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ABSTRACT 28	

 29	

Nutrient-dependent body size plasticity differs between the sexes in most species, 30	

including mammals. Previous work in Drosophila showed that body size plasticity was 31	

higher in females, yet the mechanisms underlying the sex difference in body size 32	

plasticity remain unclear. Here, we discover that a protein-rich diet augments body size 33	

in females and not males because of a female-specific increase in activity of the 34	

conserved insulin/insulin-like growth factor signaling pathway (IIS). This increased IIS 35	

activity was triggered by a diet-induced increase in stunted, and required Drosophila 36	

insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, 37	

we show that sex determination gene transformer regulates the diet-induced increase in 38	

stunted and IIS activity, and mediates the sex difference in body size plasticity. This 39	

identifies one sex-specific mechanism underlying the nutrient-dependent regulation of 40	

IIS activity and body size plasticity, providing vital insight into conserved mechanisms 41	

that mediate sex differences in phenotypic plasticity. 42	

  43	
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INTRODUCTION 44	

 45	

In insects, as in many animals, the rate of growth during development is 46	

influenced by environmental factors such as nutrient availability (Boulan et al., 2015; 47	

Edgar, 2006; Hietakangas & Cohen, 2009; Nijhout, 2003; Nijhout et al., 2014). When 48	

nutrients are abundant, the rate of growth is high and body size is large (Beadle et al., 49	

1938; Edgar, 2006; Mirth & Shingleton, 2012; Nijhout, 2003; Robertson, 1963). When 50	

nutrients are scarce, the rate of growth is lower and body size is smaller (Beadle et al., 51	

1938; Edgar, 2006; Mirth & Riddiford, 2007; Mirth & Shingleton, 2012; Nijhout, 2003; 52	

Robertson, 1963). This ability of an organism or genotype to adjust its body size in line 53	

with nutrient availability is a form of phenotypic plasticity (Agrawal, 2001; Garland & 54	

Kelly, 2006). While the capacity of individuals to display nutrient-dependent changes to 55	

body size depends on many factors, one important factor that affects phenotypic 56	

plasticity is whether an animal is male or female (Stillwell et al., 2010; Teder & 57	

Tammaru, 2005). For example, studies in Drosophila found that the magnitude of 58	

changes to wing cell size and cell number in a nutrient-poor diet were larger in females 59	

compared with males (Alpatov, 1930). Additionally, recent studies that systematically 60	

manipulated dietary carbohydrates and protein confirmed that the magnitude of diet-61	

induced changes to some morphological traits was larger in female flies (Shingleton et 62	

al., 2017). While these studies clearly establish a sex difference in nutrient-dependent 63	

phenotypic plasticity, the genetic and molecular mechanisms underlying this increased 64	

trait size plasticity in females remain unclear. 65	

 Clues into the genes and pathways that may underlie the increased nutrient-66	

dependent phenotypic plasticity in female flies have emerged from over 20 years of 67	

studies on nutrient-dependent growth in Drosophila (Andersen et al., 2013; Boulan et al., 68	

2015; Edgar, 2006; Koyama & Mirth, 2018; Mirth & Piper, 2017). In particular, these 69	

studies have identified the conserved insulin/insulin-like growth factor signaling pathway 70	

(IIS) as a key regulator of nutrient-dependent growth in Drosophila (Böhni et al., 1999; 71	

Britton et al., 2002; Chen et al., 1996; Fernandez et al., 1995; Grewal, 2009; Teleman, 72	

2009). In nutrient-rich conditions, insulin-producing cells (IPCs) in the larval brain 73	

release Drosophila insulin-like peptides (dILPs) into the circulation (Brogiolo et al., 2001; 74	
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Géminard et al., 2009; Ikeya et al., 2002; Rulifson et al., 2002). These dILPs bind the 75	

Insulin-like Receptor (InR; FBgn0283499) on target cells to induce receptor 76	

autophosphorylation and recruitment of adapter proteins such as InR substrate Chico 77	

(chico; FBgn0024248) and Lnk (Lnk; FBgn0028717) (Almudi et al., 2013; Böhni et al., 78	

1999; Chen et al., 1996; Poltilove et al., 2000; Werz et al., 2009). These adapter 79	

proteins, when phosphorylated, enable the recruitment of a regulatory subunit of the 80	

Drosophila homolog of phosphatidylinositol 3-kinase (Pi3K21B; FBgn0020622) that 81	

recruits and activates the catalytic subunit of Pi3K (Pi3K92E; FBgn0015279). This 82	

activated Pi3K complex catalyzes the production of phosphatidylinositol (3,4,5)-83	

trisphosphate (PIP3) from phosphatidylinositol (4,5)-bisphosphate (PIP2) (Leevers et al., 84	

1996). The increased abundance of PIP3 in the plasma membrane recruits and 85	

activates signaling proteins such as phosphoinositide-dependent kinase 1 (Pdk1; 86	

FBgn0020386) and Akt (Akt; FBgn0010379), which influence diverse cellular processes 87	

to enhance cell, tissue, and organismal growth (Cho et al., 2001; Grewal, 2009; Rintelen 88	

et al., 2001; Verdu et al., 1999). On the other hand, in nutrient-restricted conditions, 89	

dILP release from the IPCs is reduced (Géminard et al., 2009), and plasma membrane 90	

Pi3K recruitment, PIP3 levels, and Pdk1- and Akt-dependent signaling are all reduced 91	

(Britton et al., 2002; Nowak et al., 2013). Together, these changes diminish cell, tissue, 92	

and organismal growth (Arquier et al., 2008; Britton et al., 2002; Géminard et al., 2009; 93	

Honegger et al., 2008; Okamoto et al., 2013; Rulifson et al., 2002; Zhang et al., 2009). 94	

Indeed, the potent growth-promoting ability of IIS activation is demonstrated by studies 95	

in Drosophila showing that genetic manipulations that increase IIS activity augment 96	

growth during development (Arquier et al., 2008; Goberdhan et al., 1999; Honegger et 97	

al., 2008; Ikeya et al., 2002; Nowak et al., 2013; Okamoto et al., 2013; Oldham et al., 98	

2002), whereas genetic mutations that lower IIS activity strongly reduce cell, organ, and 99	

body size (Böhni et al., 1999; Brogiolo et al., 2001; Chen et al., 1996; Colombani et al., 100	

2003; Gao et al., 2000; Grönke et al., 2010; Leevers et al., 1996; Murillo-Maldonado et 101	

al., 2011; Rulifson et al., 2002; Weinkove et al., 1999; Zhang et al., 2009). Because 102	

increased IIS activity is sufficient to bypass the reduced cell growth normally observed 103	

upon nutrient restriction (Britton et al., 2002; Géminard et al., 2009; Nowak et al., 2013), 104	

and that mutations blunting IIS pathway activity decrease growth even in nutrient-rich 105	
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conditions (Böhni et al., 1999; Brogiolo et al., 2001; Chen et al., 1996; Leevers et al., 106	

1996), studies in Drosophila have established a role for IIS in promoting organismal 107	

growth downstream of nutrient input. While this highlights the vital role that Drosophila 108	

studies have played in elucidating the mechanisms by which IIS couples nutrient input 109	

with cell, tissue, and organismal growth, it is important to note that most studies in this 110	

area used a mixed-sex population of larvae. Given that cell and body size are 111	

significantly different between male and female flies (Alpatov, 1930; Brown & King, 1961; 112	

Okamoto et al., 2013; Partridge et al., 1994; Rideout et al., 2015; Sawala & Gould, 2017; 113	

Testa et al., 2013), more knowledge is needed of nutrient-dependent changes to body 114	

size and IIS activity in each sex. 115	

Recent studies have begun to make progress in this area by studying IIS 116	

regulation and function in both sexes in a single dietary context (reviewed in Millington & 117	

Rideout, 2018). One study on late third instar larvae reported sex differences in dilp 118	

mRNA levels, in IIS activity, and in the release of dILP2, an important growth-promoting 119	

dILP, from the IPCs (Rideout et al., 2015). Similarly, transcriptomic studies have 120	

detected male-female differences in mRNA levels of genes associated with IIS function 121	

(Mathews et al., 2017; Rideout et al., 2015), and revealed links between IIS and the sex 122	

determination hierarchy gene regulatory network (Castellanos et al., 2013; Chang et al., 123	

2011; Clough et al., 2014; Fear et al., 2015; Garner et al., 2018; Goldman & Arbeitman, 124	

2007). As evidence of sex-specific IIS regulation continues to accumulate, several 125	

reports have also identified sex-limited and sex-biased phenotypic effects caused by 126	

changes to IIS function. For example, changes to IIS activity show sex-biased effects on 127	

larval growth and final body size (Grönke et al., 2010; Rideout et al., 2015; Shingleton et 128	

al., 2005; Testa et al., 2013). In adults, widespread sex-specific and sex-biased 129	

changes to gene expression were observed in flies with altered diet and IIS activity 130	

(Camus et al., 2019; Graze et al., 2018). Further, sex differences exist in how changes 131	

to diet and IIS activity affect life span (Bjedov et al., 2010; Clancy et al., 2001; 132	

Giannakou et al., 2004; Grönke et al., 2010; Regan et al., 2016; Tatar et al., 2001; 133	

Woodling et al., 2020; Wu et al., 2020). Together, these studies illuminate the utility of 134	

Drosophila in revealing sex-specific IIS regulation and describing the physiological 135	

impact of this regulation. Yet, more studies are needed to discover the molecular 136	
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mechanisms underlying sex-specific IIS regulation, and to extend these studies beyond 137	

a single nutritional context. 138	

Additional insights into potential mechanisms underlying the sex difference in 139	

nutrient-dependent trait size plasticity come from studies on the regulation of cell, tissue, 140	

and body growth by sex determination genes. In flies, sex is determined by the number 141	

of X chromosomes. In XX females, a functional splicing factor called Sex-lethal (Sxl; 142	

FBgn0264270) is produced (Bell et al., 1988; Bridges, 1921; Cline, 1978; Salz & 143	

Erickson, 2010). Sxl protein binds to the pre-mRNA of transformer (tra, FBgn0003741), 144	

Sxl’s most well-known target gene, where the Sxl-dependent splicing of tra pre-mRNA 145	

allows a functional Tra protein to be produced in females (Belote et al., 1989; Boggs et 146	

al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). In XY males, no functional Sxl 147	

protein is produced (Cline & Meyer, 1996; Salz & Erickson, 2010). As a result, tra pre-148	

mRNA undergoes default splicing, and no functional Tra protein is produced in males 149	

(Belote et al., 1989; Boggs et al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). An 150	

extensive literature shows that the presence of functional Sxl and Tra proteins in 151	

females accounts for most aspects of female sexual development, behavior, and 152	

physiology (Anand et al., 2001; Billeter et al., 2006; Brown & King, 1961; Camara et al., 153	

2008; Christiansen et al., 2002; Clough et al., 2014; Dauwalder, 2011; Demir & Dickson, 154	

2005; Goodwin et al., 2000; Hoshijima et al., 1991; Hudry et al., 2016, 2019; Ito et al., 155	

1996; Millington & Rideout, 2018; Neville et al., 2014; Nojima et al., 2014; Pavlou et al., 156	

2016; Pomatto et al., 2017; Regan et al., 2016; Rezával et al., 2014, 2016; Rideout et 157	

al., 2010; Ryner et al., 1996; Sturtevant, 1945; von Philipsborn et al., 2014). Recently, 158	

roles for Sxl and Tra in regulating the sex difference in body size were also described. 159	

While Drosophila females are normally significantly and visibly larger than male flies, 160	

females lacking neuronal Sxl are significantly smaller than control females, and no 161	

longer different in size from males (Sawala & Gould, 2017). Interestingly, Sxl function in 162	

specific neurons, the IPCs and GAD1-GAL4-positive neurons, mediate its effects on 163	

female growth during development (Sawala & Gould, 2017). Similarly, females lacking a 164	

functional Tra protein were significantly smaller than control females; however, these tra 165	

mutant females were still larger than males (Brown & King, 1961; Mathews et al., 2017; 166	

Rideout et al., 2015). Together, these studies indicate a requirement for both Tra and 167	
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Sxl in promoting a larger body size in females, providing vital insight into the intersection 168	

between the sex determination pathway and the regulation of body size. However, 169	

much remains to be discovered about the mechanisms by which Sxl and Tra impact 170	

body size. Moreover, it remains unclear whether sex determination genes contribute to 171	

the male-female difference in diet-induced trait size plasticity, as previous studies on 172	

sex determination genes used a single nutritional context.  173	

In the present study, we aimed to improve knowledge of the genetic and 174	

molecular mechanisms that contribute to male-female differences in nutrient-dependent 175	

plasticity in Drosophila. Our detailed examination of nutrient-dependent body size 176	

plasticity revealed increased phenotypic plasticity in females in response to a protein-177	

rich diet, in line with prior studies on trait size plasticity (Shingleton et al., 2017). 178	

