

536 activity are required for normal egg development, ovariole number, and fecundity

537 (Green & Extavour, 2014; Gronke et al., 2010; Mendes & Mirth, 2016; Richard et al.,
538 2005). In line with these findings, w'""8 female flies reared on 2Y produced significantly

539 more eggs compared with genotype-matched females cultured on 1Y (Fig. 6C). This

18


https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.054239; this version posted April 24, 2020. The copyright holder for this preprint (which

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

suggests that the ability to augment IIS activity and body size in response to a protein-
rich diet allows females to maximize fecundity in conditions where nutrients are plentiful.
To test this, we measured the number of eggs produced by InRF'%/+ females and w'""®
controls raised in either 1Y or 2Y. In contrast to w’’’® females, the nutrient-dependent
increase in egg production was absent in InRE"/+ females (Fig. 6C). Similarly, there
was no diet-induced increase in egg production in dilp2 mutant females (Fig. 6D). These
findings suggest that the nutrient-dependent increase in 1IS activity and body size are
important to promote fecundity in a protein-rich context. This result aligns with findings
from a previous study showing that lifetime fecundity was significantly lower in dilp2
mutants raised in a yeast-rich diet (Gronke et al., 2010). To extend our findings beyond
dilp genes, we next examined fecundity in females with an RNAi-mediated reduction in
sun. We found that the nutrient-dependent increase in egg production in r4>UAS-sun-
RNAi females was eliminated, in contrast to the robust diet-induced increase in
fecundity in r4>+ and +>UAS-sun-RNAI control females (Fig. 6E). Together, this data
suggests that dilp2 and fat body-derived sun play a role in maximizing IIS activity and
body size to promote egg production in a protein-rich context.

In males, which have a reduced ability to augment body size in response to a
protein-rich diet, we also investigated the relationship between nutrient content, body

size, and fertility. When we compared fertility in w''’8

males reared on 1Y compared
with males raised on 2Y, we found no significant difference in the number of offspring
produced (Fig. 6F). Thus, neither male body size nor fertility were enhanced by rearing
flies in a protein-rich environment. Given that previous studies suggest that a larger
body size in males promotes reproductive success (Ewing, 1961; Partridge et al., 1987;
Partridge & Farquhar, 1983), we next asked whether genetic manipulations that
augment male body size also increased fertility. One way to augment male body size in
1Y is heterozygous loss of phosphatase and tensin homolog (pten, FBgn0026379;

pten®'%/+) (Fig. S6B). Interestingly, fertility was not significantly higher in pten®-"%%/+

males compared with w'’"8

controls raised in 1Y (Fig. 6F), suggesting that a larger body
size does not always augment fertility in males. Similarly, when we measured fertility in
r4>UAS-sun males, which are larger than control males (Fig. S13B), fertility was not

significantly different from r4>+ and +>UAS-sun control males (Fig. 6G). Thus, in males
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the relationship between body size and fertility is less robust than in females, as genetic
manipulations that increase body size do not augment fertility. Interestingly, when we
examined fertility in pten®-'°’/+ and r4>UAS-sun males in 2Y, fertility was significantly
increased in pten® %+ males compared with genotype-matched controls cultured in 1Y
(Fig. 6F), an observation we did not repeat in r4>UAS-sun males (Fig. 6G). Ultimately,
this less robust and more complex relationship between body size and fertility in males
suggests a possible explanation for their decreased nutrient-dependent body size

plasticity compared with females.
DISCUSSION

In many animals, body size plasticity in response to environmental factors such as
nutrition differs between the sexes (Fairbairn, 1997). While past studies have identified
mechanisms underlying nutrient-dependent growth in a mixed-sex population, and
revealed factors that promote sex-specific growth in a single nutritional context, the
mechanisms underlying the sex difference in nutrient-dependent body size plasticity
remain unknown. In this study, we showed that females have higher phenotypic
plasticity compared with males when reared on a protein-rich diet, and elucidated the
molecular mechanisms underlying the sex difference in nutrient-dependent body size
plasticity in this context. Our data suggests a model in which high levels of dietary
protein augment female body size by stimulating an increase in 1IS activity, where we
identified a requirement for dilp2 and sun in promoting this nutrient-dependent increase
in 11S activity. Importantly, we discovered tra as the factor responsible for stimulating
sun mRNA levels and IIS activity, identifying a novel role for sex determination gene tra
in regulating nutrient-dependent body size plasticity. Together, our findings reveal one
mechanism underlying the sex difference in nutrient-dependent body size plasticity.
One interesting finding from our study was the identification of a sex difference in
nutrient-dependent changes to IIS activity. In females raised on a protein-rich diet, there
was a nutrient-dependent upregulation of IIS activity. In males, this diet-induced
increase in IIS activity was not observed. This reveals a previously unrecognized sex

difference in the coupling between IIS activity and dietary protein: females tightly couple
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nutrient input with 11S activity across a wide protein concentration range, whereas the
close coordination between dietary protein and IIS activity in males was lost in a protein-
rich context. Our data shows that this sex difference in nutrient-dependent changes to
[IS activity during development is physiologically significant, as it supports an increased
rate of growth and consequently larger body size in females but not in males raised on a
protein-rich diet. In future studies, it will be important to determine whether the sex
difference in coupling between nutrients and IIS activity exist in other contexts. For
example, previous studies on the extension of life span by dietary restriction have
shown that male and female flies differ in the concentration of nutrients that produces
the maximum life span extension, and in the magnitude of life span extension produced
by dietary restriction (Magwere et al., 2004; Regan et al., 2016). Similar sex-specific
effects of dietary restriction and reduced IIS on life span have also been observed in
mice (Holzenberger et al., 2003; Kane et al., 2018; reviewed in Regan & Partridge, 2013;
Selman et al., 2008) and humans (van Heemst et al., 2005). Future studies will be
needed to determine whether a male-female difference in coupling between nutrients
and IIS activity similarly explain these sex-specific life span responses to dietary
restriction. Indeed, given that sex differences have been reported in the risk of
developing diseases associated with overnutrition and dysregulation of 1S activity such
as obesity and type 2 diabetes (Kautzky-Willer et al., 2016; Mauvais-Jarvis, 2018;
Tramunt et al., 2020), more detailed knowledge of the male-female difference in
coupling between nutrients and IS activity in other models may provide insights into this
sex-biased risk of disease.

