

1 **TITLE**

2

3 Female-specific upregulation of insulin pathway activity mediates the sex difference in
4 *Drosophila* body size plasticity

5

6 **AUTHORS**

7 Jason W. Millington¹, Chien Chao¹, Ziwei Sun¹, Paige J. Basner-Collins¹, George P.
8 Brownrigg¹, Lianna W. Wat¹, Bruno Hudry^{2,3}, Irene Miguel-Aliaga², Elizabeth J.
9 Rideout^{1§}

10

11 **AFFILIATIONS**

12

13 1 Department of Cellular and Physiological Sciences, Life Sciences Institute, The
14 University of British Columbia

15

16 2 MRC London Institute of Medical Sciences, and Institute of Clinical Sciences, Faculty
17 of Medicine, Imperial College London, London, UK

18

19 3 Present affiliation: Institut de Biologie Valrose, Centre de Biochimie, Faculte des
20 Sciences, Universite Nice Sophia Antipolis

21

22 § Corresponding author: Department of Cellular and Physiological Sciences, Life
23 Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall,
24 Vancouver, BC, V6T 1Z3, Canada. Email: elizabeth.rideout@ubc.ca Phone: (604) 822-
25 0623. Fax: (604) 822-2316.

26

27

28 **ABSTRACT**

29

30 Nutrient-dependent body size plasticity differs between the sexes in most species,
31 including mammals. Previous work in *Drosophila* showed that body size plasticity was
32 higher in females, yet the mechanisms underlying the sex difference in body size
33 plasticity remain unclear. Here, we discover that a protein-rich diet augments body size
34 in females and not males because of a female-specific increase in activity of the
35 conserved insulin/insulin-like growth factor signaling pathway (IIS). This increased IIS
36 activity was triggered by a diet-induced increase in *stunted*, and required *Drosophila*
37 *insulin-like peptide 2*, illuminating new sex-specific roles for these genes. Importantly,
38 we show that sex determination gene *transformer* regulates the diet-induced increase in
39 *stunted* and IIS activity, and mediates the sex difference in body size plasticity. This
40 identifies one sex-specific mechanism underlying the nutrient-dependent regulation of
41 IIS activity and body size plasticity, providing vital insight into conserved mechanisms
42 that mediate sex differences in phenotypic plasticity.

43

44 **INTRODUCTION**

45

46 In insects, as in many animals, the rate of growth during development is
47 influenced by environmental factors such as nutrient availability (Boulan et al., 2015;
48 Edgar, 2006; Hietakangas & Cohen, 2009; Nijhout, 2003; Nijhout et al., 2014). When
49 nutrients are abundant, the rate of growth is high and body size is large (Beadle et al.,
50 1938; Edgar, 2006; Mirth & Shingleton, 2012; Nijhout, 2003; Robertson, 1963). When
51 nutrients are scarce, the rate of growth is lower and body size is smaller (Beadle et al.,
52 1938; Edgar, 2006; Mirth & Riddiford, 2007; Mirth & Shingleton, 2012; Nijhout, 2003;
53 Robertson, 1963). This ability of an organism or genotype to adjust its body size in line
54 with nutrient availability is a form of phenotypic plasticity (Agrawal, 2001; Garland &
55 Kelly, 2006). While the capacity of individuals to display nutrient-dependent changes to
56 body size depends on many factors, one important factor that affects phenotypic
57 plasticity is whether an animal is male or female (Stillwell et al., 2010; Teder &
58 Tammaru, 2005). For example, studies in *Drosophila* found that the magnitude of
59 changes to wing cell size and cell number in a nutrient-poor diet were larger in females
60 compared with males (Alpatov, 1930). Additionally, recent studies that systematically
61 manipulated dietary carbohydrates and protein confirmed that the magnitude of diet-
62 induced changes to some morphological traits was larger in female flies (Shingleton et
63 al., 2017). While these studies clearly establish a sex difference in nutrient-dependent
64 phenotypic plasticity, the genetic and molecular mechanisms underlying this increased
65 trait size plasticity in females remain unclear.

66 Clues into the genes and pathways that may underlie the increased nutrient-
67 dependent phenotypic plasticity in female flies have emerged from over 20 years of
68 studies on nutrient-dependent growth in *Drosophila* (Andersen et al., 2013; Boulan et al.,
69 2015; Edgar, 2006; Koyama & Mirth, 2018; Mirth & Piper, 2017). In particular, these
70 studies have identified the conserved insulin/insulin-like growth factor signaling pathway
71 (IIS) as a key regulator of nutrient-dependent growth in *Drosophila* (Böhni et al., 1999;
72 Britton et al., 2002; Chen et al., 1996; Fernandez et al., 1995; Grewal, 2009; Teleman,
73 2009). In nutrient-rich conditions, insulin-producing cells (IPCs) in the larval brain
74 release *Drosophila* insulin-like peptides (dILPs) into the circulation (Brogiolo et al., 2001;

75 Géminard et al., 2009; Ikeya et al., 2002; Rulifson et al., 2002). These dILPs bind the
76 Insulin-like Receptor (InR; FBgn0283499) on target cells to induce receptor
77 autophosphorylation and recruitment of adapter proteins such as InR substrate Chico
78 (*chico*; FBgn0024248) and Lnk (*Lnk*; FBgn0028717) (Almudi et al., 2013; Böhni et al.,
79 1999; Chen et al., 1996; Poltilove et al., 2000; Werz et al., 2009). These adapter
80 proteins, when phosphorylated, enable the recruitment of a regulatory subunit of the
81 *Drosophila* homolog of phosphatidylinositol 3-kinase (*Pi3K21B*; FBgn0020622) that
82 recruits and activates the catalytic subunit of Pi3K (*Pi3K92E*; FBgn0015279). This
83 activated Pi3K complex catalyzes the production of phosphatidylinositol (3,4,5)-
84 trisphosphate (PIP₃) from phosphatidylinositol (4,5)-bisphosphate (PIP₂) (Leevers et al.,
85 1996). The increased abundance of PIP₃ in the plasma membrane recruits and
86 activates signaling proteins such as phosphoinositide-dependent kinase 1 (Pdk1;
87 FBgn0020386) and Akt (Akt; FBgn0010379), which influence diverse cellular processes
88 to enhance cell, tissue, and organismal growth (Cho et al., 2001; Grewal, 2009; Rintelen
89 et al., 2001; Verdu et al., 1999). On the other hand, in nutrient-restricted conditions,
90 dILP release from the IPCs is reduced (Géminard et al., 2009), and plasma membrane
91 Pi3K recruitment, PIP₃ levels, and Pdk1- and Akt-dependent signaling are all reduced
92 (Britton et al., 2002; Nowak et al., 2013). Together, these changes diminish cell, tissue,
93 and organismal growth (Arquier et al., 2008; Britton et al., 2002; Géminard et al., 2009;
94 Honegger et al., 2008; Okamoto et al., 2013; Rulifson et al., 2002; Zhang et al., 2009).
95 Indeed, the potent growth-promoting ability of IIS activation is demonstrated by studies
96 in *Drosophila* showing that genetic manipulations that increase IIS activity augment
97 growth during development (Arquier et al., 2008; Goberdhan et al., 1999; Honegger et
98 al., 2008; Ikeya et al., 2002; Nowak et al., 2013; Okamoto et al., 2013; Oldham et al.,
99 2002), whereas genetic mutations that lower IIS activity strongly reduce cell, organ, and
100 body size (Böhni et al., 1999; Brogiolo et al., 2001; Chen et al., 1996; Colombani et al.,
101 2003; Gao et al., 2000; Grönke et al., 2010; Leevers et al., 1996; Murillo-Maldonado et
102 al., 2011; Rulifson et al., 2002; Weinkove et al., 1999; Zhang et al., 2009). Because
103 increased IIS activity is sufficient to bypass the reduced cell growth normally observed
104 upon nutrient restriction (Britton et al., 2002; Géminard et al., 2009; Nowak et al., 2013),
105 and that mutations blunting IIS pathway activity decrease growth even in nutrient-rich

106 conditions (Böhni et al., 1999; Brogiolo et al., 2001; Chen et al., 1996; Leevers et al.,
107 1996), studies in *Drosophila* have established a role for IIS in promoting organismal
108 growth downstream of nutrient input. While this highlights the vital role that *Drosophila*
109 studies have played in elucidating the mechanisms by which IIS couples nutrient input
110 with cell, tissue, and organismal growth, it is important to note that most studies in this
111 area used a mixed-sex population of larvae. Given that cell and body size are
112 significantly different between male and female flies (Alpatov, 1930; Brown & King, 1961;
113 Okamoto et al., 2013; Partridge et al., 1994; Rideout et al., 2015; Sawala & Gould, 2017;
114 Testa et al., 2013), more knowledge is needed of nutrient-dependent changes to body
115 size and IIS activity in each sex.

116 Recent studies have begun to make progress in this area by studying IIS
117 regulation and function in both sexes in a single dietary context (reviewed in Millington &
118 Rideout, 2018). One study on late third instar larvae reported sex differences in *dilp*
119 mRNA levels, in IIS activity, and in the release of dILP2, an important growth-promoting
120 dILP, from the IPCs (Rideout et al., 2015). Similarly, transcriptomic studies have
121 detected male-female differences in mRNA levels of genes associated with IIS function
122 (Mathews et al., 2017; Rideout et al., 2015), and revealed links between IIS and the sex
123 determination hierarchy gene regulatory network (Castellanos et al., 2013; Chang et al.,
124 2011; Clough et al., 2014; Fear et al., 2015; Garner et al., 2018; Goldman & Arbeitman,
125 2007). As evidence of sex-specific IIS regulation continues to accumulate, several
126 reports have also identified sex-limited and sex-biased phenotypic effects caused by
127 changes to IIS function. For example, changes to IIS activity show sex-biased effects on
128 larval growth and final body size (Grönke et al., 2010; Rideout et al., 2015; Shingleton et
129 al., 2005; Testa et al., 2013). In adults, widespread sex-specific and sex-biased
130 changes to gene expression were observed in flies with altered diet and IIS activity
131 (Camus et al., 2019; Graze et al., 2018). Further, sex differences exist in how changes
132 to diet and IIS activity affect life span (Bjedov et al., 2010; Clancy et al., 2001;
133 Giannakou et al., 2004; Grönke et al., 2010; Regan et al., 2016; Tatar et al., 2001;
134 Woodling et al., 2020; Wu et al., 2020). Together, these studies illuminate the utility of
135 *Drosophila* in revealing sex-specific IIS regulation and describing the physiological
136 impact of this regulation. Yet, more studies are needed to discover the molecular

137 mechanisms underlying sex-specific IIS regulation, and to extend these studies beyond
138 a single nutritional context.

139 Additional insights into potential mechanisms underlying the sex difference in
140 nutrient-dependent trait size plasticity come from studies on the regulation of cell, tissue,
141 and body growth by sex determination genes. In flies, sex is determined by the number
142 of X chromosomes. In XX females, a functional splicing factor called Sex-lethal (*Sxl*;
143 FBgn0264270) is produced (Bell et al., 1988; Bridges, 1921; Cline, 1978; Salz &
144 Erickson, 2010). *Sxl* protein binds to the pre-mRNA of *transformer* (*tra*, FBgn0003741),
145 *Sxl*'s most well-known target gene, where the *Sxl*-dependent splicing of *tra* pre-mRNA
146 allows a functional *Tra* protein to be produced in females (Belote et al., 1989; Boggs et
147 al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). In XY males, no functional *Sxl*
148 protein is produced (Cline & Meyer, 1996; Salz & Erickson, 2010). As a result, *tra* pre-
149 mRNA undergoes default splicing, and no functional *Tra* protein is produced in males
150 (Belote et al., 1989; Boggs et al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). An
151 extensive literature shows that the presence of functional *Sxl* and *Tra* proteins in
152 females accounts for most aspects of female sexual development, behavior, and
153 physiology (Anand et al., 2001; Billeter et al., 2006; Brown & King, 1961; Camara et al.,
154 2008; Christiansen et al., 2002; Clough et al., 2014; Dauwalder, 2011; Demir & Dickson,
155 2005; Goodwin et al., 2000; Hoshijima et al., 1991; Hudry et al., 2016, 2019; Ito et al.,
156 1996; Millington & Rideout, 2018; Neville et al., 2014; Nojima et al., 2014; Pavlou et al.,
157 2016; Pomatto et al., 2017; Regan et al., 2016; Rezával et al., 2014, 2016; Rideout et
158 al., 2010; Ryner et al., 1996; Sturtevant, 1945; von Philipsborn et al., 2014). Recently,
159 roles for *Sxl* and *Tra* in regulating the sex difference in body size were also described.
160 While *Drosophila* females are normally significantly and visibly larger than male flies,
161 females lacking neuronal *Sxl* are significantly smaller than control females, and no
162 longer different in size from males (Sawala & Gould, 2017). Interestingly, *Sxl* function in
163 specific neurons, the IPCs and GAD1-GAL4-positive neurons, mediate its effects on
164 female growth during development (Sawala & Gould, 2017). Similarly, females lacking a
165 functional *Tra* protein were significantly smaller than control females; however, these *tra*
166 mutant females were still larger than males (Brown & King, 1961; Mathews et al., 2017;
167 Rideout et al., 2015). Together, these studies indicate a requirement for both *Tra* and

168 Sxl in promoting a larger body size in females, providing vital insight into the intersection
169 between the sex determination pathway and the regulation of body size. However,
170 much remains to be discovered about the mechanisms by which Sxl and Tra impact
171 body size. Moreover, it remains unclear whether sex determination genes contribute to
172 the male-female difference in diet-induced trait size plasticity, as previous studies on
173 sex determination genes used a single nutritional context.

174 In the present study, we aimed to improve knowledge of the genetic and
175 molecular mechanisms that contribute to male-female differences in nutrient-dependent
176 plasticity in *Drosophila*. Our detailed examination of nutrient-dependent body size
177 plasticity revealed increased phenotypic plasticity in females in response to a protein-
178 rich diet, in line with prior studies on trait size plasticity (Shingleton et al., 2017).
179 Importantly, we show that a nutrient-dependent upregulation of IIS activity in females
180 and not in males in a protein-rich context is responsible for the increased body size
181 plasticity in females. Mechanistically, we show that a nutrient-dependent upregulation of
182 *stunted* (*sun*; FBgn0014391) mRNA levels in females triggers the diet-induced increase
183 in IIS activity, as females lacking *sun* do not augment IIS activity or body size in a
184 protein-rich diet. Importantly, we show that sex determination gene *tra* is required for the
185 nutrient-dependent increase in *sun* mRNA, IIS activity, and phenotypic plasticity in
186 females, and that ectopic *tra* expression in males enhances nutrient-dependent body
187 size plasticity via *sun*-mediated regulation of IIS activity. Together, these results provide
188 new insight into the molecular mechanisms that govern male-female differences in body
189 size plasticity, and identify a previously unrecognized role for sex determination gene *tra*
190 in regulating nutrient-dependent phenotypic plasticity.

191

192 **RESULTS**

193

194 **High levels of dietary protein are required for increased nutrient-dependent body 195 size plasticity in females**

196

197 Previous studies identified a sex difference in nutrient-dependent plasticity in several
198 morphological traits (Shingleton et al., 2017; Stillwell et al., 2010; Teder & Tammaru,

199 2005). To determine whether sex differences in nutrient-dependent body size plasticity
200 exist in *Drosophila*, we measured pupal volume, an established readout for *Drosophila*
201 body size (Delanoue et al., 2010), in *white*¹¹¹⁸ (*w*; FBgn0003996) males and females
202 reared on diets of varying nutrient quantity. We found that pupal volume in *w*¹¹¹⁸ female
203 larvae raised on the 2-acid diet (1×) (Lewis, 1960) was significantly larger than
204 genotype-matched females raised on a diet with half the nutrient quantity (0.5×) (Fig.
205 1A). In *w*¹¹¹⁸ males, pupal volume was also significantly larger in larvae raised on the 1×
206 diet compared with the 0.5× diet (Fig. 1A). No significant sex-by-diet interaction was
207 detected using a two-way analysis of variance (ANOVA) (sex:diet interaction $p = 0.7048$;
208 S1 Table), suggesting that nutrient-dependent body size plasticity was not different
209 between the sexes in this context. We next compared pupal volume in *w*¹¹¹⁸ males and
210 females raised on the 1× diet with larvae cultured on a diet with twice the nutrient
211 content (2×). Pupal volume in *w*¹¹¹⁸ females was significantly larger in larvae raised on
212 the 2× diet compared with larvae cultured on the 1× diet (Fig. 1A). In *w*¹¹¹⁸ males, the
213 magnitude of the nutrient-dependent increase in pupal volume was smaller compared
214 with female larvae (Fig. 1A; sex:diet interaction $p < 0.0001$; S1 Table). This suggests
215 that in nutrient-rich conditions, there is a sex difference in body size plasticity, where
216 nutrient-dependent phenotypic plasticity is higher in females. To represent the normal
217 body size responses of each sex to nutrient quantity, we plotted reaction norms for
218 pupal volume in *w*¹¹¹⁸ males and females raised on different diets (Fig. 1B). The body
219 size response to increased nutrient quantity between 0.5× and 1× was not different
220 between the sexes (Fig. 1B); however, the body size response to increased nutrient
221 quantity between 1× and 2× was larger in females than in males (Fig. 1B). Importantly,
222 these findings were not specific to pupal volume, as we reproduced our findings using
223 adult weight as an additional readout for body size (Fig. 1C, D). Thus, our findings
224 demonstrate that while phenotypic plasticity is similar between the sexes in some
225 nutritional contexts, body size plasticity is higher in females than in males in a nutrient-
226 rich environment.

227 To narrow down macronutrients that account for the increased body size
228 plasticity in females, we changed individual food ingredients and measured body size in
229 *w*¹¹¹⁸ males and females. We first altered dietary yeast, as previous studies show that

230 yeast is a key source of protein and an important determinant of larval growth (Britton et
231 al., 2002; Géminard et al., 2009; Robertson, 1963). In w^{1118} females raised on a diet
232 with yeast content that corresponds to the amount in the 2 \times diet (2Y diet), pupal volume
233 was significantly larger than in females raised on a diet containing half the yeast content
234 (1Y) (Fig. 1E). It is important to note that the yeast content of the 1Y diet is within the
235 range of many larval growth studies (Ghosh et al., 2014; Koyama & Mirth, 2016;
236 Marshall et al., 2012; Sawala & Gould, 2017), and therefore does not represent a
237 nutrient-restricted diet. In w^{1118} males, the magnitude of the nutrient-dependent increase
238 in pupal volume was smaller than in females (Fig. 1E; sex:diet interaction $p = 0.0001$;
239 S1 Table), suggesting that nutrient-dependent body size plasticity is higher in females in
240 a yeast-rich context. Indeed, when we plot reaction norms for pupal volume in both
241 sexes, the magnitude of the yeast-dependent change in pupal volume (Fig. 1F) and
242 adult weight (Fig. 1G, H) was larger in females than in males. This sex difference in
243 phenotypic plasticity in a yeast-rich context was reproduced in *Canton-S* (CS), a wild-
244 type strain (Fig. S1A, B), and using wing length as an additional measure of growth (Fig.
245 S2A). Thus, our findings indicate that the male-female difference in nutrient-dependent
246 body size plasticity persists across multiple genetic backgrounds, and confirms that
247 body size is a robust trait to monitor nutrient-dependent phenotypic plasticity.

248 Given the sex difference in body size plasticity in response to altered yeast
249 content, we hypothesized that yeast may trigger increased nutrient-dependent body size
250 plasticity in females. To test this, we raised larvae on diets with altered sugar (Fig. S3A)
251 or calorie content (Fig. S3B). Because we observed no sex:diet interaction for either
252 manipulation (sex:diet interaction $p = 0.6536$ and $p = 0.3698$, respectively; S1 Table),
253 this suggests dietary yeast mediates the sex difference in nutrient-dependent body size
254 plasticity. To test whether protein is the macronutrient in yeast that enables sex-specific
255 phenotypic plasticity, we pharmacologically limited protein breakdown by culturing
256 larvae on the 2Y diet supplemented with either a broad-spectrum protease inhibitor
257 (protease inhibitor cocktail; PIC) or a serine protease-specific inhibitor (4-(2-
258 aminoethyl)benzenesulfonyl fluoride hydrochloride; AEBSF). We found a significant
259 body size reduction in both sexes treated with protease inhibitors (Fig. S4A, B), in line
260 with previous studies (Erkosar et al., 2015); however, the inhibitor-induced decrease in

261 pupal volume was larger in female larvae than in males (sex:treatment interaction $p =$
262 0.0029 [PIC] and $p < 0.0001$ [AEBSF]; S1 Table). This indicates that yeast-derived
263 dietary protein is the macronutrient that augments nutrient-dependent body size
264 plasticity in females. While one potential explanation for the male-female difference in
265 body size plasticity is a sex difference in food intake or length of the growth period, we
266 found no male-female differences in either phenotype between w^{1118} male and female
267 larvae cultured on 1Y or 2Y (Fig. S5A-C). Moreover, the larger body size of female
268 larvae does not explain their increased nutrient-dependent body size plasticity, as a
269 genetic manipulation that augments male body size did not enhance phenotypic
270 plasticity (Fig. S6A, B). Taken together, our data reveals female larvae have enhanced
271 body size plasticity in a nutrient-rich context, and identifies abundant dietary protein as a
272 prerequisite for females to maximize body size.

273

274 **A nutrient-dependent upregulation of IIS activity is required for body size 275 plasticity in females**

276

277 In a mixed-sex population of *Drosophila* larvae, IIS activity is positively regulated by
278 nutrient availability to promote growth (Böhni et al., 1999; Britton et al., 2002; Chen et
279 al., 1996; Fernandez et al., 1995; Grewal, 2009; Teleman, 2009). We therefore
280 examined nutrient-dependent changes to IIS activity in larvae raised on 1Y and 2Y (Fig.
281 2A-D). Previous studies have shown that high levels of IIS activity repress mRNA levels
282 of several genes, including *InR*, *brummer* (*bmm*, FBgn0036449), and *eukaryotic*
283 *initiation factor 4E-binding protein* (4E-BP, FBgn0261560) (Alic et al., 2011; Jünger et
284 al., 2003; Kang et al., 2017; Puig & Tjian, 2005; Zinke et al., 2002). In w^{1118} females, we
285 found that the mRNA levels of *InR*, *bmm*, and 4E-BP were significantly lower in larvae
286 reared on 2Y than in larvae raised on 1Y (Fig. 2A). This suggests IIS activity is
287 significantly higher in females raised on 2Y than in females cultured on 1Y. To confirm
288 this, we used the localization of a ubiquitously-expressed green fluorescent protein
289 (GFP) fused to a pleckstrin homology (PH) domain (GFP-PH) as an additional readout
290 of IIS activity. Because high levels of IIS activity raise the level of PIP₃ at the plasma
291 membrane, and PH domains bind specifically to PIP₃, larvae with elevated IIS activity

292 show increased membrane localization of GFP-PH (Britton et al., 2002). We observed a
293 significantly higher membrane localization of GFP-PH in females cultured on 2Y than in
294 female larvae raised on 1Y (Fig. 2B), indicating enhanced IIS activity in females raised
295 on 2Y. In w^{1118} males, we observed no significant difference in the mRNA levels of *InR*,
296 *bmm*, and *4E-BP* between larvae grown on 2Y compared with larvae cultured on 1Y
297 (Fig. 2C). Further, there was no significant difference in GFP-PH membrane localization
298 between males raised on 2Y and males reared on 1Y (Fig. 2D). Together, these results
299 suggest that IIS activity was enhanced by a protein-rich diet in female larvae but not in
300 males, revealing a previously unrecognized sex difference in diet-induced changes to
301 IIS activity.

302 To determine whether this increased IIS activity is required in females for the
303 ability to maximize body size in response to dietary protein, we measured pupal volume
304 in larvae heterozygous for a hypomorphic mutation in the *InR* gene (*InR*^{E19/+}) that were
305 raised in either 1Y or 2Y. Previous studies have shown that while overall growth is
306 largely normal in *InR*^{E19/+} heterozygous animals, growth that requires high levels of IIS
307 activity is blunted (Chen et al., 1996; Rideout et al., 2012, 2015). In w^{1118} control
308 females, larvae cultured on 2Y were significantly larger than larvae raised on 1Y (Fig.
309 2E); however, the magnitude of this protein-dependent increase in pupal volume was
310 smaller in *InR*^{E19/+} females (Fig. 2E; genotype:diet interaction $p < 0.0001$; S1 Table). This
311 suggests that nutrient-dependent body size plasticity was reduced in *InR*^{E19/+} females.
312 Indeed, while we observed a sex difference in phenotypic plasticity in the w^{1118} control
313 genotype (sex:diet interaction $p < 0.0001$ S1 Table), the sex difference in nutrient-
314 dependent body size plasticity was abolished in the *InR*^{E19/+} genotype (Fig. 2E, F:
315 sex:diet interaction $p = 0.7104$; S1 Table). Together, these results indicate that the
316 nutrient-dependent upregulation of IIS activity in females is required for their increased
317 phenotypic plasticity, and suggest that the sex difference in body size plasticity arises
318 from the female-specific ability to enhance IIS activity in a protein-rich context.
319

320 ***dilp2* is required for the nutrient-dependent upregulation of IIS activity and body
321 size plasticity in females**

322

323 Previous studies have identified changes to the production and release of dILPs as
324 important mechanisms underlying nutrient-dependent changes to IIS activity and body
325 size (Colombani et al., 2003; Géminard et al., 2009; Zhang et al., 2009). For example,
326 the mRNA levels of *dilp3* and *dilp5*, but not *dilp2*, decrease in response to nutrient
327 withdrawal (Colombani et al., 2003; Géminard et al., 2009; Ikeya et al., 2002), and the
328 release of dILPs 2, 3, and 5 from the IPCs is altered by changes in nutrient availability
329 (Géminard et al., 2009; Kim & Neufeld, 2015). Interestingly, a recent study showed that
330 late third-instar female larvae have increased dILP2 secretion compared with age-
331 matched males when the larvae were raised in a diet equivalent to 2Y (Rideout et al.,
332 2015). Given that dILP2 is an important growth-promoting dILP (Grönke et al., 2010;
333 Ikeya et al., 2002), we tested whether *dilp2* was required in females for the nutrient-
334 dependent upregulation of IIS activity. In control *w¹¹¹⁸* females, mRNA levels of *4E-BP*
335 and *InR* were significantly lower in larvae raised on 2Y than in larvae reared on 1Y (Fig.
336 3A and Fig. S7A), suggesting a nutrient-dependent increase in IIS activity. In contrast,
337 mRNA levels of *4E-BP* and *InR* were not significantly lower in *dilp2* female larvae raised
338 on 2Y compared with genotype-matched females cultured on 1Y (Fig. 3A and Fig. S7A).
339 In *w¹¹¹⁸* and *dilp2* males, mRNA levels of *4E-BP* were not significantly lower in larvae
340 raised on 2Y compared with genotype-matched larvae cultured on 1Y (Fig. 3B), trends
341 we also observed using *InR* (Fig. S7B). This data suggests that *dilp2* is required for the
342 nutrient-dependent upregulation of IIS activity in females in a protein-rich context.

343 To determine whether the inability to augment IIS activity on 2Y affects nutrient-
344 dependent body size plasticity in females, we measured body size in *w¹¹¹⁸* and *dilp2*
345 mutant larvae cultured on either 1Y or 2Y. In *w¹¹¹⁸* control females, adult weight was
346 significantly higher in flies cultured on 2Y compared with flies raised on 1Y (Fig. 3C);
347 however, this nutrient-dependent increase in adult weight was not observed in *dilp2*
348 mutant females (Fig. 3C; genotype:diet interaction $p = 0.0024$; S1 Table). In *w¹¹¹⁸*
349 control males and *dilp2* mutant males, there was no significant increase in adult weight
350 in flies raised on 2Y compared with genotype-matched flies cultured on 1Y (Fig. 3D;
351 genotype:diet interaction $p = 0.935$; S1 Table). Indeed, in contrast to the sex difference
352 in nutrient-dependent body size plasticity in the *w¹¹¹⁸* genotype (sex:diet interaction
353 $p < 0.0001$; S1 Table), the sex difference in phenotypic plasticity was abolished in the

354 *dilp2* mutant genotype (sex:diet interaction $p = 0.0827$; S1 Table). Importantly, we
355 replicated all these findings using pupal volume (Fig. 3E, F), and reproduced the
356 female-specific effects of *dilp2* loss by globally overexpressing a *UAS-dilp2-RNAi*
357 transgene (Fig. S7C). Further, changes to *dilp* mRNA levels in males and females
358 lacking *dilp2* (Fig. S8A, B), and protein-dependent changes to *dilp* mRNA levels (Fig.
359 S9A, B), were similar in both sexes. Thus, our data reveals a previously unrecognized
360 female-specific requirement for *dilp2* in triggering a nutrient-dependent increase in IIS
361 activity and body size in a protein-rich context.