Importantly, we show that a nutrient-dependent upregulation of IIS activity in females 179	

and not in males in a protein-rich context is responsible for the increased body size 180	

plasticity in females. Mechanistically, we show that a nutrient-dependent upregulation of 181	

stunted (sun; FBgn0014391) mRNA levels in females triggers the diet-induced increase 182	

in IIS activity, as females lacking sun do not augment IIS activity or body size in a 183	

protein-rich diet. Importantly, we show that sex determination gene tra is required for the 184	

nutrient-dependent increase in sun mRNA, IIS activity, and phenotypic plasticity in 185	

females, and that ectopic tra expression in males enhances nutrient-dependent body 186	

size plasticity via sun-mediated regulation of IIS activity. Together, these results provide 187	

new insight into the molecular mechanisms that govern male-female differences in body 188	

size plasticity, and identify a previously unrecognized role for sex determination gene tra 189	

in regulating nutrient-dependent phenotypic plasticity. 190	

 191	

RESULTS 192	

 193	

High levels of dietary protein are required for increased nutrient-dependent body 194	

size plasticity in females 195	

 196	

Previous studies identified a sex difference in nutrient-dependent plasticity in several 197	

morphological traits (Shingleton et al., 2017; Stillwell et al., 2010; Teder & Tammaru, 198	
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2005). To determine whether sex differences in nutrient-dependent body size plasticity 199	

exist in Drosophila, we measured pupal volume, an established readout for Drosophila 200	

body size (Delanoue et al., 2010), in white1118 (w; FBgn0003996) males and females 201	

reared on diets of varying nutrient quantity. We found that pupal volume in w1118 female 202	

larvae raised on the 2-acid diet (1✕) (Lewis, 1960) was significantly larger than 203	

genotype-matched females raised on a diet with half the nutrient quantity (0.5✕) (Fig. 204	

1A). In w1118 males, pupal volume was also significantly larger in larvae raised on the 1✕ 205	

diet compared with the 0.5✕ diet (Fig. 1A). No significant sex-by-diet interaction was 206	

detected using a two-way analysis of variance (ANOVA) (sex:diet interaction p = 0.7048; 207	

S1 Table), suggesting that nutrient-dependent body size plasticity was not different 208	

between the sexes in this context. We next compared pupal volume in w1118 males and 209	

females raised on the 1✕ diet with larvae cultured on a diet with twice the nutrient 210	

content (2✕). Pupal volume in w1118 females was significantly larger in larvae raised on 211	

the 2✕ diet compared with larvae cultured on the 1✕ diet (Fig. 1A). In w1118 males, the 212	

magnitude of the nutrient-dependent increase in pupal volume was smaller compared 213	

with female larvae (Fig. 1A; sex:diet interaction p <0.0001; S1 Table). This suggests 214	

that in nutrient-rich conditions, there is a sex difference in body size plasticity, where 215	

nutrient-dependent phenotypic plasticity is higher in females. To represent the normal 216	

body size responses of each sex to nutrient quantity, we plotted reaction norms for 217	

pupal volume in w1118 males and females raised on different diets (Fig. 1B). The body 218	

size response to increased nutrient quantity between 0.5✕ and 1✕ was not different 219	

between the sexes (Fig. 1B); however, the body size response to increased nutrient 220	

quantity between 1✕ and 2✕ was larger in females than in males (Fig. 1B). Importantly, 221	

these findings were not specific to pupal volume, as we reproduced our findings using 222	

adult weight as an additional readout for body size (Fig. 1C, D). Thus, our findings 223	

demonstrate that while phenotypic plasticity is similar between the sexes in some 224	

nutritional contexts, body size plasticity is higher in females than in males in a nutrient-225	

rich environment. 226	

 To narrow down macronutrients that account for the increased body size 227	

plasticity in females, we changed individual food ingredients and measured body size in 228	

w1118 males and females. We first altered dietary yeast, as previous studies show that 229	
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yeast is a key source of protein and an important determinant of larval growth (Britton et 230	

al., 2002; Géminard et al., 2009; Robertson, 1963). In w1118 females raised on a diet 231	

with yeast content that corresponds to the amount in the 2✕ diet (2Y diet), pupal volume 232	

was significantly larger than in females raised on a diet containing half the yeast content 233	

(1Y) (Fig. 1E). It is important to note that the yeast content of the 1Y diet is within the 234	

range of many larval growth studies (Ghosh et al., 2014; Koyama & Mirth, 2016; 235	

Marshall et al., 2012; Sawala & Gould, 2017), and therefore does not represent a 236	

nutrient-restricted diet. In w1118 males, the magnitude of the nutrient-dependent increase 237	

in pupal volume was smaller than in females (Fig. 1E; sex:diet interaction p = 0.0001; 238	

S1 Table), suggesting that nutrient-dependent body size plasticity is higher in females in 239	

a yeast-rich context. Indeed, when we plot reaction norms for pupal volume in both 240	

sexes, the magnitude of the yeast-dependent change in pupal volume (Fig. 1F) and 241	

adult weight (Fig. 1G, H) was larger in females than in males. This sex difference in 242	

phenotypic plasticity in a yeast-rich context was reproduced in Canton-S (CS), a wild-243	

type strain (Fig. S1A, B), and using wing length as an additional measure of growth (Fig. 244	

S2A). Thus, our findings indicate that the male-female difference in nutrient-dependent 245	

body size plasticity persists across multiple genetic backgrounds, and confirms that 246	

body size is a robust trait to monitor nutrient-dependent phenotypic plasticity.  247	

Given the sex difference in body size plasticity in response to altered yeast 248	

content, we hypothesized that yeast may trigger increased nutrient-dependent body size 249	

plasticity in females. To test this, we raised larvae on diets with altered sugar (Fig. S3A) 250	

or calorie content (Fig. S3B). Because we observed no sex:diet interaction for either 251	

manipulation (sex:diet interaction p = 0.6536 and p = 0.3698, respectively; S1 Table), 252	

this suggests dietary yeast mediates the sex difference in nutrient-dependent body size 253	

plasticity. To test whether protein is the macronutrient in yeast that enables sex-specific 254	

phenotypic plasticity, we pharmacologically limited protein breakdown by culturing 255	

larvae on the 2Y diet supplemented with either a broad-spectrum protease inhibitor 256	

(protease inhibitor cocktail; PIC) or a serine protease-specific inhibitor (4-(2-257	

aminoethyl)benzenesulfonyl fluoride hydrochloride; AEBSF). We found a significant 258	

body size reduction in both sexes treated with protease inhibitors (Fig. S4A, B), in line 259	

with previous studies (Erkosar et al., 2015); however, the inhibitor-induced decrease in 260	
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pupal volume was larger in female larvae than in males (sex:treatment interaction p = 261	

0.0029 [PIC] and p<0.0001 [AEBSF]; S1 Table). This indicates that yeast-derived 262	

dietary protein is the macronutrient that augments nutrient-dependent body size 263	

plasticity in females. While one potential explanation for the male-female difference in 264	

body size plasticity is a sex difference in food intake or length of the growth period, we 265	

found no male-female differences in either phenotype between w1118 male and female 266	

larvae cultured on 1Y or 2Y (Fig. S5A-C). Moreover, the larger body size of female 267	

larvae does not explain their increased nutrient-dependent body size plasticity, as a 268	

genetic manipulation that augments male body size did not enhance phenotypic 269	

plasticity (Fig. S6A, B). Taken together, our data reveals female larvae have enhanced 270	

body size plasticity in a nutrient-rich context, and identifies abundant dietary protein as a 271	

prerequisite for females to maximize body size. 272	

 273	

A nutrient-dependent upregulation of IIS activity is required for body size 274	

plasticity in females 275	

 276	

In a mixed-sex population of Drosophila larvae, IIS activity is positively regulated by 277	

nutrient availability to promote growth (Böhni et al., 1999; Britton et al., 2002; Chen et 278	

al., 1996; Fernandez et al., 1995; Grewal, 2009; Teleman, 2009). We therefore 279	

examined nutrient-dependent changes to IIS activity in larvae raised on 1Y and 2Y (Fig. 280	

2A-D). Previous studies have shown that high levels of IIS activity repress mRNA levels 281	

of several genes, including InR, brummer (bmm, FBgn0036449), and eukaryotic 282	

initiation factor 4E-binding protein (4E-BP, FBgn0261560) (Alic et al., 2011; Jünger et 283	

al., 2003; Kang et al., 2017; Puig & Tjian, 2005; Zinke et al., 2002). In w1118 females, we 284	

found that the mRNA levels of InR, bmm, and 4E-BP were significantly lower in larvae 285	

reared on 2Y than in larvae raised on 1Y (Fig. 2A). This suggests IIS activity is 286	

significantly higher in females raised on 2Y than in females cultured on 1Y. To confirm 287	

this, we used the localization of a ubiquitously-expressed green fluorescent protein 288	

(GFP) fused to a pleckstrin homology (PH) domain (GFP-PH) as an additional readout 289	

of IIS activity. Because high levels of IIS activity raise the level of PIP3 at the plasma 290	

membrane, and PH domains bind specifically to PIP3, larvae with elevated IIS activity 291	
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show increased membrane localization of GFP-PH (Britton et al., 2002). We observed a 292	

significantly higher membrane localization of GFP-PH in females cultured on 2Y than in 293	

female larvae raised on 1Y (Fig. 2B), indicating enhanced IIS activity in females raised 294	

on 2Y. In w1118 males, we observed no significant difference in the mRNA levels of InR, 295	

bmm, and 4E-BP between larvae grown on 2Y compared with larvae cultured on 1Y 296	

(Fig. 2C). Further, there was no significant difference in GFP-PH membrane localization 297	

between males raised on 2Y and males reared on 1Y (Fig. 2D). Together, these results 298	

suggest that IIS activity was enhanced by a protein-rich diet in female larvae but not in 299	

males, revealing a previously unrecognized sex difference in diet-induced changes to 300	

IIS activity. 301	

 To determine whether this increased IIS activity is required in females for the 302	

ability to maximize body size in response to dietary protein, we measured pupal volume 303	

in larvae heterozygous for a hypomorphic mutation in the InR gene (InRE19/+) that were 304	

raised in either 1Y or 2Y. Previous studies have shown that while overall growth is 305	

largely normal in InRE19/+ heterozygous animals, growth that requires high levels of IIS 306	

activity is blunted (Chen et al., 1996; Rideout et al., 2012, 2015). In w1118 control 307	

females, larvae cultured on 2Y were significantly larger than larvae raised on 1Y (Fig. 308	

2E); however, the magnitude of this protein-dependent increase in pupal volume was 309	

smaller in InRE19/+ females (Fig. 2E; genotype:diet interaction p<0.0001; S1 Table). This 310	

suggests that nutrient-dependent body size plasticity was reduced in InRE19/+ females. 311	

Indeed, while we observed a sex difference in phenotypic plasticity in the w1118 control 312	

genotype (sex:diet interaction p<0.0001 S1 Table), the sex difference in nutrient-313	

dependent body size plasticity was abolished in the InRE19/+ genotype (Fig. 2E, F: 314	

sex:diet interaction p = 0.7104; S1 Table). Together, these results indicate that the 315	

nutrient-dependent upregulation of IIS activity in females is required for their increased 316	

phenotypic plasticity, and suggest that the sex difference in body size plasticity arises 317	

from the female-specific ability to enhance IIS activity in a protein-rich context.  318	

 319	

dilp2 is required for the nutrient-dependent upregulation of IIS activity and body 320	

size plasticity in females 321	

 322	
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Previous studies have identified changes to the production and release of dILPs as 323	

important mechanisms underlying nutrient-dependent changes to IIS activity and body 324	

size (Colombani et al., 2003; Géminard et al., 2009; Zhang et al., 2009). For example, 325	

the mRNA levels of dilp3 and dilp5, but not dilp2, decrease in response to nutrient 326	

withdrawal (Colombani et al., 2003; Géminard et al., 2009; Ikeya et al., 2002), and the 327	

release of dILPs 2, 3, and 5 from the IPCs is altered by changes in nutrient availability 328	

(Géminard et al., 2009; Kim & Neufeld, 2015). Interestingly, a recent study showed that 329	

late third-instar female larvae have increased dILP2 secretion compared with age-330	

matched males when the larvae were raised in a diet equivalent to 2Y (Rideout et al., 331	

2015). Given that dILP2 is an important growth-promoting dILP (Grönke et al., 2010; 332	

Ikeya et al., 2002), we tested whether dilp2 was required in females for the nutrient-333	

dependent upregulation of IIS activity. In control w1118 females, mRNA levels of 4E-BP 334	

and InR were significantly lower in larvae raised on 2Y than in larvae reared on 1Y (Fig. 335	

3A and Fig. S7A), suggesting a nutrient-dependent increase in IIS activity. In contrast, 336	

mRNA levels of 4E-BP and InR were not significantly lower in dilp2 female larvae raised 337	

on 2Y compared with genotype-matched females cultured on 1Y (Fig. 3A and Fig. S7A). 338	

In w1118 and dilp2 males, mRNA levels of 4E-BP were not significantly lower in larvae 339	

raised on 2Y compared with genotype-matched larvae cultured on 1Y (Fig. 3B), trends 340	

we also observed using InR (Fig. S7B). This data suggests that dilp2 is required for the 341	

nutrient-dependent upregulation of IIS activity in females in a protein-rich context. 342	

 To determine whether the inability to augment IIS activity on 2Y affects nutrient-343	

dependent body size plasticity in females, we measured body size in w1118 and dilp2 344	

mutant larvae cultured on either 1Y or 2Y. In w1118 control females, adult weight was 345	

significantly higher in flies cultured on 2Y compared with flies raised on 1Y (Fig. 3C); 346	

however, this nutrient-dependent increase in adult weight was not observed in dilp2 347	

mutant females (Fig. 3C; genotype:diet interaction p = 0.0024; S1 Table). In w1118 348	

control males and dilp2 mutant males, there was no significant increase in adult weight 349	

in flies raised on 2Y compared with genotype-matched flies cultured on 1Y (Fig. 3D; 350	

genotype:diet interaction p = 0.935; S1 Table). Indeed, in contrast to the sex difference 351	

in nutrient-dependent body size plasticity in the w1118 genotype (sex:diet interaction 352	

p<0.0001; S1 Table), the sex difference in phenotypic plasticity was abolished in the 353	
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dilp2 mutant genotype (sex:diet interaction p = 0.0827; S1 Table). Importantly, we 354	

replicated all these findings using pupal volume (Fig. 3E, F), and reproduced the 355	

female-specific effects of dilp2 loss by globally overexpressing a UAS-dilp2-RNAi 356	

transgene (Fig. S7C). Further, changes to dilp mRNA levels in males and females 357	

lacking dilp2 (Fig. S8A, B), and protein-dependent changes to dilp mRNA levels (Fig. 358	