In addition to revealing a sex difference in the nutrient-dependent upregulation of
[IS activity, our data identified a female-specific requirement for dilp2 and sun in
mediating the diet-induced increase in IIS activity in a protein-rich context. While
previous studies have shown that both dilp2 and sun positively regulate body size
(Ikeya et al., 2002; Gronke et al., 2010; Delanoue et al 2016), we describe new sex-
specific roles for dilp2 and sun in mediating nutrient-dependent phenotypic plasticity.
Elegant studies have shown that sun is a secreted factor that stimulates dILP2 release
from the IPCs (Delanoue et al., 2016). Together with our data, this suggests a model in

which the sex difference in nutrient-dependent body size plasticity is due to the diet-
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induced upregulation of sun in females and not males. Higher sun mRNA levels
enhance dILP2 secretion to promote 1IS activity and increase female body size in a
protein-rich context. This model aligns well with findings from two previous studies on
dILP2 secretion in male and female larvae. The first study, which raised larvae on a
protein-rich diet equivalent to the 2Y diet, found increased dILP2 secretion in females
compared to males (Rideout et al., 2015). The second study, which raised larvae on a
diet equivalent to the 1Y diet, found no sex difference in dILP2 secretion and no effects
of dilp2 loss on body size (Sawala & Gould, 2017). Thus, while these previous studies
differed in their initial findings on a sex difference in dILP2 secretion, our data reconcile
these minor differences by identifying context-dependent effects of dilp2 on body size.
Future studies will need to determine whether these sex-specific and context-dependent
effects of dilp2 are observed in other phenotypes regulated by dilp2 and other dilp
genes. For example, flies carrying mutations in dilp genes show changes to aging,
metabolism, sleep, and immunity, among other phenotypes (Bai et al., 2012; Brown et
al., 2020; Cong et al., 2015; Gronke et al., 2010; Liu et al., 2016; Nassel & Vanden
Broeck, 2016; Okamoto et al., 2009; Okamoto & Nishimura, 2015; Post et al., 2018,
2019; Slaidina et al., 2009; Stafford et al., 2012; Zhang et al., 2009; Bai et al., 2012;
Brogiolo et al., 2001; Brown et al., 2020; Cognigni et al., 2011; Cong et al., 2015;
Gronke et al., 2010; Linneweber et al., 2014, Liu et al., 2016; Okamoto et al., 2009; Post
et al., 2018, 2019; Semaniuk et al., 2018; Slaidina et al., 2009; Stafford et al., 2012;
Suzawa et al., 2019; Ugrankar et al., 2018; Zhang et al., 2009). Further, it will be
interesting to determine whether the sex-specific regulation of sun is observed in any
other contexts, and whether it will influence sex differences in phenotypes associated
with altered IIS activity, such as life span.

While our findings on sun and dilp2 provide mechanistic insight into the
molecular basis for the male-female difference in phenotypic plasticity in response to a
protein-rich diet, a key finding from our study was the identification of sex determination
gene tra as the factor that confers plasticity to females. Normally, nutrient-dependent
body size plasticity is higher in females than in males in a protein-rich context. In
females lacking a functional Tra protein, however, this increased nutrient-dependent

body size plasticity was abolished. In males, which normally lack a functional Tra
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protein, ectopic Tra expression conferred increased nutrient-dependent body size
plasticity. A previous study showed that on the 2Y diet Tra promotes dILP2 secretion
(Rideout et al., 2015); however, our current study extends this finding by identifying sun
as one link between Tra and dILP2. Further, by demonstrating that Tra’s regulation of
[IS activity and body size is context-dependent, we identify a previously unrecognized
role for Tra in regulating nutrient-dependent body size plasticity. This new role for fra
also accounts for minor differences between previous studies on the effects of tra on
growth during development (Mathews et al., 2017; Rideout et al., 2015; Sawala & Gould,
2017). While we extend these previous findings by showing that Tra confers nutrient-
dependent body size plasticity via sex-specific regulation of sun mRNA and IIS activity,
it remains unclear how Tra regulates sun mRNA levels in response to dietary protein.
Future studies will need to examine the basis for this sex-specific regulation, as recent
studies have expanded the number of Tra-regulated genes beyond its canonical targets
genes fruitless (fru; FBgn0004652) and doublesex (dsx; FBgn0000504) (Clough et al.,
2014; Hudry et al., 2016, 2019). In addition to these mechanistic studies, it will also be
critical to explore how Tra couples sun mRNA regulation with dietary protein intake.
Studies have shown that the fra locus is regulated both by alternative splicing and
transcription (Belote et al., 1989; Boggs et al., 1987; Grmai et al., 2018; Inoue et al.,
1990; Sosnowski et al., 1989), and that the Tra protein is regulated by phosphorylation
(Du et al., 1998). Our study therefore highlights the importance of additional studies on
the regulation of the fra genomic locus and Tra protein to gain mechanistic insight into
its effects on nutrient-dependent body size plasticity.

While the main outcome of our work was to reveal the molecular mechanisms
that regulate the sex difference in nutrient-dependent body size plasticity, we also
provide some insight into how genes that contribute to nutrient-dependent body size
plasticity affect female fecundity and male fertility. Our findings align well with previous
studies demonstrating that increased nutrient availability during development and a
larger female body size confers increased ovariole number and fertility (Green &
Extavour, 2014; Mendes & Mirth, 2016; Robertson, 1957a, 1957b), as females lacking
either dilp2 or fat body-derived sun were unable to augment egg production in a protein-

rich context. Given that previous studies demonstrate IS activity influences germline
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stem cells in the ovary in adult flies (Hsu et al., 2008; Hsu & Drummond-Barbosa, 2009;
Kao et al., 2015; LaFever & Drummond-Barbosa, 2005; Lin & Hsu, 2020; Su et al.,
2018), there is a clear reproductive benefit that arises from the tight coupling between
nutrient availability, 1IS activity, and body size in females. In males, however, the
relationship between fertility and body size remains less clear. While larger males are
more reproductively successful both in the wild and in laboratory conditions (Ewing,
1961; Partridge & Farquhar, 1983), other studies revealed that medium-sized males
were more fertile than both larger and smaller males (Lefranc & Bundgaard, 2000).
Given that our study revealed no significant increase in the number of progeny
produced by larger males, the fertility benefits that accompany a larger body size in
males may be context-dependent. For example, studies have shown that a larger body
size increases the ability of males to outcompete smaller males (Flatt, 2020; Partridge
et al., 1987; Partridge & Farquhar, 1983). Thus, in crowded situations, a larger body
size may provide significant fertility gains. On the other hand, in conditions where
nutrients are limiting, an imbalance in the allocation of energy from food to growth rather
than to reproduction may decrease fertility (Bass et al., 2007; Camus et al., 2017,
Jensen et al., 2015; Wood et al., 2018). Future studies will therefore be needed to
resolve the relationship between body size and fertility in males, as this will suggest the

ultimate reason(s) for the sex difference in nutrient-dependent body size plasticity.

MATERIALS AND METHODS
Data Availability. Raw values for all data collected and displayed in this manuscript are

available in S2 Table.

Fly husbandry. Larvae were raised at a density of 50 animals per 10 ml food at 25°C
(recipes in S3 Table), collected as indicated in figure legends, and sexed by gonad size.
When gonad size could not be used to determine sex (e.g., tra mutants, da-GAL4>UAS-
tra"), chromosomal females were identified by the presence of an X-linked GFP. Adult

flies were maintained at a density of 20 flies per vial in single-sex groups.
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Fly strains. The following fly strains from the Bloomington Drosophila Stock Center
were used: Canton-S (#64349), w'""® (#3605), tra’ (#675), Df(3L)st-7 (#5416), srl’
(#14965), InRE™ (#9646), TRIiP control (#36303) UAS-ilp2-RNAi (#32475), UAS-upd2-
RNAI (#33949), UAS-tra” (#4590), da-GAL4 (ubiquitous), r4-GAL4 (fat body), cg-GAL4
(fat body). The following fly strains from the Vienna Drosophila Resource Center were
used in this study: UAS-sun-RNAi (GD23685), UAS-Gbp1-RNAi (KK108755) UAS-
Gbp2-RNAi (GD16696), UAS-CCHa2-RNAi (KK102257). Additional fly strains include:
dilp2, pten®'%°, UAS-sun, tGPH (GFP-PH). All genotypes used in the manuscript are
listed in S4 Table.