362

363 **A nutrient-dependent increase in *stunted* mRNA levels is required for enhanced
364 IIS activity and body size plasticity in females**

365

366 Nutrient-dependent changes in dILP secretion from the IPCs, and consequently IIS
367 activity, are mediated by humoral factors that are regulated by dietary nutrients (Britton
368 & Edgar, 1998; Delanoue et al., 2016; Koyama & Mirth, 2016; Rajan & Perrimon, 2012;
369 Rodenfels et al., 2014; Sano et al., 2015). For example, in a mixed-sex population of
370 larvae, dietary protein augments mRNA levels of *Growth-blocking peptides 1 and 2*
371 (*Gbp1*, FBgn0034199; *Gbp2*, FBgn0034200), *CCHamide-2* (*CCHa2*; FBgn0038147),
372 *unpaired 2* (*upd2*; FBgn0030904), and *sun* (Delanoue et al., 2016; Koyama & Mirth,
373 2016; Rajan & Perrimon, 2012; Sano et al., 2015). Increased levels of these humoral
374 factors promote the secretion of IPC-produced dILPs to enhance IIS activity and growth
375 (Delanoue et al., 2016; Koyama & Mirth, 2016; Meschi et al., 2019; Rajan & Perrimon,
376 2012; Sano et al., 2015). To determine whether any humoral factors contribute to the
377 sex-specific increase in IIS activity in a protein-rich diet, we examined mRNA levels of
378 each factor in larvae of both sexes raised on either 1Y or 2Y. In *w¹¹¹⁸* females, *sun*
379 mRNA levels in larvae reared on 2Y were significantly higher than in larvae cultured on
380 1Y (Fig. 4A). In contrast, mRNA levels of *Gbp1*, *Gbp2*, *CCHa2*, and *upd2* were not
381 significantly higher in female larvae reared on 2Y compared with 1Y (Fig. S10A). Thus,
382 while previous studies have shown that mRNA levels of all humoral factors were
383 severely reduced by a nutrient-restricted diet or nutrient withdrawal (Delanoue et al.,
384 2016; Koyama & Mirth, 2016; Rajan & Perrimon, 2012; Sano et al., 2015), our study

385 suggests that for most factors, augmenting dietary protein beyond a widely-used level
386 does not further enhance mRNA levels. In males, there was no significant increase in
387 *sun* mRNA levels (Fig. 4B), or any other humoral factors (Fig. S10B), in larvae reared
388 on 2Y compared with 1Y. Thus, there is a previously unrecognized sex difference in the
389 regulation of *sun* mRNA levels in a protein-rich context. Given that *sun* has previously
390 been shown to promote IIS activity by enhancing dILP2 secretion (Delanoue et al.,
391 2016), we hypothesized that the female-specific increase in *sun* mRNA levels in 2Y
392 triggers the nutrient-dependent upregulation of IIS activity in females. To test this, we
393 overexpressed UAS-*sun-RNAi* in the larval fat body using *r4-GAL4*, and cultured the
394 animals on either 1Y or 2Y. Importantly, overexpression of the *UAS-*sun-RNAi**
395 transgene significantly decreased *sun* mRNA levels in both sexes (Fig. S10C, D), where
396 GAL4 expression was similar between the sexes in 1Y and 2Y (Fig. S10E). In control
397 *r4>+* and *+>UAS-*sun-RNAi** females, we observed a significant decrease in *InR*, *bmm*,
398 and *4E-BP* mRNA levels in larvae cultured on 2Y compared with genotype-matched
399 larvae reared on 1Y (Fig. 4C). In contrast, the nutrient-dependent decrease in *InR*, *bmm*,
400 and *4E-BP* mRNA levels was absent in *r4>UAS-*sun-RNAi** females (Fig. 4C). In *r4>+*,
401 *+>UAS-*sun-RNAi**, and *r4>UAS-*sun-RNAi** males, we found no consistent indications of
402 increased IIS activity in larvae cultured on 2Y compared with genotype-matched larvae
403 raised on 1Y (Fig. S11A). Together, this data suggests that in females a protein-rich diet
404 stimulates a nutrient-dependent increase in *sun* mRNA that enhances IIS activity. In
405 males, the 2Y diet did not augment *sun* mRNA levels, suggesting one reason for the
406 lack of a nutrient-dependent increase in IIS activity.

407 We next asked whether the female-specific increase in *sun* and its regulation of
408 IIS activity contribute to nutrient-dependent body size plasticity. In *r4>+* and *+>UAS-*
409 *sun-RNAi* control females, adult weight was significantly higher in flies cultured on 2Y
410 compared with genotype-matched flies raised on 1Y (Fig. 4D). In contrast, the nutrient-
411 dependent increase in adult weight was abolished in *r4>UAS-*sun-RNAi** females (Fig.
412 4D; genotype:diet interaction $p = 0.0014$; S1 Table). This indicates *r4>UAS-*sun-RNAi**
413 females have reduced nutrient-dependent body size plasticity, a finding we confirmed
414 using pupal volume (Fig. S11B). In *r4>+*, *+>UAS-*sun-RNAi**, and *r4>UAS-*sun-RNAi**
415 male flies raised on 2Y, adult weight was not significantly higher than in genotype-

416 matched males raised on 1Y (Fig. 4E; genotype:diet interaction $p = 0.9278$; S1 Table).
417 Additionally, we replicated all these findings using pupal volume (Fig. S11C).
418 Importantly, in contrast to the sex difference in nutrient-dependent body size plasticity
419 we observed in the *r4>+* and *+>UAS-sun-RNAi* control genotypes (sex:diet interaction p
420 = 0.011 and $p = 0.0005$, respectively; S1 Table), the sex difference in phenotypic
421 plasticity was abolished in the *r4>UAS-sun-RNAi* genotype (sex:diet interaction $p =$
422 0.8749; S1 Table). This suggests that the female-specific increase in *sun* mRNA levels
423 is required for the sex difference in nutrient-dependent plasticity. A sex-specific role for
424 *sun* was further supported by the fact that we reproduced the female-specific effects of
425 *sun* knockdown on body size using an additional GAL4 line (Fig. S12A), and by the fact
426 that no other humoral factors caused sex-specific effects on body size (Fig. S12B, C).
427 Further, while we show that fat body-specific *sun* overexpression was sufficient to
428 increase body size in both sexes (Fig. S13A, B), body size plasticity in these larger
429 males was not significantly different from control males (genotype:diet interaction $p =$
430 0.4959, S1 Table), in line with our earlier data showing that augmenting body size in
431 males was not sufficient to confer phenotypic plasticity (Fig. S6B). Thus, our data
432 suggests that the female-specific ability to upregulate *sun* in the 2Y diet enhances IIS
433 activity to promote a larger body size, revealing the mechanism by which females, and
434 not males, augment body size in a protein-rich context.

435

436 **Sex determination gene *transformer* promotes nutrient-dependent body size 437 plasticity in females**

438

439 We next investigated the increased ability of females to enhance IIS activity and
440 augment body size in a protein-rich context. Given that previous studies have implicated
441 sex determination gene *tra* in regulating body size in a diet equivalent to the 2Y diet
442 (Rideout et al., 2015), and identified links between *tra* and IIS activity in this context
443 (Rideout et al., 2015), we explored a role for *tra* in regulating the sex difference in the
444 nutrient-dependent upregulation of IIS activity and body size plasticity. In control *w¹¹¹⁸*
445 females, *4E-BP* mRNA levels were significantly lower in larvae raised on 2Y compared
446 with larvae cultured on 1Y (Fig. 5A); however, this nutrient-dependent decrease in *4E-*

447 *BP* mRNA levels was absent in *tra* mutant females (*tra*¹/*Df(3L)st-j7*) (Fig. 5A). Similarly,
448 while *sun* mRNA levels in *w*¹¹¹⁸ control females were significantly higher in larvae raised
449 on 2Y compared with 1Y (Fig. 5B), this nutrient-dependent increase in *sun* mRNA levels
450 was absent in *tra* mutant females (Fig. 5B). Thus, *tra* is required in females for the
451 nutrient-dependent increase in *sun* mRNA and IIS activity in a protein-rich context. To
452 determine whether the inability of *tra* mutant females to upregulate *sun* mRNA levels
453 and IIS activity impacts nutrient-dependent body size plasticity, we measured body size
454 in *w*¹¹¹⁸ controls and *tra* mutants raised in 1Y and 2Y. In control *w*¹¹¹⁸ females, adult
455 weight was significantly higher in flies raised on 2Y compared with flies cultured on 1Y
456 (Fig. 5C); however, this nutrient-dependent increase in adult weight was not observed in
457 *tra* mutant females (Fig. 5C; genotype:diet interaction $p < 0.0001$; S1 Table), a finding we
458 reproduced using pupal volume (Fig. S14A). This indicates that *tra* mutant females have
459 reduced nutrient-dependent body size plasticity compared with control females. In
460 control *w*¹¹¹⁸ and *tra* mutant males, adult weight was not significantly higher in flies
461 raised on 2Y compared with genotype-matched flies reared on 1Y (Fig. 5D;
462 genotype:diet interaction $p = 0.4507$). Importantly, we replicated all these findings using
463 pupal volume (Fig. S14B). Given that we observed a sex difference in nutrient-
464 dependent body size plasticity in the *w*¹¹¹⁸ genotype (sex:diet interaction $p < 0.0001$; S1
465 Table), but not in the *tra* mutant strain (sex:diet interaction $p = 0.6598$; S1 Table), our
466 data reveals a previously unrecognized requirement for *tra* in regulating the sex
467 difference in nutrient-dependent phenotypic plasticity.

468 To determine whether lack of a functional Tra protein in males explains their
469 reduced nutrient-dependent body size plasticity, we overexpressed *UAS-tra*^F in all
470 tissues using *daughterless* (*da*)-GAL4. We first asked whether *tra* overexpression
471 impacted the nutrient-dependent regulation of *sun* mRNA and IIS activity. In control
472 *da*>+ and +>*UAS-tra*^F males, there was no significant decrease in *InR*, *bmm*, or *4E-BP*
473 mRNA levels in larvae reared in 2Y compared with larvae raised in 1Y (Fig. 5E). In
474 contrast, there was a significant nutrient-dependent decrease in mRNA levels of *InR*
475 and *bmm* in *da*>*UAS-tra*^F males (Fig. 5E). Similarly, while *sun* mRNA levels in control
476 *da*>+ and +>*UAS-tra*^F males were not significantly higher in larvae raised on 2Y
477 compared with larvae reared on 1Y (Fig. 5F), there was a nutrient-dependent increase

478 in *sun* mRNA levels in *da>UAS-tra^F* males (Fig. 5F). This suggests the presence of a
479 functional Tra protein in males confers the ability to upregulate *sun* mRNA levels and IIS
480 activity in a protein-rich context. Next, we asked whether expressing a functional Tra
481 protein in males would augment nutrient-dependent body size plasticity. In control *da>+*
482 and *+>UAS-tra^F* males, there was no significant increase in adult weight in flies raised
483 on 2Y compared with genotype-matched flies reared on 1Y (Fig. 5G); however, there
484 was a nutrient-dependent increase in *da>UAS-tra^F* males (Fig. 5G; genotype:diet
485 interaction $p = 0.0038$; S1 Table), a finding we reproduced using pupal volume (Fig.
486 S15A). Thus, *da>UAS-tra^F* males have increased phenotypic plasticity compared with
487 control males, revealing a new role for *tra* in regulating nutrient-dependent body size
488 plasticity. In females, we observed a significant increase in both adult weight and pupal
489 volume in *da>+*, *+>UAS-tra^F*, and *da>UAS-tra^F* flies raised on the 2Y diet compared with
490 genotype-matched females cultured on the 1Y diet (Fig. S15B, C). Because one study
491 suggested high levels of Tra overexpression could cause lethality (Siera & Cline, 2008),
492 we reproduced these findings using a recently published strain of flies in which adult
493 males and females lacking *tra* (*tra^{KO}*), and adult males and females carrying a cDNA
494 encoding the female-specific Tra protein knocked into the *tra* locus (*tra^{F K-IN}*), are
495 produced from the same cross (Hudry et al., 2016, 2019). In line with *tra¹/Df(3L)st-j7*
496 females, *tra^{KO}* females had reduced body size plasticity compared with control *w¹¹¹⁸* and
497 *tra^{F K-IN}* females in a protein-rich context (Fig. S15D; genotype:diet interaction $p < 0.0001$
498 S1 Table). As with *da>UAS-tra^F* males, we found that *tra^{F K-IN}* males, which express
499 physiological levels of a functional Tra protein, showed increased nutrient-dependent
500 body size plasticity compared with control *w¹¹¹⁸* and *tra^{KO}* males (Fig. S15E;
501 genotype:diet interaction $p < 0.0001$; S1 Table). Importantly, the sex difference in
502 nutrient-dependent body size plasticity that we observed in the *w¹¹¹⁸* genotype (sex:diet
503 interaction $p < 0.0001$) was abolished in the *tra^{KO}* and *tra^{F K-IN}* genotypes ($p = 0.5068$ and
504 $p = 0.3168$, respectively; S1 Table). Together, our findings reveal a new role for *tra* in
505 regulating the sex difference in nutrient-dependent body size plasticity.

506 These findings suggest that a functional Tra protein confers the ability to adjust
507 body size in a protein-rich context via regulation of *sun* mRNA and IIS activity. To test
508 this, we examined whether the ability to adjust *sun* mRNA levels is required for Tra's

509 effects on phenotypic plasticity. Because animals homozygous for null mutations in *sun*
510 are larval lethal (Kidd et al., 2005), and *sun* is located on the X chromosome which
511 precludes studies on flies heterozygous for a *sun* mutant allele, we examined nutrient-
512 dependent body size plasticity in *da>UAS-tra^F* animals heterozygous for a hypomorphic
513 allele of *spargel* (*srl*, FBgn0037248), the *Drosophila* homolog of *peroxisome proliferator-*
514 *activated receptor gamma coactivator 1-alpha* (*PGC-1α*). A previous study showed that
515 *srl/PGC-1α*, an essential gene, was required for normal *sun* mRNA levels (Delanoue et
516 al., 2016). Therefore, we predicted that heterozygous loss of *srl/PGC-1α* would blunt the
517 nutrient-dependent increase in *sun* mRNA levels without compromising viability. While
518 adult weight in *da>UAS-tra^F* males and females was significantly higher in flies raised
519 on 2Y compared with flies cultured in 1Y (Fig. 6A, B), as in Fig. 5G and Fig. S15C, the
520 nutrient-dependent increase in adult weight was abolished in *da>UAS-tra^F* males and
521 females carrying a mutant allele of *srl/PGC-1α* (*srl¹*) (Fig. 6A, B; genotype:diet
522 interaction $p = 0.0146$ and $p = 0.0008$, respectively). This finding suggests that nutrient-
523 dependent body size plasticity was reduced in *da>UAS-tra^F, srl¹/+* flies compared with
524 controls. Therefore, when taken together, our results indicate that the nutrient-
525 dependent upregulation of *sun* is important for *tra*'s ability to promote growth in a
526 protein-rich context, revealing one mechanism by which *Tra* regulates body size
527 plasticity.

528

529 **Increased nutrient-dependent body size plasticity in females promotes fecundity 530 in a protein-rich context**

531

532 Previous studies have shown that plentiful nutrients during development maximize body
533 size to promote fertility in *Drosophila* females (Bergland et al., 2008; Green & Extavour,
534 2014; Grönke et al., 2010; Hodin & Riddiford, 2000; Mendes & Mirth, 2016; Robertson,
535 1957a, 1957b; Sarikaya et al., 2012; Tu & Tatar, 2003), and that high levels of IIS
536 activity are required for normal egg development, ovariole number, and fecundity
537 (Green & Extavour, 2014; Grönke et al., 2010; Mendes & Mirth, 2016; Richard et al.,
538 2005). In line with these findings, *w¹¹¹⁸* female flies reared on 2Y produced significantly
539 more eggs compared with genotype-matched females cultured on 1Y (Fig. 6C). This

540 suggests that the ability to augment IIS activity and body size in response to a protein-
541 rich diet allows females to maximize fecundity in conditions where nutrients are plentiful.
542 To test this, we measured the number of eggs produced by *InR*^{E19/+} females and *w*¹¹¹⁸
543 controls raised in either 1Y or 2Y. In contrast to *w*¹¹¹⁸ females, the nutrient-dependent
544 increase in egg production was absent in *InR*^{E19/+} females (Fig. 6C). Similarly, there
545 was no diet-induced increase in egg production in *dilp2* mutant females (Fig. 6D). These
546 findings suggest that the nutrient-dependent increase in IIS activity and body size are
547 important to promote fecundity in a protein-rich context. This result aligns with findings
548 from a previous study showing that lifetime fecundity was significantly lower in *dilp2*
549 mutants raised in a yeast-rich diet (Grönke et al., 2010). To extend our findings beyond
550 *dilp* genes, we next examined fecundity in females with an RNAi-mediated reduction in
551 *sun*. We found that the nutrient-dependent increase in egg production in *r4>UAS-sun-*
552 *RNAi* females was eliminated, in contrast to the robust diet-induced increase in
553 fecundity in *r4>+* and *+>UAS-sun-RNAi* control females (Fig. 6E). Together, this data
554 suggests that *dilp2* and fat body-derived *sun* play a role in maximizing IIS activity and
555 body size to promote egg production in a protein-rich context.

556 In males, which have a reduced ability to augment body size in response to a
557 protein-rich diet, we also investigated the relationship between nutrient content, body
558 size, and fertility. When we compared fertility in *w*¹¹¹⁸ males reared on 1Y compared
559 with males raised on 2Y, we found no significant difference in the number of offspring
560 produced (Fig. 6F). Thus, neither male body size nor fertility were enhanced by rearing
561 flies in a protein-rich environment. Given that previous studies suggest that a larger
562 body size in males promotes reproductive success (Ewing, 1961; Partridge et al., 1987;
563 Partridge & Farquhar, 1983), we next asked whether genetic manipulations that
564 augment male body size also increased fertility. One way to augment male body size in
565 1Y is heterozygous loss of *phosphatase and tensin homolog* (*pten*, FBgn0026379;
566 *pten*^{2L100/+}) (Fig. S6B). Interestingly, fertility was not significantly higher in *pten*^{2L100/+}
567 males compared with *w*¹¹¹⁸ controls raised in 1Y (Fig. 6F), suggesting that a larger body
568 size does not always augment fertility in males. Similarly, when we measured fertility in
569 *r4>UAS-sun* males, which are larger than control males (Fig. S13B), fertility was not
570 significantly different from *r4>+* and *+>UAS-sun* control males (Fig. 6G). Thus, in males

571 the relationship between body size and fertility is less robust than in females, as genetic
572 manipulations that increase body size do not augment fertility. Interestingly, when we
573 examined fertility in *pten*^{2L100/+} and *r4>UAS-sun* males in 2Y, fertility was significantly
574 increased in *pten*^{2L100/+} males compared with genotype-matched controls cultured in 1Y
575 (Fig. 6F), an observation we did not repeat in *r4>UAS-sun* males (Fig. 6G). Ultimately,
576 this less robust and more complex relationship between body size and fertility in males
577 suggests a possible explanation for their decreased nutrient-dependent body size
578 plasticity compared with females.

579

580 **DISCUSSION**

581

582 In many animals, body size plasticity in response to environmental factors such as
583 nutrition differs between the sexes (Fairbairn, 1997). While past studies have identified
584 mechanisms underlying nutrient-dependent growth in a mixed-sex population, and
585 revealed factors that promote sex-specific growth in a single nutritional context, the
586 mechanisms underlying the sex difference in nutrient-dependent body size plasticity
587 remain unknown. In this study, we showed that females have higher phenotypic
588 plasticity compared with males when reared on a protein-rich diet, and elucidated the
589 molecular mechanisms underlying the sex difference in nutrient-dependent body size
590 plasticity in this context. Our data suggests a model in which high levels of dietary
591 protein augment female body size by stimulating an increase in IIS activity, where we
592 identified a requirement for *dilp2* and *sun* in promoting this nutrient-dependent increase
593 in IIS activity. Importantly, we discovered *tra* as the factor responsible for stimulating
594 *sun* mRNA levels and IIS activity, identifying a novel role for sex determination gene *tra*
595 in regulating nutrient-dependent body size plasticity. Together, our findings reveal one
596 mechanism underlying the sex difference in nutrient-dependent body size plasticity.

597 One interesting finding from our study was the identification of a sex difference in
598 nutrient-dependent changes to IIS activity. In females raised on a protein-rich diet, there
599 was a nutrient-dependent upregulation of IIS activity. In males, this diet-induced
600 increase in IIS activity was not observed. This reveals a previously unrecognized sex
601 difference in the coupling between IIS activity and dietary protein: females tightly couple

602 nutrient input with IIS activity across a wide protein concentration range, whereas the
603 close coordination between dietary protein and IIS activity in males was lost in a protein-
604 rich context. Our data shows that this sex difference in nutrient-dependent changes to
605 IIS activity during development is physiologically significant, as it supports an increased
606 rate of growth and consequently larger body size in females but not in males raised on a
607 protein-rich diet. In future studies, it will be important to determine whether the sex
608 difference in coupling between nutrients and IIS activity exist in other contexts. For
609 example, previous studies on the extension of life span by dietary restriction have
610 shown that male and female flies differ in the concentration of nutrients that produces
611 the maximum life span extension, and in the magnitude of life span extension produced
612 by dietary restriction (Magwere et al., 2004; Regan et al., 2016). Similar sex-specific
613 effects of dietary restriction and reduced IIS on life span have also been observed in
614 mice (Holzenberger et al., 2003; Kane et al., 2018; reviewed in Regan & Partridge, 2013;
615 Selman et al., 2008) and humans (van Heemst et al., 2005). Future studies will be
616 needed to determine whether a male-female difference in coupling between nutrients
617 and IIS activity similarly explain these sex-specific life span responses to dietary
618 restriction. Indeed, given that sex differences have been reported in the risk of
619 developing diseases associated with overnutrition and dysregulation of IIS activity such
620 as obesity and type 2 diabetes (Kautzky-Willer et al., 2016; Mauvais-Jarvis, 2018;
621 Tramunt et al., 2020), more detailed knowledge of the male-female difference in
622 coupling between nutrients and IIS activity in other models may provide insights into this
623 sex-biased risk of disease.

624 In addition to revealing a sex difference in the nutrient-dependent upregulation of
625 IIS activity, our data identified a female-specific requirement for *dilp2* and *sun* in
626 mediating the diet-induced increase in IIS activity in a protein-rich context. While
627 previous studies have shown that both *dilp2* and *sun* positively regulate body size
628 (Ikeya et al., 2002; Grönke et al., 2010; Delanoue et al 2016), we describe new sex-
629 specific roles for *dilp2* and *sun* in mediating nutrient-dependent phenotypic plasticity.
630 Elegant studies have shown that *sun* is a secreted factor that stimulates dILP2 release
631 from the IPCs (Delanoue et al., 2016). Together with our data, this suggests a model in
632 which the sex difference in nutrient-dependent body size plasticity is due to the diet-

633 induced upregulation of *sun* in females and not males. Higher *sun* mRNA levels
634 enhance dILP2 secretion to promote IIS activity and increase female body size in a
635 protein-rich context. This model aligns well with findings from two previous studies on
636 dILP2 secretion in male and female larvae. The first study, which raised larvae on a
637 protein-rich diet equivalent to the 2Y diet, found increased dILP2 secretion in females
638 compared to males (Rideout et al., 2015). The second study, which raised larvae on a
639 diet equivalent to the 1Y diet, found no sex difference in dILP2 secretion and no effects
640 of *dilp2* loss on body size (Sawala & Gould, 2017). Thus, while these previous studies
641 differed in their initial findings on a sex difference in dILP2 secretion, our data reconcile
642 these minor differences by identifying context-dependent effects of *dilp2* on body size.
643 Future studies will need to determine whether these sex-specific and context-dependent
644 effects of *dilp2* are observed in other phenotypes regulated by *dilp2* and other *dilp*
645 genes. For example, flies carrying mutations in *dilp* genes show changes to aging,
646 metabolism, sleep, and immunity, among other phenotypes (Bai et al., 2012; Brown et
647 al., 2020; Cong et al., 2015; Grönke et al., 2010; Liu et al., 2016; Nässel & Vanden
648 Broeck, 2016; Okamoto et al., 2009; Okamoto & Nishimura, 2015; Post et al., 2018,
649 2019; Slaidina et al., 2009; Stafford et al., 2012; Zhang et al., 2009; Bai et al., 2012;
650 Brogiolo et al., 2001; Brown et al., 2020; Cognigni et al., 2011; Cong et al., 2015;
651 Grönke et al., 2010; Linneweber et al., 2014; Liu et al., 2016; Okamoto et al., 2009; Post
652 et al., 2018, 2019; Semaniuk et al., 2018; Slaidina et al., 2009; Stafford et al., 2012;
653 Suzawa et al., 2019; Ugrankar et al., 2018; Zhang et al., 2009). Further, it will be
654 interesting to determine whether the sex-specific regulation of *sun* is observed in any
655 other contexts, and whether it will influence sex differences in phenotypes associated
656 with altered IIS activity, such as life span.

657 While our findings on *sun* and *dilp2* provide mechanistic insight into the
658 molecular basis for the male-female difference in phenotypic plasticity in response to a
659 protein-rich diet, a key finding from our study was the identification of sex determination
660 gene *tra* as the factor that confers plasticity to females. Normally, nutrient-dependent
661 body size plasticity is higher in females than in males in a protein-rich context. In
662 females lacking a functional *Tra* protein, however, this increased nutrient-dependent
663 body size plasticity was abolished. In males, which normally lack a functional *Tra*

664 protein, ectopic Tra expression conferred increased nutrient-dependent body size
665 plasticity. A previous study showed that on the 2Y diet Tra promotes dILP2 secretion
666 (Rideout et al., 2015); however, our current study extends this finding by identifying *sun*
667 as one link between Tra and dILP2. Further, by demonstrating that Tra's regulation of
668 IIS activity and body size is context-dependent, we identify a previously unrecognized
669 role for Tra in regulating nutrient-dependent body size plasticity. This new role for *tra*
670 also accounts for minor differences between previous studies on the effects of *tra* on
671 growth during development (Mathews et al., 2017; Rideout et al., 2015; Sawala & Gould,
672 2017). While we extend these previous findings by showing that Tra confers nutrient-
673 dependent body size plasticity via sex-specific regulation of *sun* mRNA and IIS activity,
674 it remains unclear how Tra regulates *sun* mRNA levels in response to dietary protein.
675 Future studies will need to examine the basis for this sex-specific regulation, as recent
676 studies have expanded the number of Tra-regulated genes beyond its canonical targets
677 genes *fruitless* (*fru*; FBgn0004652) and *doublesex* (*dsx*; FBgn0000504) (Clough et al.,
678 2014; Hudry et al., 2016, 2019). In addition to these mechanistic studies, it will also be
679 critical to explore how Tra couples *sun* mRNA regulation with dietary protein intake.
680 Studies have shown that the *tra* locus is regulated both by alternative splicing and
681 transcription (Belote et al., 1989; Boggs et al., 1987; Grmai et al., 2018; Inoue et al.,
682 1990; Sosnowski et al., 1989), and that the Tra protein is regulated by phosphorylation
683 (Du et al., 1998). Our study therefore highlights the importance of additional studies on
684 the regulation of the *tra* genomic locus and Tra protein to gain mechanistic insight into
685 its effects on nutrient-dependent body size plasticity.

686 While the main outcome of our work was to reveal the molecular mechanisms
687 that regulate the sex difference in nutrient-dependent body size plasticity, we also
688 provide some insight into how genes that contribute to nutrient-dependent body size
689 plasticity affect female fecundity and male fertility. Our findings align well with previous
690 studies demonstrating that increased nutrient availability during development and a
691 larger female body size confers increased ovariole number and fertility (Green &
692 Extavour, 2014; Mendes & Mirth, 2016; Robertson, 1957a, 1957b), as females lacking
693 either *dilp2* or fat body-derived *sun* were unable to augment egg production in a protein-
694 rich context. Given that previous studies demonstrate IIS activity influences germline

695 stem cells in the ovary in adult flies (Hsu et al., 2008; Hsu & Drummond-Barbosa, 2009;
696 Kao et al., 2015; LaFever & Drummond-Barbosa, 2005; Lin & Hsu, 2020; Su et al.,
697 2018), there is a clear reproductive benefit that arises from the tight coupling between
698 nutrient availability, IIS activity, and body size in females. In males, however, the
699 relationship between fertility and body size remains less clear. While larger males are
700 more reproductively successful both in the wild and in laboratory conditions (Ewing,
701 1961; Partridge & Farquhar, 1983), other studies revealed that medium-sized males
702 were more fertile than both larger and smaller males (Lefranc & Bundgaard, 2000).
703 Given that our study revealed no significant increase in the number of progeny
704 produced by larger males, the fertility benefits that accompany a larger body size in
705 males may be context-dependent. For example, studies have shown that a larger body
706 size increases the ability of males to outcompete smaller males (Flatt, 2020; Partridge
707 et al., 1987; Partridge & Farquhar, 1983). Thus, in crowded situations, a larger body
708 size may provide significant fertility gains. On the other hand, in conditions where
709 nutrients are limiting, an imbalance in the allocation of energy from food to growth rather
710 than to reproduction may decrease fertility (Bass et al., 2007; Camus et al., 2017;
711 Jensen et al., 2015; Wood et al., 2018). Future studies will therefore be needed to
712 resolve the relationship between body size and fertility in males, as this will suggest the
713 ultimate reason(s) for the sex difference in nutrient-dependent body size plasticity.

714

715 MATERIALS AND METHODS

716 **Data Availability.** Raw values for all data collected and displayed in this manuscript are
717 available in S2 Table.