S9A, B), were similar in both sexes. Thus, our data reveals a previously unrecognized 359	

female-specific requirement for dilp2 in triggering a nutrient-dependent increase in IIS 360	

activity and body size in a protein-rich context. 361	

 362	

A nutrient-dependent increase in stunted mRNA levels is required for enhanced 363	

IIS activity and body size plasticity in females 364	

 365	

Nutrient-dependent changes in dILP secretion from the IPCs, and consequently IIS 366	

activity, are mediated by humoral factors that are regulated by dietary nutrients (Britton 367	

& Edgar, 1998; Delanoue et al., 2016; Koyama & Mirth, 2016; Rajan & Perrimon, 2012; 368	

Rodenfels et al., 2014; Sano et al., 2015). For example, in a mixed-sex population of 369	

larvae, dietary protein augments mRNA levels of Growth-blocking peptides 1 and 2 370	

(Gbp1, FBgn0034199; Gbp2, FBgn0034200), CCHamide-2 (CCHa2; FBgn0038147), 371	

unpaired 2 (upd2; FBgn0030904), and sun (Delanoue et al., 2016; Koyama & Mirth, 372	

2016; Rajan & Perrimon, 2012; Sano et al., 2015). Increased levels of these humoral 373	

factors promote the secretion of IPC-produced dILPs to enhance IIS activity and growth 374	

(Delanoue et al., 2016; Koyama & Mirth, 2016; Meschi et al., 2019; Rajan & Perrimon, 375	

2012; Sano et al., 2015). To determine whether any humoral factors contribute to the 376	

sex-specific increase in IIS activity in a protein-rich diet, we examined mRNA levels of 377	

each factor in larvae of both sexes raised on either 1Y or 2Y. In w1118 females, sun 378	

mRNA levels in larvae reared on 2Y were significantly higher than in larvae cultured on 379	

1Y (Fig. 4A). In contrast, mRNA levels of Gbp1, Gbp2, CCHa2, and upd2 were not 380	

significantly higher in female larvae reared on 2Y compared with 1Y (Fig. S10A). Thus, 381	

while previous studies have shown that mRNA levels of all humoral factors were 382	

severely reduced by a nutrient-restricted diet or nutrient withdrawal (Delanoue et al., 383	

2016; Koyama & Mirth, 2016; Rajan & Perrimon, 2012; Sano et al., 2015), our study 384	
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suggests that for most factors, augmenting dietary protein beyond a widely-used level 385	

does not further enhance mRNA levels. In males, there was no significant increase in 386	

sun mRNA levels (Fig. 4B), or any other humoral factors (Fig. S10B), in larvae reared 387	

on 2Y compared with 1Y. Thus, there is a previously unrecognized sex difference in the 388	

regulation of sun mRNA levels in a protein-rich context. Given that sun has previously 389	

been shown to promote IIS activity by enhancing dILP2 secretion (Delanoue et al., 390	

2016), we hypothesized that the female-specific increase in sun mRNA levels in 2Y 391	

triggers the nutrient-dependent upregulation of IIS activity in females. To test this, we 392	

overexpressed UAS-sun-RNAi in the larval fat body using r4-GAL4, and cultured the 393	

animals on either 1Y or 2Y. Importantly, overexpression of the UAS-sun-RNAi 394	

transgene significantly decreased sun mRNA levels in both sexes (Fig. S10C, D), where 395	

GAL4 expression was similar between the sexes in 1Y and 2Y (Fig. S10E). In control 396	

r4>+ and +>UAS-sun-RNAi females, we observed a significant decrease in InR, bmm, 397	

and 4E-BP mRNA levels in larvae cultured on 2Y compared with genotype-matched 398	

larvae reared on 1Y (Fig. 4C). In contrast, the nutrient-dependent decrease in InR, bmm, 399	

and 4E-BP mRNA levels was absent in r4>UAS-sun-RNAi females (Fig. 4C). In r4>+, 400	

+>UAS-sun-RNAi, and r4>UAS-sun-RNAi males, we found no consistent indications of 401	

increased IIS activity in larvae cultured on 2Y compared with genotype-matched larvae 402	

raised on 1Y (Fig. S11A). Together, this data suggests that in females a protein-rich diet 403	

stimulates a nutrient-dependent increase in sun mRNA that enhances IIS activity. In 404	

males, the 2Y diet did not augment sun mRNA levels, suggesting one reason for the 405	

lack of a nutrient-dependent increase in IIS activity. 406	

 We next asked whether the female-specific increase in sun and its regulation of 407	

IIS activity contribute to nutrient-dependent body size plasticity. In r4>+ and +>UAS-408	

sun-RNAi control females, adult weight was significantly higher in flies cultured on 2Y 409	

compared with genotype-matched flies raised on 1Y (Fig. 4D). In contrast, the nutrient-410	

dependent increase in adult weight was abolished in r4>UAS-sun-RNAi females (Fig. 411	

4D; genotype:diet interaction p = 0.0014; S1 Table). This indicates r4>UAS-sun-RNAi 412	

females have reduced nutrient-dependent body size plasticity, a finding we confirmed 413	

using pupal volume (Fig. S11B). In r4>+, +>UAS-sun-RNAi, and r4>UAS-sun-RNAi 414	

male flies raised on 2Y, adult weight was not significantly higher than in genotype-415	
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matched males raised on 1Y (Fig. 4E; genotype:diet interaction p = 0.9278; S1 Table). 416	

Additionally, we replicated all these findings using pupal volume (Fig. S11C). 417	

Importantly, in contrast to the sex difference in nutrient-dependent body size plasticity 418	

we observed in the r4>+ and +>UAS-sun-RNAi control genotypes (sex:diet interaction p 419	

= 0.011 and p = 0.0005, respectively; S1 Table), the sex difference in phenotypic 420	

plasticity was abolished in the r4>UAS-sun-RNAi genotype (sex:diet interaction p = 421	

0.8749; S1 Table). This suggests that the female-specific increase in sun mRNA levels 422	

is required for the sex difference in nutrient-dependent plasticity. A sex-specific role for 423	

sun was further supported by the fact that we reproduced the female-specific effects of 424	

sun knockdown on body size using an additional GAL4 line (Fig. S12A), and by the fact 425	

that no other humoral factors caused sex-specific effects on body size (Fig. S12B, C). 426	

Further, while we show that fat body-specific sun overexpression was sufficient to 427	

increase body size in both sexes (Fig. S13A, B), body size plasticity in these larger 428	

males was not significantly different from control males (genotype:diet interaction p = 429	

0.4959, S1 Table), in line with our earlier data showing that augmenting body size in 430	

males was not sufficient to confer phenotypic plasticity (Fig. S6B). Thus, our data 431	

suggests that the female-specific ability to upregulate sun in the 2Y diet enhances IIS 432	

activity to promote a larger body size, revealing the mechanism by which females, and 433	

not males, augment body size in a protein-rich context. 434	

 435	

Sex determination gene transformer promotes nutrient-dependent body size 436	

plasticity in females 437	

 438	

We next investigated the increased ability of females to enhance IIS activity and 439	

augment body size in a protein-rich context. Given that previous studies have implicated 440	

sex determination gene tra in regulating body size in a diet equivalent to the 2Y diet 441	

(Rideout et al., 2015), and identified links between tra and IIS activity in this context 442	

(Rideout et al., 2015), we explored a role for tra in regulating the sex difference in the 443	

nutrient-dependent upregulation of IIS activity and body size plasticity. In control w1118 444	

females, 4E-BP mRNA levels were significantly lower in larvae raised on 2Y compared 445	

with larvae cultured on 1Y (Fig. 5A); however, this nutrient-dependent decrease in 4E-446	
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BP mRNA levels was absent in tra mutant females (tra1/Df(3L)st-j7) (Fig. 5A). Similarly, 447	

while sun mRNA levels in w1118 control females were significantly higher in larvae raised 448	

on 2Y compared with 1Y (Fig. 5B), this nutrient-dependent increase in sun mRNA levels 449	

was absent in tra mutant females (Fig. 5B). Thus, tra is required in females for the 450	

nutrient-dependent increase in sun mRNA and IIS activity in a protein-rich context. To 451	

determine whether the inability of tra mutant females to upregulate sun mRNA levels 452	

and IIS activity impacts nutrient-dependent body size plasticity, we measured body size 453	

in w1118 controls and tra mutants raised in 1Y and 2Y. In control w1118 females, adult 454	

weight was significantly higher in flies raised on 2Y compared with flies cultured on 1Y 455	

(Fig. 5C); however, this nutrient-dependent increase in adult weight was not observed in 456	

tra mutant females (Fig. 5C; genotype:diet interaction p<0.0001; S1 Table), a finding we 457	

reproduced using pupal volume (Fig. S14A). This indicates that tra mutant females have 458	

reduced nutrient-dependent body size plasticity compared with control females. In 459	

control w1118 and tra mutant males, adult weight was not significantly higher in flies 460	

raised on 2Y compared with genotype-matched flies reared on 1Y (Fig. 5D; 461	

genotype:diet interaction p = 0.4507). Importantly, we replicated all these findings using 462	

pupal volume (Fig. S14B). Given that we observed a sex difference in nutrient-463	

dependent body size plasticity in the w1118 genotype (sex:diet interaction p<0.0001; S1 464	

Table), but not in the tra mutant strain (sex:diet interaction p = 0.6598; S1 Table), our 465	

data reveals a previously unrecognized requirement for tra in regulating the sex 466	

difference in nutrient-dependent phenotypic plasticity. 467	

 To determine whether lack of a functional Tra protein in males explains their 468	

reduced nutrient-dependent body size plasticity, we overexpressed UAS-traF in all 469	

tissues using daughterless (da)-GAL4. We first asked whether tra overexpression 470	

impacted the nutrient-dependent regulation of sun mRNA and IIS activity. In control 471	

da>+ and +>UAS-traF males, there was no significant decrease in InR, bmm, or 4E-BP 472	

mRNA levels in larvae reared in 2Y compared with larvae raised in 1Y (Fig. 5E). In 473	

contrast, there was a significant nutrient-dependent decrease in mRNA levels of InR 474	

and bmm in da>UAS-traF males (Fig. 5E). Similarly, while sun mRNA levels in control 475	

da>+ and +>UAS-traF males were not significantly higher in larvae raised on 2Y 476	

compared with larvae reared on 1Y (Fig. 5F), there was a nutrient-dependent increase 477	
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in sun mRNA levels in da>UAS-traF males (Fig. 5F). This suggests the presence of a 478	

functional Tra protein in males confers the ability to upregulate sun mRNA levels and IIS 479	

activity in a protein-rich context. Next, we asked whether expressing a functional Tra 480	

protein in males would augment nutrient-dependent body size plasticity. In control da>+ 481	

and +>UAS-traF males, there was no significant increase in adult weight in flies raised 482	

on 2Y compared with genotype-matched flies reared on 1Y (Fig. 5G); however, there 483	

was a nutrient-dependent increase in da>UAS-traF males (Fig. 5G; genotype:diet 484	

interaction p = 0.0038; S1 Table), a finding we reproduced using pupal volume (Fig. 485	

S15A). Thus, da>UAS-traF males have increased phenotypic plasticity compared with 486	

control males, revealing a new role for tra in regulating nutrient-dependent body size 487	

plasticity. In females, we observed a significant increase in both adult weight and pupal 488	

volume in da>+, +>UAS-traF, and da>UAS-traF flies raised on the 2Y diet compared with 489	

genotype-matched females cultured on the 1Y diet (Fig. S15B, C). Because one study 490	

suggested high levels of Tra overexpression could cause lethality (Siera & Cline, 2008), 491	

we reproduced these findings using a recently published strain of flies in which adult 492	

males and females lacking tra (traKO), and adult males and females carrying a cDNA 493	

encoding the female-specific Tra protein knocked into the tra locus (traF K-IN), are 494	

produced from the same cross (Hudry et al., 2016, 2019). In line with tra1/Df(3L)st-j7 495	

females, traKO females had reduced body size plasticity compared with control w1118 and 496	

traF K-IN females in a protein-rich context (Fig. S15D; genotype:diet interaction p<0.0001 497	

S1 Table). As with da>UAS-traF males, we found that traF K-IN males, which express 498	

physiological levels of a functional Tra protein, showed increased nutrient-dependent 499	

body size plasticity compared with control w1118 and traKO males (Fig. S15E; 500	

genotype:diet interaction p<0.0001; S1 Table). Importantly, the sex difference in 501	

nutrient-dependent body size plasticity that we observed in the w1118 genotype (sex:diet 502	

interaction p<0.0001) was abolished in the traKO and traF K-IN genotypes (p = 0.5068 and 503	

p = 0.3168, respectively; S1 Table). Together, our findings reveal a new role for tra in 504	

regulating the sex difference in nutrient-dependent body size plasticity. 505	

These findings suggest that a functional Tra protein confers the ability to adjust 506	

body size in a protein-rich context via regulation of sun mRNA and IIS activity. To test 507	

this, we examined whether the ability to adjust sun mRNA levels is required for Tra’s 508	
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effects on phenotypic plasticity. Because animals homozygous for null mutations in sun 509	

are larval lethal (Kidd et al., 2005), and sun is located on the X chromosome which 510	

precludes studies on flies heterozygous for a sun mutant allele, we examined nutrient-511	

dependent body size plasticity in da>UAS-traF animals heterozygous for a hypomorphic 512	

allele of spargel (srl, FBgn0037248), the Drosophila homolog of peroxisome proliferator-513	

activated receptor gamma coactivator 1-alpha (PGC-1a). A previous study showed that 514	

srl/PGC-1a, an essential gene, was required for normal sun mRNA levels (Delanoue et 515	

al., 2016). Therefore, we predicted that heterozygous loss of srl/PGC-1a would blunt the 516	

nutrient-dependent increase in sun mRNA levels without compromising viability. While 517	

adult weight in da>UAS-traF males and females was significantly higher in flies raised 518	

on 2Y compared with flies cultured in 1Y (Fig. 6A, B), as in Fig. 5G and Fig. S15C, the 519	

nutrient-dependent increase in adult weight was abolished in da>UAS-traF males and 520	

females carrying a mutant allele of srl/PGC-1a (srl1) (Fig. 6A, B; genotype:diet 521	

interaction p = 0.0146 and p = 0.0008, respectively). This finding suggests that nutrient-522	

dependent body size plasticity was reduced in da>UAS-traF,srl1/+ flies compared with 523	

controls. Therefore, when taken together, our results indicate that the nutrient-524	

dependent upregulation of sun is important for tra’s ability to promote growth in a 525	

protein-rich context, revealing one mechanism by which Tra regulates body size 526	

plasticity. 527	

 528	

Increased nutrient-dependent body size plasticity in females promotes fecundity 529	

in a protein-rich context 530	

 531	

Previous studies have shown that plentiful nutrients during development maximize body 532	

size to promote fertility in Drosophila females (Bergland et al., 2008; Green & Extavour, 533	