Body size. Pupal volume was measured in pupae sexed by gonad size as previously
described (Delanoue et al., 2010; Marshall et al., 2012; Rideout et al., 2012, 2015). For
adult weight, 5-day-old virgin male and female flies were weighed in groups of 10 in 1.5
ml microcentrifuge tubes on an analytical balance. Wing length was measured as

previously described (Garelli et al., 2012).

Developmental timing. Larvae were placed into the experimental diet +2 hr post-
hatching, and sexed using gonad size. Percent pupation was calculated by comparing

the number of pupae at 12 hr intervals to the total larvae in the vial.

Feeding behavior. Feeding behavior was quantified in sexed larvae by counting mouth

hook contractions for 30 sec.

RNA extraction and cDNA synthesis. One biological replicate represents ten larvae
frozen on dry ice and stored at -80°C. Each experiment contained 3-4 biological
replicates per sex, per genotype, and per diet, and each experiment was repeated twice.
RNA was extracted using Trizol (Thermo Fisher Scientific; 15596018) according to
manufacturer’s instructions, as previously described (Marshall et al., 2012; Rideout et
al., 2012, 2015; Wat et al., 2020). cDNA synthesis was performed using the QuantiTect

Reverse Transcription Kit according to manufacturer’s instructions (Qiagen; 205314).
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Quantitative real-time PCR (qPCR). gPCR was performed as previously described
(Rideout et al., 2012, 2015; Wat et al., 2020). A complete primer list is available in S5
Table.

Fecundity and fertility. For female fecundity, single 6-day-old virgin female flies raised
as indicated were crossed to three age-matched CS virgin males for a 24 hr mating
period. Flies were transferred to fresh food vials with blue 2Y food to lay eggs. The
number of eggs laid over 24 hr was quantified. For male fertility, single 6-day-old virgin
males were paired with three 6-day-old virgin CS females to mate, and females were
allowed to lay eggs for 24 hr. The number of progeny was quantified by counting viable

pupae.

Microscopy. GFP-PH larvae were picked into 1Y or 2Y food. Larvae were dissected
108 hr after egg laying (AEL) and inverted carcasses were fixed for 30 minutes in 4%
paraformaldehyde in phosphate buffered saline (PBS) at room temperature. Carcasses
were rinsed twice with PBS, once in 0.1% Triton-X in PBS (PBST) for 5 minutes, then
incubated with Hoechst (5 ug/mL, Life Technologies H3570), LipidTOX Red (1:100,
Thermo Fisher Scientific H34476), and phalloidin fluor 647 (1:1000, Abcam ab176759)
in PBST for 40 min. The stained carcasses were washed with PBS and mounted in
SlowFade Diamond (Thermo Fisher Scientific S36972). Images were acquired with a
Leica SP5 (20X). Mean GFP intensity was quantified at the cell surface (marked by
phalloidin) and in the cytoplasm using Fiji (Schindelin et al., 2012). Three cells per fat

body were measured, and at least five fat bodies per sex and per diet were measured.
Statistics and data presentation. Statistical analyses and data presentation were
carried out using Prism GraphPad 6 (GraphPad Prism version 6.0.0 for Mac OS X, .

Statistical tests are indicated in figure legends and all p-values are listed in S1 Table.
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Figure 1. Increased female body size plasticity in a protein-rich diet. (A) Pupal

volume was significantly higher in w’""®

males and females cultured on a widely-used
diet (1x) compared with larvae raised on a reduced-nutrient diet (0.5x) (p<0.0001 and p
= 0.0006, respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of
this increase in pupal volume was the same in both sexes (sex:diet interaction p =
0.7048; two-way ANOVA followed by Tukey HSD test). Pupal volume was significantly
higher in w'""®
larvae cultured on 1x (p<0.0001 for both; two-way ANOVA followed by Tukey HSD test);

however, the magnitude of the increase in body size was significantly larger in females

males and females raised on a nutrient-rich diet (2x) compared with

than in males (sex:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD
test). (B) Reaction norms for pupal volume in w’’® larvae raised on diets of varying
quantity (0.5x, 1%, 2x), plotted using data presented in panel A. n = 43-100 pupae. (C)

118 males and females cultured on 1x

Adult weight was significantly higher in w
compared with flies raised on 0.5x (p<0.0001 for both sexes; two-way ANOVA followed
by Tukey HSD test). The magnitude of this increase in adult weight was the same in
both sexes (sex:diet interaction p = 0.3197; two-way ANOVA followed by Tukey HSD
test). Adult weight was significantly higher in w’'’® females raised on 2x compared to
flies cultured on 1x; however, male adult weight was not significantly increased
(p<0.0001 and p = 0.4015, respectively; two-way ANOVA followed by Tukey HSD test),
where the diet-dependent increase in adult weight was higher in females (sex:diet
interaction p = 0.0003; two-way ANOVA followed by Tukey HSD test). (D) Reaction
norms for adult weight in response to changes in nutrient quantity in w’'’® females and
males, plotted using the data presented in panel C. n = 6-11 groups of 10 flies. (E)
Pupal volume was significantly higher in both males and females cultured on a yeast-
rich medium (2Y) compared with larvae raised on a diet containing half the quantity of
yeast (1Y) (p<0.0001 for both sexes; two-way ANOVA followed by Tukey HSD test);
however, the magnitude of the nutrient-dependent increase in pupal volume was larger
in females than in males (sex:diet interaction p = 0.0001; two-way ANOVA followed by
Tukey HSD test). (F) Reaction norms for pupal volume in response to changes in
dietary yeast in w''’® females and males, plotted using the data in panel E. n = 62-80

pupae. (G) Adult weight was significantly higher in females cultured on 2Y compared
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1399  with flies raised on 1Y; however, male adult weight was not significantly higher in flies
1400 raised on 2Y compared with males cultured on 1Y (p<0.0001 and p = 0.7199,

1401 respectively; two-way ANOVA followed by Tukey HSD test, sex:diet interaction

1402 p<0.0001). (H) Reaction norms for adult weight in w’’’® females and males reared on
1403  either 1Y or 2Y, plotted using data from panel G. n = 7-11 groups of 10 flies. For body
1404  size plasticity graphs, filled circles indicate mean body size, and dashed lines indicate
1405 95% confidence interval. *** indicates p<0.001, **** indicates p<0.0001; ns indicates not
1406  significant; error bars indicate SEM.

