
Network and pathway expansion of genetic disease associations 1 

identifies successful drug targets 2 
 3 
Authors 4 
 5 
Aidan MacNamara: aidan.macnamara@gmail.com, Functional Genomics, GSK, Stevenage, 6 
UK 7 
Nikolina Nakic: nikolina.x.nakic@gsk.com, Functional Genomics, GSK, Stevenage, UK 8 
Ali Amin: ali.x.amin@gsk.com, Human Genetics, GSK, Stevenage, UK 9 
Cong Guo: karl.x.guo@gsk.com, Human Genetics, GSK, Collegeville PA  10 
Karsten B. Sieber: karsten.b.sieber@gsk.com, Human Genetics, GSK, Collegeville PA 11 
Mark Hurle: mark.r.hurle@gsk.com, Human Genetics, GSK, Collegeville PA 12 
Alex Gutteridge (contact): alex.x.gutteridge@gsk.com, Functional Genomics, GSK, 13 
Stevenage, UK 14 
 15 
Abstract 16 
 17 
It is widely accepted that genetic evidence of disease association acts as a sound basis for 18 
the selection of drug targets for complex common diseases and that propagation of genetic 19 
evidence through gene or protein interaction networks can accurately infer novel disease 20 
associations at genes for which no direct genetic evidence can be observed. However, an 21 
empirical test of the utility of combining these beliefs for drug discovery has been lacking. 22 
 23 
In this study, we examine genetic associations arising from an analysis of 648 UK Biobank 24 
GWAS and evaluate whether targets identified as proxies of direct genetic hits are enriched 25 
for successful drug targets, as measured by historical clinical trial data. 26 
 27 
We find that protein networks formed from specific functional linkages such as protein 28 
complexes and ligand-receptor pairs are suitable for even naïve guilt-by-association network 29 
propagation approaches. In addition, more sophisticated approaches applied to global 30 
protein-protein interaction networks and pathway databases, also successfully retrieve 31 
targets enriched for clinically successful drug targets. We conclude that network 32 
propagation of genetic evidence should be used for drug target identification. 33 
  34 
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Introduction 35 
 36 
A number of studies have shown empirically that genetic evidence provides a sound basis 37 
for the selection of new drug targets and the repurposing of existing drugs to new 38 
indications1,2. However, there are several reasons why individual genes might be missing 39 
direct genetic evidence associating them to diseases for which they could be used as drug 40 
targets. Therefore, various forms of network and pathway-based analyses have been 41 
proposed as a way to identify these ‘missing’ targets3 by integrating the results of genome-42 
wide association studies (GWAS)4, gene interaction networks and signaling pathways5,6. 43 
 44 
The hypothesis that some form of genetic association linking a gene to a disease makes the 45 
protein product of that gene a plausible drug target has a straightforward theoretical 46 
underpinning and reasonably strong empirical evidence to support it. The theoretical 47 
rationale is that genetic association, in contrast to most other forms of genomic association 48 
analysis, implies a clear causal relationship between changes in the activity of a gene 49 
product in humans and changes in the risk of developing the associated disease. This ability 50 
to confidently assign causation is due to the lack (in most common diseases outside cancers) 51 
of any plausible molecular mechanism for how the presence of disease could affect the DNA 52 
sequence and implies that pharmacological modulation could plausibly be expected to 53 
phenocopy the genotypic effect. To test this hypothesis, Nelson et al.2 showed through 54 
analysis of historic drug discovery programs, that genes with a direct genetic link to a 55 
disease have comprised 2% of preclinical drug discovery programs, compared to 8.2% of 56 
approved drugs. This implies that those targets with direct genetic evidence are more likely 57 
to succeed and therefore progress to approval than those without. Likewise, Cook et al.1 58 