718

719 **Fly husbandry.** Larvae were raised at a density of 50 animals per 10 ml food at 25°C
720 (recipes in S3 Table), collected as indicated in figure legends, and sexed by gonad size.
721 When gonad size could not be used to determine sex (e.g., *tra* mutants, *da-GAL4>UAS-
722 *tra*^F*), chromosomal females were identified by the presence of an X-linked GFP. Adult
723 flies were maintained at a density of 20 flies per vial in single-sex groups.

724

725 **Fly strains.** The following fly strains from the Bloomington *Drosophila* Stock Center
726 were used: *Canton-S* (#64349), *w¹¹¹⁸* (#3605), *tra¹* (#675), *Df(3L)st-j7* (#5416), *srl¹*
727 (#14965), *InR^{E19}* (#9646), TRiP control (#36303) *UAS-ilp2-RNAi* (#32475), *UAS-upd2-*
728 *RNAi* (#33949), *UAS-tra^F* (#4590), *da-GAL4* (ubiquitous), *r4-GAL4* (fat body), *cg-GAL4*
729 (fat body). The following fly strains from the Vienna *Drosophila* Resource Center were
730 used in this study: *UAS-sun-RNAi* (GD23685), *UAS-Gbp1-RNAi* (KK108755) *UAS-*
731 *Gbp2-RNAi* (GD16696), *UAS-CCHa2-RNAi* (KK102257). Additional fly strains include:
732 *ilp2*, *pten^{2L100}*, *UAS-sun*, *tGPH (GFP-PH)*. All genotypes used in the manuscript are
733 listed in S4 Table.

734

735 **Body size.** Pupal volume was measured in pupae sexed by gonad size as previously
736 described (Delanoue et al., 2010; Marshall et al., 2012; Rideout et al., 2012, 2015). For
737 adult weight, 5-day-old virgin male and female flies were weighed in groups of 10 in 1.5
738 ml microcentrifuge tubes on an analytical balance. Wing length was measured as
739 previously described (Garelli et al., 2012).

740

741 **Developmental timing.** Larvae were placed into the experimental diet \pm 2 hr post-
742 hatching, and sexed using gonad size. Percent pupation was calculated by comparing
743 the number of pupae at 12 hr intervals to the total larvae in the vial.

744

745 **Feeding behavior.** Feeding behavior was quantified in sexed larvae by counting mouth
746 hook contractions for 30 sec.

747

748 **RNA extraction and cDNA synthesis.** One biological replicate represents ten larvae
749 frozen on dry ice and stored at -80°C. Each experiment contained 3-4 biological
750 replicates per sex, per genotype, and per diet, and each experiment was repeated twice.
751 RNA was extracted using Trizol (Thermo Fisher Scientific; 15596018) according to
752 manufacturer's instructions, as previously described (Marshall et al., 2012; Rideout et
753 al., 2012, 2015; Wat et al., 2020). cDNA synthesis was performed using the QuantiTect
754 Reverse Transcription Kit according to manufacturer's instructions (Qiagen; 205314).

755

756 **Quantitative real-time PCR (qPCR).** qPCR was performed as previously described
757 (Rideout et al., 2012, 2015; Wat et al., 2020). A complete primer list is available in S5
758 Table.

759

760 **Fecundity and fertility.** For female fecundity, single 6-day-old virgin female flies raised
761 as indicated were crossed to three age-matched CS virgin males for a 24 hr mating
762 period. Flies were transferred to fresh food vials with blue 2Y food to lay eggs. The
763 number of eggs laid over 24 hr was quantified. For male fertility, single 6-day-old virgin
764 males were paired with three 6-day-old virgin CS females to mate, and females were
765 allowed to lay eggs for 24 hr. The number of progeny was quantified by counting viable
766 pupae.

767

768 **Microscopy.** GFP-PH larvae were picked into 1Y or 2Y food. Larvae were dissected
769 108 hr after egg laying (AEL) and inverted carcasses were fixed for 30 minutes in 4%
770 paraformaldehyde in phosphate buffered saline (PBS) at room temperature. Carcasses
771 were rinsed twice with PBS, once in 0.1% Triton-X in PBS (PBST) for 5 minutes, then
772 incubated with Hoechst (5 µg/mL, Life Technologies H3570), LipidTOX Red (1:100,
773 Thermo Fisher Scientific H34476), and phalloidin fluor 647 (1:1000, Abcam ab176759)
774 in PBST for 40 min. The stained carcasses were washed with PBS and mounted in
775 SlowFade Diamond (Thermo Fisher Scientific S36972). Images were acquired with a
776 Leica SP5 (20X). Mean GFP intensity was quantified at the cell surface (marked by
777 phalloidin) and in the cytoplasm using Fiji (Schindelin et al., 2012). Three cells per fat
778 body were measured, and at least five fat bodies per sex and per diet were measured.

779

780 **Statistics and data presentation.** Statistical analyses and data presentation were
781 carried out using Prism GraphPad 6 (GraphPad Prism version 6.0.0 for Mac OS X, .
782 Statistical tests are indicated in figure legends and all *p*-values are listed in S1 Table.

783

784 **ACKNOWLEDGEMENTS**

785

786 We would like to thank Drs. Renald Delanoue and William Ja for the *UAS-stunted* strain,
787 Dr. Bruce Edgar for the GFP-PH reporter (tGPH), and Dr. Linda Partridge for sharing
788 the *dilp2* mutant strain. Stocks obtained from the Bloomington *Drosophila* Stock Center
789 (NIH P40OD018537) were used in this study. We thank the TRiP at Harvard Medical
790 School (NIH/NIGMS R01-GM084947) for providing transgenic RNAi fly stocks and/or
791 plasmid vectors used in this study. Transgenic fly stocks and/or plasmids were also
792 obtained from the Vienna *Drosophila* Resource Center (VDRC, www.vdrc.at). We
793 acknowledge critical resources and information provided by FlyBase (Thurmond et al.,
794 2018); FlyBase is supported by a grant from the National Human Genome Research
795 Institute at the U.S. National Institutes of Health ([U41 HG000739](https://www.nih.gov/research-training/funding/awards/2018/01/01/u41-hg000739)) and by the British
796 Medical Research Council ([MR/N030117/1](https://www.mrc.ac.uk/research-funding/grants-and-funding/awards/2018/01/01/mr/n030117/1)). Funding for this study was provided by
797 grants to EJR from the Canadian Institutes for Health Research (PJT-153072), Natural
798 Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2016-04249),
799 Michael Smith Foundation for Health Research (16876), and the Canadian Foundation
800 for Innovation (JELF-34879), and to IMA from the European Research Council
801 (ERCAdG787470). JWM was supported by a 4-year CELL Fellowship from UBC, LWW
802 was supported by a British Columbia Graduate Scholarship Award, ZS was supported
803 by an NSERC Undergraduate Student Research Award, and BH was supported by an
804 European Molecular Biology Organization Fellowship (aALTF782-2015).

805

806 COMPETING INTERESTS STATEMENT

807 No competing interests declared.

808

809 REFERENCES

810 Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. *Science*,
811 294(5541), 321–326. <https://doi.org/10.1126/science.1060701>

812 Alic, N., Andrews, T. D., Giannakou, M. E., Papatheodorou, I., Slack, C., Hoddinott, M. P.,

813 Cochemé, H. M., Schuster, E. F., Thornton, J. M., & Partridge, L. (2011). Genome-wide

814 dFO XO targets and topology of the transcriptomic response to stress and insulin
815 signalling. *Mol Syst Biol*, 7, 502. <https://doi.org/10.1038/msb.2011.36>

816 Almudi, I., Poernbacher, I., Hafen, E., & Stocker, H. (2013). The Lnk/SH2B adaptor provides a
817 fail-safe mechanism to establish the Insulin receptor-Chico interaction. *Cell Commun
818 Signal*, 11(1), 26. <https://doi.org/10.1186/1478-811X-11-26>

819 Alpatov, W. W. (1930). Phenotypical Variation in Body and Cell Size of *Drosophila melanogaster*.
820 *Biological Bulletin*, 58(1), 85–103. JSTOR. <https://doi.org/10.2307/1537121>

821 Anand, A., Villella, A., Ryner, L. C., Carlo, T., Goodwin, S. F., Song, H. J., Gailey, D. A., Morales, A.,
822 Hall, J. C., Baker, B. S., & Taylor, B. J. (2001). Molecular genetic dissection of the sex-
823 specific and vital functions of the *Drosophila melanogaster* sex determination gene
824 *fruitless*. *Genetics*, 158(4), 1569–1595.

825 Andersen, D. S., Colombani, J., & Léopold, P. (2013). Coordination of organ growth: Principles
826 and outstanding questions from the world of insects. *Trends Cell Biol*, 23(7), 336–344.
827 <https://doi.org/10.1016/j.tcb.2013.03.005>

828 Arquier, N., Géminard, C., Bourouis, M., Jarretou, G., Honegger, B., Paix, A., & Léopold, P. (2008).
829 *Drosophila* ALS regulates growth and metabolism through functional interaction with
830 insulin-like peptides. *Cell Metab*, 7(4), 333–338.
831 <https://doi.org/10.1016/j.cmet.2008.02.003>

832 Bai, H., Kang, P., & Tatar, M. (2012). *Drosophila* insulin-like peptide-6 (*dilp6*) expression from fat
833 body extends lifespan and represses secretion of *Drosophila* insulin-like peptide-2 from
834 the brain. *Aging Cell*, 11(6), 978–985. <https://doi.org/10.1111/acel.12000>

835 Bass, T. M., Grandison, R. C., Wong, R., Martinez, P., Partridge, L., & Piper, M. D. (2007).

836 Optimization of dietary restriction protocols in *Drosophila*. *J Gerontol A Biol Sci Med Sci*,
837 62(10), 1071–1081. <https://doi.org/10.1093/gerona/62.10.1071>

838 Beadle, G. W., Tatum, E. L., & Clancy, C. W. (1938). Food level in relation to rate of development
839 and eye pigmentation in *Drosophila melanogaster*. *The Biological Bulletin*, 75(3), 447–
840 462. <https://doi.org/10.2307/1537573>

841 Bell, L. R., Maine, E. M., Schedl, P., & Cline, T. W. (1988). *Sex-lethal*, a *Drosophila* sex
842 determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to
843 RNA binding proteins. *Cell*, 55(6), 1037–1046. [https://doi.org/10.1016/0092-8674\(88\)90248-6](https://doi.org/10.1016/0092-8674(88)90248-6)

845 Belote, J. M., McKeown, M., Boggs, R. T., Ohkawa, R., & Sosnowski, B. A. (1989). Molecular
846 genetics of *transformer*, a genetic switch controlling sexual differentiation in *Drosophila*.
847 *Dev Genet*, 10(3), 143–154. <https://doi.org/10.1002/dvg.1020100304>

848 Bergland, A. O., Genissel, A., Nuzhdin, S. V., & Tatar, M. (2008). Quantitative trait loci affecting
849 phenotypic plasticity and the allometric relationship of ovariole number and thorax
850 length in *Drosophila melanogaster*. *Genetics*, 180(1), 567–582. PubMed.
851 <https://doi.org/10.1534/genetics.108.088906>

852 Billeter, J. C., Rideout, E. J., Dornan, A. J., & Goodwin, S. F. (2006). Control of male sexual
853 behavior in *Drosophila* by the sex determination pathway. *Curr Biol*, 16(17), R766-76.
854 <https://doi.org/10.1016/j.cub.2006.08.025>

855 Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., & Partridge, L. (2010).
856 Mechanisms of life span extension by rapamycin in the fruit fly *Drosophila melanogaster*.
857 *Cell Metab*, 11(1), 35–46. <https://doi.org/10.1016/j.cmet.2009.11.010>

858 Boggs, R. T., Gregor, P., Idriss, S., Belote, J. M., & McKeown, M. (1987). Regulation of sexual
859 differentiation in *D. melanogaster* via alternative splicing of RNA from the *transformer*
860 gene. *Cell*, 50(5), 739–747. [https://doi.org/10.1016/0092-8674\(87\)90332-1](https://doi.org/10.1016/0092-8674(87)90332-1)

861 Böhni, R., Riesgo-Escovar, J., Oldham, S., Brogiolo, W., Stocker, H., Andruss, B. F., Beckingham,
862 K., & Hafen, E. (1999). Autonomous control of cell and organ size by CHICO, a *Drosophila*
863 homolog of vertebrate IRS1-4. *Cell*, 97(7), 865–875.

864 Boulan, L., Milán, M., & Léopold, P. (2015). The Systemic Control of Growth. *Cold Spring Harb
865 Perspect Biol*, 7(12). <https://doi.org/10.1101/cshperspect.a019117>

866 Bridges, C. B. (1921). Triploid intersexes in *Drosophila melanogaster*. *Science*, 54(1394), 252–
867 254. <https://doi.org/10.1126/science.54.1394.252>

868 Britton, J. S., & Edgar, B. A. (1998). Environmental control of the cell cycle in *Drosophila*:
869 Nutrition activates mitotic and endoreplicative cells by distinct mechanisms.
870 *Development*, 125(11), 2149–2158.

871 Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M., & Edgar, B. A. (2002). *Drosophila*'s
872 insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions.
873 *Dev Cell*, 2(2), 239–249. [https://doi.org/10.1016/s1534-5807\(02\)00117-x](https://doi.org/10.1016/s1534-5807(02)00117-x)

874 Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., & Hafen, E. (2001). An
875 evolutionarily conserved function of the *Drosophila* insulin receptor and insulin-like
876 peptides in growth control. *Curr Biol*, 11(4), 213–221.

877 Brown, E. B., Shah, K. D., Faville, R., Kottler, B., & Keene, A. C. (2020). *Drosophila* insulin-like
878 peptide 2 mediates dietary regulation of sleep intensity. *PLoS Genet*, 16(3), e1008270.
879 <https://doi.org/10.1371/journal.pgen.1008270>

880 Brown, E. H., & King, R. C. (1961). Studies on the expression of the *transformer* gene of
881 *Drosophila melanogaster*. *Genetics*, 46(2), 143.

882 Camara, N., Whitworth, C., & Van Doren, M. (2008). The creation of sexual dimorphism in the
883 *Drosophila* soma. *Curr Top Dev Biol*, 83, 65–107. [https://doi.org/10.1016/S0070-2153\(08\)00403-1](https://doi.org/10.1016/S0070-2153(08)00403-1)

884 Camus, M. F., Fowler, K., Piper, M. W. D., & Reuter, M. (2017). Sex and genotype effects on
885 nutrient-dependent fitness landscapes in *Drosophila melanogaster*. *Proceedings of the
886 Royal Society B: Biological Sciences*, 284(1869), 20172237.
887 <https://doi.org/10.1098/rspb.2017.2237>

888 Camus, M. F., Piper, M. D. W., & Reuter, M. (2019). Sex-specific transcriptomic responses to
889 changes in the nutritional environment. *eLife*, 8, e47262.
890 <https://doi.org/10.7554/eLife.47262>

891 Castellanos, M. C., Tang, J. C., & Allan, D. W. (2013). Female-biased dimorphism underlies a
892 female-specific role for post-embryonic Ilp7 neurons in *Drosophila* fertility. *Development*,
893 140(18), 3915–3926. <https://doi.org/10.1242/dev.094714>

894 Chang, P. L., Dunham, J. P., Nuzhdin, S. V., & Arbeitman, M. N. (2011). Somatic sex-specific
895 transcriptome differences in *Drosophila* revealed by whole transcriptome sequencing.
896 *BMC Genomics*, 12, 364. <https://doi.org/10.1186/1471-2164-12-364>

898 Chen, C., Jack, J., & Garofalo, R. S. (1996). The *Drosophila* insulin receptor is required for normal
899 growth. *Endocrinology*, 137(3), 846–856. <https://doi.org/10.1210/endo.137.3.8603594>

900 Cho, K. S., Lee, J. H., Kim, S., Kim, D., Koh, H., Lee, J., Kim, C., Kim, J., & Chung, J. (2001).
901 *Drosophila* phosphoinositide-dependent kinase-1 regulates apoptosis and growth via
902 the phosphoinositide 3-kinase-dependent signaling pathway. *Proc Natl Acad Sci U S A*,
903 98(11), 6144–6149. <https://doi.org/10.1073/pnas.101596998>

904 Christiansen, A. E., Keisman, E. L., Ahmad, S. M., & Baker, B. S. (2002). Sex comes in from the
905 cold: The integration of sex and pattern. *Trends Genet*, 18(10), 510–516.
906 [https://doi.org/10.1016/s0168-9525\(02\)02769-5](https://doi.org/10.1016/s0168-9525(02)02769-5)

907 Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., Leevers, S. J., &
908 Partridge, L. (2001). Extension of life-span by loss of CHICO, a *Drosophila* insulin receptor
909 substrate protein. *Science*, 292(5514), 104–106.
910 <https://doi.org/10.1126/science.1057991>

911 Cline, T. W. (1978). Two closely linked mutations in *Drosophila melanogaster* that are lethal to
912 opposite sexes and interact with *daughterless*. *Genetics*, 90(4), 683–698.

913 Cline, T. W., & Meyer, B. J. (1996). VIVE LA DIFFÉRENCE: Males vs Females in Flies vs Worms.
914 *Annual Review of Genetics*, 30(1), 637–702.
915 <https://doi.org/10.1146/annurev.genet.30.1.637>

916 Clough, E., Jimenez, E., Kim, Y. A., Whitworth, C., Neville, M. C., Hempel, L. U., Pavlou, H. J.,
917 Chen, Z. X., Sturgill, D., Dale, R. K., Smith, H. E., Przytycka, T. M., Goodwin, S. F., Van
918 Doren, M., & Oliver, B. (2014). Sex- and tissue-specific functions of *Drosophila doublesex*

919 transcription factor target genes. *Dev Cell*, 31(6), 761–773.

920 <https://doi.org/10.1016/j.devcel.2014.11.021>

921 Cognigni, P., Bailey, A. P., & Miguel-Aliaga, I. (2011). Enteric neurons and systemic signals

922 couple nutritional and reproductive status with intestinal homeostasis. *Cell Metab*, 13(1),

923 92–104. <https://doi.org/10.1016/j.cmet.2010.12.010>

924 Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., & Léopold, P. (2003). A

925 nutrient sensor mechanism controls *Drosophila* growth. *Cell*, 114(6), 739–749.

926 [https://doi.org/10.1016/s0092-8674\(03\)00713-x](https://doi.org/10.1016/s0092-8674(03)00713-x)

927 Cong, X., Wang, H., Liu, Z., He, C., An, C., & Zhao, Z. (2015). Regulation of Sleep by Insulin-like

928 Peptide System in *Drosophila melanogaster*. *Sleep*, 38(7), 1075–1083.

929 <https://doi.org/10.5665/sleep.4816>

930 Dauwalder, B. (2011). The roles of *fruitless* and *doublesex* in the control of male courtship. *Int*

931 *Rev Neurobiol*, 99, 87–105. <https://doi.org/10.1016/B978-0-12-387003-2.00004-5>

932 Delanoue, R., Meschi, E., Agrawal, N., Mauri, A., Tsatskis, Y., McNeill, H., & Léopold, P. (2016).

933 *Drosophila* insulin release is triggered by adipose Stunted ligand to brain Methuselah

934 receptor. *Science*, 353(6307), 1553–1556. <https://doi.org/10.1126/science.aaf8430>

935 Delanoue, R., Slaidina, M., & Léopold, P. (2010). The steroid hormone ecdysone controls

936 systemic growth by repressing dMyc function in *Drosophila* fat cells. *Dev Cell*, 18(6),

937 1012–1021. <https://doi.org/10.1016/j.devcel.2010.05.007>

938 Demir, E., & Dickson, B. J. (2005). *fruitless* splicing specifies male courtship behavior in

939 *Drosophila*. *Cell*, 121(5), 785–794. <https://doi.org/10.1016/j.cell.2005.04.027>

940 Du, C., McGuffin, M. E., Dauwalder, B., Rabinow, L., & Mattox, W. (1998). Protein
941 phosphorylation plays an essential role in the regulation of alternative splicing and sex
942 determination in *Drosophila*. *Mol Cell*, 2(6), 741–750. [https://doi.org/10.1016/s1097-2765\(00\)80289-0](https://doi.org/10.1016/s1097-2765(00)80289-0)

943 Edgar, B. A. (2006). How flies get their size: Genetics meets physiology. *Nat Rev Genet*, 7(12),
944 907–916. <https://doi.org/10.1038/nrg1989>

945 Erkosar, B., Storelli, G., Mitchell, M., Bozonnet, L., Bozonnet, N., & Leulier, F. (2015). Pathogen
946 Virulence Impedes Mutualist-Mediated Enhancement of Host Juvenile Growth via
947 Inhibition of Protein Digestion. *Cell Host Microbe*, 18(4), 445–455.
948 <https://doi.org/10.1016/j.chom.2015.09.001>

949 Ewing, A. W. (1961). Body size and courtship behaviour in *Drosophila melanogaster*. *Animal
950 Behaviour*, 9(1), 93–99. [https://doi.org/10.1016/0003-3472\(61\)90055-0](https://doi.org/10.1016/0003-3472(61)90055-0)

951 Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the
952 coevolution of body size in males and females. *Annu Rev Ecol Syst*, 28, 659–687.

953 Fear, J. M., Arbeitman, M. N., Salomon, M. P., Dalton, J. E., Tower, J., Nuzhdin, S. V., & McIntyre,
954 L. M. (2015). The Wright stuff: Reimagining path analysis reveals novel components of
955 the sex determination hierarchy in *Drosophila melanogaster*. *BMC Syst Biol*, 9, 53.
956 <https://doi.org/10.1186/s12918-015-0200-0>

957 Fernandez, R., Tabarini, D., Azpiazu, N., Frasch, M., & Schlessinger, J. (1995). The *Drosophila
958 insulin receptor* homolog: A gene essential for embryonic development encodes two
959 receptor isoforms with different signaling potential. *EMBO J*, 14(14), 3373–3384.

960

961 Flatt, T. (2020). Life-History Evolution and the Genetics of Fitness Components in. *Genetics*,
962 214(1), 3–48. <https://doi.org/10.1534/genetics.119.300160>

963 Gao, X., Neufeld, T. P., & Pan, D. (2000). *Drosophila* PTEN regulates cell growth and proliferation
964 through PI3K-dependent and -independent pathways. *Dev Biol*, 221(2), 404–418.
965 <https://doi.org/10.1006/dbio.2000.9680>

966 Garelli, A., Gontijo, A. M., Miguela, V., Caparros, E., & Dominguez, M. (2012). Imaginal discs
967 secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. *Science*,
968 336(6081), 579–582. <https://doi.org/10.1126/science.1216735>

969 Garland, T., & Kelly, S. A. (2006). Phenotypic plasticity and experimental evolution. *J Exp Biol*,
970 209(Pt 12), 2344–2361. <https://doi.org/10.1242/jeb.02244>

971 Garner, S. R. C., Castellanos, M. C., Baillie, K. E., Lian, T., & Allan, D. W. (2018). Female-specific
972 llp7 motoneurons are generated by *fruitless*-dependent cell death in males and by a
973 double-assurance survival role for *transformer* in females. *Development*, 145(1).
974 <https://doi.org/10.1242/dev.150821>

975 Géminard, C., Rulifson, E. J., & Léopold, P. (2009). Remote control of insulin secretion by fat
976 cells in *Drosophila*. *Cell Metab*, 10(3), 199–207.
977 <https://doi.org/10.1016/j.cmet.2009.08.002>

978 Ghosh, A., Rideout, E. J., & Grewal, S. S. (2014). TIF-IA-dependent regulation of ribosome
979 synthesis in *Drosophila* muscle is required to maintain systemic insulin signaling and
980 larval growth. *PLoS Genet*, 10(10), e1004750.
981 <https://doi.org/10.1371/journal.pgen.1004750>

982 Giannakou, M. E., Goss, M., Jünger, M. A., Hafen, E., Leevers, S. J., & Partridge, L. (2004). Long-
983 lived *Drosophila* with overexpressed dFOXO in adult fat body. *Science*, 305(5682), 361.
984 <https://doi.org/10.1126/science.1098219>

985 Goberdhan, D. C., Paricio, N., Goodman, E. C., Mlodzik, M., & Wilson, C. (1999). *Drosophila*
986 tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-
987 kinase signaling pathway. *Genes Dev*, 13(24), 3244–3258.
988 <https://doi.org/10.1101/gad.13.24.3244>

989 Goldman, T. D., & Arbeitman, M. N. (2007). Genomic and functional studies of *Drosophila* sex
990 hierarchy regulated gene expression in adult head and nervous system tissues. *PLoS*
991 *Genet*, 3(11), e216. <https://doi.org/10.1371/journal.pgen.0030216>

992 Goodwin, S. F., Taylor, B. J., Villella, A., Foss, M., Ryner, L. C., Baker, B. S., & Hall, J. C. (2000).
993 Aberrant splicing and altered spatial expression patterns in *fruitless* mutants of
994 *Drosophila melanogaster*. *Genetics*, 154(2), 725–745.

995 Graze, R. M., Tzeng, R. Y., Howard, T. S., & Arbeitman, M. N. (2018). Perturbation of IIS/TOR
996 signaling alters the landscape of sex-differential gene expression in *Drosophila*. *BMC*
997 *Genomics*, 19(1), 893. <https://doi.org/10.1186/s12864-018-5308-3>

998 Green, D. A., & Extavour, C. G. (2014). Insulin signalling underlies both plasticity and divergence
999 of a reproductive trait in *Drosophila*. *Proc Biol Sci*, 281(1779), 20132673.
1000 <https://doi.org/10.1098/rspb.2013.2673>

1001 Grewal, S. S. (2009). Insulin/TOR signaling in growth and homeostasis: A view from the fly world.
1002 *Int J Biochem Cell Biol*, 41(5), 1006–1010. <https://doi.org/10.1016/j.biocel.2008.10.010>

1003 Grmai, L., Hudry, B., Miguel-Aliaga, I., & Bach, E. A. (2018). Chinmo prevents *transformer*
1004 alternative splicing to maintain male sex identity. *PLoS Genet*, 14(2), e1007203.
1005 <https://doi.org/10.1371/journal.pgen.1007203>
1006 Grönke, S., Clarke, D. F., Broughton, S., Andrews, T. D., & Partridge, L. (2010). Molecular
1007 evolution and functional characterization of *Drosophila* insulin-like peptides. *PLoS Genet*,
1008 6(2), e1000857. <https://doi.org/10.1371/journal.pgen.1000857>
1009 Hietakangas, V., & Cohen, S. M. (2009). Regulation of tissue growth through nutrient sensing.
1010 *Annu Rev Genet*, 43, 389–410. <https://doi.org/10.1146/annurev-genet-102108-134815>
1011 Hodin, J., & Riddiford, L. M. (2000). Different mechanisms underlie phenotypic plasticity and
1012 interspecific variation for a reproductive character in *Drosophilids* (*Insecta: Diptera*).
1013 *Evolution*, 54(5), 1638–1653. <https://doi.org/10.1111/j.0014-3820.2000.tb00708.x>
1014 Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P. C., Cervera, P., & Le
1015 Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in
1016 mice. *Nature*, 421(6919), 182–187. <https://doi.org/10.1038/nature01298>
1017 Honegger, B., Galic, M., Köhler, K., Wittwer, F., Brogiolo, W., Hafen, E., & Stocker, H. (2008).
1018 *Imp-L2*, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin
1019 signaling in *Drosophila* and is essential for starvation resistance. *J Biol*, 7(3), 10.
1020 <https://doi.org/10.1186/jbiol72>
1021 Hoshijima, K., Inoue, K., Higuchi, I., Sakamoto, H., & Shimura, Y. (1991). Control of *doublesex*
1022 alternative splicing by *transformer* and *transformer-2* in *Drosophila*. *Science*, 252(5007),
1023 833–836. <https://doi.org/10.1126/science.1902987>

1024 Hsu, H. J., & Drummond-Barbosa, D. (2009). Insulin levels control female germline stem cell
1025 maintenance via the niche in *Drosophila*. *Proc Natl Acad Sci U S A*, 106(4), 1117–1121.
1026 <https://doi.org/10.1073/pnas.0809144106>

1027 Hsu, H. J., LaFever, L., & Drummond-Barbosa, D. (2008). Diet controls normal and tumorous
1028 germline stem cells via insulin-dependent and -independent mechanisms in *Drosophila*.
1029 *Dev Biol*, 313(2), 700–712. <https://doi.org/10.1016/j.ydbio.2007.11.006>

1030 Hudry, B., de Goeij, E., Mineo, A., Gaspar, P., Hadjieconomou, D., Studd, C., Mokochinski, J. B.,
1031 Kramer, H. B., Plaçais, P. Y., Preat, T., & Miguel-Aliaga, I. (2019). Sex Differences in
1032 Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. *Cell*,
1033 178(4), 901-918.e16. <https://doi.org/10.1016/j.cell.2019.07.029>

1034 Hudry, B., Khadayate, S., & Miguel-Aliaga, I. (2016). The sexual identity of adult intestinal stem
1035 cells controls organ size and plasticity. *Nature*, 530(7590), 344–348.
1036 <https://doi.org/10.1038/nature16953>

1037 Ikeya, T., Galic, M., Belawat, P., Nairz, K., & Hafen, E. (2002). Nutrient-dependent expression of
1038 insulin-like peptides from neuroendocrine cells in the CNS contributes to growth
1039 regulation in *Drosophila*. *Curr Biol*, 12(15), 1293–1300.