2014; Grönke et al., 2010; Hodin & Riddiford, 2000; Mendes & Mirth, 2016; Robertson, 534	

1957a, 1957b; Sarikaya et al., 2012; Tu & Tatar, 2003), and that high levels of IIS 535	

activity are required for normal egg development, ovariole number, and fecundity 536	

(Green & Extavour, 2014; Grönke et al., 2010; Mendes & Mirth, 2016; Richard et al., 537	

2005). In line with these findings, w1118 female flies reared on 2Y produced significantly 538	

more eggs compared with genotype-matched females cultured on 1Y (Fig. 6C). This 539	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 19	

suggests that the ability to augment IIS activity and body size in response to a protein-540	

rich diet allows females to maximize fecundity in conditions where nutrients are plentiful. 541	

To test this, we measured the number of eggs produced by InRE19/+ females and w1118 542	

controls raised in either 1Y or 2Y. In contrast to w1118 females, the nutrient-dependent 543	

increase in egg production was absent in InRE19/+ females (Fig. 6C). Similarly, there 544	

was no diet-induced increase in egg production in dilp2 mutant females (Fig. 6D). These 545	

findings suggest that the nutrient-dependent increase in IIS activity and body size are 546	

important to promote fecundity in a protein-rich context. This result aligns with findings 547	

from a previous study showing that lifetime fecundity was significantly lower in dilp2 548	

mutants raised in a yeast-rich diet (Grönke et al., 2010). To extend our findings beyond 549	

dilp genes, we next examined fecundity in females with an RNAi-mediated reduction in 550	

sun. We found that the nutrient-dependent increase in egg production in r4>UAS-sun-551	

RNAi females was eliminated, in contrast to the robust diet-induced increase in 552	

fecundity in r4>+ and +>UAS-sun-RNAi control females (Fig. 6E). Together, this data 553	

suggests that dilp2 and fat body-derived sun play a role in maximizing IIS activity and 554	

body size to promote egg production in a protein-rich context. 555	

In males, which have a reduced ability to augment body size in response to a 556	

protein-rich diet, we also investigated the relationship between nutrient content, body 557	

size, and fertility. When we compared fertility in w1118 males reared on 1Y compared 558	

with males raised on 2Y, we found no significant difference in the number of offspring 559	

produced (Fig. 6F). Thus, neither male body size nor fertility were enhanced by rearing 560	

flies in a protein-rich environment. Given that previous studies suggest that a larger 561	

body size in males promotes reproductive success (Ewing, 1961; Partridge et al., 1987; 562	

Partridge & Farquhar, 1983), we next asked whether genetic manipulations that 563	

augment male body size also increased fertility. One way to augment male body size in 564	

1Y is heterozygous loss of phosphatase and tensin homolog (pten, FBgn0026379; 565	

pten2L100/+) (Fig. S6B). Interestingly, fertility was not significantly higher in pten2L100/+ 566	

males compared with w1118 controls raised in 1Y (Fig. 6F), suggesting that a larger body 567	

size does not always augment fertility in males. Similarly, when we measured fertility in 568	

r4>UAS-sun males, which are larger than control males (Fig. S13B), fertility was not 569	

significantly different from r4>+ and +>UAS-sun control males (Fig. 6G). Thus, in males 570	
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the relationship between body size and fertility is less robust than in females, as genetic 571	

manipulations that increase body size do not augment fertility. Interestingly, when we 572	

examined fertility in pten2L100/+ and r4>UAS-sun males in 2Y, fertility was significantly 573	

increased in pten2L100/+ males compared with genotype-matched controls cultured in 1Y 574	

(Fig. 6F), an observation we did not repeat in r4>UAS-sun males (Fig. 6G). Ultimately, 575	

this less robust and more complex relationship between body size and fertility in males 576	

suggests a possible explanation for their decreased nutrient-dependent body size 577	

plasticity compared with females. 578	

 579	

DISCUSSION 580	

 581	

In many animals, body size plasticity in response to environmental factors such as 582	

nutrition differs between the sexes (Fairbairn, 1997). While past studies have identified 583	

mechanisms underlying nutrient-dependent growth in a mixed-sex population, and 584	

revealed factors that promote sex-specific growth in a single nutritional context, the 585	

mechanisms underlying the sex difference in nutrient-dependent body size plasticity 586	

remain unknown. In this study, we showed that females have higher phenotypic 587	

plasticity compared with males when reared on a protein-rich diet, and elucidated the 588	

molecular mechanisms underlying the sex difference in nutrient-dependent body size 589	

plasticity in this context. Our data suggests a model in which high levels of dietary 590	

protein augment female body size by stimulating an increase in IIS activity, where we 591	

identified a requirement for dilp2 and sun in promoting this nutrient-dependent increase 592	

in IIS activity. Importantly, we discovered tra as the factor responsible for stimulating 593	

sun mRNA levels and IIS activity, identifying a novel role for sex determination gene tra 594	

in regulating nutrient-dependent body size plasticity. Together, our findings reveal one 595	

mechanism underlying the sex difference in nutrient-dependent body size plasticity.  596	

 One interesting finding from our study was the identification of a sex difference in 597	

nutrient-dependent changes to IIS activity. In females raised on a protein-rich diet, there 598	

was a nutrient-dependent upregulation of IIS activity. In males, this diet-induced 599	

increase in IIS activity was not observed. This reveals a previously unrecognized sex 600	

difference in the coupling between IIS activity and dietary protein: females tightly couple 601	
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nutrient input with IIS activity across a wide protein concentration range, whereas the 602	

close coordination between dietary protein and IIS activity in males was lost in a protein-603	

rich context. Our data shows that this sex difference in nutrient-dependent changes to 604	

IIS activity during development is physiologically significant, as it supports an increased 605	

rate of growth and consequently larger body size in females but not in males raised on a 606	

protein-rich diet. In future studies, it will be important to determine whether the sex 607	

difference in coupling between nutrients and IIS activity exist in other contexts. For 608	

example, previous studies on the extension of life span by dietary restriction have 609	

shown that male and female flies differ in the concentration of nutrients that produces 610	

the maximum life span extension, and in the magnitude of life span extension produced 611	

by dietary restriction (Magwere et al., 2004; Regan et al., 2016). Similar sex-specific 612	

effects of dietary restriction and reduced IIS on life span have also been observed in 613	

mice (Holzenberger et al., 2003; Kane et al., 2018; reviewed in Regan & Partridge, 2013; 614	

Selman et al., 2008) and humans (van Heemst et al., 2005). Future studies will be 615	

needed to determine whether a male-female difference in coupling between nutrients 616	

and IIS activity similarly explain these sex-specific life span responses to dietary 617	

restriction. Indeed, given that sex differences have been reported in the risk of 618	

developing diseases associated with overnutrition and dysregulation of IIS activity such 619	

as obesity and type 2 diabetes (Kautzky-Willer et al., 2016; Mauvais-Jarvis, 2018; 620	

Tramunt et al., 2020), more detailed knowledge of the male-female difference in 621	

coupling between nutrients and IIS activity in other models may provide insights into this 622	

sex-biased risk of disease. 623	

In addition to revealing a sex difference in the nutrient-dependent upregulation of 624	

IIS activity, our data identified a female-specific requirement for dilp2 and sun in 625	

mediating the diet-induced increase in IIS activity in a protein-rich context. While 626	

previous studies have shown that both dilp2 and sun positively regulate body size 627	

(Ikeya et al., 2002; Grönke et al., 2010; Delanoue et al 2016), we describe new sex-628	

specific roles for dilp2 and sun in mediating nutrient-dependent phenotypic plasticity. 629	

Elegant studies have shown that sun is a secreted factor that stimulates dILP2 release 630	

from the IPCs (Delanoue et al., 2016). Together with our data, this suggests a model in 631	

which the sex difference in nutrient-dependent body size plasticity is due to the diet-632	
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induced upregulation of sun in females and not males. Higher sun mRNA levels 633	

enhance dILP2 secretion to promote IIS activity and increase female body size in a 634	

protein-rich context. This model aligns well with findings from two previous studies on 635	

dILP2 secretion in male and female larvae. The first study, which raised larvae on a 636	

protein-rich diet equivalent to the 2Y diet, found increased dILP2 secretion in females 637	

compared to males (Rideout et al., 2015). The second study, which raised larvae on a 638	

diet equivalent to the 1Y diet, found no sex difference in dILP2 secretion and no effects 639	

of dilp2 loss on body size (Sawala & Gould, 2017). Thus, while these previous studies 640	

differed in their initial findings on a sex difference in dILP2 secretion, our data reconcile 641	

these minor differences by identifying context-dependent effects of dilp2 on body size. 642	

Future studies will need to determine whether these sex-specific and context-dependent 643	

effects of dilp2 are observed in other phenotypes regulated by dilp2 and other dilp 644	

genes. For example, flies carrying mutations in dilp genes show changes to aging, 645	

metabolism, sleep, and immunity, among other phenotypes (Bai et al., 2012; Brown et 646	

al., 2020; Cong et al., 2015; Grönke et al., 2010; Liu et al., 2016; Nässel & Vanden 647	

Broeck, 2016; Okamoto et al., 2009; Okamoto & Nishimura, 2015; Post et al., 2018, 648	

2019; Slaidina et al., 2009; Stafford et al., 2012; Zhang et al., 2009; Bai et al., 2012; 649	

Brogiolo et al., 2001; Brown et al., 2020; Cognigni et al., 2011; Cong et al., 2015; 650	

Grönke et al., 2010; Linneweber et al., 2014; Liu et al., 2016; Okamoto et al., 2009; Post 651	

et al., 2018, 2019; Semaniuk et al., 2018; Slaidina et al., 2009; Stafford et al., 2012; 652	

Suzawa et al., 2019; Ugrankar et al., 2018; Zhang et al., 2009). Further, it will be 653	

interesting to determine whether the sex-specific regulation of sun is observed in any 654	

other contexts, and whether it will influence sex differences in phenotypes associated 655	

with altered IIS activity, such as life span. 656	

While our findings on sun and dilp2 provide mechanistic insight into the 657	

molecular basis for the male-female difference in phenotypic plasticity in response to a 658	

protein-rich diet, a key finding from our study was the identification of sex determination 659	

gene tra as the factor that confers plasticity to females. Normally, nutrient-dependent 660	

body size plasticity is higher in females than in males in a protein-rich context. In 661	

females lacking a functional Tra protein, however, this increased nutrient-dependent 662	

body size plasticity was abolished. In males, which normally lack a functional Tra 663	
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protein, ectopic Tra expression conferred increased nutrient-dependent body size 664	

plasticity. A previous study showed that on the 2Y diet Tra promotes dILP2 secretion 665	

(Rideout et al., 2015); however, our current study extends this finding by identifying sun 666	

as one link between Tra and dILP2. Further, by demonstrating that Tra’s regulation of 667	

IIS activity and body size is context-dependent, we identify a previously unrecognized 668	

role for Tra in regulating nutrient-dependent body size plasticity. This new role for tra 669	

also accounts for minor differences between previous studies on the effects of tra on 670	

growth during development (Mathews et al., 2017; Rideout et al., 2015; Sawala & Gould, 671	

2017). While we extend these previous findings by showing that Tra confers nutrient-672	

dependent body size plasticity via sex-specific regulation of sun mRNA and IIS activity, 673	

it remains unclear how Tra regulates sun mRNA levels in response to dietary protein. 674	

Future studies will need to examine the basis for this sex-specific regulation, as recent 675	

studies have expanded the number of Tra-regulated genes beyond its canonical targets 676	

genes fruitless (fru; FBgn0004652) and doublesex (dsx; FBgn0000504) (Clough et al., 677	

2014; Hudry et al., 2016, 2019). In addition to these mechanistic studies, it will also be 678	

critical to explore how Tra couples sun mRNA regulation with dietary protein intake. 679	

Studies have shown that the tra locus is regulated both by alternative splicing and 680	

transcription (Belote et al., 1989; Boggs et al., 1987; Grmai et al., 2018; Inoue et al., 681	

1990; Sosnowski et al., 1989), and that the Tra protein is regulated by phosphorylation 682	

(Du et al., 1998). Our study therefore highlights the importance of additional studies on 683	

the regulation of the tra genomic locus and Tra protein to gain mechanistic insight into 684	

its effects on nutrient-dependent body size plasticity.  685	

 While the main outcome of our work was to reveal the molecular mechanisms 686	

that regulate the sex difference in nutrient-dependent body size plasticity, we also 687	

provide some insight into how genes that contribute to nutrient-dependent body size 688	

plasticity affect female fecundity and male fertility. Our findings align well with previous 689	

studies demonstrating that increased nutrient availability during development and a 690	

larger female body size confers increased ovariole number and fertility (Green & 691	