showed in an analysis of AstraZeneca’s drug discovery pipeline that projects in Phase II that 59 
had genetic evidence were successful 73% of the time compared to only 43% of the time for 60 
projects without genetic evidence. 61 
 62 
These statistics raise an important question however: If genetics is a good way to select 63 
drug targets, why (to use the numbers cited by Nelson et al.) do 93.8% of approved drug 64 
targets not have direct genetic evidence linking them to the disease for which they are 65 
approved? The most likely answer to this is that, despite the exponential increase in the last 66 
few decades in our ability to genotype human subjects, our ability to measure genetic 67 
associations to the true disease phenotypes relevant for drug discovery is still limited, 68 
leading to ‘missing’ genetic associations. Most obviously, the majority of disease 69 
phenotypes for which GWAS are performed are related to risk of acquiring disease rather 70 
than progression or severity of symptoms of disease, which are usually (with notable 71 
exceptions such as cardiovascular disease7) the focus of current clinical practice and hence 72 
drug development. Even in those cases where the phenotype for which we have genotypic 73 
associations perfectly matches the phenotype of relevance for drug development, we may 74 
have limited power to detect genetic association due to the size of genotyped cohorts. Also, 75 
there may be an absence of suitable genetic instruments or we lack the ability to confidently 76 
map disease association signals to their cis or trans effector genes. 77 
 78 
Where power to detect associations is an issue, one way proposed of detecting ‘missing’ 79 
genetic association is by using biological networks as a source of prior knowledge, as the 80 
propagation of genetic signals through those networks has been proposed as a ‘universal 81 
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amplifier’3 that would improve our ability to find disease associated genes. Again, the 82 
theoretical rationale here is straightforward: As genes tend to interact with other genes that 83 
perform related cellular functions8, it should be possible to infer from the existence of a 84 
genetic disease association at one gene a link between that same disease and any other 85 
genes that interact with the original gene. Here we define these other genes as ‘proxy’ 86 
genes. 87 
 88 
There are many approaches to defining proxy genes. Given a hypothetical model of a 89 
classical molecular signaling pathway (Figure 1A), consisting of ligand-receptor binding, 90 
protein complex formation, a kinase signaling pathway, and downstream nucleic effects 91 
(e.g. transcriptional regulation), we can define different functional categories to look for 92 
genes that interact with one or more disease-associated gene. The most conservative, but 93 
also naïve, approaches, simply look at a gene’s closest neighbors across the different 94 
functional categories. For example, if ligand a in Figure 1A is associated with a disease, an 95 
obvious strategy would be to look for potential drug targets in its binding receptors (Figure 96 
1B-i). Other high-confidence functional interactions also make sense in this context, such as 97 
looking at stable protein complex partners of a disease-associated protein (b and Figure 1B-98 
ii). Less conservative approaches might extend this strategy to first and second neighbors in 99 
the pathway of the disease-associated gene, or indeed extend the search to all genes in the 100 
pathway (gene c and Figure 1B-iii). More advanced algorithms try to infer an optimal subset 101 
of proteins to choose based on a combination of the patterns of direct genetic association 102 
and connections between proteins (e.g. algorithms such as Random-Walk that define 103 
disease-associated network modules based on these premises - genes d and e, and figure1B-104 
iv). 105 
 106 