1040 Inoue, K., Hoshijima, K., Sakamoto, H., & Shimura, Y. (1990). Binding of the *Drosophila sex-lethal*
1041 gene product to the alternative splice site of *transformer* primary transcript. *Nature*,
1042 344(6265), 461–463. <https://doi.org/10.1038/344461a0>

1043 Ito, H., Fujitani, K., Usui, K., Shimizu-Nishikawa, K., Tanaka, S., & Yamamoto, D. (1996). Sexual
1044 orientation in *Drosophila* is altered by the *satori* mutation in the sex-determination gene

1045 *fruitless* that encodes a zinc finger protein with a BTB domain. *Proc Natl Acad Sci U S A*,
1046 93(18), 9687–9692. <https://doi.org/10.1073/pnas.93.18.9687>

1047 Jensen, K., McClure, C., Priest, N. K., & Hunt, J. (2015). Sex-specific effects of protein and
1048 carbohydrate intake on reproduction but not lifespan in *Drosophila melanogaster*. *Aging*
1049 *Cell*, 14(4), 605–615. <https://doi.org/10.1111/ace.12333>

1050 Jünger, M. A., Rintelen, F., Stocker, H., Wasserman, J. D., Végh, M., Radimerski, T., Greenberg,
1051 M. E., & Hafen, E. (2003). The *Drosophila* Forkhead transcription factor FOXO mediates
1052 the reduction in cell number associated with reduced insulin signaling. *Journal of*
1053 *Biology*, 2(3), 20.

1054 Kane, A. E., Sinclair, D. A., Mitchell, J. R., & Mitchell, S. J. (2018). Sex differences in the response
1055 to dietary restriction in rodents. *Current Opinion in Physiology*, 6, 28–34. PubMed.
1056 <https://doi.org/10.1016/j.cophys.2018.03.008>

1057 Kang, P., Chang, K., Liu, Y., Bouska, M., Birnbaum, A., Karashchuk, G., Thakore, R., Zheng, W.,
1058 Post, S., Brent, C. S., Li, S., Tatar, M., & Bai, H. (2017). *Drosophila* Kruppel homolog 1
1059 represses lipolysis through interaction with dFOXO. *Sci Rep*, 7(1), 16369.
1060 <https://doi.org/10.1038/s41598-017-16638-1>

1061 Kao, S. H., Tseng, C. Y., Wan, C. L., Su, Y. H., Hsieh, C. C., Pi, H., & Hsu, H. J. (2015). Aging and
1062 insulin signaling differentially control normal and tumorous germline stem cells. *Aging*
1063 *Cell*, 14(1), 25–34. <https://doi.org/10.1111/ace.12288>

1064 Kautzky-Willer, A., Harreiter, J., & Pacini, G. (2016). Sex and Gender Differences in Risk,
1065 Pathophysiology and Complications of Type 2 Diabetes Mellitus. *Endocr Rev*, 37(3), 278–
1066 316. <https://doi.org/10.1210/er.2015-1137>

1067 Kidd, T., Abu-Shumays, R., Katzen, A., Sisson, J. C., Jiménez, G., Pinchin, S., Sullivan, W., & Ish-
1068 Horowicz, D. (2005). The epsilon-subunit of mitochondrial ATP synthase is required for
1069 normal spindle orientation during the *Drosophila* embryonic divisions. *Genetics*, 170(2),
1070 697–708. <https://doi.org/10.1534/genetics.104.037648>

1071 Kim, J., & Neufeld, T. P. (2015). Dietary sugar promotes systemic TOR activation in *Drosophila*
1072 through AKH-dependent selective secretion of Dilp3. *Nat Commun*, 6, 6846.
1073 <https://doi.org/10.1038/ncomms7846>

1074 Koyama, T., & Mirth, C. K. (2016). Growth-Blocking Peptides As Nutrition-Sensitive Signals for
1075 Insulin Secretion and Body Size Regulation. *PLoS Biol*, 14(2), e1002392.
1076 <https://doi.org/10.1371/journal.pbio.1002392>

1077 Koyama, T., & Mirth, C. K. (2018). Unravelling the diversity of mechanisms through which
1078 nutrition regulates body size in insects. *Curr Opin Insect Sci*, 25, 1–8.
1079 <https://doi.org/10.1016/j.cois.2017.11.002>

1080 LaFever, L., & Drummond-Barbosa, D. (2005). Direct control of germline stem cell division and
1081 cyst growth by neural insulin in *Drosophila*. *Science*, 309(5737), 1071–1073.
1082 <https://doi.org/10.1126/science.1111410>

1083 Leevers, S. J., Weinkove, D., MacDougall, L. K., Hafen, E., & Waterfield, M. D. (1996). The
1084 *Drosophila* phosphoinositide 3-kinase Dp110 promotes cell growth. *EMBO J*, 15(23),
1085 6584–6594.

1086 Lefranc, A., & Bundgaard, J. (2000). The Influence of Male and Female Body Size on Copulation
1087 Duration and Fecundity in *Drosophila melanogaster*. *Hereditas*, 132(3), 243–247.
1088 <https://doi.org/10.1111/j.1601-5223.2000.00243.x>

1089 Lewis, E. B. (1960). A new standard food medium. *Drosophila Information Service*, 34, 117–118.

1090 Lin, K. Y., & Hsu, H. J. (2020). Regulation of adult female germline stem cells by nutrient-
1091 responsive signaling. *Curr Opin Insect Sci*, 37, 16–22.

1092 <https://doi.org/10.1016/j.cois.2019.10.005>

1093 Linneweber, G. A., Jacobson, J., Busch, K. E., Hudry, B., Christov, C. P., Dormann, D., Yuan, M.,
1094 Otani, T., Knust, E., de Bono, M., & Miguel-Aliaga, I. (2014). Neuronal control of
1095 metabolism through nutrient-dependent modulation of tracheal branching. *Cell*, 156(1–
1096 2), 69–83. <https://doi.org/10.1016/j.cell.2013.12.008>

1097 Liu, Y., Liao, S., Veenstra, J. A., & Nässel, D. R. (2016). *Drosophila insulin-like peptide 1 (Dilp1)* is
1098 transiently expressed during non-feeding stages and reproductive dormancy. *Sci Rep*, 6,
1099 26620. <https://doi.org/10.1038/srep26620>

1100 Magwere, T., Chapman, T., & Partridge, L. (2004). Sex Differences in the Effect of Dietary
1101 Restriction on Life Span and Mortality Rates in Female and Male *Drosophila*
1102 *melanogaster*. *The Journals of Gerontology: Series A*, 59(1), B3–B9.

1103 <https://doi.org/10.1093/gerona/59.1.B3>

1104 Marshall, L., Rideout, E. J., & Grewal, S. S. (2012). Nutrient/TOR-dependent regulation of RNA
1105 polymerase III controls tissue and organismal growth in *Drosophila*. *EMBO J*, 31(8),
1106 1916–1930. <https://doi.org/10.1038/emboj.2012.33>

1107 Mathews, K. W., Cavegn, M., & Zwicky, M. (2017). Sexual Dimorphism of Body Size Is Controlled
1108 by Dosage of the X-Chromosomal Gene *Myc* and by the Sex-Determining Gene *tra* in
1109 *Drosophila*. *Genetics*, 205(3), 1215–1228. <https://doi.org/10.1534/genetics.116.192260>

1110 Mauvais-Jarvis, F. (2018). Gender differences in glucose homeostasis and diabetes. *Physiology*
1111 & *Behavior*, 187, 20–23. <https://doi.org/10.1016/j.physbeh.2017.08.016>

1112 Mendes, C. C., & Mirth, C. K. (2016). Stage-Specific Plasticity in Ovary Size Is Regulated by
1113 Insulin/Insulin-Like Growth Factor and Ecdysone Signaling in *Drosophila*. *Genetics*,
1114 202(2), 703–719. <https://doi.org/10.1534/genetics.115.179960>

1115 Meschi, E., Léopold, P., & Delanoue, R. (2019). An EGF-Responsive Neural Circuit Couples Insulin
1116 Secretion with Nutrition in *Drosophila*. *Dev Cell*, 48(1), 76-86.e5.
1117 <https://doi.org/10.1016/j.devcel.2018.11.029>

1118 Millington, J. W., & Rideout, E. J. (2018). Sex differences in *Drosophila* development and
1119 physiology. *Current Opinion in Physiology*, 6, 46–56.
1120 <https://doi.org/10.1016/j.cophys.2018.04.002>

1121 Mirth, C. K., & Piper, M. D. (2017). Matching complex dietary landscapes with the signalling
1122 pathways that regulate life history traits. *Curr Opin Genet Dev*, 47, 9–16.
1123 <https://doi.org/10.1016/j.gde.2017.08.001>

1124 Mirth, C. K., & Riddiford, L. M. (2007). Size assessment and growth control: How adult size is
1125 determined in insects. *Bioessays*, 29(4), 344–355. <https://doi.org/10.1002/bies.20552>

1126 Mirth, C. K., & Shingleton, A. W. (2012). Integrating body and organ size in *Drosophila*: Recent
1127 advances and outstanding problems. *Front Endocrinol (Lausanne)*, 3, 49.
1128 <https://doi.org/10.3389/fendo.2012.00049>

1129 Murillo-Maldonado, J. M., Sánchez-Chávez, G., Salgado, L. M., Salceda, R., & Riesgo-Escovar, J. R.
1130 (2011). *Drosophila* insulin pathway mutants affect visual physiology and brain function

1131 besides growth, lipid, and carbohydrate metabolism. *Diabetes*, 60(5), 1632–1636.

1132 <https://doi.org/10.2337/db10-1288>

1133 Nässel, D. R., & Vanden Broeck, J. (2016). Insulin/IGF signaling in *Drosophila* and other insects:

1134 Factors that regulate production, release and post-release action of the insulin-like

1135 peptides. *Cell Mol Life Sci*, 73(2), 271–290. <https://doi.org/10.1007/s00018-015-2063-3>

1136 Neville, M. C., Nojima, T., Ashley, E., Parker, D. J., Walker, J., Southall, T., Van de Sande, B.,

1137 Marques, A. C., Fischer, B., Brand, A. H., Russell, S., Ritchie, M. G., Aerts, S., & Goodwin,

1138 S. F. (2014). Male-specific *fruitless* isoforms target neurodevelopmental genes to specify

1139 a sexually dimorphic nervous system. *Curr Biol*, 24(3), 229–241.

1140 <https://doi.org/10.1016/j.cub.2013.11.035>

1141 Nijhout, H. F. (2003). The control of body size in insects. *Dev Biol*, 261(1), 1–9.

1142 [https://doi.org/10.1016/s0012-1606\(03\)00276-8](https://doi.org/10.1016/s0012-1606(03)00276-8)

1143 Nijhout, H. F., Riddiford, L. M., Mirth, C., Shingleton, A. W., Suzuki, Y., & Callier, V. (2014). The

1144 developmental control of size in insects. *Wiley Interdiscip Rev Dev Biol*, 3(1), 113–134.

1145 <https://doi.org/10.1002/wdev.124>

1146 Nojima, T., Neville, M. C., & Goodwin, S. F. (2014). *fruitless* isoforms and target genes specify

1147 the sexually dimorphic nervous system underlying *Drosophila* reproductive behavior. *Fly*

1148 (*Austin*), 8(2), 95–100. <https://doi.org/10.4161/fly.29132>

1149 Nowak, K., Seisenbacher, G., Hafen, E., & Stocker, H. (2013). Nutrient restriction enhances the

1150 proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues. *eLife*,

1151 2, e00380. <https://doi.org/10.7554/eLife.00380>

1152 Okamoto, N., Nakamori, R., Murai, T., Yamauchi, Y., Masuda, A., & Nishimura, T. (2013). A
1153 secreted decoy of *InR* antagonizes insulin/IGF signaling to restrict body growth in
1154 *Drosophila*. *Genes Dev*, 27(1), 87–97. <https://doi.org/10.1101/gad.204479.112>

1155 Okamoto, N., & Nishimura, T. (2015). Signaling from Glia and Cholinergic Neurons Controls
1156 Nutrient-Dependent Production of an Insulin-like Peptide for *Drosophila* Body Growth.
1157 *Dev Cell*, 35(3), 295–310. <https://doi.org/10.1016/j.devcel.2015.10.003>

1158 Okamoto, N., Yamanaka, N., Yagi, Y., Nishida, Y., Kataoka, H., O'Connor, M. B., & Mizoguchi, A.
1159 (2009). A fat body-derived IGF-like peptide regulates postfeeding growth in *Drosophila*.
1160 *Dev Cell*, 17(6), 885–891. <https://doi.org/10.1016/j.devcel.2009.10.008>

1161 Oldham, S., Stocker, H., Laffargue, M., Wittwer, F., Wyman, M., & Hafen, E. (2002). The
1162 *Drosophila* insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels.
1163 *Development*, 129(17), 4103–4109.

1164 Partridge, L., Barrie, B., Fowler, K., & French, V. (1994). Evolution and development of body size
1165 and cell size in *Drosophila melanogaster* in response to temperature. *Evolution*, 48(4),
1166 1269–1276. <https://doi.org/10.1111/j.1558-5646.1994.tb05311.x>

1167 Partridge, L., Ewing, A., & Chandler, A. (1987). Male size and mating success in *Drosophila*
1168 *melanogaster*: The roles of male and female behaviour. *Animal Behaviour*, 35(2), 555–
1169 562. [https://doi.org/10.1016/S0003-3472\(87\)80281-6](https://doi.org/10.1016/S0003-3472(87)80281-6)

1170 Partridge, L., & Farquhar, M. (1983). Lifetime mating success of male fruitflies (*Drosophila*
1171 *melanogaster*) is related to their size. *Animal Behaviour*, 31(3), 871–877.
1172 [https://doi.org/10.1016/S0003-3472\(83\)80242-5](https://doi.org/10.1016/S0003-3472(83)80242-5)

1173 Pavlou, H. J., Lin, A. C., Neville, M. C., Nojima, T., Diao, F., Chen, B. E., White, B. H., & Goodwin, S.

1174 F. (2016). Neural circuitry coordinating male copulation. *Elife*, 5.

1175 <https://doi.org/10.7554/eLife.20713>

1176 Poltilove, R. M., Jacobs, A. R., Haft, C. R., Xu, P., & Taylor, S. I. (2000). Characterization of

1177 *Drosophila* insulin receptor substrate. *J Biol Chem*, 275(30), 23346–23354.

1178 <https://doi.org/10.1074/jbc.M003579200>

1179 Pomatto, L. C. D., Carney, C., Shen, B., Wong, S., Halaszynski, K., Salomon, M. P., Davies, K. J. A.,

1180 & Tower, J. (2017). The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-

1181 Specific Adaptation to Oxidative Stress. *Curr Biol*, 27(1), 1–15.

1182 <https://doi.org/10.1016/j.cub.2016.10.044>

1183 Post, S., Karashchuk, G., Wade, J. D., Sajid, W., De Meyts, P., & Tatar, M. (2018). Insulin-Like

1184 Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen

1185 Phosphorylase to Regulate Longevity. *Front Endocrinol (Lausanne)*, 9, 245.

1186 <https://doi.org/10.3389/fendo.2018.00245>

1187 Post, S., Liao, S., Yamamoto, R., Veenstra, J. A., Nässel, D. R., & Tatar, M. (2019). *Drosophila*

1188 *insulin-like peptide dilp1* increases lifespan and glucagon-like *Akh* expression epistatic to

1189 *dilp2*. *Aging Cell*, 18(1), e12863. <https://doi.org/10.1111/acel.12863>

1190 Puig, O., & Tjian, R. (2005). Transcriptional feedback control of insulin receptor by

1191 dFOOX/FOXO1. *Genes Dev*, 19(20), 2435–2446. <https://doi.org/10.1101/gad.1340505>

1192 Rajan, A., & Perrimon, N. (2012). *Drosophila* cytokine *unpaired* 2 regulates physiological

1193 homeostasis by remotely controlling insulin secretion. *Cell*, 151(1), 123–137.

1194 <https://doi.org/10.1016/j.cell.2012.08.019>

1195 Regan, J. C., Khericha, M., Dobson, A. J., Bolukbasi, E., Rattanavirotkul, N., & Partridge, L. (2016).

1196 Sex difference in pathology of the ageing gut mediates the greater response of female

1197 lifespan to dietary restriction. *Elife*, 5, e10956. <https://doi.org/10.7554/elife.10956>

1198 Regan, J. C., & Partridge, L. (2013). Gender and longevity: Why do men die earlier than women?

1199 Comparative and experimental evidence. *Best Pract Res Clin Endocrinol Metab*, 27(4),

1200 467–479. <https://doi.org/10.1016/j.beem.2013.05.016>

1201 Rezával, C., Nojima, T., Neville, M. C., Lin, A. C., & Goodwin, S. F. (2014). Sexually dimorphic

1202 octopaminergic neurons modulate female postmating behaviors in *Drosophila*. *Curr Biol*,

1203 24(7), 725–730. <https://doi.org/10.1016/j.cub.2013.12.051>

1204 Rezával, C., Pattnaik, S., Pavlou, H. J., Nojima, T., Brüggemeier, B., D’Souza, L. A. D., Dweck, H. K.

1205 M., & Goodwin, S. F. (2016). Activation of Latent Courtship Circuitry in the Brain of

1206 *Drosophila* Females Induces Male-like Behaviors. *Curr Biol*, 26(18), 2508–2515.

1207 <https://doi.org/10.1016/j.cub.2016.07.021>

1208 Richard, D. S., Rybczynski, R., Wilson, T. G., Wang, Y., Wayne, M. L., Zhou, Y., Partridge, L., &

1209 Harshman, L. G. (2005). Insulin signaling is necessary for vitellogenesis in *Drosophila*

1210 *melanogaster* independent of the roles of juvenile hormone and ecdysteroids: Female

1211 sterility of the *chico1* insulin signaling mutation is autonomous to the ovary. *J Insect*

1212 *Physiol*, 51(4), 455–464. <https://doi.org/10.1016/j.jinsphys.2004.12.013>

1213 Rideout, E. J., Dornan, A. J., Neville, M. C., Eadie, S., & Goodwin, S. F. (2010). Control of sexual

1214 differentiation and behavior by the *doublesex* gene in *Drosophila melanogaster*. *Nat*

1215 *Neurosci*, 13(4), 458–466. <https://doi.org/10.1038/nn.2515>

1216 Rideout, E. J., Marshall, L., & Grewal, S. S. (2012). *Drosophila* RNA polymerase III repressor Maf1
1217 controls body size and developmental timing by modulating tRNAiMet synthesis and
1218 systemic insulin signaling. *Proc Natl Acad Sci U S A*, 109(4), 1139–1144.
1219 <https://doi.org/10.1073/pnas.1113311109>

1220 Rideout, E. J., Narsaiya, M. S., & Grewal, S. S. (2015). The Sex Determination Gene *transformer*
1221 Regulates Male-Female Differences in *Drosophila* Body Size. *PLoS Genet*, 11(12),
1222 e1005683. <https://doi.org/10.1371/journal.pgen.1005683>

1223 Rintelen, F., Stocker, H., Thomas, G., & Hafen, E. (2001). PDK1 regulates growth through Akt and
1224 S6K in *Drosophila*. *Proc Natl Acad Sci U S A*, 98(26), 15020–15025.
1225 <https://doi.org/10.1073/pnas.011318098>

1226 Robertson, F. W. (1963). The ecological genetics of growth in *Drosophila* 6. The genetic
1227 correlation between the duration of the larval period and body size in relation to larval
1228 diet. *Genetical Research*, 4(1), 74–92. <https://doi.org/10.1017/S001667230000344X>

1229 Robertson, F. W. (1957a). Studies in quantitative inheritance X. Genetic variation of ovary size
1230 in *Drosophila*. *Journal of Genetics*, 55(3), 410–427. <https://doi.org/10.1007/BF02984060>

1231 Robertson, F. W. (1957b). Studies in quantitative inheritance XI. Genetic and environmental
1232 correlation between body size and egg production in *Drosophila melanogaster*. *Journal*
1233 *of Genetics*, 55(3), 428. <https://doi.org/10.1007/BF02984061>

1234 Rodenfels, J., Lavrynenko, O., Ayciriex, S., Sampaio, J. L., Carvalho, M., Shevchenko, A., & Eaton,
1235 S. (2014). Production of systemically circulating Hedgehog by the intestine couples
1236 nutrition to growth and development. *Genes Dev*, 28(23), 2636–2651.
1237 <https://doi.org/10.1101/gad.249763.114>

1238 Rulifson, E. J., Kim, S. K., & Nusse, R. (2002). Ablation of insulin-producing neurons in flies:
1239 Growth and diabetic phenotypes. *Science*, 296(5570), 1118–1120.
1240 <https://doi.org/10.1126/science.1070058>

1241 Ryner, L. C., Goodwin, S. F., Castrillon, D. H., Anand, A., Villella, A., Baker, B. S., Hall, J. C., Taylor,
1242 B. J., & Wasserman, S. A. (1996). Control of male sexual behavior and sexual orientation
1243 in *Drosophila* by the *fruitless* gene. *Cell*, 87(6), 1079–1089.
1244 [https://doi.org/10.1016/s0092-8674\(00\)81802-4](https://doi.org/10.1016/s0092-8674(00)81802-4)

1245 Salz, H. K., & Erickson, J. W. (2010). Sex determination in *Drosophila*: The view from the top. *Fly*
1246 (*Austin*), 4(1), 60–70. <https://doi.org/10.4161/fly.4.1.11277>

1247 Sano, H., Nakamura, A., Texada, M. J., Truman, J. W., Ishimoto, H., Kamikouchi, A., Nibu, Y.,
1248 Kume, K., Ida, T., & Kojima, M. (2015). The Nutrient-Responsive Hormone CCHamide-2
1249 Controls Growth by Regulating Insulin-like Peptides in the Brain of *Drosophila*
1250 *melanogaster*. *PLoS Genet*, 11(5), e1005209.
1251 <https://doi.org/10.1371/journal.pgen.1005209>

1252 Sarikaya, D. P., Belay, A. A., Ahuja, A., Dorta, A., Green, D. A., & Extavour, C. G. (2012). The roles
1253 of cell size and cell number in determining ovariole number in *Drosophila*. *Dev Biol*,
1254 363(1), 279–289. <https://doi.org/10.1016/j.ydbio.2011.12.017>

1255 Sawala, A., & Gould, A. P. (2017). The sex of specific neurons controls female body growth in
1256 *Drosophila*. *PLoS Biol*, 15(10), e2002252. <https://doi.org/10.1371/journal.pbio.2002252>

1257 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
1258 Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K.,

1259 Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image
1260 analysis. *Nature Methods*, 9(7), 676–682. <https://doi.org/10.1038/nmeth.2019>

1261 Selman, C., Lingard, S., Choudhury, A. I., Batterham, R. L., Claret, M., Clements, M., Ramadani, F.,
1262 Okkenhaug, K., Schuster, E., Blanc, E., Piper, M. D., Al-Qassab, H., Speakman, J. R.,
1263 Carmignac, D., Robinson, I. C., Thornton, J. M., Gems, D., Partridge, L., & Withers, D. J.
1264 (2008). Evidence for lifespan extension and delayed age-related biomarkers in insulin
1265 receptor substrate 1 null mice. *FASEB J*, 22(3), 807–818. <https://doi.org/10.1096/fj.07-9261com>

1266

1267 Semaniuk, U. V., Gospodaryov, D. V., Feden'ko, K. M., Yurkevych, I. S., Vaiserman, A. M., Storey,
1268 K. B., Simpson, S. J., & Lushchak, O. (2018). Insulin-Like Peptides Regulate Feeding
1269 Preference and Metabolism in *Drosophila*. *Frontiers in Physiology*, 9(1083).
1270 <https://doi.org/10.3389/fphys.2018.01083>

1271 Shingleton, A. W., Das, J., Vinicius, L., & Stern, D. L. (2005). The Temporal Requirements for
1272 Insulin Signaling During Development in *Drosophila*. *PLOS Biology*, 3(9), e289.
1273 <https://doi.org/10.1371/journal.pbio.0030289>

1274 Shingleton, A. W., Masandika, J. R., Thorsen, L. S., Zhu, Y., & Mirth, C. K. (2017). The sex-specific
1275 effects of diet quality versus quantity on morphology in *Drosophila melanogaster*. *Royal
1276 Society Open Science*, 4(9), 170375. <https://doi.org/10.1098/rsos.170375>

1277 Siera, S. G., & Cline, T. W. (2008). Sexual back talk with evolutionary implications: Stimulation of
1278 the *Drosophila* sex-determination gene *sex-lethal* by its target *transformer*. *Genetics*,
1279 180(4), 1963–1981. <https://doi.org/10.1534/genetics.108.093898>

1280 Slaidina, M., Delanoue, R., Gronke, S., Partridge, L., & Léopold, P. (2009). A *Drosophila* insulin-
1281 like peptide promotes growth during nonfeeding states. *Dev Cell*, 17(6), 874–884.
1282 <https://doi.org/10.1016/j.devcel.2009.10.009>

1283 Sosnowski, B. A., Belote, J. M., & McKeown, M. (1989). Sex-specific alternative splicing of RNA
1284 from the *transformer* gene results from sequence-dependent splice site blockage. *Cell*,
1285 58(3), 449–459. [https://doi.org/10.1016/0092-8674\(89\)90426-1](https://doi.org/10.1016/0092-8674(89)90426-1)

1286 Stafford, J. W., Lynd, K. M., Jung, A. Y., & Gordon, M. D. (2012). Integration of taste and calorie
1287 sensing in *Drosophila*. *J Neurosci*, 32(42), 14767–14774.
1288 <https://doi.org/10.1523/JNEUROSCI.1887-12.2012>

1289 Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G., & Fox, C. W. (2010). Sex
1290 Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects:
1291 From Physiology to Evolution. *Annual Review of Entomology*, 55(1), 227–245.
1292 <https://doi.org/10.1146/annurev-ento-112408-085500>

1293 Sturtevant, A. H. (1945). A Gene in *Drosophila melanogaster* That Transforms Females into
1294 Males. *Genetics*, 30(3), 297–299.

1295 Su, Y. H., Rastegri, E., Kao, S. H., Lai, C. M., Lin, K. Y., Liao, H. Y., Wang, M. H., & Hsu, H. J. (2018).
1296 Diet regulates membrane extension and survival of niche escort cells for germline
1297 homeostasis via insulin signaling. *Development*, 145(7).