1407
1408

1409
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significantly lower in larvae raised on a protein-rich diet (2Y) compared with larvae
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respectively; Student’s ¢ test). n = 8 biological replicates. (B) Quantification of the ratio
between cell surface membrane-associated green fluorescent protein (GFP) and
cytoplasmic GFP fluorescence (GFP ratio [M:C]) in a dissected fat body of female
larvae from the GFP-PH strain. The GFP ratio was significantly higher in female larvae
cultured on 2Y compared with larvae raised on 1Y (p = 0.001; Student’s f test). n = 18
biological replicates. (C) In males, there was no significant difference in InR, bmm, or
4E-BP mRNA levels between larvae raised on 2Y compared with larvae cultured on 1Y
(p =10.291, 0.6994, and 0.666, respectively; Student’s t test). n = 6-7 biological
replicates. (D) In males, the GFP ratio (M:C) was not significantly different between
males cultured on 2Y compared with larvae raised on 1Y (p = 0.0892; Student’s t test).
n = 15-18 biological replicates. (E) Pupal volume was significantly higher in both w’’®
females and InRE'%/+ females reared on 2Y compared with genotype-matched females
cultured on 1Y (p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD
test); however, the magnitude of the nutrient-dependent increase in pupal volume was
lower in InRE"%/+ females (genotype:diet interaction p<0.0001; two-way ANOVA
followed by Tukey HSD test). n = 58-77 pupae. (F) Pupal volume was significantly

1118

higher in both w’'’® males and InRE"%/+ males reared on 2Y compared with genotype-

matched males cultured on 1Y (p<0.0001 for both genotypes; two-way ANOVA followed

118 control

by Tukey HSD test). While we observed a sex:diet interaction in the w
genotype, there was no sex:diet interaction in the InRF'%/+ genotype (p<0.0001 and p =
0.7104, respectively; two-way ANOVA followed by Tukey HSD test). n = 47-76 pupae.
For body size plasticity graphs, filled circles indicate mean body size, and dashed lines
indicate 95% confidence interval. ** indicates p<0.01, *** indicates p<0.001, ns indicates

not significant; error bars indicate SEM.
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upregulation of insulin pathway activity and increased female body size plasticity.

(A) In control w'""® females, mRNA levels of eukaryotic initiation factor 4E-binding

protein (4E-BP) were significantly lower in larvae cultured on a protein-rich diet (2Y)

compared with larvae raised on a diet containing half the protein content (1Y) (p =

0.0003; Student’s t test). In dilp2 mutant females, there was no significant difference in
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1486 4E-BP mRNA levels in larvae cultured on 2Y compared with larvae raised on 1Y (p =

1487  0.5563; Student’s t test). n = 8 biological replicates. (B) In control w'""®

and dilp2 mutant
1488 males, mRNA levels of 4E-BP were not significantly lower in larvae cultured on 2Y

1489 compared with larvae raised on 1Y (p = 0.1429 and p = 0.207, respectively;

1490 Student’s t test). n = 7-8 biological replicates. (C) Adult weight was significantly higher in
1491  w'""® females raised on 2Y compared with flies cultured on 1Y (p<0.0001; two-way

1492  ANOVA followed by Tukey HSD test); however, adult weight was not significantly

1493  different between dilp2 mutant females reared on 2Y versus 1Y (p = 0.1263; two-way
1494  ANOVA followed by Tukey HSD test). n = 7-11 groups of 10 flies. (D) Adult weight in

1495  control w''"®

and dilp2 mutant males was not significantly higher in flies reared on 2Y
1496  compared with males raised on 1Y (p = 0.8366 and p = 0.8817, respectively; two-way
1497  ANOVA followed by Tukey HSD test). There was a significant sex:diet interaction in the

1498  control w''"®

genotype (p<0.0001), but not in the dilp2 mutant genotype (p = 0.0827;
1499 two-way ANOVA followed by Tukey HSD test). n = 10-12 groups of 10 flies. (E) Pupal
1500  volume was significantly higher in w’’’® females but not in dilp2 mutant females reared
1501 on 2Y compared with genotype-matched females cultured on 1Y (p<0.0001 and p =
1502  0.6486 respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of
1503 the nutrient-dependent increase in pupal volume was higher in w''’® females

1504  (genotype:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n =

1505  74-171 pupae. (F) Pupal volume was significantly higher in w'""

males and dilp2

1506 mutant males reared on 2Y compared with genotype-matched males cultured on 1Y
1507  (p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD test). The
1508 magnitude of the nutrient-dependent increase in pupal volume was not different

1509 between genotypes (genotype:diet interaction p = 0.6891; two-way ANOVA followed by
1510 Tukey HSD test). n = 110-135 pupae. For all body size plasticity graphs, filled circles
1511 indicate mean body size, and dashed lines indicate 95% confidence interval. ***

1512 indicates p<0.001; ns indicates not significant; error bars indicate SEM.
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protein-rich diet (2Y) compared with larvae raised on a diet containing half the protein
content (1Y) (p = 0.0055 and p = 0.2327, respectively; Student’s t test). n = 8 biological
replicates. (B) In males, mRNA levels of sun™* and sun™® were not significantly different
in larvae raised on 2Y compared with larvae raised on 1Y (p = 0.5832 and p = 0.2017,
respectively; Student’s t test). n = 7-8 biological replicates. (C) In control r4>+ and
+>UAS-sun-RNAi females, mRNA levels of the insulin receptor (InR), brummer (bmm),
and eukaryotic initiation factor 4E-binding protein (4E-BP) mRNA levels were
significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y (p =
0.0032, p<0.0001, and 0.0041 [r4>+], and 0.0074, 0.0281, p<0.0001 [+>UAS-sun-RNAI],
respectively; Student’s ¢ test). In contrast, mRNA levels of InR and bmm were not
significantly different in r4>UAS-sun-RNAi females raised on 2Y compared with
genotype-matched females reared on 1Y (p = 0.5897 and p = 0.5297, respectively;
Student’s t test) and levels of 4E-BP were significantly higher (p = 0.0094; Student’s ¢
test). n = 8 biological replicates. (D) Adult weight was significantly higher in female flies
raised in 2Y compared with females raised in 1Y in r4>+ and +>UAS-sun-RNAi controls
(p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD test); however,
adult weight was not significantly different between r4>UAS-sun-RNAi females reared
on 2Y compared with genotype-matched females raised on 1Y (p = 0.5035; two-way
ANOVA followed by Tukey HSD test). n = 7-10 groups of 10 flies. (E) Adult weight was
not significantly higher in male flies reared in 2Y compared with males cultured in 1Y for
r4>+ and +>UAS-sun-RNAi controls or r4>UAS-sun-RNAi males (p = 0.8883, 0.6317,
and 0.554, respectively; two-way ANOVA followed by Tukey HSD test). There was a
significant sex:diet interaction in the r4>+ and +>UAS-sun-RNAi control genotypes (p =
0.011 and p = 0.0005, respectively; two-way ANOVA followed by Tukey HSD test), but
no sex:diet interaction in the r4>UAS-sun-RNAi genotype (p = 0.8749; two-way ANOVA
followed by Tukey HSD test). n = 6-9 groups of 10 flies. For all body size plasticity
graphs, filled circles indicate mean body size, and dashed lines indicate 95%
confidence interval. * indicates p<0.05, ** indicates p<0.01, **** indicates p<0.0001; ns

indicates not significant; error bars indicate SEM.
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Figure 5. Sex determination gene transformer regulates increased nutrient-
dependent body size plasticity in females. (A) In control w'’’® females, mRNA levels
of eukaryotic initiation factor 4E-binding protein (4E-BP) were significantly lower in
larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet
containing half the protein content (1Y) (p = 0.0013; Student’s t test). In tra’/Df(3L)st-j7
females, there was no significant difference in 4E-BP mRNA levels between larvae
cultured on 2Y compared with larvae raised on 1Y (p = 0.2095; Student’s ftest). n =8
biological replicates (B) In control females, mRNA levels of sun™* were significantly
higher in larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.0011;
Student’s t test); however, in tra’/Df(3L)st-7 females there was no significant difference
in sun™* mMRNA levels between larvae cultured on 2Y compared with larvae raised on
1Y (p = 0.1644; Student’s t test). n = 8 biological replicates. (C) Adult weight was
significantly higher in w'’"® females raised on 2Y compared with females reared on 1Y
(p<0.0001; two-way ANOVA followed by Tukey HSD test); however, there was no
significant difference in adult weight between tra’/Df(3L)st-j7 females cultured on 2Y
compared with genotype-matched females raised on 1Y (p = 0.9617; two-way ANOVA
followed by Tukey HSD test). n = 7-8 groups of 10 flies. (D) Adult weight was not