Extavour, 2014; Mendes & Mirth, 2016; Robertson, 1957a, 1957b), as females lacking 692	

either dilp2 or fat body-derived sun were unable to augment egg production in a protein-693	

rich context. Given that previous studies demonstrate IIS activity influences germline 694	
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stem cells in the ovary in adult flies (Hsu et al., 2008; Hsu & Drummond-Barbosa, 2009; 695	

Kao et al., 2015; LaFever & Drummond-Barbosa, 2005; Lin & Hsu, 2020; Su et al., 696	

2018), there is a clear reproductive benefit that arises from the tight coupling between 697	

nutrient availability, IIS activity, and body size in females. In males, however, the 698	

relationship between fertility and body size remains less clear. While larger males are 699	

more reproductively successful both in the wild and in laboratory conditions (Ewing, 700	

1961; Partridge & Farquhar, 1983), other studies revealed that medium-sized males 701	

were more fertile than both larger and smaller males (Lefranc & Bundgaard, 2000). 702	

Given that our study revealed no significant increase in the number of progeny 703	

produced by larger males, the fertility benefits that accompany a larger body size in 704	

males may be context-dependent. For example, studies have shown that a larger body 705	

size increases the ability of males to outcompete smaller males (Flatt, 2020; Partridge 706	

et al., 1987; Partridge & Farquhar, 1983). Thus, in crowded situations, a larger body 707	

size may provide significant fertility gains. On the other hand, in conditions where 708	

nutrients are limiting, an imbalance in the allocation of energy from food to growth rather 709	

than to reproduction may decrease fertility (Bass et al., 2007; Camus et al., 2017; 710	

Jensen et al., 2015; Wood et al., 2018). Future studies will therefore be needed to 711	

resolve the relationship between body size and fertility in males, as this will suggest the 712	

ultimate reason(s) for the sex difference in nutrient-dependent body size plasticity. 713	

 714	

MATERIALS AND METHODS 715	

Data Availability. Raw values for all data collected and displayed in this manuscript are 716	

available in S2 Table.  717	

 718	

Fly husbandry. Larvae were raised at a density of 50 animals per 10 ml food at 25°C 719	

(recipes in S3 Table), collected as indicated in figure legends, and sexed by gonad size. 720	

When gonad size could not be used to determine sex (e.g., tra mutants, da-GAL4>UAS-721	

traF), chromosomal females were identified by the presence of an X-linked GFP. Adult 722	

flies were maintained at a density of 20 flies per vial in single-sex groups. 723	

 724	
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Fly strains. The following fly strains from the Bloomington Drosophila Stock Center 725	

were used: Canton-S (#64349), w1118 (#3605), tra1 (#675), Df(3L)st-j7 (#5416), srl1 726	

(#14965), InRE19 (#9646), TRiP control (#36303) UAS-ilp2-RNAi (#32475), UAS-upd2-727	

RNAi (#33949), UAS-traF (#4590), da-GAL4 (ubiquitous), r4-GAL4 (fat body), cg-GAL4 728	

(fat body). The following fly strains from the Vienna Drosophila Resource Center were 729	

used in this study: UAS-sun-RNAi (GD23685), UAS-Gbp1-RNAi (KK108755) UAS-730	

Gbp2-RNAi (GD16696), UAS-CCHa2-RNAi (KK102257). Additional fly strains include: 731	

dilp2, pten2L100, UAS-sun, tGPH (GFP-PH). All genotypes used in the manuscript are 732	

listed in S4 Table. 733	

 734	

Body size. Pupal volume was measured in pupae sexed by gonad size as previously 735	

described (Delanoue et al., 2010; Marshall et al., 2012; Rideout et al., 2012, 2015). For 736	

adult weight, 5-day-old virgin male and female flies were weighed in groups of 10 in 1.5 737	

ml microcentrifuge tubes on an analytical balance. Wing length was measured as 738	

previously described (Garelli et al., 2012). 739	

 740	

Developmental timing. Larvae were placed into the experimental diet ±2 hr post-741	

hatching, and sexed using gonad size. Percent pupation was calculated by comparing 742	

the number of pupae at 12 hr intervals to the total larvae in the vial. 743	

 744	

Feeding behavior. Feeding behavior was quantified in sexed larvae by counting mouth 745	

hook contractions for 30 sec. 746	

  747	

RNA extraction and cDNA synthesis. One biological replicate represents ten larvae 748	

frozen on dry ice and stored at -80°C. Each experiment contained 3-4 biological 749	

replicates per sex, per genotype, and per diet, and each experiment was repeated twice. 750	

RNA was extracted using Trizol (Thermo Fisher Scientific; 15596018) according to 751	

manufacturer’s instructions, as previously described (Marshall et al., 2012; Rideout et 752	

al., 2012, 2015; Wat et al., 2020). cDNA synthesis was performed using the QuantiTect 753	

Reverse Transcription Kit according to manufacturer’s instructions (Qiagen; 205314). 754	

 755	
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Quantitative real-time PCR (qPCR). qPCR was performed as previously described 756	

(Rideout et al., 2012, 2015; Wat et al., 2020). A complete primer list is available in S5 757	

Table.  758	

 759	

Fecundity and fertility. For female fecundity, single 6-day-old virgin female flies raised 760	

as indicated were crossed to three age-matched CS virgin males for a 24 hr mating 761	

period. Flies were transferred to fresh food vials with blue 2Y food to lay eggs. The 762	

number of eggs laid over 24 hr was quantified. For male fertility, single 6-day-old virgin 763	

males were paired with three 6-day-old virgin CS females to mate, and females were 764	

allowed to lay eggs for 24 hr. The number of progeny was quantified by counting viable 765	

pupae. 766	

 767	

Microscopy. GFP-PH larvae were picked into 1Y or 2Y food. Larvae were dissected 768	

108 hr after egg laying (AEL) and inverted carcasses were fixed for 30 minutes in 4% 769	

paraformaldehyde in phosphate buffered saline (PBS) at room temperature. Carcasses 770	

were rinsed twice with PBS, once in 0.1% Triton-X in PBS (PBST) for 5 minutes, then 771	

incubated with Hoechst (5 µg/mL, Life Technologies H3570), LipidTOX Red (1:100, 772	

Thermo Fisher Scientific H34476), and phalloidin fluor 647 (1:1000, Abcam ab176759) 773	

in PBST for 40 min. The stained carcasses were washed with PBS and mounted in 774	

SlowFade Diamond (Thermo Fisher Scientific S36972). Images were acquired with a 775	

Leica SP5 (20X). Mean GFP intensity was quantified at the cell surface (marked by 776	

phalloidin) and in the cytoplasm using Fiji (Schindelin et al., 2012). Three cells per fat 777	

body were measured, and at least five fat bodies per sex and per diet were measured. 778	

 779	

Statistics and data presentation. Statistical analyses and data presentation were 780	

carried out using Prism GraphPad 6 (GraphPad Prism version 6.0.0 for Mac OS X, . 781	

Statistical tests are indicated in figure legends and all p-values are listed in S1 Table. 782	

 783	
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Figure 1. Increased female body size plasticity in a protein-rich diet. (A) Pupal 1368	

volume was significantly higher in w1118 males and females cultured on a widely-used 1369	

diet (1✕) compared with larvae raised on a reduced-nutrient diet (0.5✕) (p<0.0001 and p 1370	

= 0.0006, respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of 1371	

this increase in pupal volume was the same in both sexes (sex:diet interaction p = 1372	

0.7048; two-way ANOVA followed by Tukey HSD test). Pupal volume was significantly 1373	

higher in w1118 males and females raised on a nutrient-rich diet (2✕) compared with 1374	

larvae cultured on 1✕ (p<0.0001 for both; two-way ANOVA followed by Tukey HSD test); 1375	

however, the magnitude of the increase in body size was significantly larger in females 1376	

than in males (sex:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD 1377	

test). (B) Reaction norms for pupal volume in w1118 larvae raised on diets of varying 1378	

quantity (0.5✕, 1✕, 2✕), plotted using data presented in panel A. n = 43-100 pupae. (C) 1379	

Adult weight was significantly higher in w1118 males and females cultured on 1✕ 1380	

compared with flies raised on 0.5✕ (p<0.0001 for both sexes; two-way ANOVA followed 1381	

by Tukey HSD test). The magnitude of this increase in adult weight was the same in 1382	

both sexes (sex:diet interaction p = 0.3197; two-way ANOVA followed by Tukey HSD 1383	

test). Adult weight was significantly higher in w1118 females raised on 2✕ compared to 1384	

flies cultured on 1✕; however, male adult weight was not significantly increased 1385	

(p<0.0001 and p = 0.4015, respectively; two-way ANOVA followed by Tukey HSD test), 1386	

where the diet-dependent increase in adult weight was higher in females (sex:diet 1387	

interaction p = 0.0003; two-way ANOVA followed by Tukey HSD test). (D) Reaction 1388	

norms for adult weight in response to changes in nutrient quantity in w1118 females and 1389	

males, plotted using the data presented in panel C. n = 6-11 groups of 10 flies. (E) 1390	

Pupal volume was significantly higher in both males and females cultured on a yeast-1391	

rich medium (2Y) compared with larvae raised on a diet containing half the quantity of 1392	

yeast (1Y) (p<0.0001 for both sexes; two-way ANOVA followed by Tukey HSD test); 1393	

however, the magnitude of the nutrient-dependent increase in pupal volume was larger 1394	

in females than in males (sex:diet interaction p = 0.0001; two-way ANOVA followed by 1395	

Tukey HSD test). (F) Reaction norms for pupal volume in response to changes in 1396	

dietary yeast in w1118 females and males, plotted using the data in panel E. n = 62-80 1397	

pupae. (G) Adult weight was significantly higher in females cultured on 2Y compared 1398	
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with flies raised on 1Y; however, male adult weight was not significantly higher in flies 1399	

raised on 2Y compared with males cultured on 1Y (p<0.0001 and p = 0.7199, 1400	

respectively; two-way ANOVA followed by Tukey HSD test, sex:diet interaction 1401	

p<0.0001). (H) Reaction norms for adult weight in w1118 females and males reared on 1402	

either 1Y or 2Y, plotted using data from panel G. n = 7-11 groups of 10 flies. For body 1403	

size plasticity graphs, filled circles indicate mean body size, and dashed lines indicate 1404	

95% confidence interval. *** indicates p<0.001, **** indicates p<0.0001; ns indicates not 1405	

significant; error bars indicate SEM. 1406	

 1407	
 1408	

  1409	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 57	

 1410	

 1411	
 1412	
 1413	
 1414	
 1415	
 1416	
 1417	
 1418	
 1419	
 1420	
 1421	
 1422	
 1423	
 1424	
 1425	
 1426	
 1427	
 1428	
 1429	
 1430	
 1431	
 1432	
 1433	
 1434	
 1435	
 1436	
 1437	
 1438	
 1439	
 1440	
 1441	
 1442	
 1443	
 1444	
 1445	
 1446	
 1447	

Figure 2. Upregulation of IIS activity is required for increased nutrient-dependent 1448	

body size plasticity in females. (A) In females, mRNA levels of the insulin receptor 1449	

(InR), brummer (bmm), and eukaryotic initiation factor 4E-binding protein (4E-BP) were 1450	

significantly lower in larvae raised on a protein-rich diet (2Y) compared with larvae 1451	

raised on a diet containing half the protein content (1Y) (p = 0.0009, 0.0019, and 0.0077, 1452	
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respectively; Student’s t test). n = 8 biological replicates. (B) Quantification of the ratio 1453	

between cell surface membrane-associated green fluorescent protein (GFP) and 1454	

cytoplasmic GFP fluorescence (GFP ratio [M:C]) in a dissected fat body of female 1455	

larvae from the GFP-PH strain. The GFP ratio was significantly higher in female larvae 1456	

cultured on 2Y compared with larvae raised on 1Y (p = 0.001; Student’s t test). n = 18 1457	

biological replicates. (C) In males, there was no significant difference in InR, bmm, or 1458	

4E-BP mRNA levels between larvae raised on 2Y compared with larvae cultured on 1Y 1459	

(p = 0.291, 0.6994, and 0.666, respectively; Student’s t test). n = 6-7 biological 1460	

replicates. (D) In males, the GFP ratio (M:C) was not significantly different between 1461	

males cultured on 2Y compared with larvae raised on 1Y (p = 0.0892; Student’s t test). 1462	

n = 15-18 biological replicates. (E) Pupal volume was significantly higher in both w1118 1463	

females and InRE19/+ females reared on 2Y compared with genotype-matched females 1464	

cultured on 1Y (p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD 1465	

test); however, the magnitude of the nutrient-dependent increase in pupal volume was 1466	

lower in InRE19/+ females (genotype:diet interaction p<0.0001; two-way ANOVA 1467	

followed by Tukey HSD test). n = 58-77 pupae. (F) Pupal volume was significantly 1468	

higher in both w1118 males and InRE19/+ males reared on 2Y compared with genotype-1469	

matched males cultured on 1Y (p<0.0001 for both genotypes; two-way ANOVA followed 1470	

by Tukey HSD test). While we observed a sex:diet interaction in the w1118 control 1471	

genotype, there was no sex:diet interaction in the InRE19/+ genotype (p<0.0001 and p = 1472	

0.7104, respectively; two-way ANOVA followed by Tukey HSD test). n = 47-76 pupae. 1473	