1298 <https://doi.org/10.1242/dev.159186>

1299 Suzawa, M., Muhammad, N. M., Joseph, B. S., & Bland, M. L. (2019). The Toll Signaling Pathway
1300 Targets the Insulin-like Peptide Dilp6 to Inhibit Growth in *Drosophila*. *Cell Rep*, 28(6),
1301 1439-1446.e5. <https://doi.org/10.1016/j.celrep.2019.07.015>

1302 Tatar, M., Kopelman, A., Epstein, D., Tu, M. P., Yin, C. M., & Garofalo, R. S. (2001). A mutant
1303 *Drosophila insulin receptor* homolog that extends life-span and impairs neuroendocrine
1304 function. *Science*, 292(5514), 107–110. <https://doi.org/10.1126/science.1057987>

1305 Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size
1306 in insects. *Oikos*, 108(2), 321–334. <https://doi.org/10.1111/j.0030-1299.2005.13609.x>

1307 Teleman, A. A. (2009). Molecular mechanisms of metabolic regulation by insulin in *Drosophila*.
1308 *Biochemical Journal*, 425(1), 13–26. <https://doi.org/10.1042/bj20091181>

1309 Testa, N. D., Ghosh, S. M., & Shingleton, A. W. (2013). Sex-specific weight loss mediates sexual
1310 size dimorphism in *Drosophila melanogaster*. *PLoS One*, 8(3), e58936.
1311 <https://doi.org/10.1371/journal.pone.0058936>

1312 Thurmond, J., Goodman, J. L., Strelets, V. B., Attrill, H., Gramates, L. S., Marygold, S. J.,
1313 Matthews, B. B., Millburn, G., Antonazzo, G., Trovisco, V., Kaufman, T. C., Calvi, B. R., &
1314 the FlyBase, C. (2018). FlyBase 2.0: The next generation. *Nucleic Acids Research*, 47(D1),
1315 D759–D765. <https://doi.org/10.1093/nar/gky1003>

1316 Tramunt, B., Smati, S., Grandgeorge, N., Lenfant, F., Arnal, J. F., Montagner, A., & Gourdy, P.
1317 (2020). Sex differences in metabolic regulation and diabetes susceptibility. *Diabetologia*,
1318 63(3), 453–461. <https://doi.org/10.1007/s00125-019-05040-3>

1319 Tu, M. P., & Tatar, M. (2003). Juvenile diet restriction and the aging and reproduction of adult
1320 *Drosophila melanogaster*. *Aging Cell*, 2(6), 327–333. <https://doi.org/10.1046/j.1474-9728.2003.00064.x>

1322 Ugrankar, R., Theodoropoulos, P., Akdemir, F., Henne, W. M., & Graff, J. M. (2018). Circulating
1323 glucose levels inversely correlate with *Drosophila* larval feeding through insulin signaling
1324 and SLC5A11. *Commun Biol*, 1, 110. <https://doi.org/10.1038/s42003-018-0109-4>

1325 van Heemst, D., Beekman, M., Mooijaart, S. P., Heijmans, B. T., Brandt, B. W., Zwaan, B. J.,
1326 Slagboom, P. E., & Westendorp, R. G. (2005). Reduced insulin/IGF-1 signalling and
1327 human longevity. *Aging Cell*, 4(2), 79–85. <https://doi.org/10.1111/j.1474-9728.2005.00148.x>

1329 Verdu, J., Buratovich, M. A., Wilder, E. L., & Birnbaum, M. J. (1999). Cell-autonomous regulation
1330 of cell and organ growth in *Drosophila* by Akt/PKB. *Nat Cell Biol*, 1(8), 500–506.
1331 <https://doi.org/10.1038/70293>

1332 von Philipsborn, A. C., Jörchel, S., Tirian, L., Demir, E., Morita, T., Stern, D. L., & Dickson, B. J.
1333 (2014). Cellular and behavioral functions of *fruitless* isoforms in *Drosophila* courtship.
1334 *Curr Biol*, 24(3), 242–251. <https://doi.org/10.1016/j.cub.2013.12.015>

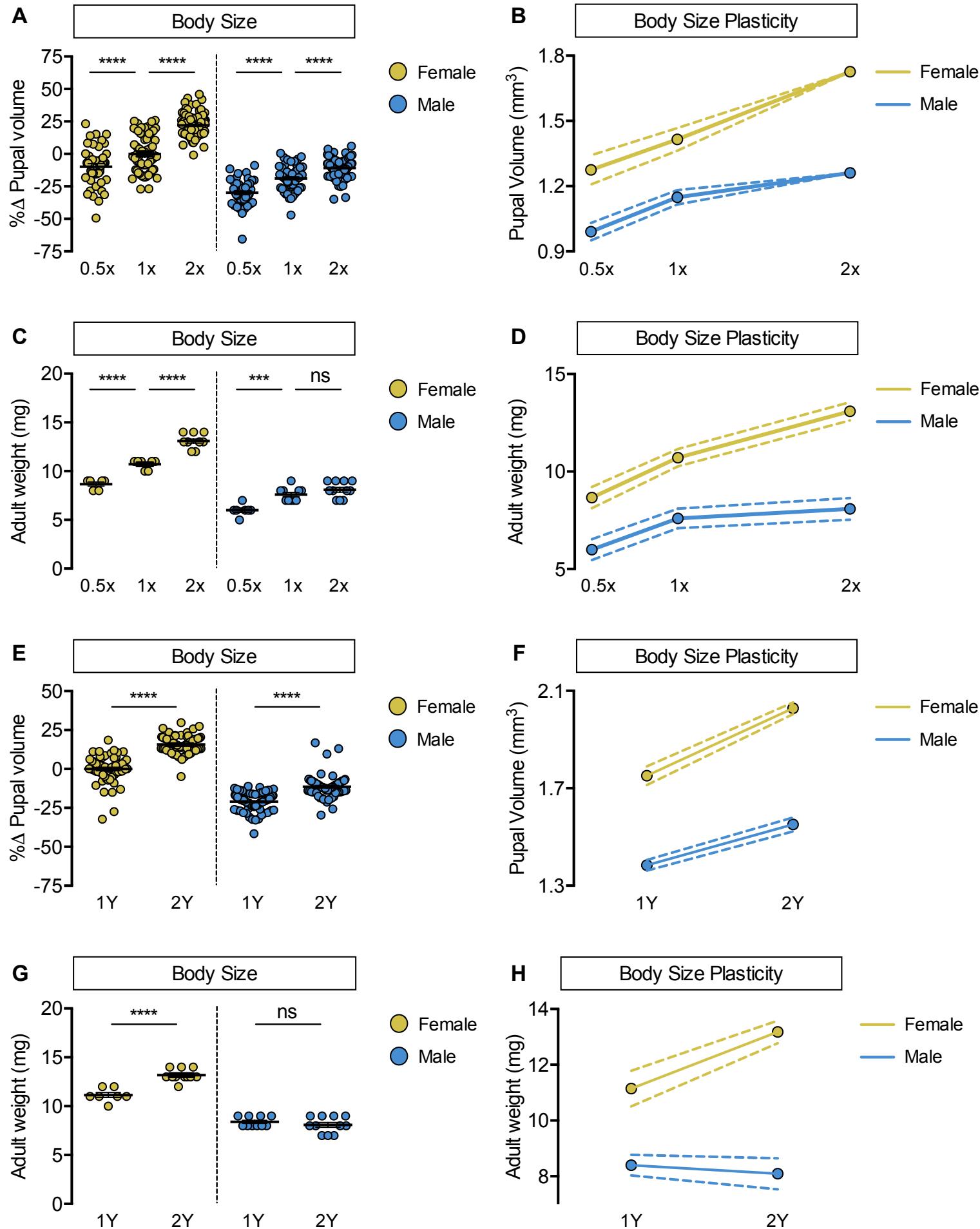
1335 Wat, L. W., Chao, C., Bartlett, R., Buchanan, J. L., Millington, J. W., Chih, H. J., Chowdhury, Z. S.,
1336 Biswas, P., Huang, V., Shin, L. J., Wang, L. C., Gauthier, M. L., Barone, M. C., Montooth, K.
1337 L., Welte, M. A., & Rideout, E. J. (2020). A role for triglyceride lipase *brummer* in the
1338 regulation of sex differences in *Drosophila* fat storage and breakdown. *PLoS Biol*, 18(1),
1339 e3000595. <https://doi.org/10.1371/journal.pbio.3000595>

1340 Weinkove, D., Neufeld, T. P., Twardzik, T., Waterfield, M. D., & Leevers, S. J. (1999). Regulation
1341 of imaginal disc cell size, cell number and organ size by *Drosophila* class I(A)
1342 phosphoinositide 3-kinase and its adaptor. *Curr Biol*, 9(18), 1019–1029.
1343 [https://doi.org/10.1016/s0960-9822\(99\)80450-3](https://doi.org/10.1016/s0960-9822(99)80450-3)

1344 Werz, C., Köhler, K., Hafen, E., & Stocker, H. (2009). The *Drosophila* SH2B Family Adaptor Lnk
1345 Acts in Parallel to Chico in the Insulin Signaling Pathway. *PLOS Genetics*, 5(8), e1000596.
1346 <https://doi.org/10.1371/journal.pgen.1000596>

1347 Wood, J. G., Schwer, B., Wickremesinghe, P. C., Hartnett, D. A., Burhenn, L., Garcia, M., Li, M.,
1348 Verdin, E., & Helfand, S. L. (2018). Sirt4 is a mitochondrial regulator of metabolism and
1349 lifespan in *Drosophila melanogaster*. *Proceedings of the National Academy of Sciences*,
1350 115(7), 1564. <https://doi.org/10.1073/pnas.1720673115>

1351 Woodling, N. S., Aleyakpo, B., Dyson, M. C., Minkley, L. J., Rajasingam, A., Dobson, A. J., Leung, K.
1352 H. C., Pomposova, S., Fuentealba, M., Alic, N., & Partridge, L. (2020). The neuronal
1353 receptor tyrosine kinase Alk is a target for longevity. *Aging Cell*, n/a(n/a), e13137.
1354 <https://doi.org/10.1111/acel.13137>

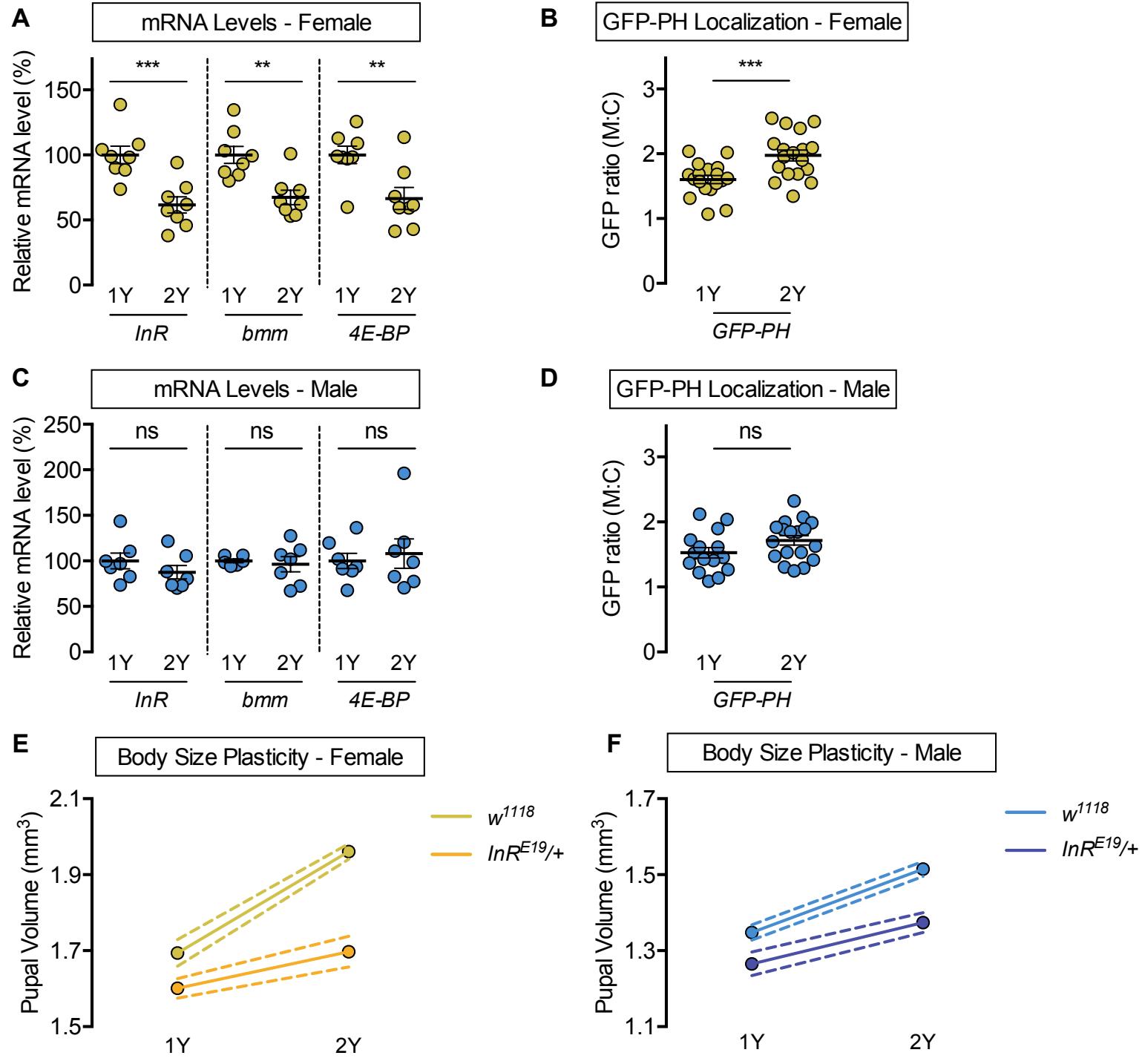

1355 Wu, Q., Yu, G., Cheng, X., Gao, Y., Fan, X., Yang, D., Xie, M., Wang, T., Piper, M. D. W., & Yang, M.
1356 (2020). Sexual dimorphism in the nutritional requirement for adult lifespan in
1357 *Drosophila melanogaster*. *Aging Cell*, 19(3), e13120. <https://doi.org/10.1111/acel.13120>

1358 Zhang, H., Liu, J., Li, C. R., Momen, B., Kohanski, R. A., & Pick, L. (2009). Deletion of *Drosophila*
1359 insulin-like peptides causes growth defects and metabolic abnormalities. *Proc Natl Acad
1360 Sci U S A*, 106(46), 19617–19622. <https://doi.org/10.1073/pnas.0905083106>

1361 Zinke, I., Schütz, C. S., Katzenberger, J. D., Bauer, M., & Pankratz, M. J. (2002). Nutrient control
1362 of gene expression in *Drosophila*: Microarray analysis of starvation and sugar-dependent
1363 response. *EMBO J*, 21(22), 6162–6173. <https://doi.org/10.1093/emboj/cdf600>

1364
1365
1366

Figure 1.

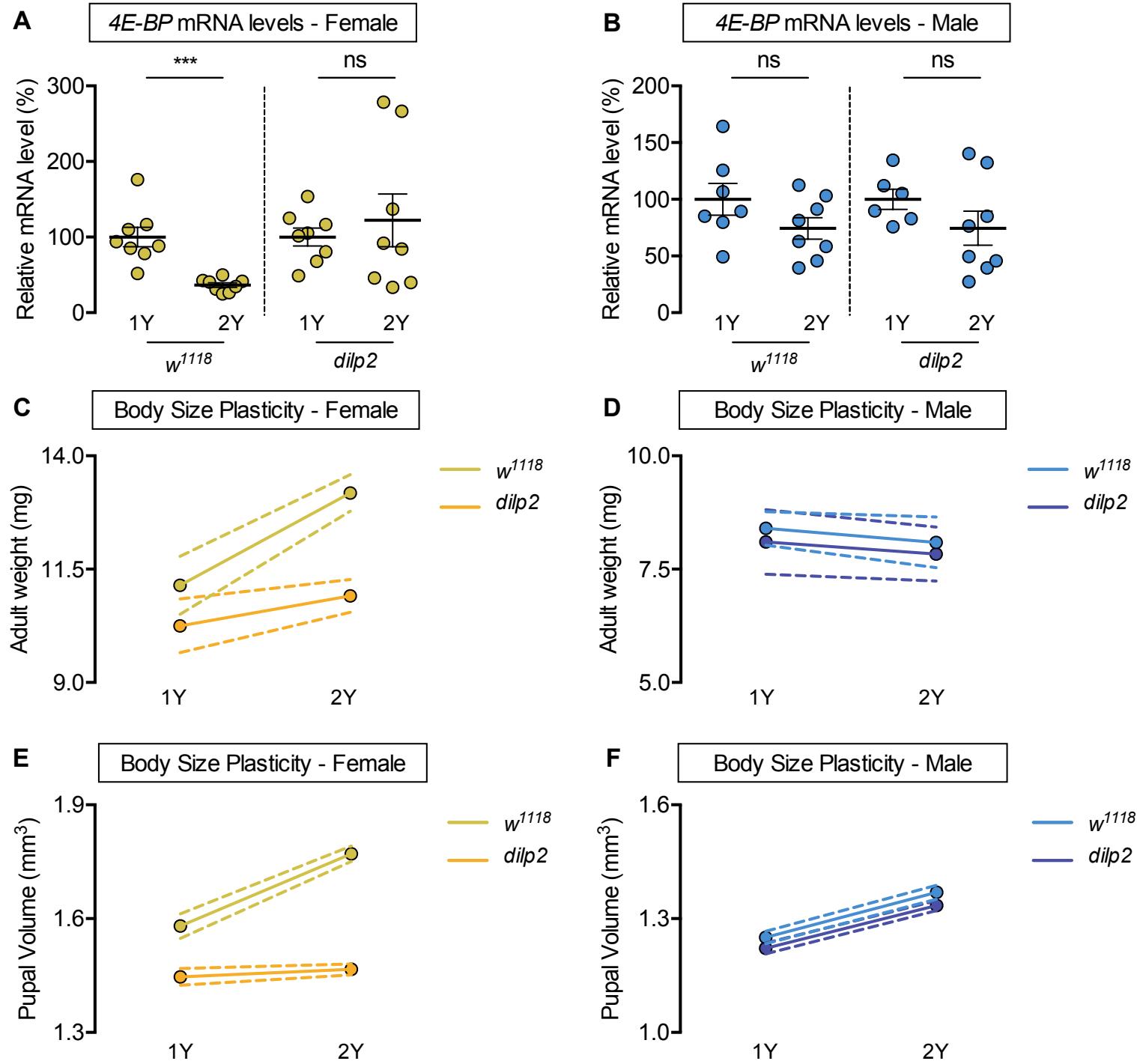


1368 **Figure 1. Increased female body size plasticity in a protein-rich diet.** (A) Pupal
1369 volume was significantly higher in w^{1118} males and females cultured on a widely-used
1370 diet (1×) compared with larvae raised on a reduced-nutrient diet (0.5×) ($p<0.0001$ and p
1371 = 0.0006, respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of
1372 this increase in pupal volume was the same in both sexes (sex:diet interaction p =
1373 0.7048; two-way ANOVA followed by Tukey HSD test). Pupal volume was significantly
1374 higher in w^{1118} males and females raised on a nutrient-rich diet (2×) compared with
1375 larvae cultured on 1× ($p<0.0001$ for both; two-way ANOVA followed by Tukey HSD test);
1376 however, the magnitude of the increase in body size was significantly larger in females
1377 than in males (sex:diet interaction $p<0.0001$; two-way ANOVA followed by Tukey HSD
1378 test). (B) Reaction norms for pupal volume in w^{1118} larvae raised on diets of varying
1379 quantity (0.5×, 1×, 2×), plotted using data presented in panel A. $n = 43-100$ pupae. (C)
1380 Adult weight was significantly higher in w^{1118} males and females cultured on 1×
1381 compared with flies raised on 0.5× ($p<0.0001$ for both sexes; two-way ANOVA followed
1382 by Tukey HSD test). The magnitude of this increase in adult weight was the same in
1383 both sexes (sex:diet interaction $p = 0.3197$; two-way ANOVA followed by Tukey HSD
1384 test). Adult weight was significantly higher in w^{1118} females raised on 2× compared to
1385 flies cultured on 1×; however, male adult weight was not significantly increased
1386 ($p<0.0001$ and $p = 0.4015$, respectively; two-way ANOVA followed by Tukey HSD test),
1387 where the diet-dependent increase in adult weight was higher in females (sex:diet
1388 interaction $p = 0.0003$; two-way ANOVA followed by Tukey HSD test). (D) Reaction
1389 norms for adult weight in response to changes in nutrient quantity in w^{1118} females and
1390 males, plotted using the data presented in panel C. $n = 6-11$ groups of 10 flies. (E)
1391 Pupal volume was significantly higher in both males and females cultured on a yeast-
1392 rich medium (2Y) compared with larvae raised on a diet containing half the quantity of
1393 yeast (1Y) ($p<0.0001$ for both sexes; two-way ANOVA followed by Tukey HSD test);
1394 however, the magnitude of the nutrient-dependent increase in pupal volume was larger
1395 in females than in males (sex:diet interaction $p = 0.0001$; two-way ANOVA followed by
1396 Tukey HSD test). (F) Reaction norms for pupal volume in response to changes in
1397 dietary yeast in w^{1118} females and males, plotted using the data in panel E. $n = 62-80$
1398 pupae. (G) Adult weight was significantly higher in females cultured on 2Y compared

1399 with flies raised on 1Y; however, male adult weight was not significantly higher in flies
1400 raised on 2Y compared with males cultured on 1Y ($p < 0.0001$ and $p = 0.7199$,
1401 respectively; two-way ANOVA followed by Tukey HSD test, sex:diet interaction
1402 $p < 0.0001$). (H) Reaction norms for adult weight in w^{1118} females and males reared on
1403 either 1Y or 2Y, plotted using data from panel G. $n = 7-11$ groups of 10 flies. For body
1404 size plasticity graphs, filled circles indicate mean body size, and dashed lines indicate
1405 95% confidence interval. *** indicates $p < 0.001$, **** indicates $p < 0.0001$; ns indicates not
1406 significant; error bars indicate SEM.

1407
1408
1409

Figure 2.


1448 **Figure 2. Upregulation of IIS activity is required for increased nutrient-dependent**
 1449 **body size plasticity in females.** (A) In females, mRNA levels of the *insulin receptor*
 1450 (*InR*), *brummer* (*bmm*), and *eukaryotic initiation factor 4E-binding protein* (*4E-BP*) were
 1451 significantly lower in larvae raised on a protein-rich diet (2Y) compared with larvae
 1452 raised on a diet containing half the protein content (1Y) ($p = 0.0009$, 0.0019 , and 0.0077 ,

1453 respectively; Student's *t* test). n = 8 biological replicates. (B) Quantification of the ratio
1454 between cell surface membrane-associated green fluorescent protein (GFP) and
1455 cytoplasmic GFP fluorescence (GFP ratio [M:C]) in a dissected fat body of female
1456 larvae from the GFP-PH strain. The GFP ratio was significantly higher in female larvae
1457 cultured on 2Y compared with larvae raised on 1Y ($p = 0.001$; Student's *t* test). n = 18
1458 biological replicates. (C) In males, there was no significant difference in *InR*, *bmm*, or
1459 *4E-BP* mRNA levels between larvae raised on 2Y compared with larvae cultured on 1Y
1460 ($p = 0.291$, 0.6994, and 0.666, respectively; Student's *t* test). n = 6-7 biological
1461 replicates. (D) In males, the GFP ratio (M:C) was not significantly different between
1462 males cultured on 2Y compared with larvae raised on 1Y ($p = 0.0892$; Student's *t* test).
1463 n = 15-18 biological replicates. (E) Pupal volume was significantly higher in both *w*¹¹¹⁸
1464 females and *InR*^{E19}/+ females reared on 2Y compared with genotype-matched females
1465 cultured on 1Y ($p < 0.0001$ for both genotypes; two-way ANOVA followed by Tukey HSD
1466 test); however, the magnitude of the nutrient-dependent increase in pupal volume was
1467 lower in *InR*^{E19}/+ females (genotype:diet interaction $p < 0.0001$; two-way ANOVA
1468 followed by Tukey HSD test). n = 58-77 pupae. (F) Pupal volume was significantly
1469 higher in both *w*¹¹¹⁸ males and *InR*^{E19}/+ males reared on 2Y compared with genotype-
1470 matched males cultured on 1Y ($p < 0.0001$ for both genotypes; two-way ANOVA followed
1471 by Tukey HSD test). While we observed a sex:diet interaction in the *w*¹¹¹⁸ control
1472 genotype, there was no sex:diet interaction in the *InR*^{E19}/+ genotype ($p < 0.0001$ and $p =$
1473 0.7104, respectively; two-way ANOVA followed by Tukey HSD test). n = 47-76 pupae.
1474 For body size plasticity graphs, filled circles indicate mean body size, and dashed lines
1475 indicate 95% confidence interval. ** indicates $p < 0.01$, *** indicates $p < 0.001$, ns indicates
1476 not significant; error bars indicate SEM.

1477

1478

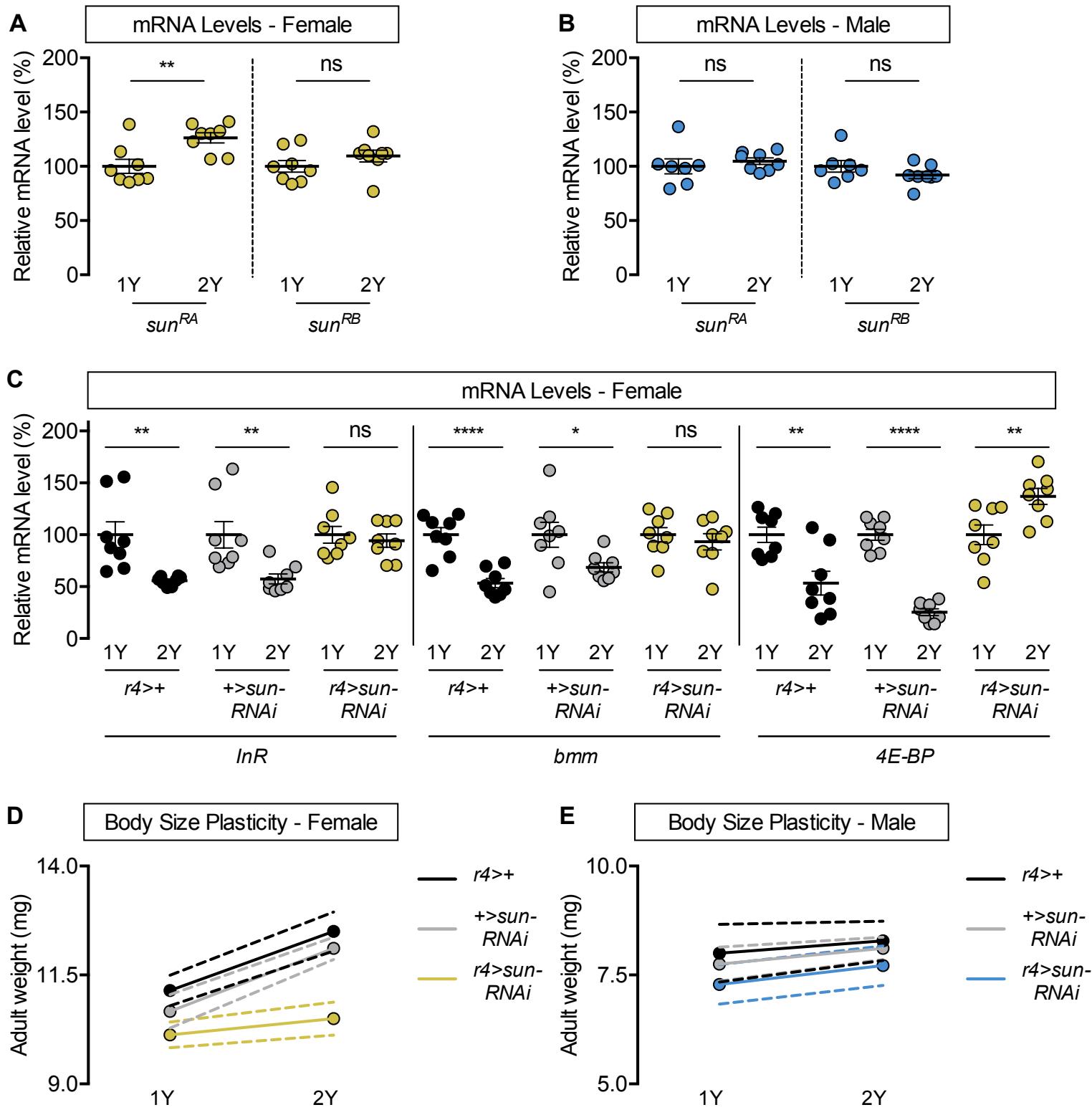
Figure 3.

1479

1480 **Figure 3. *Drosophila* insulin-like peptide 2 is required for the nutrient-dependent**

1481 upregulation of insulin pathway activity and increased female body size plasticity.