718 control or tra'/Df(3L)st-j7 mutant males in flies raised

significantly higher in either w
on 2Y compared with males reared on 1Y (p = 0.7808 and p = 0.9983, respectively;
two-way ANOVA followed by Tukey HSD test). There was a significant sex:diet

interaction in the w'""®

control genotype (p<0.0001; two-way ANOVA followed by Tukey
HSD test); however, there was no sex:diet interaction in the tra’/Df(3L)st-j7 genotype (p
= 0.6598; two-way ANOVA followed by Tukey HSD test). n = 6-8 groups of 10 flies. (E)
In control da>+ males, mRNA levels of the insulin receptor (InR), brummer (bmm), and
4E-BP were not significantly different between larvae cultured on 2Y compared with
larvae raised on 1Y (p = 0.2418, 0.2033, and 0.0769, respectively; Student’s f test). In
+>UAS-tra” males, mRNA levels of InR, bmm, and 4E-BP were significantly increased
between larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.0088, 0.035,
and 0.0052, respectively; Student’s t test). In da>UAS- tra” males, mRNA levels of InR
and bmm were significantly lower in larvae cultured on 2Y compared with larvae raised

on 1Y (p = 0.0007 and 0.0388, respectively; Student’s t test), and levels of 4E-BP were
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not significantly altered (p = 0.103; Student’s f test). n = 6-8 biological replicates. (F) In
control da>+ and +>UAS-tra” males, mRNA levels of sun™* were not significantly
different between larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.2064
and p = 0.0711, respectively; Student’s t test). In contrast, da>UAS-tra” males showed a
significant increase in mRNA levels of sun™* in larvae cultured on 2Y compared with
males raised on 1Y (p = 0.0013; Student’s t test). n = 6-8 biological replicates. (G) Adult
weight was not significantly higher in da>+ and +>UAS-tra” control males reared on 2Y
compared with genotype-matched males flies cultured on 1Y (p = 0.5186 and p =
0.8858, respectively; two-way ANOVA followed by Tukey HSD test); however, there

was a significant increase in adult weight between da>UAS-tra” males cultured on 2Y
compared with genotype-matched flies raised on 1Y (p<0.0001; two-way ANOVA
followed by Tukey HSD test). n = 7-8 groups of 10 flies. For body size plasticity graphs,
filled circles indicate mean body size, and dashed lines indicate 95% confidence interval.
* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001; ns indicates not significant;

error bars indicate SEM.
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Figure 6. Increased nutrient-dependent body size plasticity in females promotes
fertility. (A) Adult weight was higher in da>UAS-tra” males raised on a protein-rich diet
(2Y) compared with da>UAS-tra” males reared on a diet containing half the protein
content (1Y) (p<0.0001; two-way ANOVA followed by Tukey HSD test). In contrast, the
nutrient-dependent increase in adult weight was abolished in da>UAS-tra” males
heterozygous for a loss-of-function allele of spargel (srl’) (p = 0.2811; two-way ANOVA
followed by Tukey HSD test). n = 6-8 groups of 10 flies. (B) Adult weight was higher in
da>UAS-tra" females raised on 2Y compared with da>UAS-tra” females reared on 1Y
(p<0.0001; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-
dependent increase in adult weight was absent in da>UAS-tra” females heterozygous
for sri” (p = 0.2927; two-way ANOVA followed by Tukey HSD test). n = 6-7 groups of 10
flies. (C) In control w''’® females there was a significant increase in the number of eggs
laid by females raised on 2Y compared with females cultured on 1Y (p = 0.0009;
Student’s t test); however, there was no significant difference in the number of eggs laid
between InRE"/+ females cultured on 2Y compared with genotype-matched females
raised on 1Y (p = 0.617; Student’s t test). n = 19-20 biological replicates. (D) In control
w'""8 females, there was a significant increase in the number of eggs laid by females
raised on 2Y compared with females cultured on 1Y (p<0.0001; Student’s t test);
however, there was no significant difference in the number of eggs laid between dilp2
mutant females cultured on 2Y compared with females raised on 1Y (p = 0.4105;
Student’s t test). n = 28-30 biological replicates. (E) In control r4>+ and +>UAS-sun-
RNAi females there was a significant increase in the number of eggs laid by females
raised on 2Y compared with control females cultured on 1Y (p<0.0001 for both
genotypes; Student’s t test). In r4>UAS-sun-RNAi females, the number of eggs laid by
females cultured on 2Y was lower than females raised on 1Y (p = 0.0243;

118 males there was no

Student’s t test). n = 20 biological replicates. (F) In control w
significant difference in the number of offspring produced between a 1Y and 2Y diet (p =
0.3662; Student’s t test). There was also no significant difference in the number of

offspring produced between control w'""®

males and males heterozygous for a loss-of-
function allele of phosphatase and tensin homolog (pten; genotype pten®'%%/+) raised

on 1Y (p = 0.4003; Student’s ¢ test). Unlike control males, pten®'°’/+ males reared on
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1676  2Y produced significantly more offspring than genotype-matched males raised on 1Y (p
1677 = 0.0137; Student’s t test). n = 11 biological replicates. (G) In control r4>+ and +>UAS-
1678  sun and experimental r4>UAS-sun males, there was no significant effect on the number
1679  of offspring produced between a 1Y and 2Y diet (p = 0.9222, 0.0595, and 0.32

1680 respectively; Student’s ¢ test). There was also no significant difference in the number of
1681  offspring produced between control r4>+, +>UAS-sun males and experimental r4>UAS-
1682  sun males raised on 1Y (p = 0.9723 and p = 0.9969 respectively; one-way ANOVA

1683 followed by Tukey HSD test). n = 8-10 groups of 10 flies. For body size plasticity graphs,
1684 filled circles indicate mean body size, and dashed lines indicate 95% confidence interval.
1685 *indicates p<0.05, *** indicates p<0.001, **** indicates p<0.0001; ns indicates not

1686  significant; error bars indicate SEM.