For body size plasticity graphs, filled circles indicate mean body size, and dashed lines 1474	

indicate 95% confidence interval. ** indicates p<0.01, *** indicates p<0.001, ns indicates 1475	

not significant; error bars indicate SEM. 1476	

 1477	
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 1479	

Figure 3. Drosophila insulin-like peptide 2 is required for the nutrient-dependent 1480	

upregulation of insulin pathway activity and increased female body size plasticity. 1481	

(A) In control w1118 females, mRNA levels of eukaryotic initiation factor 4E-binding 1482	

protein (4E-BP) were significantly lower in larvae cultured on a protein-rich diet (2Y) 1483	

compared with larvae raised on a diet containing half the protein content (1Y) (p = 1484	

0.0003; Student’s t test). In dilp2 mutant females, there was no significant difference in 1485	
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4E-BP mRNA levels in larvae cultured on 2Y compared with larvae raised on 1Y (p = 1486	

0.5563; Student’s t test). n = 8 biological replicates. (B) In control w1118 and dilp2 mutant 1487	

males, mRNA levels of 4E-BP were not significantly lower in larvae cultured on 2Y 1488	

compared with larvae raised on 1Y (p = 0.1429 and p = 0.207, respectively; 1489	

Student’s t test). n = 7-8 biological replicates. (C) Adult weight was significantly higher in 1490	

w1118 females raised on 2Y compared with flies cultured on 1Y (p<0.0001; two-way 1491	

ANOVA followed by Tukey HSD test); however, adult weight was not significantly 1492	

different between dilp2 mutant females reared on 2Y versus 1Y (p = 0.1263; two-way 1493	

ANOVA followed by Tukey HSD test). n = 7-11 groups of 10 flies. (D) Adult weight in 1494	

control w1118 and dilp2 mutant males was not significantly higher in flies reared on 2Y 1495	

compared with males raised on 1Y (p = 0.8366 and p = 0.8817, respectively; two-way 1496	

ANOVA followed by Tukey HSD test). There was a significant sex:diet interaction in the 1497	

control w1118 genotype (p<0.0001), but not in the dilp2 mutant genotype (p = 0.0827; 1498	

two-way ANOVA followed by Tukey HSD test). n = 10-12 groups of 10 flies. (E) Pupal 1499	

volume was significantly higher in w1118 females but not in dilp2 mutant females reared 1500	

on 2Y compared with genotype-matched females cultured on 1Y (p<0.0001 and p = 1501	

0.6486 respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of 1502	

the nutrient-dependent increase in pupal volume was higher in w1118 females 1503	

(genotype:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 1504	

74-171 pupae. (F) Pupal volume was significantly higher in w1118 males and dilp2 1505	

mutant males reared on 2Y compared with genotype-matched males cultured on 1Y 1506	

(p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD test). The 1507	

magnitude of the nutrient-dependent increase in pupal volume was not different 1508	

between genotypes (genotype:diet interaction p = 0.6891; two-way ANOVA followed by 1509	

Tukey HSD test). n = 110-135 pupae. For all body size plasticity graphs, filled circles 1510	

indicate mean body size, and dashed lines indicate 95% confidence interval. *** 1511	

indicates p<0.001; ns indicates not significant; error bars indicate SEM. 1512	

 1513	

 1514	
  1515	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 61	

 1516	
 1517	
 1518	
 1519	
 1520	
 1521	
 1522	
 1523	
 1524	
 1525	
 1526	
 1527	
 1528	
 1529	
 1530	
 1531	
 1532	
 1533	
 1534	
 1535	
 1536	
 1537	
 1538	
 1539	
 1540	
 1541	
 1542	
 1543	
 1544	
 1545	
 1546	
 1547	
 1548	
 1549	
 1550	
 1551	
 1552	
 1553	
 1554	
 1555	
 1556	
 1557	

Figure 4. stunted is required for the nutrient-dependent upregulation of insulin 1558	

pathway activity and increased female body size plasticity. (A) In females, mRNA 1559	

levels of stunted (sun)RA, but not sunRB, were significantly higher in larvae cultured on a 1560	
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protein-rich diet (2Y) compared with larvae raised on a diet containing half the protein 1561	

content (1Y) (p = 0.0055 and p = 0.2327, respectively; Student’s t test). n = 8 biological 1562	

replicates. (B) In males, mRNA levels of sunRA and sunRB were not significantly different 1563	

in larvae raised on 2Y compared with larvae raised on 1Y (p = 0.5832 and p = 0.2017, 1564	

respectively; Student’s t test). n = 7-8 biological replicates. (C) In control r4>+ and 1565	

+>UAS-sun-RNAi females, mRNA levels of the insulin receptor (InR), brummer (bmm), 1566	

and eukaryotic initiation factor 4E-binding protein (4E-BP) mRNA levels were 1567	

significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y (p = 1568	

0.0032, p<0.0001, and 0.0041 [r4>+], and 0.0074, 0.0281, p<0.0001 [+>UAS-sun-RNAi], 1569	

respectively; Student’s t test). In contrast, mRNA levels of InR and bmm were not 1570	

significantly different in r4>UAS-sun-RNAi females raised on 2Y compared with 1571	

genotype-matched females reared on 1Y (p = 0.5897 and p = 0.5297, respectively; 1572	

Student’s t test) and levels of 4E-BP were significantly higher (p = 0.0094; Student’s t 1573	

test). n = 8 biological replicates. (D) Adult weight was significantly higher in female flies 1574	

raised in 2Y compared with females raised in 1Y in r4>+ and +>UAS-sun-RNAi controls 1575	

(p<0.0001 for both genotypes; two-way ANOVA followed by Tukey HSD test); however, 1576	

adult weight was not significantly different between r4>UAS-sun-RNAi females reared 1577	

on 2Y compared with genotype-matched females raised on 1Y (p = 0.5035; two-way 1578	

ANOVA followed by Tukey HSD test). n = 7-10 groups of 10 flies. (E) Adult weight was 1579	

not significantly higher in male flies reared in 2Y compared with males cultured in 1Y for 1580	

r4>+ and +>UAS-sun-RNAi controls or r4>UAS-sun-RNAi males (p = 0.8883, 0.6317, 1581	

and 0.554, respectively; two-way ANOVA followed by Tukey HSD test). There was a 1582	

significant sex:diet interaction in the r4>+ and +>UAS-sun-RNAi control genotypes (p = 1583	

0.011 and p = 0.0005, respectively; two-way ANOVA followed by Tukey HSD test), but 1584	

no sex:diet interaction in the r4>UAS-sun-RNAi genotype (p = 0.8749; two-way ANOVA 1585	

followed by Tukey HSD test). n = 6-9 groups of 10 flies. For all body size plasticity 1586	

graphs, filled circles indicate mean body size, and dashed lines indicate 95% 1587	

confidence interval. * indicates p<0.05, ** indicates p<0.01, **** indicates p<0.0001; ns 1588	

indicates not significant; error bars indicate SEM. 1589	

 1590	

 1591	
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Figure 5. Sex determination gene transformer regulates increased nutrient-1596	

dependent body size plasticity in females. (A) In control w1118 females, mRNA levels 1597	

of eukaryotic initiation factor 4E-binding protein (4E-BP) were significantly lower in 1598	

larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet 1599	

containing half the protein content (1Y) (p = 0.0013; Student’s t test). In tra1/Df(3L)st-j7 1600	

females, there was no significant difference in 4E-BP mRNA levels between larvae 1601	

cultured on 2Y compared with larvae raised on 1Y (p = 0.2095; Student’s t test). n = 8 1602	

biological replicates (B) In control females, mRNA levels of sunRA were significantly 1603	

higher in larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.0011; 1604	

Student’s t test); however, in tra1/Df(3L)st-j7 females there was no significant difference 1605	

in sunRA mRNA levels between larvae cultured on 2Y compared with larvae raised on 1606	

1Y (p = 0.1644; Student’s t test). n = 8 biological replicates. (C) Adult weight was 1607	

significantly higher in w1118 females raised on 2Y compared with females reared on 1Y 1608	

(p<0.0001; two-way ANOVA followed by Tukey HSD test); however, there was no 1609	

significant difference in adult weight between tra1/Df(3L)st-j7 females cultured on 2Y 1610	

compared with genotype-matched females raised on 1Y (p = 0.9617; two-way ANOVA 1611	

followed by Tukey HSD test). n = 7-8 groups of 10 flies. (D) Adult weight was not 1612	

significantly higher in either w1118 control or tra1/Df(3L)st-j7 mutant males in flies raised 1613	

on 2Y compared with males reared on 1Y (p = 0.7808 and p = 0.9983, respectively; 1614	

two-way ANOVA followed by Tukey HSD test). There was a significant sex:diet 1615	

interaction in the w1118 control genotype (p<0.0001; two-way ANOVA followed by Tukey 1616	

HSD test); however, there was no sex:diet interaction in the tra1/Df(3L)st-j7 genotype (p 1617	

= 0.6598; two-way ANOVA followed by Tukey HSD test). n = 6-8 groups of 10 flies. (E) 1618	

In control da>+ males, mRNA levels of the insulin receptor (InR), brummer (bmm), and 1619	

4E-BP were not significantly different between larvae cultured on 2Y compared with 1620	

larvae raised on 1Y (p = 0.2418, 0.2033, and 0.0769, respectively; Student’s t test). In 1621	

+>UAS-traF males, mRNA levels of InR, bmm, and 4E-BP were significantly increased 1622	

between larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.0088, 0.035, 1623	

and 0.0052, respectively; Student’s t test). In da>UAS- traF males, mRNA levels of InR 1624	

and bmm were significantly lower in larvae cultured on 2Y compared with larvae raised 1625	

on 1Y (p = 0.0007 and 0.0388, respectively; Student’s t test), and levels of 4E-BP were 1626	
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not significantly altered (p = 0.103; Student’s t test). n = 6-8 biological replicates. (F) In 1627	

control da>+ and +>UAS-traF males, mRNA levels of sunRA were not significantly 1628	

different between larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.2064 1629	

and p = 0.0711, respectively; Student’s t test). In contrast, da>UAS-traF males showed a 1630	

significant increase in mRNA levels of sunRA in larvae cultured on 2Y compared with 1631	

males raised on 1Y (p = 0.0013; Student’s t test). n = 6-8 biological replicates. (G) Adult 1632	

weight was not significantly higher in da>+ and +>UAS-traF control males reared on 2Y 1633	

compared with genotype-matched males flies cultured on 1Y (p = 0.5186 and p = 1634	

0.8858, respectively; two-way ANOVA followed by Tukey HSD test); however, there 1635	

was a significant increase in adult weight between da>UAS-traF males cultured on 2Y 1636	

compared with genotype-matched flies raised on 1Y (p<0.0001; two-way ANOVA 1637	

followed by Tukey HSD test). n = 7-8 groups of 10 flies. For body size plasticity graphs, 1638	

filled circles indicate mean body size, and dashed lines indicate 95% confidence interval. 1639	

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001; ns indicates not significant; 1640	

error bars indicate SEM. 1641	

 1642	
  1643	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 66	

 1644	

0

20

40

60

N
um

be
r o

f o
ffs

pr
in

g

Fertility - Male

*ns

w1118
1Y 1Y2Y 2Y

pten2L100/+

ns

0

25

50

N
um

be
r o

f e
gg

s 
la

id

Fecundity - Female

ns****

w1118
1Y 1Y2Y 2Y

dilp2

**

Figure 6.

0

10

20

30

N
um

be
r o

f e
gg

s 
la

id

ns***

w1118
1Y 1Y2Y 2Y

InRE19/+

Fecundity - Female

0

10

20

30

40

N
um

be
r o

f e
gg

s 
la

id

r4>+

1Y 1Y2Y 2Y 1Y 2Y

+>sun-
RNAi

r4>sun-
RNAi

Fecundity - Female

*********

****

C D

E F

0

20

40

60

N
um

be
r o

f o
ffs

pr
in

g

nsnsns

r4>+

1Y 1Y2Y 2Y1Y 2Y

r4>sun+>sun

Fertility - Male

ns

G

10

13

16

Ad
ul

t w
ei

gh
t (

m
g)

2Y1Y

Body Size Plasticity - Female 

UAS-traF/+;
da-GAL4/+
UAS-traF/+;
da-GAL4/srl1

7

10

13

Ad
ul

t w
ei

gh
t (

m
g)

2Y1Y

Body Size Plasticity - Male 

UAS-traF/+;
da-GAL4/+
UAS-traF/+;
da-GAL4/srl1

A B

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 67	

Figure 6. Increased nutrient-dependent body size plasticity in females promotes 1645	

fertility. (A) Adult weight was higher in da>UAS-traF males raised on a protein-rich diet 1646	

(2Y) compared with da>UAS-traF males reared on a diet containing half the protein 1647	

content (1Y) (p<0.0001; two-way ANOVA followed by Tukey HSD test). In contrast, the 1648	

nutrient-dependent increase in adult weight was abolished in da>UAS-traF males 1649	

heterozygous for a loss-of-function allele of spargel (srl1) (p = 0.2811; two-way ANOVA 1650	

followed by Tukey HSD test). n = 6-8 groups of 10 flies. (B) Adult weight was higher in 1651	

da>UAS-traF females raised on 2Y compared with da>UAS-traF females reared on 1Y 1652	

(p<0.0001; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-1653	

dependent increase in adult weight was absent in da>UAS-traF females heterozygous 1654	

for srl1 (p = 0.2927; two-way ANOVA followed by Tukey HSD test). n = 6-7 groups of 10 1655	

flies. (C) In control w1118 females there was a significant increase in the number of eggs 1656	

laid by females raised on 2Y compared with females cultured on 1Y (p = 0.0009; 1657	