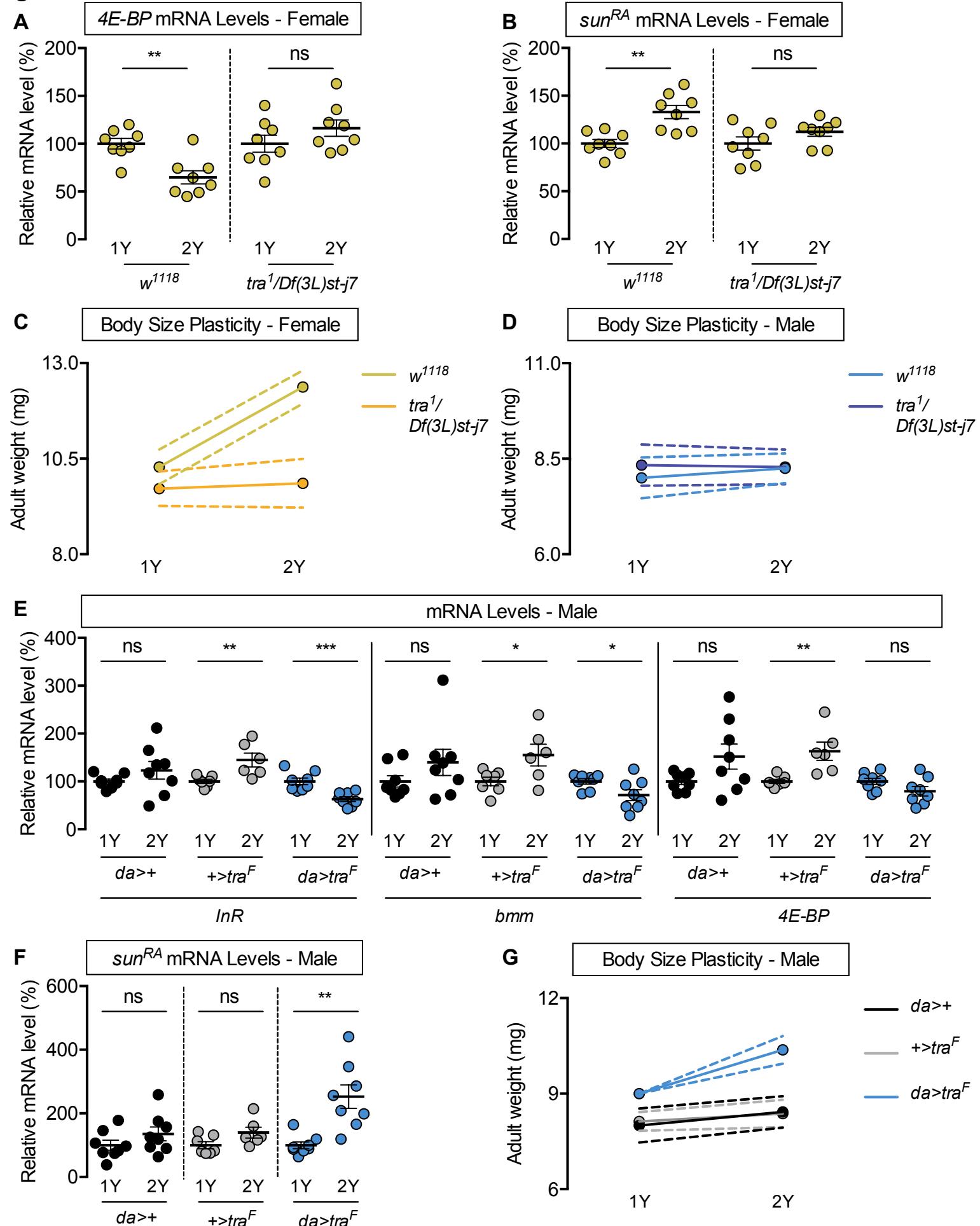
1482 (A) In control *w¹¹¹⁸* females, mRNA levels of eukaryotic initiation factor 4E-binding


1483 protein (4E-BP) were significantly lower in larvae cultured on a protein-rich diet (2Y)

1484 compared with larvae raised on a diet containing half the protein content (1Y) ($p =$

1485 0.0003; Student's *t* test). In *dilp2* mutant females, there was no significant difference in

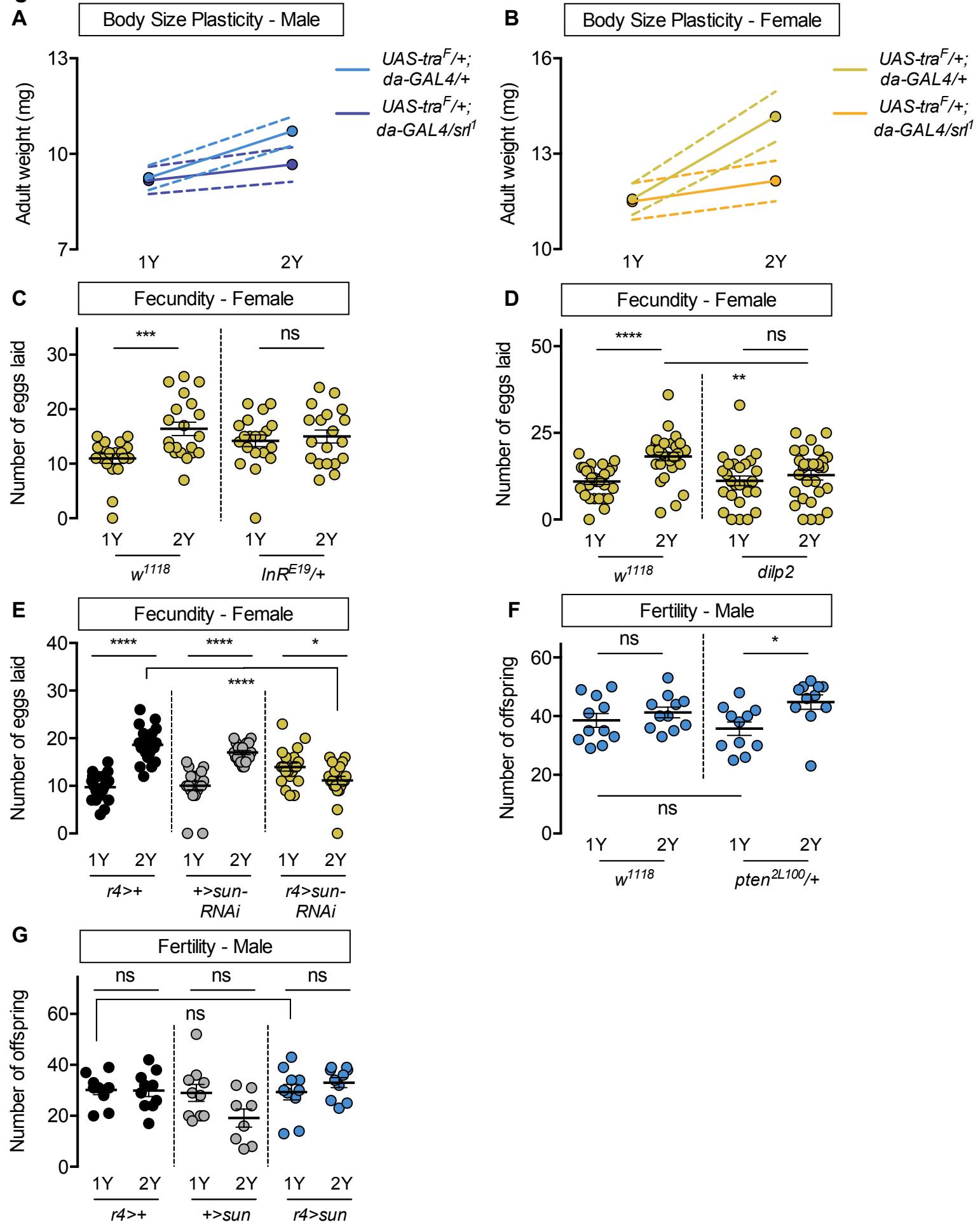
1486 4E-BP mRNA levels in larvae cultured on 2Y compared with larvae raised on 1Y ($p =$
1487 0.5563; Student's t test). n = 8 biological replicates. (B) In control w^{1118} and *dilp2* mutant
1488 males, mRNA levels of 4E-BP were not significantly lower in larvae cultured on 2Y
1489 compared with larvae raised on 1Y ($p = 0.1429$ and $p = 0.207$, respectively;
1490 Student's t test). n = 7-8 biological replicates. (C) Adult weight was significantly higher in
1491 w^{1118} females raised on 2Y compared with flies cultured on 1Y ($p < 0.0001$; two-way
1492 ANOVA followed by Tukey HSD test); however, adult weight was not significantly
1493 different between *dilp2* mutant females reared on 2Y versus 1Y ($p = 0.1263$; two-way
1494 ANOVA followed by Tukey HSD test). n = 7-11 groups of 10 flies. (D) Adult weight in
1495 control w^{1118} and *dilp2* mutant males was not significantly higher in flies reared on 2Y
1496 compared with males raised on 1Y ($p = 0.8366$ and $p = 0.8817$, respectively; two-way
1497 ANOVA followed by Tukey HSD test). There was a significant sex:diet interaction in the
1498 control w^{1118} genotype ($p < 0.0001$), but not in the *dilp2* mutant genotype ($p = 0.0827$;
1499 two-way ANOVA followed by Tukey HSD test). n = 10-12 groups of 10 flies. (E) Pupal
1500 volume was significantly higher in w^{1118} females but not in *dilp2* mutant females reared
1501 on 2Y compared with genotype-matched females cultured on 1Y ($p < 0.0001$ and $p =$
1502 0.6486 respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of
1503 the nutrient-dependent increase in pupal volume was higher in w^{1118} females
1504 (genotype:diet interaction $p < 0.0001$; two-way ANOVA followed by Tukey HSD test). n =
1505 74-171 pupae. (F) Pupal volume was significantly higher in w^{1118} males and *dilp2*
1506 mutant males reared on 2Y compared with genotype-matched males cultured on 1Y
1507 ($p < 0.0001$ for both genotypes; two-way ANOVA followed by Tukey HSD test). The
1508 magnitude of the nutrient-dependent increase in pupal volume was not different
1509 between genotypes (genotype:diet interaction $p = 0.6891$; two-way ANOVA followed by
1510 Tukey HSD test). n = 110-135 pupae. For all body size plasticity graphs, filled circles
1511 indicate mean body size, and dashed lines indicate 95% confidence interval. ***
1512 indicates $p < 0.001$; ns indicates not significant; error bars indicate SEM.
1513
1514
1515


Figure 4.

1558 **Figure 4. *stunted* is required for the nutrient-dependent upregulation of insulin
1559 pathway activity and increased female body size plasticity. (A) In females, mRNA
1560 levels of *stunted* (*sun*)^{RA}, but not *sun*^{RB}, were significantly higher in larvae cultured on a**

1561 protein-rich diet (2Y) compared with larvae raised on a diet containing half the protein
1562 content (1Y) ($p = 0.0055$ and $p = 0.2327$, respectively; Student's t test). $n = 8$ biological
1563 replicates. (B) In males, mRNA levels of sun^{RA} and sun^{RB} were not significantly different
1564 in larvae raised on 2Y compared with larvae raised on 1Y ($p = 0.5832$ and $p = 0.2017$,
1565 respectively; Student's t test). $n = 7$ -8 biological replicates. (C) In control $r4>+$ and
1566 $+>UAS-sun-RNAi$ females, mRNA levels of the *insulin receptor (InR)*, *brummer (bmm)*,
1567 and *eukaryotic initiation factor 4E-binding protein (4E-BP)* mRNA levels were
1568 significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y ($p =$
1569 0.0032 , $p < 0.0001$, and 0.0041 [$r4>+$], and 0.0074 , 0.0281 , $p < 0.0001$ [$+>UAS-sun-RNAi$]),
1570 respectively; Student's t test). In contrast, mRNA levels of *InR* and *bmm* were not
1571 significantly different in $r4>UAS-sun-RNAi$ females raised on 2Y compared with
1572 genotype-matched females reared on 1Y ($p = 0.5897$ and $p = 0.5297$, respectively;
1573 Student's t test) and levels of *4E-BP* were significantly higher ($p = 0.0094$; Student's t
1574 test). $n = 8$ biological replicates. (D) Adult weight was significantly higher in female flies
1575 raised in 2Y compared with females raised in 1Y in $r4>+$ and $+>UAS-sun-RNAi$ controls
1576 ($p < 0.0001$ for both genotypes; two-way ANOVA followed by Tukey HSD test); however,
1577 adult weight was not significantly different between $r4>UAS-sun-RNAi$ females reared
1578 on 2Y compared with genotype-matched females raised on 1Y ($p = 0.5035$; two-way
1579 ANOVA followed by Tukey HSD test). $n = 7$ -10 groups of 10 flies. (E) Adult weight was
1580 not significantly higher in male flies reared in 2Y compared with males cultured in 1Y for
1581 $r4>+$ and $+>UAS-sun-RNAi$ controls or $r4>UAS-sun-RNAi$ males ($p = 0.8883$, 0.6317 ,
1582 and 0.554 , respectively; two-way ANOVA followed by Tukey HSD test). There was a
1583 significant sex:diet interaction in the $r4>+$ and $+>UAS-sun-RNAi$ control genotypes ($p =$
1584 0.011 and $p = 0.0005$, respectively; two-way ANOVA followed by Tukey HSD test), but
1585 no sex:diet interaction in the $r4>UAS-sun-RNAi$ genotype ($p = 0.8749$; two-way ANOVA
1586 followed by Tukey HSD test). $n = 6$ -9 groups of 10 flies. For all body size plasticity
1587 graphs, filled circles indicate mean body size, and dashed lines indicate 95%
1588 confidence interval. * indicates $p < 0.05$, ** indicates $p < 0.01$, **** indicates $p < 0.0001$; ns
1589 indicates not significant; error bars indicate SEM.
1590
1591

Figure 5.

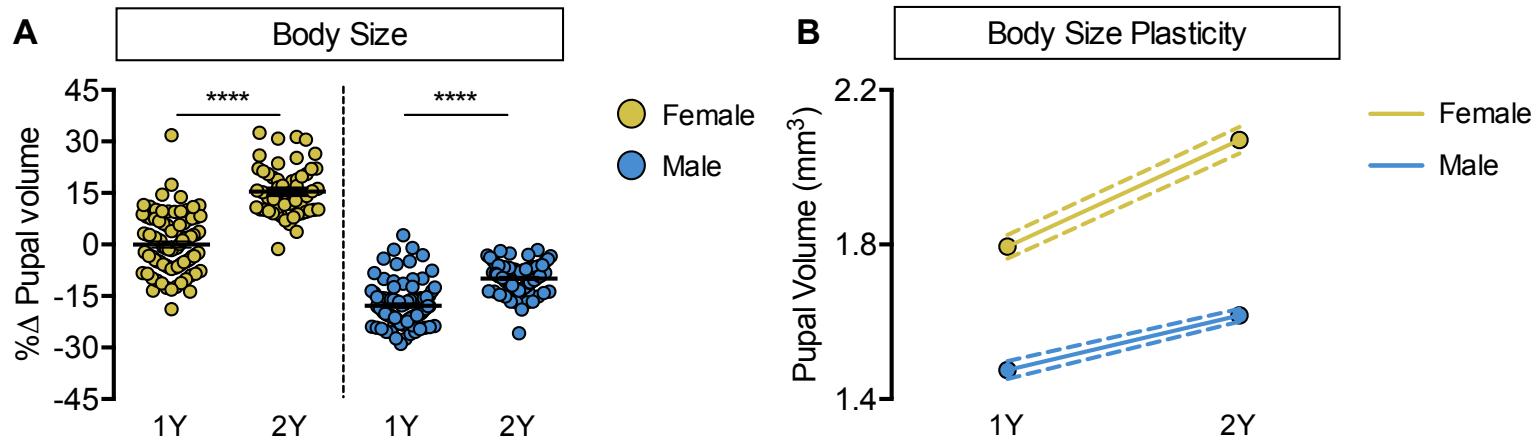


1596 **Figure 5. Sex determination gene *transformer* regulates increased nutrient-
1597 dependent body size plasticity in females.** (A) In control w^{1118} females, mRNA levels
1598 of *eukaryotic initiation factor 4E-binding protein (4E-BP)* were significantly lower in
1599 larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet
1600 containing half the protein content (1Y) ($p = 0.0013$; Student's *t* test). In $tra^1/Df(3L)st-j7$
1601 females, there was no significant difference in 4E-BP mRNA levels between larvae
1602 cultured on 2Y compared with larvae raised on 1Y ($p = 0.2095$; Student's *t* test). $n = 8$
1603 biological replicates (B) In control females, mRNA levels of sun^{RA} were significantly
1604 higher in larvae cultured on 2Y compared with larvae raised on 1Y ($p = 0.0011$;
1605 Student's *t* test); however, in $tra^1/Df(3L)st-j7$ females there was no significant difference
1606 in sun^{RA} mRNA levels between larvae cultured on 2Y compared with larvae raised on
1607 1Y ($p = 0.1644$; Student's *t* test). $n = 8$ biological replicates. (C) Adult weight was
1608 significantly higher in w^{1118} females raised on 2Y compared with females reared on 1Y
1609 ($p < 0.0001$; two-way ANOVA followed by Tukey HSD test); however, there was no
1610 significant difference in adult weight between $tra^1/Df(3L)st-j7$ females cultured on 2Y
1611 compared with genotype-matched females raised on 1Y ($p = 0.9617$; two-way ANOVA
1612 followed by Tukey HSD test). $n = 7-8$ groups of 10 flies. (D) Adult weight was not
1613 significantly higher in either w^{1118} control or $tra^1/Df(3L)st-j7$ mutant males in flies raised
1614 on 2Y compared with males reared on 1Y ($p = 0.7808$ and $p = 0.9983$, respectively;
1615 two-way ANOVA followed by Tukey HSD test). There was a significant sex:diet
1616 interaction in the w^{1118} control genotype ($p < 0.0001$; two-way ANOVA followed by Tukey
1617 HSD test); however, there was no sex:diet interaction in the $tra^1/Df(3L)st-j7$ genotype (p
1618 = 0.6598; two-way ANOVA followed by Tukey HSD test). $n = 6-8$ groups of 10 flies. (E)
1619 In control $da>+$ males, mRNA levels of the *insulin receptor (InR)*, *brummer (bmm)*, and
1620 4E-BP were not significantly different between larvae cultured on 2Y compared with
1621 larvae raised on 1Y ($p = 0.2418$, 0.2033 , and 0.0769 , respectively; Student's *t* test). In
1622 $+>UAS-tra^F$ males, mRNA levels of *InR*, *bmm*, and 4E-BP were significantly increased
1623 between larvae cultured on 2Y compared with larvae raised on 1Y ($p = 0.0088$, 0.035 ,
1624 and 0.0052 , respectively; Student's *t* test). In $da>UAS-tra^F$ males, mRNA levels of *InR*
1625 and *bmm* were significantly lower in larvae cultured on 2Y compared with larvae raised
1626 on 1Y ($p = 0.0007$ and 0.0388 , respectively; Student's *t* test), and levels of 4E-BP were

1627 not significantly altered ($p = 0.103$; Student's t test). $n = 6$ -8 biological replicates. (F) In
1628 control $da>+$ and $+>UAS-tra^F$ males, mRNA levels of sun^{RA} were not significantly
1629 different between larvae cultured on 2Y compared with larvae raised on 1Y ($p = 0.2064$
1630 and $p = 0.0711$, respectively; Student's t test). In contrast, $da>UAS-tra^F$ males showed a
1631 significant increase in mRNA levels of sun^{RA} in larvae cultured on 2Y compared with
1632 males raised on 1Y ($p = 0.0013$; Student's t test). $n = 6$ -8 biological replicates. (G) Adult
1633 weight was not significantly higher in $da>+$ and $+>UAS-tra^F$ control males reared on 2Y
1634 compared with genotype-matched males cultured on 1Y ($p = 0.5186$ and $p =$
1635 0.8858, respectively; two-way ANOVA followed by Tukey HSD test); however, there
1636 was a significant increase in adult weight between $da>UAS-tra^F$ males cultured on 2Y
1637 compared with genotype-matched flies raised on 1Y ($p < 0.0001$; two-way ANOVA
1638 followed by Tukey HSD test). $n = 7$ -8 groups of 10 flies. For body size plasticity graphs,
1639 filled circles indicate mean body size, and dashed lines indicate 95% confidence interval.
1640 * indicates $p < 0.05$, ** indicates $p < 0.01$, *** indicates $p < 0.001$; ns indicates not significant;
1641 error bars indicate SEM.

1642
1643

Figure 6.

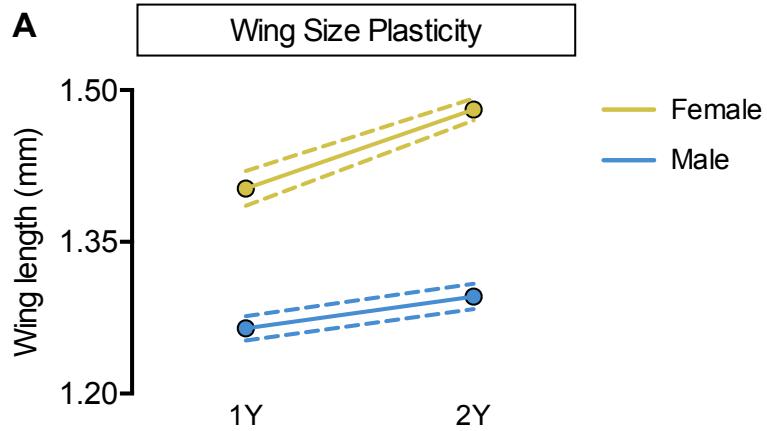

1645 **Figure 6. Increased nutrient-dependent body size plasticity in females promotes**
1646 **fertility.** (A) Adult weight was higher in *da>UAS-tra^F* males raised on a protein-rich diet
1647 (2Y) compared with *da>UAS-tra^F* males reared on a diet containing half the protein
1648 content (1Y) ($p < 0.0001$; two-way ANOVA followed by Tukey HSD test). In contrast, the
1649 nutrient-dependent increase in adult weight was abolished in *da>UAS-tra^F* males
1650 heterozygous for a loss-of-function allele of *spargel* (*srl¹*) ($p = 0.2811$; two-way ANOVA
1651 followed by Tukey HSD test). $n = 6-8$ groups of 10 flies. (B) Adult weight was higher in
1652 *da>UAS-tra^F* females raised on 2Y compared with *da>UAS-tra^F* females reared on 1Y
1653 ($p < 0.0001$; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-
1654 dependent increase in adult weight was absent in *da>UAS-tra^F* females heterozygous
1655 for *srl¹* ($p = 0.2927$; two-way ANOVA followed by Tukey HSD test). $n = 6-7$ groups of 10
1656 flies. (C) In control *w¹¹¹⁸* females there was a significant increase in the number of eggs
1657 laid by females raised on 2Y compared with females cultured on 1Y ($p = 0.0009$;
1658 Student's *t* test); however, there was no significant difference in the number of eggs laid
1659 between *InR^{E19}/+* females cultured on 2Y compared with genotype-matched females
1660 raised on 1Y ($p = 0.617$; Student's *t* test). $n = 19-20$ biological replicates. (D) In control
1661 *w¹¹¹⁸* females, there was a significant increase in the number of eggs laid by females
1662 raised on 2Y compared with females cultured on 1Y ($p < 0.0001$; Student's *t* test);
1663 however, there was no significant difference in the number of eggs laid between *dilp2*
1664 mutant females cultured on 2Y compared with females raised on 1Y ($p = 0.4105$;
1665 Student's *t* test). $n = 28-30$ biological replicates. (E) In control *r4>+* and *+>UAS-sun-*
1666 *RNAi* females there was a significant increase in the number of eggs laid by females
1667 raised on 2Y compared with control females cultured on 1Y ($p < 0.0001$ for both
1668 genotypes; Student's *t* test). In *r4>UAS-sun-RNAi* females, the number of eggs laid by
1669 females cultured on 2Y was lower than females raised on 1Y ($p = 0.0243$;
1670 Student's *t* test). $n = 20$ biological replicates. (F) In control *w¹¹¹⁸* males there was no
1671 significant difference in the number of offspring produced between a 1Y and 2Y diet ($p =$
1672 0.3662; Student's *t* test). There was also no significant difference in the number of
1673 offspring produced between control *w¹¹¹⁸* males and males heterozygous for a loss-of-
1674 function allele of *phosphatase and tensin homolog* (*pten*; genotype *pten^{2L100}/+*) raised
1675 on 1Y ($p = 0.4003$; Student's *t* test). Unlike control males, *pten^{2L100}/+* males reared on

1676 2Y produced significantly more offspring than genotype-matched males raised on 1Y (p
1677 = 0.0137; Student's t test). n = 11 biological replicates. (G) In control $r4>+$ and $+>UAS-$
1678 sun and experimental $r4>UAS-sun$ males, there was no significant effect on the number
1679 of offspring produced between a 1Y and 2Y diet (p = 0.9222, 0.0595, and 0.32
1680 respectively; Student's t test). There was also no significant difference in the number of
1681 offspring produced between control $r4>+$, $+>UAS-sun$ males and experimental $r4>UAS-$
1682 sun males raised on 1Y (p = 0.9723 and p = 0.9969 respectively; one-way ANOVA
1683 followed by Tukey HSD test). n = 8-10 groups of 10 flies. For body size plasticity graphs,
1684 filled circles indicate mean body size, and dashed lines indicate 95% confidence interval.
1685 * indicates $p<0.05$, *** indicates $p<0.001$, **** indicates $p<0.0001$; ns indicates not
1686 significant; error bars indicate SEM.

1687
1688
1689

1690 **SUPPLEMENTAL FIGURES**

Figure S1.

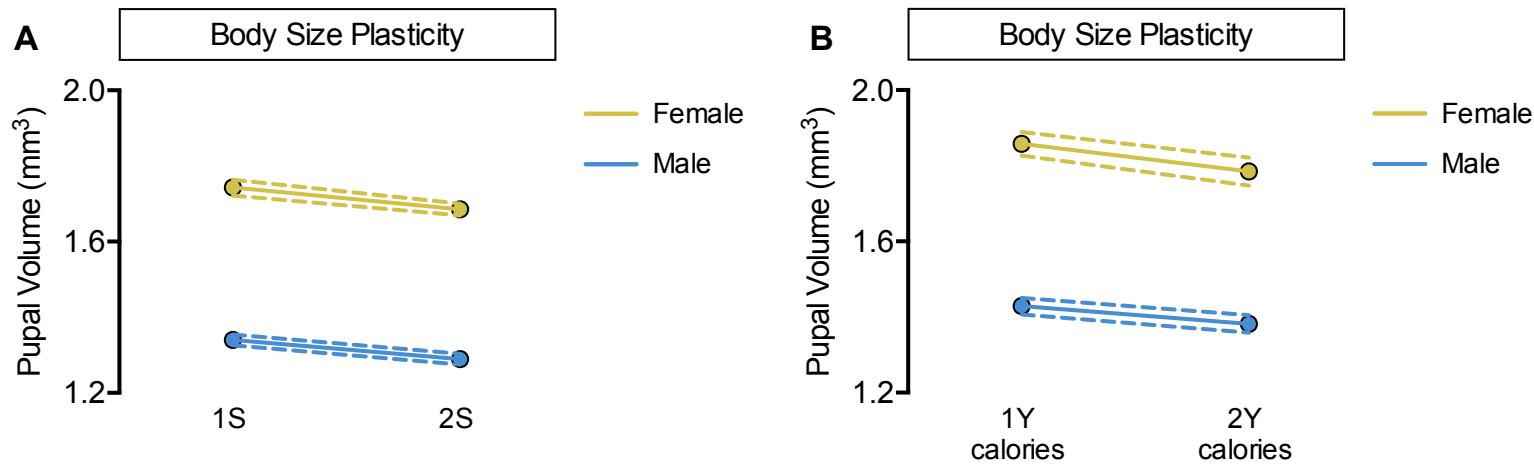

1706 **Figure S1. Increased nutrient-dependent body size plasticity in Canton-S females.**

1707 (A) Pupal volume was significantly higher in both Canton-S (CS) females and males
1708 reared on a protein-rich diet (2Y) compared with genotype-matched females and males
1709 cultured on a diet containing half the protein concentration (1Y) ($p<0.0001$ for both
1710 sexes; two-way ANOVA followed by Tukey HSD test); however, the magnitude of the
1711 nutrient-dependent increase in pupal volume was higher in females (sex:diet interaction
1712 $p<0.0001$; two-way ANOVA followed by Tukey HSD test). (B) Reaction norms for pupal
1713 volume in response to changes in yeast quantity in CS females and males, plotted using
1714 the data in panel A. $n = 57-95$ pupae. For body size plasticity graphs, filled circles
1715 indicate mean pupal volume, and dashed lines indicate 95% confidence interval. ****
1716 indicates $p<0.0001$; error bars indicate SEM.

1717

1718

Figure S2.

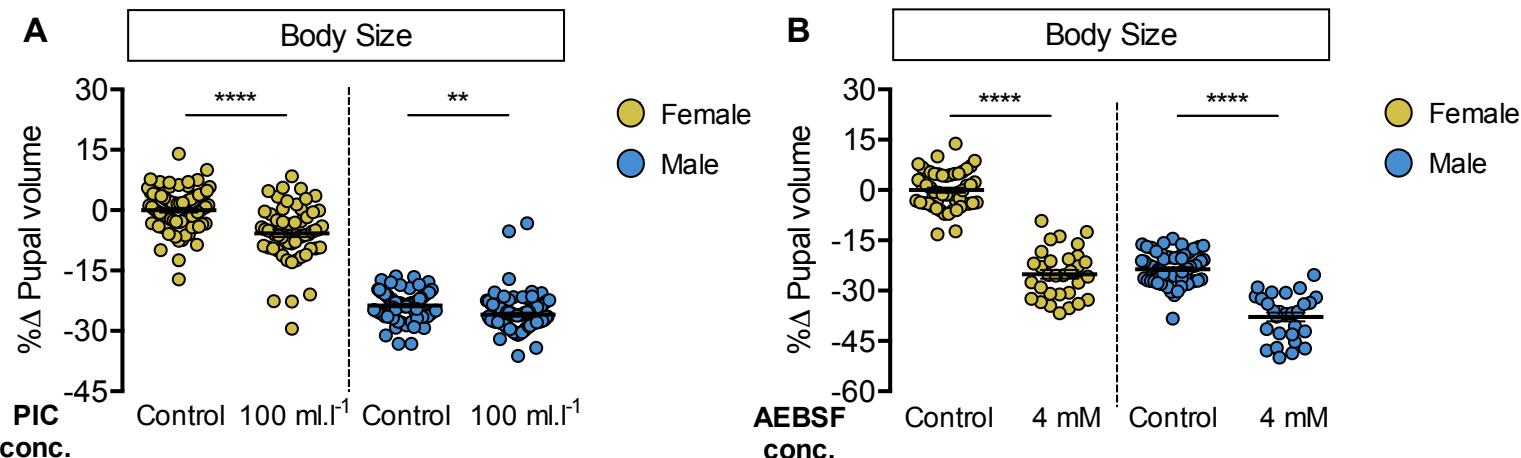

1730

1731 **Figure S2. Increased nutrient-dependent plasticity in female wing size.** (A) Wing
1732 length was significantly higher in both w^{1118} females and males reared on a protein-rich
1733 diet (2Y) compared with genotype-matched females and males cultured on a diet
1734 containing half the protein content (1Y) ($p < 0.0001$ and $p = 0.0018$ for females and
1735 males respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of
1736 the nutrient-dependent increase in wing length was higher in females (sex:diet
1737 interaction $p = 0.0004$; two-way ANOVA followed by Tukey HSD test). $n = 16-28$ wings.
1738 For wing size plasticity graphs, filled circles indicate mean wing length, and dashed
1739 lines indicate 95% confidence interval.

1740

1741

Figure S3.