1687
1688
1689
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1706  Figure S1. Increased nutrient-dependent body size plasticity in Canton-S females.
1707  (A) Pupal volume was significantly higher in both Canton-S (CS) females and males
1708 reared on a protein-rich diet (2Y) compared with genotype-matched females and males
1709 cultured on a diet containing half the protein concentration (1Y) (p<0.0001 for both

1710 sexes; two-way ANOVA followed by Tukey HSD test); however, the magnitude of the
1711  nutrient-dependent increase in pupal volume was higher in females (sex:diet interaction
1712 p<0.0001; two-way ANOVA followed by Tukey HSD test). (B) Reaction norms for pupal
1713  volume in response to changes in yeast quantity in CS females and males, plotted using
1714  the data in panel A. n = 57-95 pupae. For body size plasticity graphs, filled circles

1715 indicate mean pupal volume, and dashed lines indicate 95% confidence interval. ****
1716 indicates p<0.0001; error bars indicate SEM.
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1731  Figure S2. Increased nutrient-dependent plasticity in female wing size. (A) Wing
1732  length was significantly higher in both w'’"® females and males reared on a protein-rich
1733  diet (2Y) compared with genotype-matched females and males cultured on a diet

1734  containing half the protein content (1Y) (p<0.0001 and p = 0.0018 for females and

1735 males respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of
1736  the nutrient-dependent increase in wing length was higher in females (sex:diet

1737  interaction p = 0.0004; two-way ANOVA followed by Tukey HSD test). n = 16-28 wings.
1738  For wing size plasticity graphs, filled circles indicate mean wing length, and dashed
1739 lines indicate 95% confidence interval.
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1754  Figure S3. No sex-specific effect of altering dietary sugar concentration or calorie
1755  content. (A) Pupal volume was significantly decreased in both w'’’® females and males
1756 reared on a diet with twice the sugar (2S) compared with genotype-matched females
1757 and males cultured on a diet with the sugar content of our regular diet (1S) (p<0.0001
1758 and p = 0.0002 for females and males respectively; two-way ANOVA followed by Tukey
1759 HSD test). The magnitude of the nutrient-dependent decrease in pupal volume was not
1760 different between females and males (sex:diet interaction p = 0.6536; two-way ANOVA
1761 followed by Tukey HSD test). n = 117-133 pupae. (B) While pupal volume was
1762  significantly decreased in w''"®females and not males reared on a 2Y calorie-matched
1763  diet compared with genotype-matched females and males cultured on a 1Y calorie-
1764  matched diet (p = 0.0039 and p = 0.0662 respectively; two-way ANOVA followed by
1765 Tukey HSD test), there was no sex:diet interaction indicating that one sex was not more
1766  affected than the other (sex:diet interaction p = 0.3698; two-way ANOVA followed by
1767  Tukey HSD test). n = 44-74 pupae. For body size plasticity graphs, filled circles indicate
1768 mean pupal volume, and dashed lines indicate 95% confidence interval.
1769
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1782  Figure S4. Pharmacological inhibition of protein breakdown has female-biased
1783  effects on body size. (A) Pupal volume was significantly higher in both w’"’® females
1784  and males reared on a protein-rich diet (2Y) compared with genotype-matched females
1785 and males cultured on 2Y containing a broad-spectrum protease inhibitor cocktail (PIC)
1786  (p<0.0001 and p = 0.0185 for females and males respectively; two-way ANOVA

1787  followed by Tukey HSD test). Importantly, the magnitude of the effect of inhibiting

1788  protein breakdown on pupal volume was higher in females (sex:treatment interaction p
1789 = 0.0029; two-way ANOVA followed by Tukey HSD test). n = 57-92 pupae. (B) Pupal
1790  volume was significantly higher in both w’’’® females and males reared on 2Y

1791 compared with genotype-matched females and males cultured on 2Y containing a

1792  serine protease-specific inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride
1793  (AEBSF) (p<0.0001 for both sexes; two-way ANOVA followed by Tukey HSD test);

1794  however, the magnitude of the effect of inhibiting protein breakdown on pupal volume
1795 was higher in females (sex:treatment interaction p<0.0001; two-way ANOVA followed by
1796  Tukey HSD test). n = 28-66 pupae. ** indicates p<0.01; **** indicates p<0.0001; error
1797  bars indicate SEM.
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1843  Figure S5. No sex difference in food intake or time to pupation. (A) There was no

1844  significant difference in mouth hook contractions between w'’’® control male and female
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1845 larvae raised on a diet containing a widely-used protein content (1Y) (p = 0.3965;

1846  Student’s t test), or a protein-rich diet (2Y) (p = 0.5175; Student’s t test). n = 20

1847  Dbiological replicates. (B) There was no sex difference in the time to pupation between
1848  w'""® control male and female larvae when cultured on 1Y. n = 79-93 pupae. (C) There

118 control male and female

1849  was no sex difference in the time to pupation between w
1850 larvae when cultured on 2Y. n = 87-94 pupae. ns indicates not significant; error bars
1851 indicate SEM.

1852

1853
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1864
1865 Figure S6. Larger body size does not confer increased body size plasticity. (A)
1866  Pupal volume was significantly higher in both w’"’® females and pten®-'%%/+ females
1867 reared on a protein-rich diet (2Y) compared with genotype-matched females cultured on
1868 a diet containing half the protein content (1Y) (p<0.0001 for both genotypes; two-way
1869 ANOVA followed by Tukey HSD test). n = 60-89 pupae. (B) Pupal volume was
1870  significantly higher in both w''"® males and pten®'%/+ males reared on 2Y compared
1871  with genotype-matched males cultured on 1Y (p<0.0001 for both genotypes; two-way
1872  ANOVA followed by Tukey HSD test). Importantly, the magnitude of the nutrient-
1873  dependent increase in pupal volume was not different between w’’’® males and
1874  pten® %%+ males (genotype:diet interaction p = 0.3557; two-way ANOVA followed by
1875 Tukey HSD test). n = 65-88 pupae. For body size plasticity graphs, filled circles indicate
1876  mean pupal volume, and dashed lines indicate 95% confidence interval.
1877
1878
1879
1880
1881
1882
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1914

1915 Figure S7. dilp2 is required for increased nutrient-dependent body size plasticity.

1916  (A) In control w'""® females, mRNA levels of insulin receptor (InR) were significantly

1917 lower in larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet

1918 containing half the protein concentration (1Y) (p<0.0001; Student’s ¢ test). In dilp2

1919 mutant females, there was no significant difference in InR mRNA levels between larvae

1920 cultured on 2Y compared with larvae raised on 1Y (p = 0.1472; Student’s ttest). n =8

1921  biological replicates. (B) In control w'’"® males, mRNA levels of InR were not

1922  significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y (p =

1923  0.146; Student’s t test). In dilp2 mutant males, there was a significant reduction in InR

1924 mRNA levels in larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.0191;
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1925  Student’s t test). n = 7-8 biological replicates. (C) Pupal volume was significantly

1926  reduced in females upon RNAi-mediated knockdown of dilp2 in 2Y when compared to
1927  both control genotypes (p<0.0001 [da>+], and p = 0.002 [+>UAS-dilp2-RNAI],

1928 respectively; two-way ANOVA followed by Tukey HSD test), but not in males in 2Y

1929  (p<0.0001 [da>+], and 0.9634 [+>UAS-dilp2-RNAI], respectively; two-way ANOVA

1930 followed by Tukey HSD test). The magnitude of the effect of RNAi-mediated knockdown
1931  of dilp2 on pupal volume was higher in females (sex:genotype interaction p = 0.003;
1932  two-way ANOVA followed by Tukey HSD test). n = 44-59 pupae. * indicates p<0.05, **
1933 indicates p<0.01, **** indicates p<0.0001; ns indicates not significant; error bars indicate
1934 SEM.