 107 
 108 
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Figure 1: A schematic of a hypothetical model of a classical signalling pathway (panel A). ‘a’ 109 
is an extracellular ligand that binds to a multimeric receptor. ‘b’ is a member of a complex 110 
that triggers a pathway of protein kinases, of which ‘c’ is a member. ‘d’ is a possible 111 
regulator of that pathway but is not included in the canonical pathway definition 112 
(interactome resources would show ‘d’ interacting with members of the signalling pathway). 113 
‘e’ is a transcription factor that regulates downstream expression. Panel B, i-iv show 114 
additional possible drug targets defined across functional categories, as detailed in the main 115 
text. 116 

 117 
Several previous studies have applied the concepts of network propagation to disease 118 
association, but none have directly and systematically addressed the question of whether 119 
such approaches can maintain the empirically observed success of directly genetically 120 
associated genes when selecting drug targets, which is what we focus on in this study. A 121 
typical approach exemplified by Liu et al.9 takes the results of a set of GWAS (9 asthma 122 
related GWAS in this case), computes gene level scores and identifies a module or 123 
subnetwork of genes within a larger global PPI network that contains both known disease 124 
associated genes as well as a selection of novel targets. Nakka et al.10 take a similar 125 
approach using PEGASUS to compute gene scores and HotNet211 to define the modules. 126 
Carlin et al.12 formulate a general scheme for performing these types of analyses and 127 
include infrastructure for storing and querying the derived networks in NDEx, a database of 128 
biological networks. Other approaches such as NetWAS13 derive new networks from 129 
molecular data that are then used alongside machine learning tools to produce systems that 130 
can re-rank GWAS output to prioritize genes with weak or even below threshold 131 
significance. Our own analysis of machine learning and network diffusion-based methods for 132 
inference of new disease associations through biological networks suggests that many of 133 
these methods14 perform very similarly and major differences in performance are driven 134 
more by the choice of the underlying biological network. Probably the largest systematic 135 
assessment of the use of network information to identify disease associations in complex 136 
diseases comes from the ‘Disease Module Identification DREAM Challenge’15. The inference 137 
task in this challenge is distinct from ours in that they aim to derive functional modules from 138 
networks without using disease association data directly. Instead disease association data is 139 
used to annotate and validate the function and biology of the derived networks. Another 140 
recent review has also benchmarked network algorithms using a different set of 141 
performance metrics and showed that network propagation performs well for target 142 
prediction16. 143 
 144 
In this study, we first define a list of ‘high confidence genetic hits’ (HCGHs), which represent 145 
genes for which there is both a clear genetic association derived from GWAS and a clear 146 
mapping of the association to the gene through colocalization of the genetic disease 147 
association with an expression quantitative trait locus (eQTL). Then, we define genetic 148 
‘proxy’ genes using various network and pathway analysis methods and sources of network 149 
prior knowledge. Finally, we measure the enrichment of successful drug targets for the 150 
given disease for both HCGHs and proxy genes with the aim of determining whether proxy 151 
genes are enriched for clinically successful targets and which methods are best suited for 152 
drug target selection. 153 

154 
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Methods 155 
 156 
GWAS data and the Definition of High-Confidence Genetic Hits (HCGHs)  157 
 158 
UK Biobank (UKB) GWAS were selected for inclusion if a phenotypic match could be made 159 
between the (Medical Subject Headings) MeSH annotation of each trait and 160 
the MeSH annotations for indications with drug target success/failure data available from 161 
Citeline’s Pharmaprojects data (https://pharmaintelligence.informa.com/products-and-162 
services/data-and-analysis/pharmaprojects, see Clinical Data section). This match was 163 
performed by fuzzy MeSH matching where one or more of the following conditions was 164 
true: 165 

• If the relationship was a MeSH parent-child connection. 166 
• Co-occurrence in literature abstracts significantly more often than random. 167 
• Where at least one of two ontology-based methods which take into account the 168 

entire ontology structure17,18 gave a positive match. 169 
 170 
For each GWAS, a set of genes were identified as ‘high confidence genetic hits’ (HCGHs) 171 
using colocalisation of the GWAS summary statistics with GTEx eQTLs. Colocalisation was 172 
performed19 followed by filtering such that colocalisation eGenes were selected to give 1 or 173 
0 HCGHs for each disease-associated locus in the genome where:  174 
 175 

• The eGene is protein coding AND  176 
• The GWAS p-value ≤ 5e-8 AND  177 
• The eQTL p-value ≤ 1e-4 AND  178 
• The GWAS/eQTL colocalisation p12 ≥ 0.8 AND  179 
• Where multiple such eGenes pass the above criteria for a single locus 180 

the eGene with the highest posterior probability of colocalisation (H4, p12) across all 181 
tissues was selected.  182 