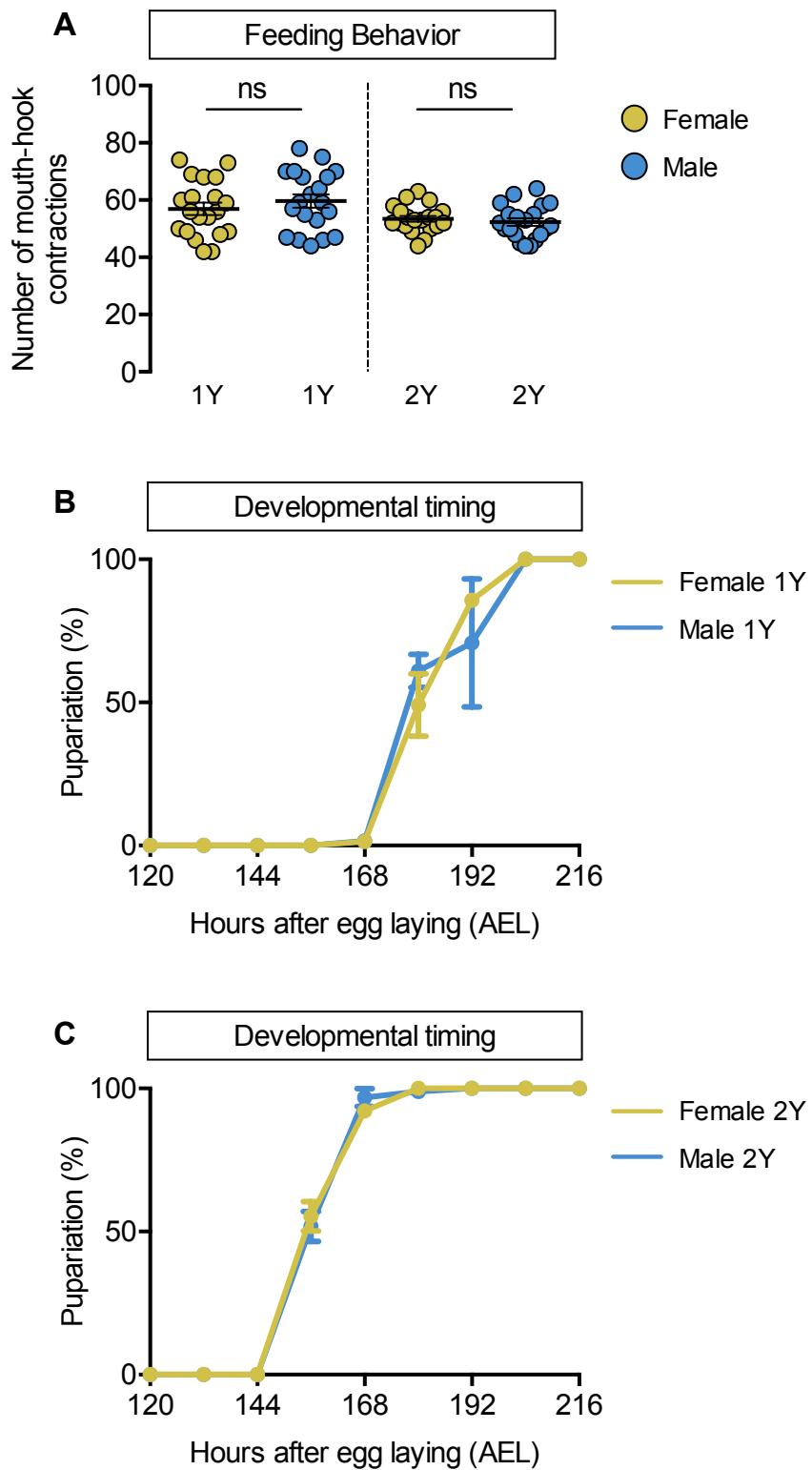


1753

1754 **Figure S3. No sex-specific effect of altering dietary sugar concentration or calorie**
1755 **content.** (A) Pupal volume was significantly decreased in both w^{1118} females and males
1756 reared on a diet with twice the sugar (2S) compared with genotype-matched females
1757 and males cultured on a diet with the sugar content of our regular diet (1S) ($p < 0.0001$
1758 and $p = 0.0002$ for females and males respectively; two-way ANOVA followed by Tukey
1759 HSD test). The magnitude of the nutrient-dependent decrease in pupal volume was not
1760 different between females and males (sex:diet interaction $p = 0.6536$; two-way ANOVA
1761 followed by Tukey HSD test). $n = 117$ - 133 pupae. (B) While pupal volume was
1762 significantly decreased in w^{1118} females and not males reared on a 2Y calorie-matched
1763 diet compared with genotype-matched females and males cultured on a 1Y calorie-
1764 matched diet ($p = 0.0039$ and $p = 0.0662$ respectively; two-way ANOVA followed by
1765 Tukey HSD test), there was no sex:diet interaction indicating that one sex was not more
1766 affected than the other (sex:diet interaction $p = 0.3698$; two-way ANOVA followed by
1767 Tukey HSD test). $n = 44$ - 74 pupae. For body size plasticity graphs, filled circles indicate
1768 mean pupal volume, and dashed lines indicate 95% confidence interval.

1769

Figure S4.


1781

1782 **Figure S4. Pharmacological inhibition of protein breakdown has female-biased**
1783 **effects on body size.** (A) Pupal volume was significantly higher in both w^{1118} females
1784 and males reared on a protein-rich diet (2Y) compared with genotype-matched females
1785 and males cultured on 2Y containing a broad-spectrum protease inhibitor cocktail (PIC)
1786 ($p < 0.0001$ and $p = 0.0185$ for females and males respectively; two-way ANOVA
1787 followed by Tukey HSD test). Importantly, the magnitude of the effect of inhibiting
1788 protein breakdown on pupal volume was higher in females (sex:treatment interaction p
1789 = 0.0029; two-way ANOVA followed by Tukey HSD test). $n = 57-92$ pupae. (B) Pupal
1790 volume was significantly higher in both w^{1118} females and males reared on 2Y
1791 compared with genotype-matched females and males cultured on 2Y containing a
1792 serine protease-specific inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride
1793 (AEBSF) ($p < 0.0001$ for both sexes; two-way ANOVA followed by Tukey HSD test);
1794 however, the magnitude of the effect of inhibiting protein breakdown on pupal volume
1795 was higher in females (sex:treatment interaction $p < 0.0001$; two-way ANOVA followed by
1796 Tukey HSD test). $n = 28-66$ pupae. ** indicates $p < 0.01$; **** indicates $p < 0.0001$; error
1797 bars indicate SEM.

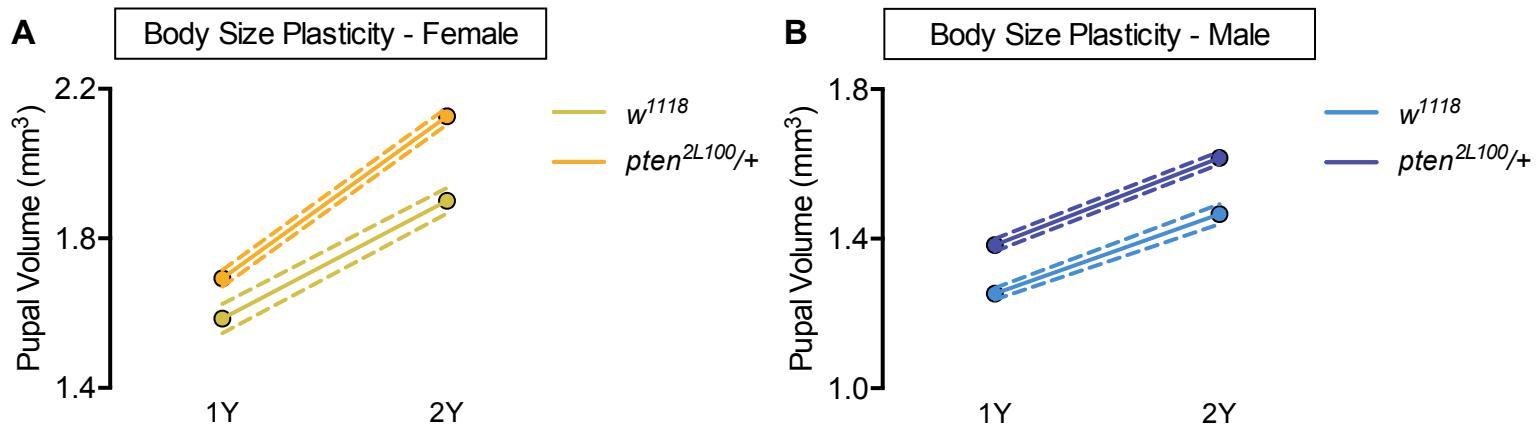
1798

1799

Figure S5.

1840

1841


1842

1843 **Figure S5. No sex difference in food intake or time to pupation.** (A) There was no

1844 significant difference in mouth hook contractions between w^{1118} control male and female

1845 larvae raised on a diet containing a widely-used protein content (1Y) ($p = 0.3965$;
1846 Student's t test), or a protein-rich diet (2Y) ($p = 0.5175$; Student's t test). $n = 20$
1847 biological replicates. (B) There was no sex difference in the time to pupation between
1848 w^{1118} control male and female larvae when cultured on 1Y. $n = 79-93$ pupae. (C) There
1849 was no sex difference in the time to pupation between w^{1118} control male and female
1850 larvae when cultured on 2Y. $n = 87-94$ pupae. ns indicates not significant; error bars
1851 indicate SEM.
1852
1853

Figure S6.

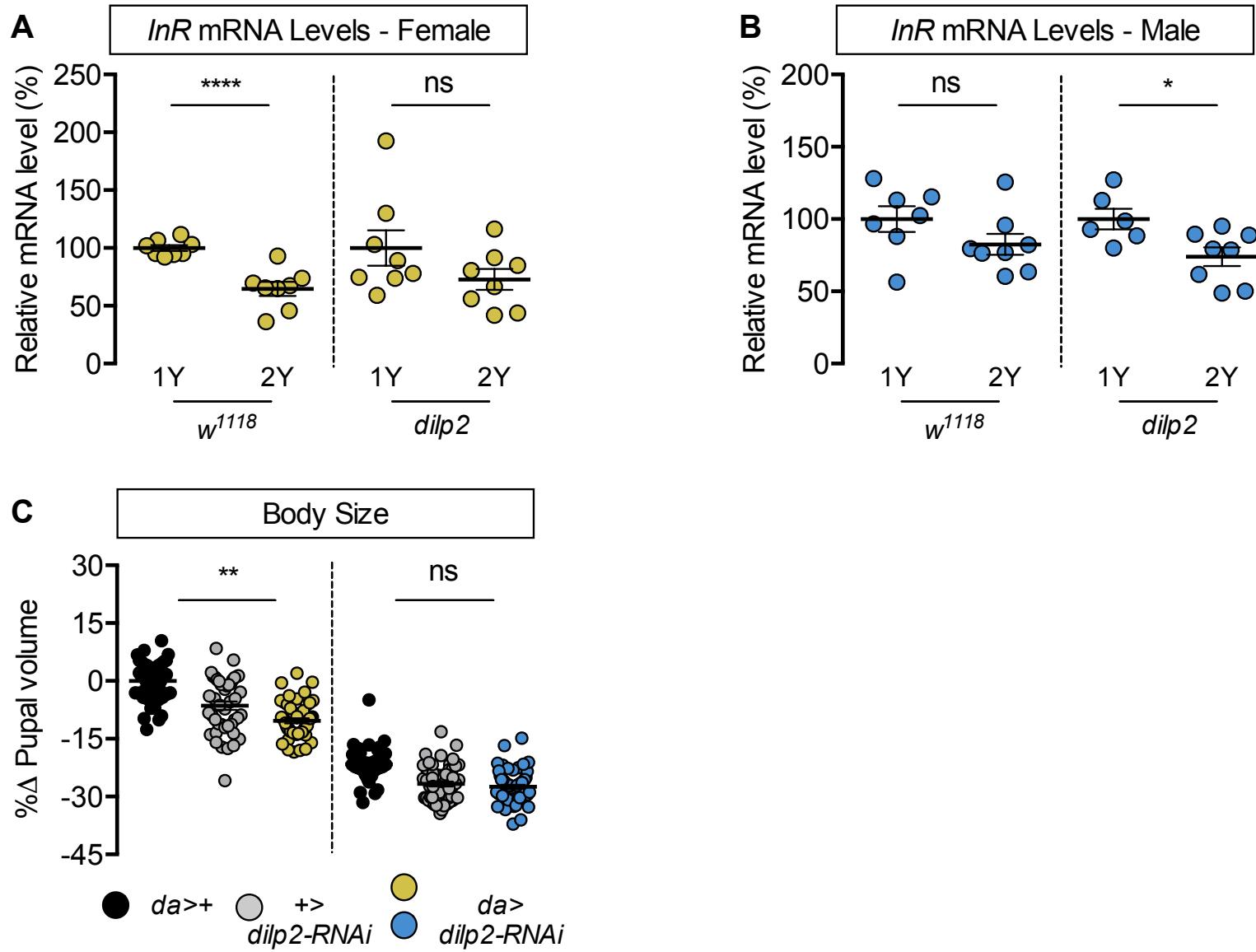
1864

1865 **Figure S6. Larger body size does not confer increased body size plasticity.** (A)

1866 Pupal volume was significantly higher in both w^{1118} females and $pten^{2L100/+}$ females
1867 reared on a protein-rich diet (2Y) compared with genotype-matched females cultured on
1868 a diet containing half the protein content (1Y) ($p < 0.0001$ for both genotypes; two-way
1869 ANOVA followed by Tukey HSD test). $n = 60-89$ pupae. (B) Pupal volume was
1870 significantly higher in both w^{1118} males and $pten^{2L100/+}$ males reared on 2Y compared
1871 with genotype-matched males cultured on 1Y ($p < 0.0001$ for both genotypes; two-way
1872 ANOVA followed by Tukey HSD test). Importantly, the magnitude of the nutrient-
1873 dependent increase in pupal volume was not different between w^{1118} males and
1874 $pten^{2L100/+}$ males (genotype:diet interaction $p = 0.3557$; two-way ANOVA followed by
1875 Tukey HSD test). $n = 65-88$ pupae. For body size plasticity graphs, filled circles indicate
1876 mean pupal volume, and dashed lines indicate 95% confidence interval.

1877

1878


1879

1880

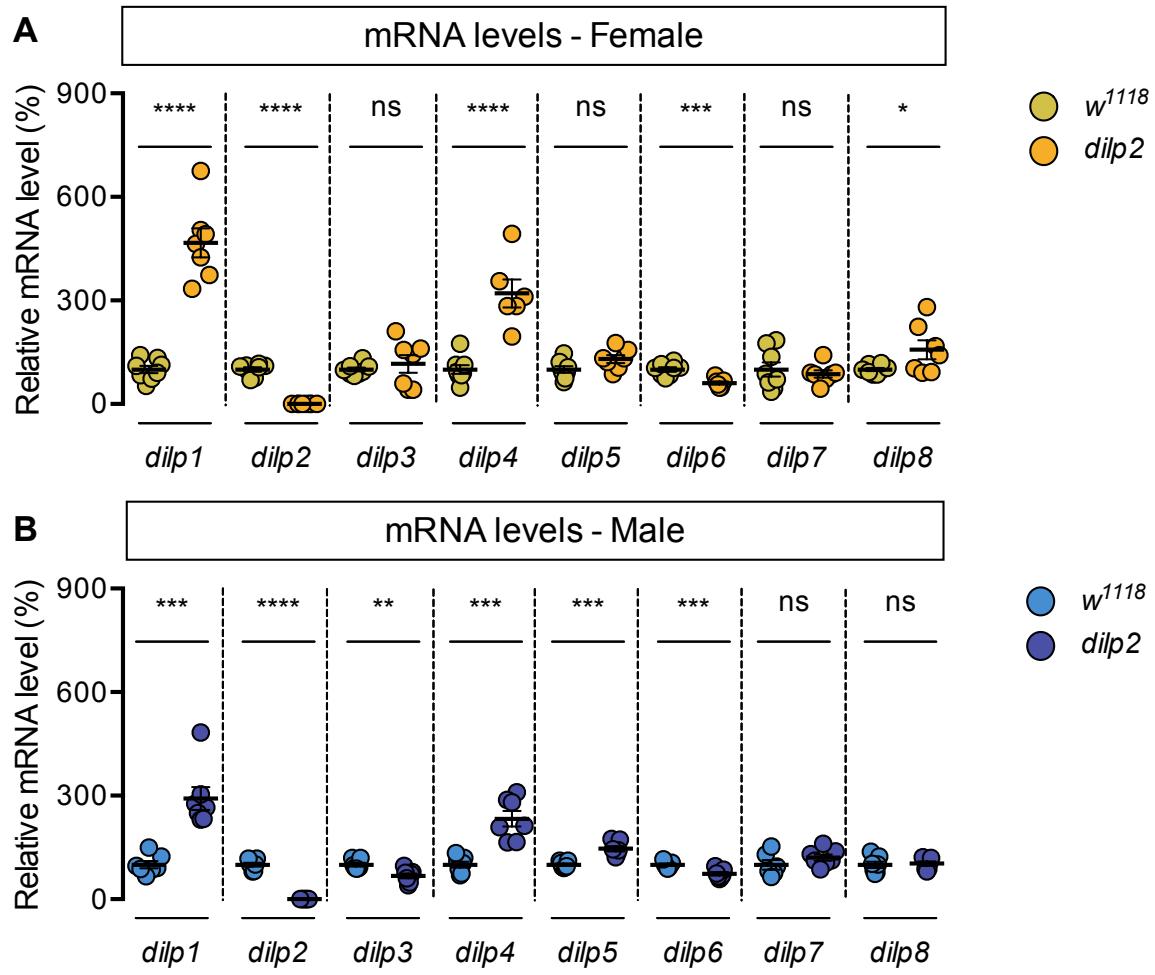
1881

1882

Figure S7.

1914

1915 **Figure S7. *dilp2* is required for increased nutrient-dependent body size plasticity.**

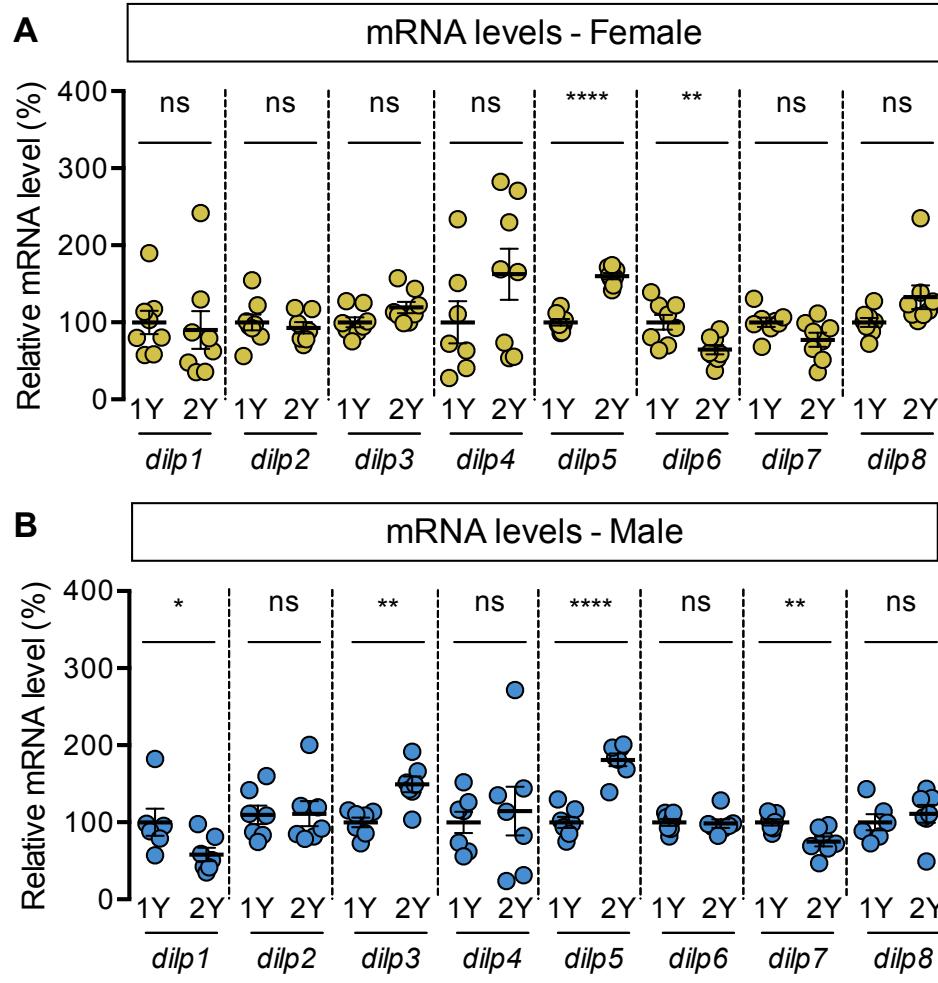

1916 (A) In control *w*¹¹¹⁸ females, mRNA levels of *insulin receptor* (*InR*) were significantly
 1917 lower in larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet
 1918 containing half the protein concentration (1Y) ($p < 0.0001$; Student's *t* test). In *dilp2*
 1919 mutant females, there was no significant difference in *InR* mRNA levels between larvae
 1920 cultured on 2Y compared with larvae raised on 1Y ($p = 0.1472$; Student's *t* test). $n = 8$
 1921 biological replicates. (B) In control *w*¹¹¹⁸ males, mRNA levels of *InR* were not
 1922 significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y ($p =$
 1923 0.146; Student's *t* test). In *dilp2* mutant males, there was a significant reduction in *InR*
 1924 mRNA levels in larvae cultured on 2Y compared with larvae raised on 1Y ($p = 0.0191$;

1925 Student's *t* test). n = 7-8 biological replicates. (C) Pupal volume was significantly
1926 reduced in females upon RNAi-mediated knockdown of *dilp2* in 2Y when compared to
1927 both control genotypes ($p < 0.0001$ [*da*>+], and $p = 0.002$ [+>UAS-*dilp2-RNAi*],
1928 respectively; two-way ANOVA followed by Tukey HSD test), but not in males in 2Y
1929 ($p < 0.0001$ [*da*>+], and 0.9634 [+>UAS-*dilp2-RNAi*], respectively; two-way ANOVA
1930 followed by Tukey HSD test). The magnitude of the effect of RNAi-mediated knockdown
1931 of *dilp2* on pupal volume was higher in females (sex:genotype interaction $p = 0.003$;
1932 two-way ANOVA followed by Tukey HSD test). n = 44-59 pupae. * indicates $p < 0.05$, **
1933 indicates $p < 0.01$, **** indicates $p < 0.0001$; ns indicates not significant; error bars indicate
1934 SEM.

1935

1936

Figure S8.

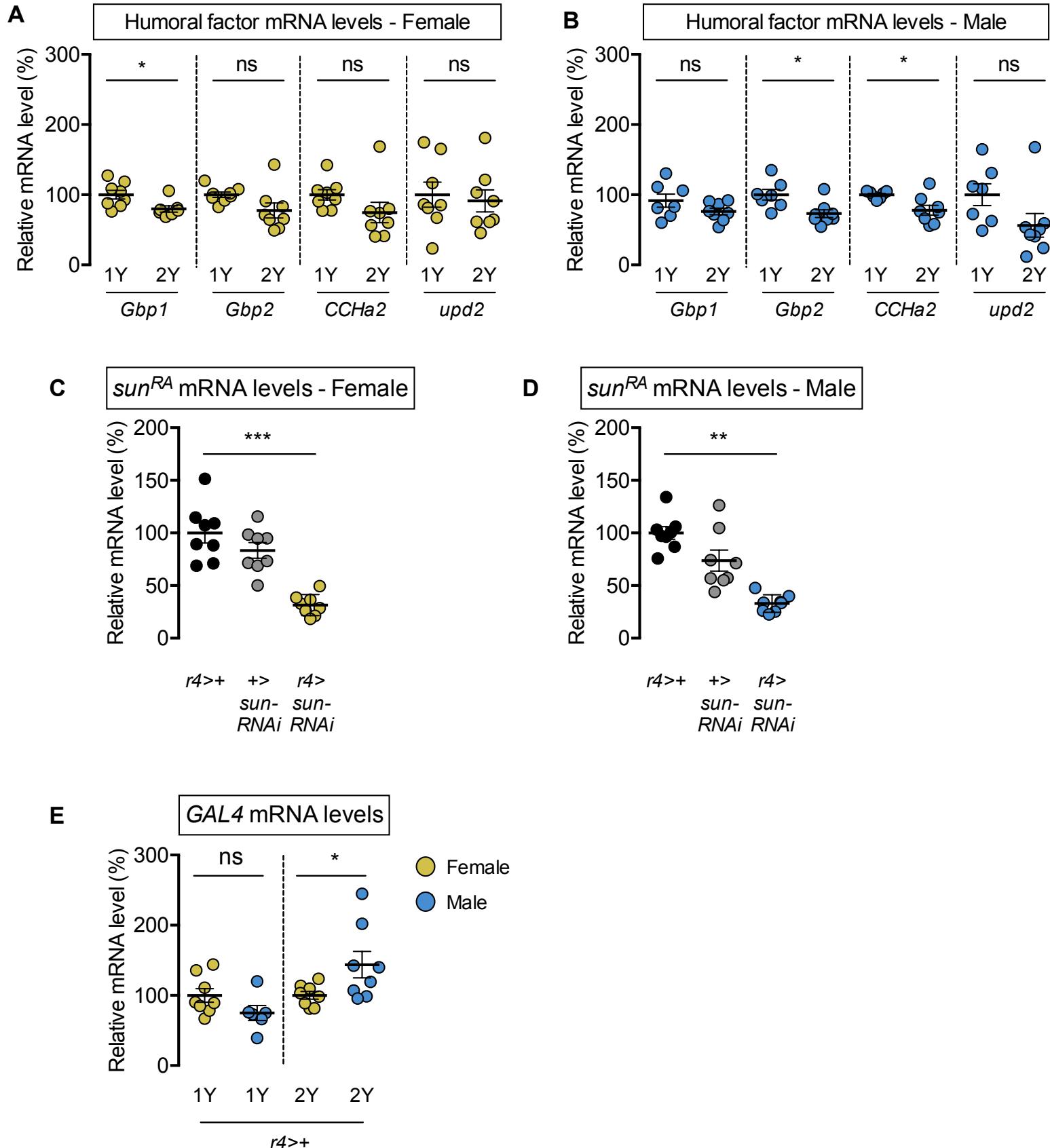

1937

1938 **Figure S8. Genotype-dependent changes to *dilp* mRNA levels.** (A) In *dilp2* mutant females, mRNA levels of *dilp1*, *dilp2*, *dilp4*, *dilp6*, and *dilp8* were significantly different from w^{1118} control females ($p < 0.0001$, < 0.0001 , < 0.0001 , 0.0003 and 0.0454 , respectively; Student's *t* test), but mRNA levels of *dilp3*, *dilp5*, and *dilp7* were not significantly different ($p = 0.5142$, 0.0574 , and 0.605 , respectively; Student's *t* test). $n = 6-8$ biological replicates. (B) In *dilp2* mutant males, mRNA levels of *dilp1*, *dilp2*, *dilp3*, *dilp4*, *dilp5*, and *dilp6* were significantly different from w^{1118} control males ($p = 0.0001$, < 0.0001 , 0.0034 , 0.0001 , 0.0001 , and 0.0008 , respectively; Student's *t* test), but mRNA levels of *dilp7* and *dilp8* were not significantly different ($p = 0.2302$, and 0.7809 , respectively; Student's *t* test). $n = 6-7$ biological replicates. * indicates $p < 0.05$, ** indicates $p < 0.01$, *** indicates $p < 0.001$, **** indicates $p < 0.0001$; ns indicates not significant; error bars indicate SEM.

1950

1951

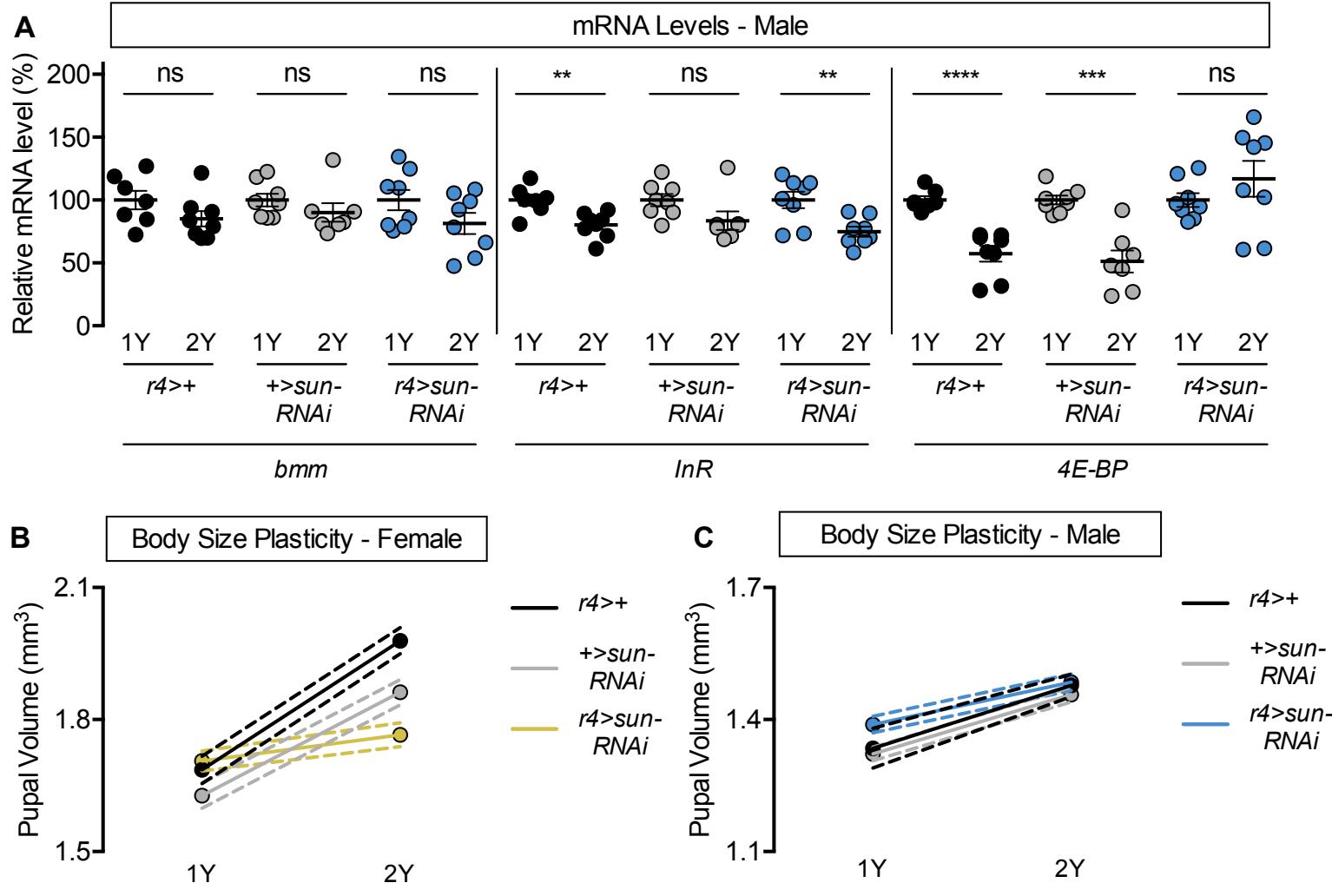
Figure S9.