Student’s t test); however, there was no significant difference in the number of eggs laid 1658	

between InRE19/+ females cultured on 2Y compared with genotype-matched females 1659	

raised on 1Y (p = 0.617; Student’s t test). n = 19-20 biological replicates. (D) In control 1660	

w1118 females, there was a significant increase in the number of eggs laid by females 1661	

raised on 2Y compared with females cultured on 1Y (p<0.0001; Student’s t test); 1662	

however, there was no significant difference in the number of eggs laid between dilp2 1663	

mutant females cultured on 2Y compared with females raised on 1Y (p = 0.4105; 1664	

Student’s t test). n = 28-30 biological replicates. (E) In control r4>+ and +>UAS-sun-1665	

RNAi females there was a significant increase in the number of eggs laid by females 1666	

raised on 2Y compared with control females cultured on 1Y (p<0.0001 for both 1667	

genotypes; Student’s t test). In r4>UAS-sun-RNAi females, the number of eggs laid by 1668	

females cultured on 2Y was lower than females raised on 1Y (p = 0.0243; 1669	

Student’s t test). n = 20 biological replicates. (F) In control w1118 males there was no 1670	

significant difference in the number of offspring produced between a 1Y and 2Y diet (p = 1671	

0.3662; Student’s t test). There was also no significant difference in the number of 1672	

offspring produced between control w1118 males and males heterozygous for a loss-of-1673	

function allele of phosphatase and tensin homolog (pten; genotype pten2L100/+) raised 1674	

on 1Y (p = 0.4003; Student’s t test). Unlike control males, pten2L100/+ males reared on 1675	
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2Y produced significantly more offspring than genotype-matched males raised on 1Y (p 1676	

= 0.0137; Student’s t test). n = 11 biological replicates. (G) In control r4>+ and +>UAS-1677	

sun and experimental r4>UAS-sun males, there was no significant effect on the number 1678	

of offspring produced between a 1Y and 2Y diet (p = 0.9222, 0.0595, and 0.32 1679	

respectively; Student’s t test). There was also no significant difference in the number of 1680	

offspring produced between control r4>+, +>UAS-sun males and experimental r4>UAS-1681	

sun males raised on 1Y (p = 0.9723 and p = 0.9969 respectively; one-way ANOVA 1682	

followed by Tukey HSD test). n = 8-10 groups of 10 flies. For body size plasticity graphs, 1683	

filled circles indicate mean body size, and dashed lines indicate 95% confidence interval. 1684	

* indicates p<0.05, *** indicates p<0.001, **** indicates p<0.0001; ns indicates not 1685	

significant; error bars indicate SEM. 1686	

 1687	
 1688	
  1689	
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SUPPLEMENTAL FIGURES 1690	

 1691	
 1692	
 1693	
 1694	
 1695	
 1696	
 1697	
 1698	
 1699	
 1700	
 1701	
 1702	
 1703	

 1704	

 1705	

Figure S1. Increased nutrient-dependent body size plasticity in Canton-S females. 1706	

(A) Pupal volume was significantly higher in both Canton-S (CS) females and males 1707	

reared on a protein-rich diet (2Y) compared with genotype-matched females and males 1708	

cultured on a diet containing half the protein concentration (1Y) (p<0.0001 for both 1709	

sexes; two-way ANOVA followed by Tukey HSD test); however, the magnitude of the 1710	

nutrient-dependent increase in pupal volume was higher in females (sex:diet interaction 1711	

p<0.0001; two-way ANOVA followed by Tukey HSD test). (B) Reaction norms for pupal 1712	

volume in response to changes in yeast quantity in CS females and males, plotted using 1713	

the data in panel A. n = 57-95 pupae. For body size plasticity graphs, filled circles 1714	

indicate mean pupal volume, and dashed lines indicate 95% confidence interval. **** 1715	

indicates p<0.0001; error bars indicate SEM. 1716	
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 1719	
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 1721	
 1722	
 1723	
 1724	
 1725	
 1726	
 1727	
 1728	
 1729	
 1730	
Figure S2. Increased nutrient-dependent plasticity in female wing size. (A) Wing 1731	

length was significantly higher in both w1118 females and males reared on a protein-rich 1732	

diet (2Y) compared with genotype-matched females and males cultured on a diet 1733	

containing half the protein content (1Y) (p<0.0001 and p = 0.0018 for females and 1734	

males respectively; two-way ANOVA followed by Tukey HSD test). The magnitude of 1735	

the nutrient-dependent increase in wing length was higher in females (sex:diet 1736	

interaction p = 0.0004; two-way ANOVA followed by Tukey HSD test). n = 16-28 wings. 1737	

For wing size plasticity graphs, filled circles indicate mean wing length, and dashed 1738	

lines indicate 95% confidence interval. 1739	
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 1742	
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 1744	
 1745	
 1746	
 1747	
 1748	
 1749	
 1750	
 1751	
 1752	
 1753	
Figure S3. No sex-specific effect of altering dietary sugar concentration or calorie 1754	

content. (A) Pupal volume was significantly decreased in both w1118 females and males 1755	

reared on a diet with twice the sugar (2S) compared with genotype-matched females 1756	

and males cultured on a diet with the sugar content of our regular diet (1S) (p<0.0001 1757	

and p = 0.0002 for females and males respectively; two-way ANOVA followed by Tukey 1758	

HSD test). The magnitude of the nutrient-dependent decrease in pupal volume was not 1759	

different between females and males (sex:diet interaction p = 0.6536; two-way ANOVA 1760	

followed by Tukey HSD test). n = 117-133 pupae. (B) While pupal volume was 1761	

significantly decreased in w1118 females and not males reared on a 2Y calorie-matched 1762	

diet compared with genotype-matched females and males cultured on a 1Y calorie-1763	

matched diet (p = 0.0039 and p = 0.0662 respectively; two-way ANOVA followed by 1764	

Tukey HSD test), there was no sex:diet interaction indicating that one sex was not more 1765	

affected than the other (sex:diet interaction p = 0.3698; two-way ANOVA followed by 1766	

Tukey HSD test). n = 44-74 pupae. For body size plasticity graphs, filled circles indicate 1767	

mean pupal volume, and dashed lines indicate 95% confidence interval. 1768	
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Figure S4. Pharmacological inhibition of protein breakdown has female-biased 1782	

effects on body size. (A) Pupal volume was significantly higher in both w1118 females 1783	

and males reared on a protein-rich diet (2Y) compared with genotype-matched females 1784	

and males cultured on 2Y containing a broad-spectrum protease inhibitor cocktail (PIC) 1785	

(p<0.0001 and p = 0.0185 for females and males respectively; two-way ANOVA 1786	

followed by Tukey HSD test). Importantly, the magnitude of the effect of inhibiting 1787	

protein breakdown on pupal volume was higher in females (sex:treatment interaction p 1788	

= 0.0029; two-way ANOVA followed by Tukey HSD test). n = 57-92 pupae. (B) Pupal 1789	

volume was significantly higher in both w1118 females and males reared on 2Y 1790	

compared with genotype-matched females and males cultured on 2Y containing a 1791	

serine protease-specific inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 1792	

(AEBSF) (p<0.0001 for both sexes; two-way ANOVA followed by Tukey HSD test); 1793	

however, the magnitude of the effect of inhibiting protein breakdown on pupal volume 1794	

was higher in females (sex:treatment interaction p<0.0001; two-way ANOVA followed by 1795	

Tukey HSD test). n = 28-66 pupae. ** indicates p<0.01; **** indicates p<0.0001; error 1796	

bars indicate SEM. 1797	
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Figure S5. No sex difference in food intake or time to pupation. (A) There was no 1843	

significant difference in mouth hook contractions between w1118 control male and female 1844	
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larvae raised on a diet containing a widely-used protein content (1Y) (p = 0.3965; 1845	

Student’s t test), or a protein-rich diet (2Y) (p = 0.5175; Student’s t test). n = 20 1846	

biological replicates. (B) There was no sex difference in the time to pupation between 1847	

w1118 control male and female larvae when cultured on 1Y. n = 79-93 pupae. (C) There 1848	

was no sex difference in the time to pupation between w1118 control male and female 1849	

larvae when cultured on 2Y. n = 87-94 pupae. ns indicates not significant; error bars 1850	

indicate SEM. 1851	

 1852	

  1853	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 75	

 1854	

 1855	
 1856	
 1857	
 1858	
 1859	
 1860	
 1861	
 1862	
 1863	
 1864	

Figure S6. Larger body size does not confer increased body size plasticity. (A) 1865	

Pupal volume was significantly higher in both w1118 females and pten2L100/+ females 1866	

reared on a protein-rich diet (2Y) compared with genotype-matched females cultured on 1867	

a diet containing half the protein content (1Y) (p<0.0001 for both genotypes; two-way 1868	

ANOVA followed by Tukey HSD test). n = 60-89 pupae. (B) Pupal volume was 1869	

significantly higher in both w1118 males and pten2L100/+ males reared on 2Y compared 1870	

with genotype-matched males cultured on 1Y (p<0.0001 for both genotypes; two-way 1871	

ANOVA followed by Tukey HSD test). Importantly, the magnitude of the nutrient-1872	

dependent increase in pupal volume was not different between w1118 males and 1873	

pten2L100/+ males (genotype:diet interaction p = 0.3557; two-way ANOVA followed by 1874	

Tukey HSD test). n = 65-88 pupae. For body size plasticity graphs, filled circles indicate 1875	

mean pupal volume, and dashed lines indicate 95% confidence interval. 1876	
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Figure S7. dilp2 is required for increased nutrient-dependent body size plasticity. 1915	

(A) In control w1118 females, mRNA levels of insulin receptor (InR) were significantly 1916	

lower in larvae cultured on a protein-rich diet (2Y) compared with larvae raised on a diet 1917	

containing half the protein concentration (1Y) (p<0.0001; Student’s t test). In dilp2 1918	

mutant females, there was no significant difference in InR mRNA levels between larvae 1919	

cultured on 2Y compared with larvae raised on 1Y (p = 0.1472; Student’s t test). n = 8 1920	

biological replicates. (B) In control w1118 males, mRNA levels of InR were not 1921	

significantly lower in larvae cultured on 2Y compared with larvae raised on 1Y (p = 1922	

0.146; Student’s t test). In dilp2 mutant males, there was a significant reduction in InR 1923	

mRNA levels in larvae cultured on 2Y compared with larvae raised on 1Y (p = 0.0191; 1924	
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Student’s t test). n = 7-8 biological replicates. (C) Pupal volume was significantly 1925	

reduced in females upon RNAi-mediated knockdown of dilp2 in 2Y when compared to 1926	

both control genotypes (p<0.0001 [da>+], and p = 0.002 [+>UAS-dilp2-RNAi], 1927	

respectively; two-way ANOVA followed by Tukey HSD test), but not in males in 2Y 1928	

(p<0.0001 [da>+], and 0.9634 [+>UAS-dilp2-RNAi], respectively; two-way ANOVA 1929	

followed by Tukey HSD test). The magnitude of the effect of RNAi-mediated knockdown 1930	

of dilp2 on pupal volume was higher in females (sex:genotype interaction p = 0.003; 1931	

two-way ANOVA followed by Tukey HSD test). n = 44-59 pupae. * indicates p<0.05, ** 1932	

indicates p<0.01, **** indicates p<0.0001; ns indicates not significant; error bars indicate 1933	

SEM. 1934	

 1935	

  1936	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.054239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.054239
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 78	

 1937	

Figure S8. Genotype-dependent changes to dilp mRNA levels. (A) In dilp2 mutant 1938	

females, mRNA levels of dilp1, dilp2, dilp4, dilp6, and dilp8 were significantly different 1939	

from w1118 control females (p<0.0001, <0.0001, <0.0001, 0.0003 and 0.0454, 1940	

respectively; Student’s t test), but mRNA levels of dilp3, dilp5, and dilp7 were not 1941	

significantly different (p = 0.5142, 0.0574, and 0.605, respectively; Student’s t test). n = 1942	

6-8 biological replicates. (B) In dilp2 mutant males, mRNA levels of dilp1, dilp2, dilp3, 1943	

dilp4, dilp5, and dilp6 were significantly different from w1118 control males (p = 0.0001, 1944	

<0.0001, 0.0034, 0.0001, 0.0001, and 0.0008, respectively; Student’s t test), but mRNA 1945	

levels of dilp7 and dilp8 were not significantly different (p = 0.2302, and 0.7809, 1946	

respectively; Student’s t test). n = 6-7 biological replicates. * indicates p<0.05, ** 1947	

indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001; ns indicates not 1948	

significant; error bars indicate SEM. 1949	
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Figure S9. Diet-dependent changes to dilp mRNA levels. (A) mRNA levels of dilp5 1977	

and dilp6 were significantly different between females raised on a protein-rich diet (2Y) 1978	

compared with female larvae cultured on a diet with half the protein concentration of 2Y 1979	

(1Y) (p<0.0001 and 0.0079, respectively; Student’s t test), but mRNA levels of dilp1, 1980	

dilp2, dilp3, dilp4, dilp7, dilp8 were unchanged (p = 0.7337, 0.5947, 0.0672, 0.1777, 1981	

0.0562 and 0.0643, respectively; Student’s t test). n = 7-8 biological replicates. (B) In 1982	

males cultured in 1Y, mRNA levels of dilp1, dilp3, dilp5, dilp7 were significantly different 1983	

from male larvae raised on 2Y (p = 0.047, 0.0014, <0.0001, and 0.0068, respectively; 1984	

Student’s t test); mRNA levels of dilp2, dilp4, dilp6, and dilp8 were unchanged (p = 1985	

0.9388, 0.6812, 0.8157 and 0.5054, respectively; Student’s t test). n = 6-7 biological 1986	

replicates. * indicates p<0.05, ** indicates p<0.01, **** indicates p<0.0001; ns indicates 1987	

not significant; error bars indicate SEM. 1988	
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Figure S10. Diet-induced changes to mRNA levels of humoral factors. (A) mRNA 1992	

levels of Growth-blocking peptide 1 (Gbp1) were significantly different in females 1993	

cultured on a protein-rich diet (2Y) compared with females raised in a diet containing 1994	

half the protein concentration (1Y) (p = 0.0245; Student’s t test); however, mRNA levels 1995	

of Growth-blocking peptide 2 (Gbp2), CCHamide-2 (CCHa2), and unpaired 2 (upd2) 1996	

were not significantly different between female larvae raised on 1Y and 2Y (p = 0.0662, 1997	