1935

1936
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Figure S8. Genotype-dependent changes to dilp mRNA levels. (A) In dilp2 mutant
females, mMRNA levels of dilp1, dilp2, dilp4, dilp6, and dilp8 were significantly different
from w'’"® control females (p<0.0001, <0.0001, <0.0001, 0.0003 and 0.0454,
respectively; Student’s t test), but mMRNA levels of dilp3, dilp5, and dilp7 were not
significantly different (p = 0.5142, 0.0574, and 0.605, respectively; Student’s f test). n =
6-8 biological replicates. (B) In dilp2 mutant males, mRNA levels of dilp1, dilp2, dilp3,

dilp4, dilp5, and dilp6 were significantly different from w8

control males (p = 0.0001,
<0.0001, 0.0034, 0.0001, 0.0001, and 0.0008, respectively; Student’s t test), but mMRNA
levels of dilp7 and dilp8 were not significantly different (p = 0.2302, and 0.7809,
respectively; Student’s ¢ test). n = 6-7 biological replicates. * indicates p<0.05, **
indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001; ns indicates not

significant; error bars indicate SEM.
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1976
1977 Figure S9. Diet-dependent changes to dilp mRNA levels. (A) mRNA levels of dilp5
1978 and dilp6 were significantly different between females raised on a protein-rich diet (2Y)
1979 compared with female larvae cultured on a diet with half the protein concentration of 2Y
1980 (1Y) (p<0.0001 and 0.0079, respectively; Student’s t test), but mRNA levels of dilp1,
1981  dilp2, dilp3, dilp4, dilp7, dilp8 were unchanged (p = 0.7337, 0.5947, 0.0672, 0.1777,
1982 0.0562 and 0.0643, respectively; Student’s f test). n = 7-8 biological replicates. (B) In
1983 males cultured in 1Y, mRNA levels of dilp1, dilp3, dilp5, dilp7 were significantly different
1984 from male larvae raised on 2Y (p = 0.047, 0.0014, <0.0001, and 0.0068, respectively;
1985  Student’s t test); mMRNA levels of dilp2, dilp4, dilp6, and dilp8 were unchanged (p =
1986 0.9388, 0.6812, 0.8157 and 0.5054, respectively; Student’s t test). n = 6-7 biological
1987 replicates. * indicates p<0.05, ** indicates p<0.01, **** indicates p<0.0001; ns indicates
1988  not significant; error bars indicate SEM.
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Figure S10. Diet-induced changes to mRNA levels of humoral factors. (A) mMRNA
levels of Growth-blocking peptide 1 (Gbp1) were significantly different in females
cultured on a protein-rich diet (2Y) compared with females raised in a diet containing
half the protein concentration (1Y) (p = 0.0245; Student’s t test); however, mRNA levels
of Growth-blocking peptide 2 (Gbp2), CCHamide-2 (CCHaZ2), and unpaired 2 (upd?2)
were not significantly different between female larvae raised on 1Y and 2Y (p = 0.0662,
0.1416, and 0.7171, respectively; Student’s t test). n = 7-8 biological replicates. (B)
Levels of Gbp1 and upd2 were not significantly different between male larvae raised on
2Y compared with larvae reared on 1Y (p = 0.1487, and p = 0.1686, respectively;
Student’s t test); whereas levels of Gbp2 and CCHaZ2 were significantly different
between males raised in 2Y and 1Y (p = 0.0214, and p = 0.0272, respectively;
Student’s t test). n = 7-8 biological replicates. (C) mRNA levels of stunted (sun®*) were
significantly lower in r4-GAL4>UAS-sun-RNAi females compared with r4-GAL4>+ and
+>UAS-sun-RNAi control females (p<0.0001 and p = 0.0001, respectively; one-way
ANOVA followed by Tukey HSD test). n = 8 biological replicates. (D) mMRNA levels of
stunted (sun™*) were significantly lower in r4-GAL4>UAS-sun-RNAi males compared
with r4-GAL4>+ and +>UAS-sun-RNAi control males (p<0.0001 and p = 0.0012,
respectively; one-way ANOVA followed by Tukey HSD test). n = 8 biological replicates.
(E) Levels of GAL4 mRNA were not significantly different between the sexes in larvae
raised in 1Y (p = 0.1105; Student’s t test), whereas GAL4 mRNA levels were
significantly higher in males in 2Y (p = 0.0428; Student’s f test). n = 6-8 biological
replicates. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001; ns indicates

not significant; error bars indicate SEM.
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Figure S11. Nutrient-dependent upregulation of IIS activity and increased female
body size plasticity requires stunted (sun). (A) In r4>+, +>UAS-sun-RNAi males, and
r4>UAS-sun-RNAi males, mRNA levels of brummer (bmm) were not significantly
different between larvae raised on a protein-rich diet (2Y) compared with larvae reared
on a diet containing half the protein concentration (1Y) (p = 0.1445, 0.2766, and 0.1308,
respectively; Student’s t test). In r4>+ and r4>UAS-sun-RNAi males, mRNA levels of
insulin receptor (InR) were significantly different in larvae between 1Y and 2Y (p = 0.003
and p = 0.0054, respectively; Student’s t test), but not in +>UAS-sun-RNAi males (p =
0.0745; Student’s t test). In r4>+ and +>UAS-sun-RNAi control males, mRNA levels of
eukaryotic initiation factor 4E-binding protein (4E-BP) were significantly different
between larvae raised in 1Y or 2Y (p< 0.0001 and p = 0.0001, respectively; Student’s t
test), but not in r4>UAS-sun-RNAi males (p = 0.2899; Student’s t test). n = 7-8 biological

replicates. (B) Pupal volume was significantly higher in r4>+, +>UAS-sun-RNAI, and
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2057 r4>UAS-sun-RNAi females reared on 2Y compared with genotype-matched females
2058 cultured on 1Y (p<0.0001 [r4>+ and +>UAS-sun-RNAIi] and p = 0.0367 [r4>UAS-sun-
2059  RNAI]; two-way ANOVA followed by Tukey HSD test). The magnitude of the nutrient-
2060 dependentincrease in pupal volume was significantly lower in r4>UAS-sun-RNAi

2061 females (genotype:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD
2062 test). n = 69-80 pupae. (C) Pupal volume was significantly higher in r4>+, +>UAS-sun-
2063  RNAI, and r4>UAS-sun-RNAi males reared on 2Y compared with genotype-matched
2064 males cultured on 1Y (p<0.0001 for all genotypes; two-way ANOVA followed by Tukey
2065 HSD test). The magnitude of the nutrient-dependent increase in pupal volume was not
2066  significantly different between r4>UAS-sun-RNAi males and control males

2067  (genotype:diet interaction p = 0.0784; two-way ANOVA followed by Tukey HSD test). n
2068 = 44-80 pupae. For body size plasticity graphs, filled circles indicate mean pupal volume,
2069 and dashed lines indicate 95% confidence interval. ** indicates p<0.01, *** indicates
2070 p<0.001; **** indicates p<0.0001; ns indicates not significant; error bars indicate SEM.
2071

2072
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2074 Figure S12. Most humoral factors have non-sex-specific effects on body size. (A)
2075 Pupal volume was significantly smaller in females with fat body-specific expression of
2076  an RNAi transgene directed against stunted (sun). Pupal volume was significantly

2077 reduced in cg>UAS-sun-RNAi females compared with cg>+ and +>UAS-sun-RNAi

2078  control females (p<0.0001 for both comparisons; two-way ANOVA followed by Tukey
2079 HSD test). This decreased pupal volume was not reproduced in cg>UAS-sun-RNAi
2080 males compared with cg>+ and +>UAS-sun-RNAi control males (p = 0.3657 and p =
2081 0.9852, respectively; two-way ANOVA followed by Tukey HSD test). RNAi-mediated
2082  knockdown of sun had larger effects on pupal volume in females than in males