1976

1977 **Figure S9. Diet-dependent changes to *dilp* mRNA levels.** (A) mRNA levels of *dilp5* and *dilp6* were significantly different between females raised on a protein-rich diet (2Y) compared with female larvae cultured on a diet with half the protein concentration of 2Y (1Y) ($p < 0.0001$ and 0.0079 , respectively; Student's *t* test), but mRNA levels of *dilp1*, *dilp2*, *dilp3*, *dilp4*, *dilp7*, *dilp8* were unchanged ($p = 0.7337$, 0.5947 , 0.0672 , 0.1777 , 0.0562 and 0.0643 , respectively; Student's *t* test). $n = 7-8$ biological replicates. (B) In males cultured in 1Y, mRNA levels of *dilp1*, *dilp3*, *dilp5*, *dilp7* were significantly different from male larvae raised on 2Y ($p = 0.047$, 0.0014 , <0.0001 , and 0.0068 , respectively; Student's *t* test); mRNA levels of *dilp2*, *dilp4*, *dilp6*, and *dilp8* were unchanged ($p = 0.9388$, 0.6812 , 0.8157 and 0.5054 , respectively; Student's *t* test). $n = 6-7$ biological replicates. * indicates $p < 0.05$, ** indicates $p < 0.01$, **** indicates $p < 0.0001$; ns indicates not significant; error bars indicate SEM.

1989

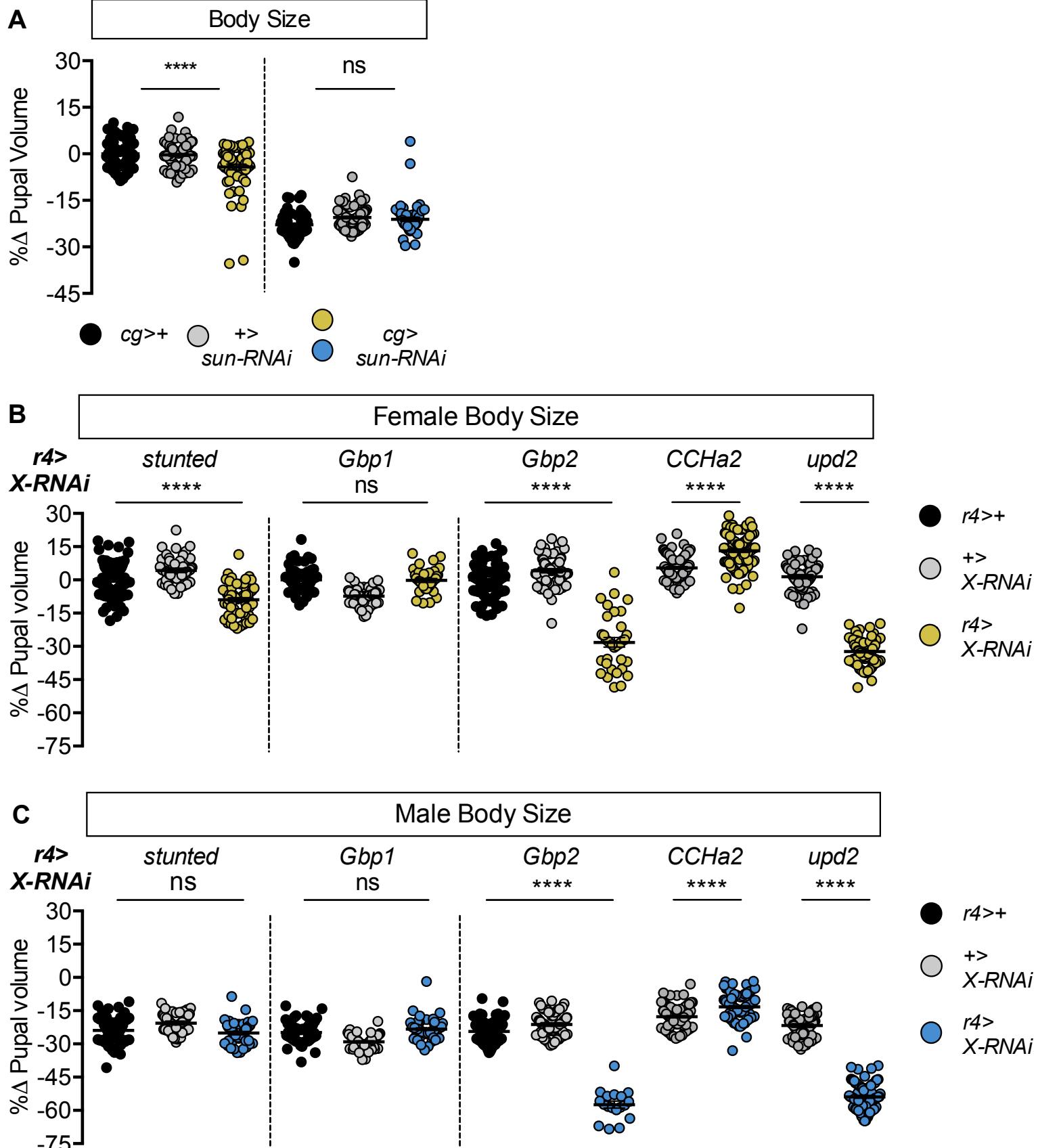
1990


Figure S10.

1992 **Figure S10. Diet-induced changes to mRNA levels of humoral factors.** (A) mRNA
1993 levels of *Growth-blocking peptide 1* (*Gbp1*) were significantly different in females
1994 cultured on a protein-rich diet (2Y) compared with females raised in a diet containing
1995 half the protein concentration (1Y) ($p = 0.0245$; Student's t test); however, mRNA levels
1996 of *Growth-blocking peptide 2* (*Gbp2*), *CCHamide-2* (*CCHa2*), and *unpaired 2* (*upd2*)
1997 were not significantly different between female larvae raised on 1Y and 2Y ($p = 0.0662$,
1998 0.1416, and 0.7171, respectively; Student's t test). $n = 7$ -8 biological replicates. (B)
1999 Levels of *Gbp1* and *upd2* were not significantly different between male larvae raised on
2000 2Y compared with larvae reared on 1Y ($p = 0.1487$, and $p = 0.1686$, respectively;
2001 Student's t test); whereas levels of *Gbp2* and *CCHa2* were significantly different
2002 between males raised in 2Y and 1Y ($p = 0.0214$, and $p = 0.0272$, respectively;
2003 Student's t test). $n = 7$ -8 biological replicates. (C) mRNA levels of *stunted* (*sun^{RA}*) were
2004 significantly lower in *r4-GAL4>UAS-sun-RNAi* females compared with *r4-GAL4>+* and
2005 *+>UAS-sun-RNAi* control females ($p < 0.0001$ and $p = 0.0001$, respectively; one-way
2006 ANOVA followed by Tukey HSD test). $n = 8$ biological replicates. (D) mRNA levels of
2007 *stunted* (*sun^{RA}*) were significantly lower in *r4-GAL4>UAS-sun-RNAi* males compared
2008 with *r4-GAL4>+* and *+>UAS-sun-RNAi* control males ($p < 0.0001$ and $p = 0.0012$,
2009 respectively; one-way ANOVA followed by Tukey HSD test). $n = 8$ biological replicates.
2010 (E) Levels of *GAL4* mRNA were not significantly different between the sexes in larvae
2011 raised in 1Y ($p = 0.1105$; Student's t test), whereas *GAL4* mRNA levels were
2012 significantly higher in males in 2Y ($p = 0.0428$; Student's t test). $n = 6$ -8 biological
2013 replicates. * indicates $p < 0.05$, ** indicates $p < 0.01$, *** indicates $p < 0.001$; ns indicates
2014 not significant; error bars indicate SEM.

2015
2016

Figure S11.

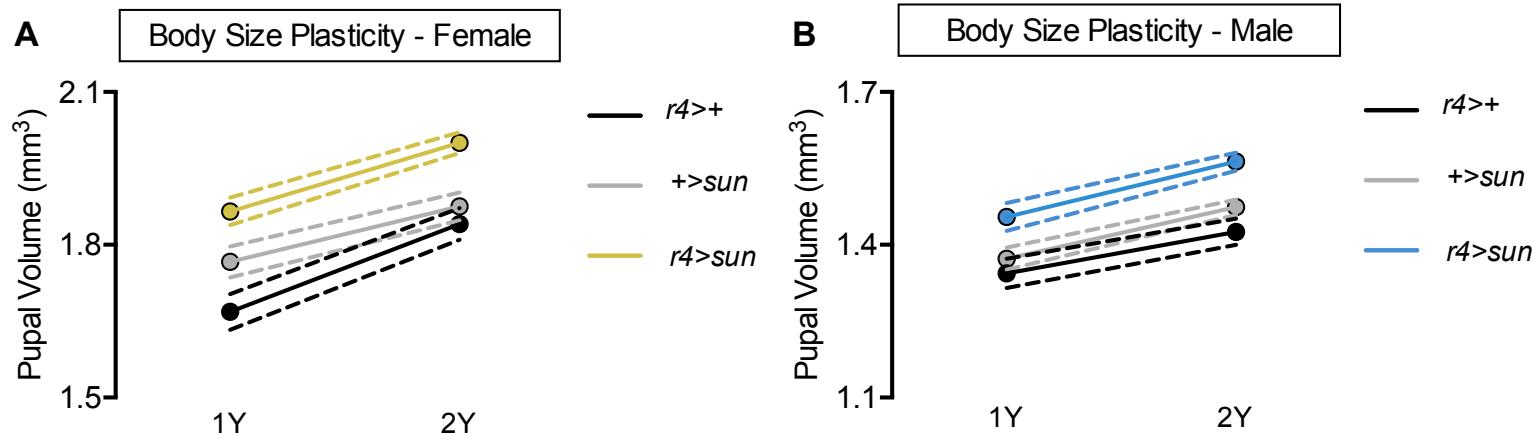


2043

2044 **Figure S11. Nutrient-dependent upregulation of IIS activity and increased female**
 2045 **body size plasticity requires *stunted* (*sun*).** (A) In *r4>+*, *+>UAS-sun- RNAi* males, and
 2046 *r4>UAS-sun- RNAi* males, mRNA levels of *brummer* (*bmm*) were not significantly
 2047 different between larvae raised on a protein-rich diet (2Y) compared with larvae reared
 2048 on a diet containing half the protein concentration (1Y) ($p = 0.1445$, 0.2766 , and 0.1308 ,
 2049 respectively; Student's *t* test). In *r4>+* and *r4>UAS-sun- RNAi* males, mRNA levels of
 2050 *insulin receptor* (*InR*) were significantly different in larvae between 1Y and 2Y ($p = 0.003$
 2051 and $p = 0.0054$, respectively; Student's *t* test), but not in *+>UAS-sun- RNAi* males ($p =$
 2052 0.0745 ; Student's *t* test). In *r4>+* and *+>UAS-sun- RNAi* control males, mRNA levels of
 2053 *eukaryotic initiation factor 4E-binding protein* (*4E-BP*) were significantly different
 2054 between larvae raised in 1Y or 2Y ($p < 0.0001$ and $p = 0.0001$, respectively; Student's *t*
 2055 test), but not in *r4>UAS-sun- RNAi* males ($p = 0.2899$; Student's *t* test). $n = 7-8$ biological
 2056 replicates. (B) Pupal volume was significantly higher in *r4>+*, *+>UAS-sun- RNAi*, and

2057 *r4>UAS-sun-RNAi* females reared on 2Y compared with genotype-matched females
2058 cultured on 1Y ($p < 0.0001$ [*r4>+* and *+>UAS-sun-RNAi*] and $p = 0.0367$ [*r4>UAS-sun-*
2059 *RNAi*]; two-way ANOVA followed by Tukey HSD test). The magnitude of the nutrient-
2060 dependent increase in pupal volume was significantly lower in *r4>UAS-sun-RNAi*
2061 females (genotype:diet interaction $p < 0.0001$; two-way ANOVA followed by Tukey HSD
2062 test). n = 69-80 pupae. (C) Pupal volume was significantly higher in *r4>+*, *+>UAS-sun-*
2063 *RNAi*, and *r4>UAS-sun-RNAi* males reared on 2Y compared with genotype-matched
2064 males cultured on 1Y ($p < 0.0001$ for all genotypes; two-way ANOVA followed by Tukey
2065 HSD test). The magnitude of the nutrient-dependent increase in pupal volume was not
2066 significantly different between *r4>UAS-sun-RNAi* males and control males
2067 (genotype:diet interaction $p = 0.0784$; two-way ANOVA followed by Tukey HSD test). n
2068 = 44-80 pupae. For body size plasticity graphs, filled circles indicate mean pupal volume,
2069 and dashed lines indicate 95% confidence interval. ** indicates $p < 0.01$, *** indicates
2070 $p < 0.001$; **** indicates $p < 0.0001$; ns indicates not significant; error bars indicate SEM.
2071
2072

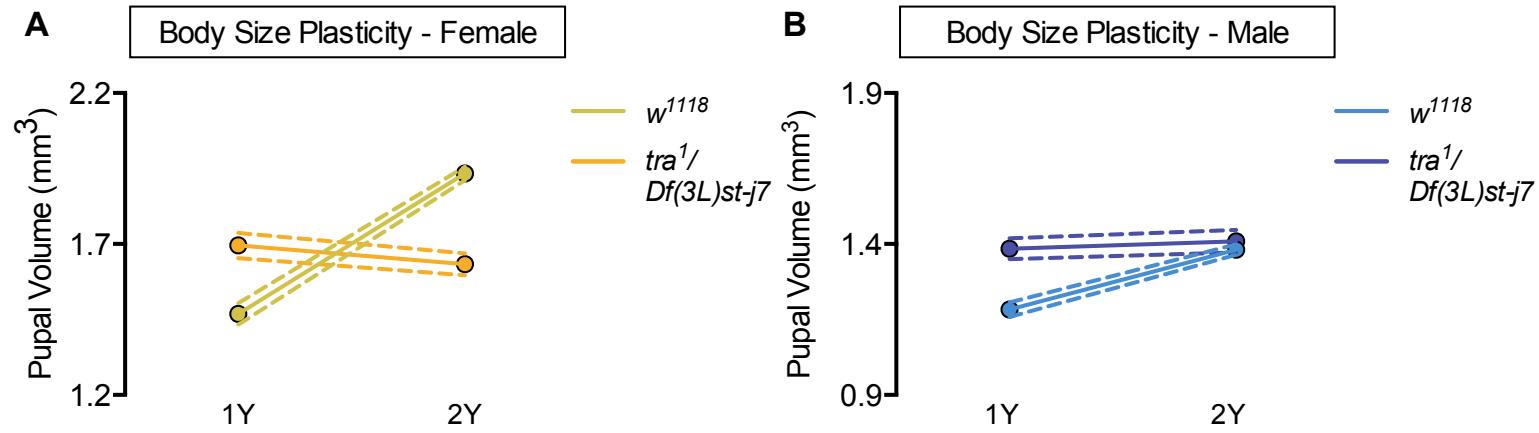
Figure S12.


2074 **Figure S12. Most humoral factors have non-sex-specific effects on body size. (A)**

2075 Pupal volume was significantly smaller in females with fat body-specific expression of
2076 an RNAi transgene directed against *stunted* (*sun*). Pupal volume was significantly
2077 reduced in *cg>UAS-sun-RNAi* females compared with *cg>+* and *+>UAS-sun-RNAi*
2078 control females ($p < 0.0001$ for both comparisons; two-way ANOVA followed by Tukey
2079 HSD test). This decreased pupal volume was not reproduced in *cg>UAS-sun-RNAi*
2080 males compared with *cg>+* and *+>UAS-sun-RNAi* control males ($p = 0.3657$ and $p =$
2081 0.9852, respectively; two-way ANOVA followed by Tukey HSD test). RNAi-mediated
2082 knockdown of *sun* had larger effects on pupal volume in females than in males
2083 (sex:genotype interaction $p < 0.0001$; two-way ANOVA followed by Tukey HSD test). $n =$
2084 54-85 pupae. (B) Pupal volume was significantly different in females with fat body-
2085 specific expression of RNAi transgenes directed against *sun*, *Growth-blocking peptide 2*
2086 (*Gbp2*), *CCHamide-2* (*CCHa2*), *unpaired 2* (*upd2*) compared with *r4>+* and *+>UAS-X-*
2087 *RNAi* control females ($p < 0.0001$ for both comparisons [*sun*], $p < 0.0001$ for both
2088 comparisons [*Gbp2*], $p < 0.0001$ for both comparisons [*CCHa2*], $p < 0.0001$ for both
2089 comparisons [*upd2*]; one-way ANOVA followed by Tukey HSD test); but not upon RNAi-
2090 mediated knockdown of *Growth-blocking peptide 1* (*Gbp1*) ($p = 0.9665$ and $p < 0.0001$
2091 respectively; one-way ANOVA followed by Tukey HSD test). $n = 35-114$ pupae. (C)
2092 Pupal volume was significantly different in males with fat body-specific expression of
2093 RNAi transgenes directed against *Gbp2*, *CCHa2*, and *upd2* compared with *r4>+* and
2094 *+>UAS-X-RNAi* control males ($p < 0.0001$ for both comparisons [*Gbp2*], $p < 0.0001$ for
2095 both comparisons [*CCHa2*], $p < 0.0001$ for both comparisons [*upd2*]; one-way ANOVA
2096 followed by Tukey HSD test); but not reduced in males carrying RNAi transgenes
2097 directed against *sun* and *Gbp1* ($p = 0.3513$ and $p < 0.0001$, respectively [*sun*]; $p = 0.1274$
2098 and $p < 0.0001$, respectively [*Gbp1*]; one-way ANOVA followed by Tukey HSD test). $n =$
2099 18-100 pupae. For body size graphs, filled circles indicate pupal volume and error bars
2100 indicate SEM. **** indicates $p < 0.0001$; ns indicates not significant.

2101

2102

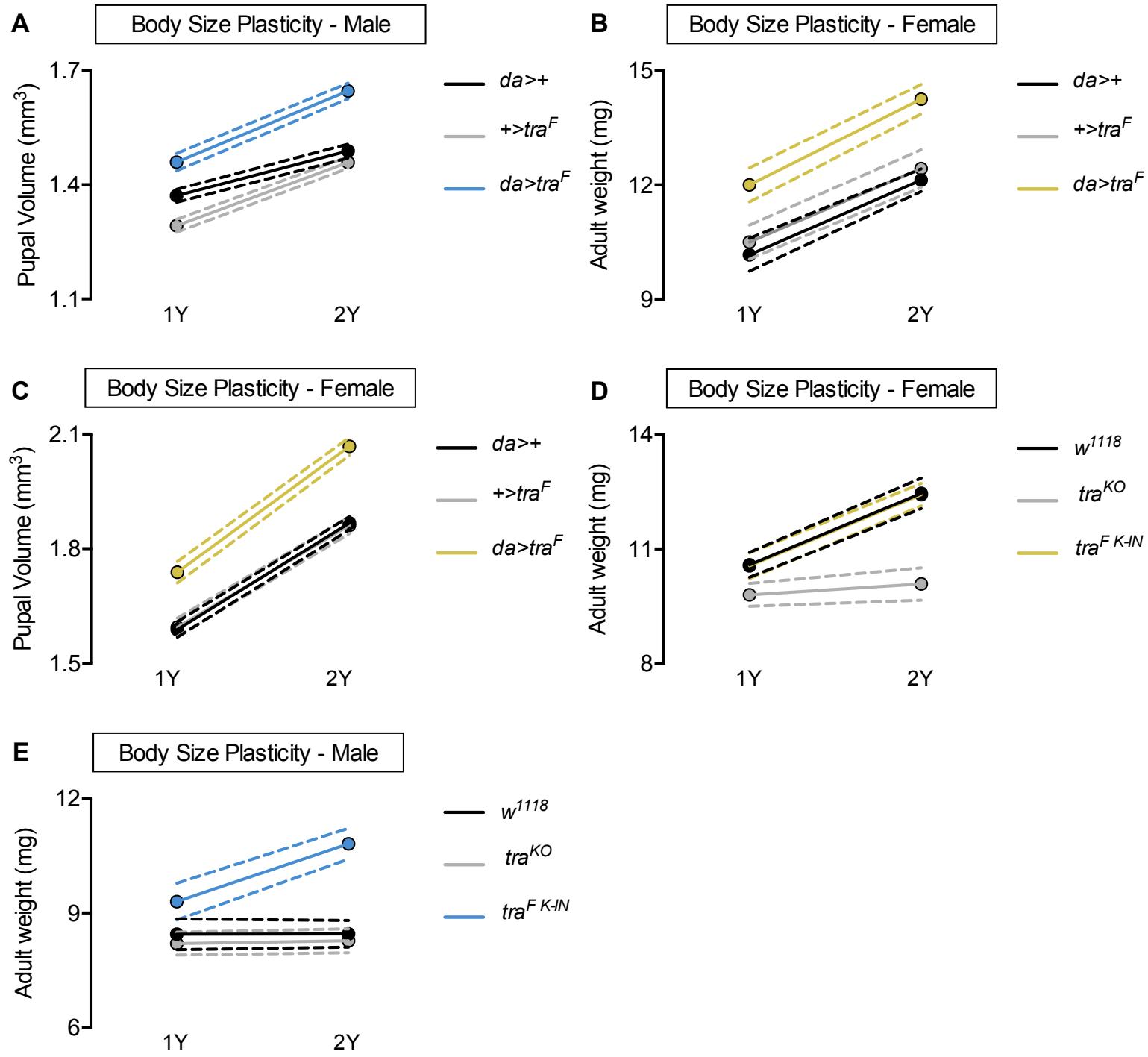

Figure S13.

2113
2114 **Figure S13. stunted (*sun*) overexpression augments body size but does not**
2115 **confer increased body size plasticity in males.** (A) Pupal volume was significantly
2116 higher in $r4>+$, $+>\text{UAS-sun}$, and $r4>\text{UAS-sun}$ females reared on a protein-rich diet (2Y)
2117 compared with genotype-matched females cultured on a diet containing half the protein
2118 concentration (1Y) ($p < 0.0001$ for all genotypes; two-way ANOVA followed by Tukey
2119 HSD test). The magnitude of the nutrient-dependent increase in pupal volume was not
2120 significantly different between female genotypes (genotype:diet interaction $p = 0.0895$;
2121 two-way ANOVA followed by Tukey HSD test). $n = 43\text{--}65$ pupae. (B) Pupal volume was
2122 significantly higher in $r4>+$, $+>\text{UAS-sun}$, and $r4>\text{UAS-sun}$ males reared on 2Y
2123 compared with genotype-matched males cultured on 1Y ($p < 0.0001$ for all genotypes;
2124 two-way ANOVA followed by Tukey HSD test), but the magnitude of the nutrient-
2125 dependent increase in pupal volume was not different between male genotypes
2126 (genotype:diet interaction $p = 0.4959$; two-way ANOVA followed by Tukey HSD test). n
2127 = 44–67 pupae. For body size plasticity graphs, filled circles indicate mean pupal volume,
2128 and dashed lines indicate 95% confidence interval.

2129
2130

Figure S14.

2141


2142 **Figure S14. Increased nutrient-dependent body size plasticity in females requires**

2143 **transformer.** (A) Pupal volume was significantly higher in w^{1118} females reared on a
2144 protein-rich diet (2Y) compared with w^{1118} females cultured on a diet containing half the
2145 protein concentration (1Y) ($p < 0.0001$; two-way ANOVA followed by Tukey HSD test);
2146 however, this nutrient-dependent increase in pupal volume was not observed in
2147 *transformer* (*tra*) mutant females ($tra^1/Df(3L)st-j7$) ($p = 0.1036$; two-way ANOVA
2148 followed by Tukey HSD test). The magnitude of the nutrient-dependent increase in
2149 pupal volume was lower in $tra^1/Df(3L)st-j7$ females (genotype:diet interaction $p < 0.0001$).
2150 $n = 39\text{-}69$ pupae. (B) Pupal volume was significantly higher in w^{1118} males ($p < 0.0001$;
2151 two-way ANOVA followed by Tukey HSD test), but not in $tra^1/Df(3L)st-j7$ mutant males
2152 reared on 2Y compared with genotype-matched females cultured on 1Y ($p = 0.6643$;
2153 two-way ANOVA followed by Tukey HSD test). $n = 37\text{-}65$ pupae. For body size plasticity
2154 graphs, filled circles indicate mean pupal volume, and dashed lines indicate 95%
2155 confidence interval.

2156

2157

Figure S15.

2194

2195

2196

2197

2198

2199

2200

Figure S15. Sex determination gene *transformer* (*tra*) regulates increased nutrient-dependent body size plasticity. (A) Pupal volume was significantly higher in $da>+$, $+>UAS-tra^F$, and $da>UAS-tra^F$ males reared on a protein-rich diet (2Y) compared with genotype-matched males cultured on a diet containing half the protein concentration (1Y) ($p<0.0001$ for all genotypes; two-way ANOVA followed by Tukey

2201 HSD test). Importantly, the magnitude of the nutrient-dependent increase in pupal
2202 volume was higher in *da>UAS-tra^F* males (genotype:diet interaction $p = 0.0012$; two-
2203 way ANOVA followed by Tukey HSD test). $n = 70\text{-}91$ pupae. (B) Adult weight was
2204 significantly higher in *da>+, +>UAS-tra^F*, and *da>UAS-tra^F* females reared on 2Y
2205 compared with genotype-matched females cultured on 1Y ($p < 0.0001$ for all genotypes;
2206 two-way ANOVA followed by Tukey HSD test). The magnitude of the nutrient-
2207 dependent increase in adult weight was not significantly different between *da>UAS-tra^F*
2208 females and *da>+* and *+>UAS-tra^F* controls (genotype:diet interaction $p = 0.5912$; two-
2209 way ANOVA followed by Tukey HSD test). $n = 6\text{-}8$ groups of 10 flies. (C) Pupal volume
2210 was significantly higher in *da>+, +>UAS-tra^F*, and *da>UAS-tra^F* females reared on 2Y
2211 compared with genotype-matched females cultured on 1Y ($p < 0.0001$ for all genotypes;
2212 two-way ANOVA followed by Tukey HSD test). $n = 68\text{-}94$ pupae. (D) Adult weight was
2213 significantly higher in both *w¹¹¹⁸* females, and in females with a knock-in transgene of
2214 the female isoform of *tra* (*tra^{F K-IN}*), when reared on 2Y compared with 1Y ($p < 0.0001$ for
2215 both genotypes; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-
2216 dependent increase in adult weight was abolished in *tra* mutant females (*tra^{KO}*) reared
2217 on 2Y compared with genotype-matched females cultured on 1Y ($p = 0.864$; two-way
2218 ANOVA followed by Tukey HSD test). Importantly, the magnitude of the nutrient-
2219 dependent increase in adult weight was significantly lower in *tra^{KO}* females, which lack a
2220 functional Tra protein, than in *w¹¹¹⁸* and *tra^{F K-IN}* females (genotype:diet interaction
2221 $p < 0.0001$; two-way ANOVA followed by Tukey HSD test). $n = 10\text{-}16$ groups of 10 flies.
2222 (E) Adult weight was significantly higher in *tra^{F K-IN}* males, which express physiological
2223 levels of a functional Tra protein, when the males were reared on 2Y compared with
2224 genotype-matched males raised on 1Y ($p < 0.0001$; two-way ANOVA followed by Tukey
2225 HSD test). In contrast, there was no significant increase in adult weight in *w¹¹¹⁸* and
2226 *tra^{KO}* male flies reared on 2Y compared with genotype-matched males raised on 1Y
2227 ($p > 0.9999$ and $p = 0.9996$, respectively; two-way ANOVA followed by Tukey HSD test).
2228 The magnitude of the nutrient-dependent increase in adult weight was significantly
2229 higher in *tra^{F K-IN}* males compared with *w¹¹¹⁸* and *tra^{KO}* male flies (genotype:diet
2230 interaction $p < 0.0001$; two-way ANOVA followed by Tukey HSD test). $n = 9\text{-}11$ groups of

2231 10 flies. For body size plasticity graphs, filled circles indicate mean pupal volume, and
2232 dashed lines indicate 95% confidence interval.

2233

2234