0.1416, and 0.7171, respectively; Student’s t test). n = 7-8 biological replicates.  (B) 1998	

Levels of Gbp1 and upd2 were not significantly different between male larvae raised on 1999	

2Y compared with larvae reared on 1Y (p = 0.1487, and p = 0.1686, respectively; 2000	

Student’s t test); whereas levels of Gbp2 and CCHa2 were significantly different 2001	

between males raised in 2Y and 1Y (p = 0.0214, and p = 0.0272, respectively; 2002	

Student’s t test). n = 7-8 biological replicates. (C) mRNA levels of stunted (sunRA) were 2003	

significantly lower in r4-GAL4>UAS-sun-RNAi females compared with r4-GAL4>+ and 2004	

+>UAS-sun-RNAi control females (p<0.0001 and p = 0.0001, respectively; one-way 2005	

ANOVA followed by Tukey HSD test). n = 8 biological replicates. (D) mRNA levels of 2006	

stunted (sunRA) were significantly lower in r4-GAL4>UAS-sun-RNAi males compared 2007	

with r4-GAL4>+ and +>UAS-sun-RNAi control males  (p<0.0001 and p = 0.0012, 2008	

respectively; one-way ANOVA followed by Tukey HSD test). n = 8 biological replicates. 2009	

(E) Levels of GAL4 mRNA were not significantly different between the sexes in larvae 2010	

raised in 1Y (p = 0.1105; Student’s t test), whereas GAL4 mRNA levels were 2011	

significantly higher in males in 2Y (p = 0.0428; Student’s t test). n = 6-8 biological 2012	

replicates. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001; ns indicates 2013	

not significant; error bars indicate SEM. 2014	

 2015	
  2016	
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Figure S11. Nutrient-dependent upregulation of IIS activity and increased female 2044	

body size plasticity requires stunted (sun). (A) In r4>+, +>UAS-sun-RNAi males, and 2045	

r4>UAS-sun-RNAi males, mRNA levels of brummer (bmm) were not significantly 2046	

different between larvae raised on a protein-rich diet (2Y) compared with larvae reared 2047	

on a diet containing half the protein concentration (1Y) (p = 0.1445, 0.2766, and 0.1308, 2048	

respectively; Student’s t test). In r4>+ and r4>UAS-sun-RNAi males, mRNA levels of 2049	

insulin receptor (InR) were significantly different in larvae between 1Y and 2Y (p = 0.003 2050	

and p = 0.0054, respectively; Student’s t test), but not in +>UAS-sun-RNAi males (p = 2051	

0.0745; Student’s t test). In r4>+ and +>UAS-sun-RNAi control males, mRNA levels of 2052	

eukaryotic initiation factor 4E-binding protein (4E-BP) were significantly different 2053	

between larvae raised in 1Y or 2Y (p< 0.0001 and p = 0.0001, respectively; Student’s t 2054	

test), but not in r4>UAS-sun-RNAi males (p = 0.2899; Student’s t test). n = 7-8 biological 2055	

replicates. (B) Pupal volume was significantly higher in r4>+, +>UAS-sun-RNAi, and 2056	
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r4>UAS-sun-RNAi females reared on 2Y compared with genotype-matched females 2057	

cultured on 1Y (p<0.0001 [r4>+ and +>UAS-sun-RNAi] and p = 0.0367 [r4>UAS-sun-2058	

RNAi]; two-way ANOVA followed by Tukey HSD test). The magnitude of the nutrient-2059	

dependent increase in pupal volume was significantly lower in r4>UAS-sun-RNAi 2060	

females (genotype:diet interaction p<0.0001; two-way ANOVA followed by Tukey HSD 2061	

test). n = 69-80 pupae. (C) Pupal volume was significantly higher in r4>+, +>UAS-sun-2062	

RNAi, and r4>UAS-sun-RNAi males reared on 2Y compared with genotype-matched 2063	

males cultured on 1Y (p<0.0001 for all genotypes; two-way ANOVA followed by Tukey 2064	

HSD test). The magnitude of the nutrient-dependent increase in pupal volume was not 2065	

significantly different between r4>UAS-sun-RNAi males and control males 2066	

(genotype:diet interaction p = 0.0784; two-way ANOVA followed by Tukey HSD test). n 2067	

= 44-80 pupae. For body size plasticity graphs, filled circles indicate mean pupal volume, 2068	

and dashed lines indicate 95% confidence interval. ** indicates p<0.01, *** indicates 2069	

p<0.001; **** indicates p<0.0001; ns indicates not significant; error bars indicate SEM. 2070	

 2071	

  2072	
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Figure S12. Most humoral factors have non-sex-specific effects on body size. (A) 2074	

Pupal volume was significantly smaller in females with fat body-specific expression of 2075	

an RNAi transgene directed against stunted (sun). Pupal volume was significantly 2076	

reduced in cg>UAS-sun-RNAi females compared with cg>+ and +>UAS-sun-RNAi 2077	

control females (p<0.0001 for both comparisons; two-way ANOVA followed by Tukey 2078	

HSD test). This decreased pupal volume was not reproduced in cg>UAS-sun-RNAi 2079	

males compared with cg>+ and +>UAS-sun-RNAi control males (p = 0.3657 and p = 2080	

0.9852, respectively; two-way ANOVA followed by Tukey HSD test). RNAi-mediated 2081	

knockdown of sun had larger effects on pupal volume in females than in males 2082	

(sex:genotype interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 2083	

54-85 pupae. (B) Pupal volume was significantly different in females with fat body-2084	

specific expression of RNAi transgenes directed against sun, Growth-blocking peptide 2 2085	

(Gbp2), CCHamide-2 (CCHa2), unpaired 2 (upd2) compared with r4>+ and +>UAS-X-2086	

RNAi control females (p<0.0001 for both comparisons [sun], p<0.0001 for both 2087	

comparisons [Gbp2], p<0.0001 for both comparisons [CCHa2], p<0.0001 for both 2088	

comparisons [upd2]; one-way ANOVA followed by Tukey HSD test); but not upon RNAi-2089	

mediated knockdown of Growth-blocking peptide 1 (Gbp1) (p = 0.9665 and p<0.0001 2090	

respectively; one-way ANOVA followed by Tukey HSD test). n = 35-114 pupae. (C) 2091	

Pupal volume was significantly different in males with fat body-specific expression of 2092	

RNAi transgenes directed against Gbp2, CCHa2, and upd2 compared with r4>+ and 2093	

+>UAS-X-RNAi control males (p<0.0001 for both comparisons [Gbp2], p<0.0001 for 2094	

both comparisons [CCHa2], p<0.0001 for both comparisons [upd2]; one-way ANOVA 2095	

followed by Tukey HSD test); but not reduced in males carrying RNAi transgenes 2096	

directed against sun and Gbp1 (p = 0.3513 and p<0.0001, respectively [sun]; p = 0.1274 2097	

and p<0.0001, respectively [Gbp1]; one-way ANOVA followed by Tukey HSD test). n = 2098	

18-100 pupae. For body size graphs, filled circles indicate pupal volume and error bars 2099	

indicate SEM. **** indicates p<0.0001; ns indicates not significant. 2100	

 2101	
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 2104	
 2105	
 2106	
 2107	
 2108	
 2109	
 2110	
 2111	
 2112	
 2113	
Figure S13. stunted (sun) overexpression augments body size but does not 2114	

confer increased body size plasticity in males.  (A) Pupal volume was significantly 2115	

higher in r4>+, +>UAS-sun, and r4>UAS-sun females reared on a protein-rich diet (2Y) 2116	

compared with genotype-matched females cultured on a diet containing half the protein 2117	

concentration (1Y) (p<0.0001 for all genotypes; two-way ANOVA followed by Tukey 2118	

HSD test). The magnitude of the nutrient-dependent increase in pupal volume was not 2119	

significantly different between female genotypes (genotype:diet interaction p = 0.0895; 2120	

two-way ANOVA followed by Tukey HSD test). n = 43-65 pupae. (B) Pupal volume was 2121	

significantly higher in r4>+, +>UAS-sun, and r4>UAS-sun males reared on 2Y 2122	

compared with genotype-matched males cultured on 1Y (p<0.0001 for all genotypes; 2123	

two-way ANOVA followed by Tukey HSD test), but the magnitude of the nutrient-2124	

dependent increase in pupal volume was not different between male genotypes 2125	

(genotype:diet interaction p = 0.4959; two-way ANOVA followed by Tukey HSD test). n 2126	

= 44-67 pupae. For body size plasticity graphs, filled circles indicate mean pupal volume, 2127	

and dashed lines indicate 95% confidence interval. 2128	
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 2132	
 2133	
 2134	
 2135	
 2136	
 2137	
 2138	
 2139	
 2140	
 2141	
Figure S14. Increased nutrient-dependent body size plasticity in females requires 2142	

transformer. (A) Pupal volume was significantly higher in w1118 females reared on a 2143	

protein-rich diet (2Y) compared with w1118 females cultured on a diet containing half the 2144	

protein concentration (1Y) (p<0.0001; two-way ANOVA followed by Tukey HSD test); 2145	

however, this nutrient-dependent increase in pupal volume was not observed in 2146	

transformer (tra) mutant females (tra1/Df(3L)st-j7) (p = 0.1036; two-way ANOVA 2147	

followed by Tukey HSD test). The magnitude of the nutrient-dependent increase in 2148	

pupal volume was lower in tra1/Df(3L)st-j7 females (genotype:diet interaction p<0.0001). 2149	

n = 39-69 pupae. (B) Pupal volume was significantly higher in w1118 males (p<0.0001; 2150	

two-way ANOVA followed by Tukey HSD test), but not in tra1/Df(3L)st-j7 mutant males 2151	

reared on 2Y compared with genotype-matched females cultured on 1Y (p = 0.6643; 2152	

two-way ANOVA followed by Tukey HSD test). n = 37-65 pupae. For body size plasticity 2153	

graphs, filled circles indicate mean pupal volume, and dashed lines indicate 95% 2154	

confidence interval. 2155	
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 2195	
Figure S15. Sex determination gene transformer (tra) regulates increased 2196	

nutrient-dependent body size plasticity. (A) Pupal volume was significantly higher in 2197	

da>+, +>UAS-traF, and da>UAS-traF males reared on a protein-rich diet (2Y) compared 2198	

with genotype-matched males cultured on a diet containing half the protein 2199	

concentration (1Y) (p<0.0001 for all genotypes; two-way ANOVA followed by Tukey 2200	
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HSD test). Importantly, the magnitude of the nutrient-dependent increase in pupal 2201	

volume was higher in da>UAS-traF males (genotype:diet interaction p = 0.0012; two-2202	

way ANOVA followed by Tukey HSD test). n = 70-91 pupae. (B) Adult weight was 2203	

significantly higher in da>+, +>UAS-traF, and da>UAS-traF females reared on 2Y 2204	

compared with genotype-matched females cultured on 1Y (p<0.0001 for all genotypes; 2205	

two-way ANOVA followed by Tukey HSD test). The magnitude of the nutrient-2206	

dependent increase in adult weight was not significantly different between da>UAS-traF 2207	

females and da>+ and +>UAS-traF controls (genotype:diet interaction p = 0.5912; two-2208	

way ANOVA followed by Tukey HSD test). n = 6-8 groups of 10 flies. (C) Pupal volume 2209	

was significantly higher in da>+, +>UAS-traF, and da>UAS-traF females reared on 2Y 2210	

compared with genotype-matched females cultured on 1Y (p<0.0001 for all genotypes; 2211	

two-way ANOVA followed by Tukey HSD test). n = 68-94 pupae. (D) Adult weight was 2212	

significantly higher in both w1118 females, and in females with a knock-in transgene of 2213	

the female isoform of tra (traF K-IN), when reared on 2Y compared with 1Y (p<0.0001 for 2214	

both genotypes; two-way ANOVA followed by Tukey HSD test). In contrast, the nutrient-2215	

dependent increase in adult weight was abolished in tra mutant females (traKO) reared 2216	

on 2Y compared with genotype-matched females cultured on 1Y (p = 0.864; two-way 2217	

ANOVA followed by Tukey HSD test). Importantly, the magnitude of the nutrient-2218	

dependent increase in adult weight was significantly lower in traKO females, which lack a 2219	

functional Tra protein, than in w1118 and traF K-IN females (genotype:diet interaction 2220	

p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 10-16 groups of 10 flies. 2221	

(E) Adult weight was significantly higher in traF K-IN males, which express physiological 2222	

levels of a functional Tra protein, when the males were reared on 2Y compared with 2223	

genotype-matched males raised on 1Y (p<0.0001; two-way ANOVA followed by Tukey 2224	

HSD test). In contrast, there was no significant increase in adult weight in w1118 and 2225	

traKO male flies reared on 2Y compared with genotype-matched males raised on 1Y 2226	

(p>0.9999 and p = 0.9996, respectively; two-way ANOVA followed by Tukey HSD test). 2227	

The magnitude of the nutrient-dependent increase in adult weight was significantly 2228	

higher in traF K-IN males compared with w1118 and traKO male flies (genotype:diet 2229	

interaction p<0.0001; two-way ANOVA followed by Tukey HSD test). n = 9-11 groups of 2230	
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10 flies. For body size plasticity graphs, filled circles indicate mean pupal volume, and 2231	

dashed lines indicate 95% confidence interval. 2232	

 2233	

 2234	
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