2083  (sex:genotype interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n =
2084  54-85 pupae. (B) Pupal volume was significantly different in females with fat body-

2085 specific expression of RNAI transgenes directed against sun, Growth-blocking peptide 2
2086 (Gbp2), CCHamide-2 (CCHaZ2), unpaired 2 (upd2) compared with r4>+ and +>UAS-X-
2087  RNAI control females (p<0.0001 for both comparisons [sun], p<0.0001 for both

2088 comparisons [GbpZ2], p<0.0001 for both comparisons [CCHaZ2], p<0.0001 for both

2089 comparisons [updZ2]; one-way ANOVA followed by Tukey HSD test); but not upon RNAI-
2090 mediated knockdown of Growth-blocking peptide 1 (Gbp1) (p = 0.9665 and p<0.0001
2091 respectively; one-way ANOVA followed by Tukey HSD test). n = 35-114 pupae. (C)
2092  Pupal volume was significantly different in males with fat body-specific expression of
2093 RNAi transgenes directed against Gbp2, CCHaZ2, and upd2 compared with r4>+ and
2094  +>UAS-X-RNAI control males (p<0.0001 for both comparisons [GbpZ2], p<0.0001 for
2095 both comparisons [CCHaZ2], p<0.0001 for both comparisons [upd?2]; one-way ANOVA
2096 followed by Tukey HSD test); but not reduced in males carrying RNAI transgenes

2097 directed against sun and Gbp1 (p = 0.3513 and p<0.0001, respectively [sun]; p =0.1274
2098 and p<0.0001, respectively [Gbp7]; one-way ANOVA followed by Tukey HSD test). n =
2099 18-100 pupae. For body size graphs, filled circles indicate pupal volume and error bars
2100 indicate SEM. **** indicates p<0.0001; ns indicates not significant.
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2113
2114  Figure S13. stunted (sun) overexpression augments body size but does not

2115 confer increased body size plasticity in males. (A) Pupal volume was significantly
2116  higher in r4>+, +>UAS-sun, and r4>UAS-sun females reared on a protein-rich diet (2Y)
2117 compared with genotype-matched females cultured on a diet containing half the protein
2118 concentration (1Y) (p<0.0001 for all genotypes; two-way ANOVA followed by Tukey
2119 HSD test). The magnitude of the nutrient-dependent increase in pupal volume was not
2120 significantly different between female genotypes (genotype:diet interaction p = 0.0895;
2121  two-way ANOVA followed by Tukey HSD test). n = 43-65 pupae. (B) Pupal volume was
2122 significantly higher in r4>+, +>UAS-sun, and r4>UAS-sun males reared on 2Y

2123  compared with genotype-matched males cultured on 1Y (p<0.0001 for all genotypes;
2124  two-way ANOVA followed by Tukey HSD test), but the magnitude of the nutrient-

2125 dependent increase in pupal volume was not different between male genotypes

2126  (genotype:diet interaction p = 0.4959; two-way ANOVA followed by Tukey HSD test). n
2127 = 44-67 pupae. For body size plasticity graphs, filled circles indicate mean pupal volume,
2128 and dashed lines indicate 95% confidence interval.
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Figure S14. Increased nutrient-dependent body size plasticity in females requires
transformer. (A) Pupal volume was significantly higher in w’’’® females reared on a
protein-rich diet (2Y) compared with w’’’® females cultured on a diet containing half the
protein concentration (1Y) (p<0.0001; two-way ANOVA followed by Tukey HSD test);
however, this nutrient-dependent increase in pupal volume was not observed in
transformer (tra) mutant females (tra’/Df(3L)st-j7) (p = 0.1036; two-way ANOVA
followed by Tukey HSD test). The magnitude of the nutrient-dependent increase in
pupal volume was lower in tra’/Df(3L)st-j7 females (genotype:diet interaction p<0.0001).
n = 39-69 pupae. (B) Pupal volume was significantly higher in w'’"® males (p<0.0001;
two-way ANOVA followed by Tukey HSD test), but not in tra’/Df(3L)st-j7 mutant males
reared on 2Y compared with genotype-matched females cultured on 1Y (p = 0.6643;
two-way ANOVA followed by Tukey HSD test). n = 37-65 pupae. For body size plasticity
graphs, filled circles indicate mean pupal volume, and dashed lines indicate 95%

confidence interval.
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Figure S15. Sex determination gene transformer (tra) regulates increased

nutrient-dependent body size plasticity. (A) Pupal volume was significantly higher in

da>+, +>UAS-tra", and da>UAS-tra” males reared on a protein-rich diet (2Y) compared

with genotype-matched males cultured on a diet containing half the protein
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HSD test). Importantly, the magnitude of the nutrient-dependent increase in pupal
volume was higher in da>UAS-tra” males (genotype:diet interaction p = 0.0012; two-
way ANOVA followed by Tukey HSD test). n = 70-91 pupae. (B) Adult weight was
significantly higher in da>+, +>UAS-tra", and da>UAS-tra" females reared on 2Y
compared with genotype-matched females cultured on 1Y (p<0.0001 for all genotypes;
two-way ANOVA followed by Tukey HSD test). The magnitude of the nutrient-
dependent increase in adult weight was not significantly different between da>UAS-tra”
females and da>+ and +>UAS-tra" controls (genotype:diet interaction p = 0.5912; two-
way ANOVA followed by Tukey HSD test). n = 6-8 groups of 10 flies. (C) Pupal volume
was significantly higher in da>+, +>UAS-tra", and da>UAS-tra" females reared on 2Y
compared with genotype-matched females cultured on 1Y (p<0.0001 for all genotypes;
two-way ANOVA followed by Tukey HSD test). n = 68-94 pupae. (D) Adult weight was
significantly higher in both w’"’® females, and in females with a knock-in transgene of

the female isoform of tra (tra” """

, when reared on 2Y compared with 1Y (p<0.0001 for
both genotypes; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-
dependent increase in adult weight was abolished in tra mutant females (tra®) reared
on 2Y compared with genotype-matched females cultured on 1Y (p = 0.864; two-way
ANOVA followed by Tukey HSD test). Importantly, the magnitude of the nutrient-
dependent increase in adult weight was significantly lower in tra*® females, which lack a
718 and tra” *™N females (genotype:diet interaction

p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 10-16 groups of 10 flies.

F K-IN

functional Tra protein, than in w

(E) Adult weight was significantly higher in tra males, which express physiological

levels of a functional Tra protein, when the males were reared on 2Y compared with

genotype-matched males raised on 1Y (p<0.0001; two-way ANOVA followed by Tukey

1118

HSD test). In contrast, there was no significant increase in adult weight in w'''® and

tra“® male flies reared on 2Y compared with genotype-matched males raised on 1Y
(p>0.9999 and p = 0.9996, respectively; two-way ANOVA followed by Tukey HSD test).

The magnitude of the nutrient-dependent increase in adult weight was significantly

F K-IN 1118

higher in tra males compared with w’’"® and tra*® male flies (genotype:diet

interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 9-11 groups of
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2231 10 flies. For body size plasticity graphs, filled circles indicate mean pupal volume, and
2232 dashed lines indicate 95% confidence interval.
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