  183 
Only GWAS with ≥ 1 HCGH and ≥ 1 drug target with success/failure data available were 184 
retained in the analysis. Because of the fuzzy MeSH matching, some surgical GWAS traits 185 
were captured by this method but removed before further analysis. This resulted 186 
in 648 GWAS covering 170 individual MeSH traits linked to 14374 distinct HCGH-GWAS 187 
combinations, and 1045 distinct drug targets with success/failure data. All methods were 188 
subsequently tested on these traits, genetic hits, and drug targets using the full protein-189 
coding gene list as the background gene universe (22758 genes). 190 
 191 
Clinical Data 192 
 193 
We extracted data from Citeline’s Pharmaprojects database 194 
(https://pharmaintelligence.informa.com/products-and-services/data-and-195 
analysis/pharmaprojects, downloaded 5th August 2017), reformatting available XML data 196 
into a single tab-delimited form having one row for each asset. Each asset may be linked to 197 
one or more targets, whether due to specific action at a complex or non-specific action 198 
against multiple targets. Each asset may also be linked to progression against one or more 199 
indications, each with its own pipeline status. 200 
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  201 
We classified the 116,532 asset-indication pairs into one of 3 202 
categories: ‘Succeeded’, ‘Failed’ or ‘In Progress’, based on the status listed 203 
in Pharmaprojects for each indication. The 9,026 in the ‘Succeeded’ category consists 204 
entirely of ‘Launched’ pairs. The 79,824 asset-indication pairs with ‘Failed’ status consist 205 
of ‘Discontinued’ (24%), ‘No Development Reported’ (76%), ‘Withdrawn’ (<1%) 206 
or ‘Suspended’ (<1%) asset-indication pairs, while the remaining 27,295 pairs, which 207 
typically list the individual clinical or preclinical phase, are classified as ‘In Progress’. 208 
 209 
We then classified the failures. Based on a collation of data from several text fields 210 
in Pharmaprojects (Key Event Detail, Overview, Phase III, Phase II, etc.), we manually 211 
deduced the pipeline status (Preclinical, Phase I, Phase II, Phase III) of each indication and 212 
from ‘Key Event History’, the date of failure for the ‘Failed’ asset-indication pairs where 213 
available. In general, assets with a single indication were straightforward to assign based on 214 
the clinical phases that were mentioned; for those with multiple indications, we looked for 215 
phrases which linked a specific indication with a specific clinical phase. We did not include 216 
instances when a clinical phase did not actually appear to be undertaken based on the 217 
available text, such as if the trial was 'planned' or 'under consideration'. 26% of the failures 218 
reported in Pharmaprojects could be determined to be clinical failures by this method.  219 
 220 
To group similar findings together and prepare them for matching to evidence types, we 221 
assigned each of the 1,340 unique indications in Pharmaprojects to one of 1,063 Medical 222 
Subject Heading (MeSH) disease terms. 2,588 asset-indication pairs with indications 223 
classified as 'Ideopathic disease, unspecified', 'Not 224 
applicable', 'Undisclosed' and 'Unspecified' or any of the 15 diagnosis terms were not 225 
mapped and were not processed further, as a successful marker of the disease is not an 226 
indication that the disease has been therapeutically treated. We also 227 
used Pharmaprojects mappings for assets to human EntrezGene IDs to generate a list of 228 
39,661 human target-asset pairs, correcting the single EntrezGene ID listed 229 
in Pharmaprojects which is not currently used (SCN2A, from 6325 to the correct 6326). We 230 
then produced a list of asset-EntrezGene-MeSH combinations, indicating whether the asset 231 
binds to a single target or multiple targets, and whether it is being progressed against a 232 
single indication or multiple indications.  233 
 234 
We then grouped these 80,804 asset-target-indication triples (that is, those asset-indication 235 
pairs with a human target) into 27,064 unique target-indication pairs, noting which of these 236 
assets were labelled as interacting with one target (‘Selective’), and those which interacted 237 
with more than one target (‘Non-Selective’). Non-Selective assets could represent poly-238 
pharmacology or binding of the asset to a complex of targets. If at least one ‘Selective’ asset 239 
for a given target-indication pair was identified as successful, then the target-indication pair 240 
was classified as ‘Succeeded’. Of the remaining target-indication pairs, if at least 241 
one ‘Selective’ asset had a clinical failure then it was classified as ‘Clinical Failure’. We then 242 
processed the data in the same way for ‘Non-Selective’ assets. The remaining data were 243 
processed in the same order for ‘Preclinical Failures’. Those target-indication pairs which 244 
had not yet been indicated as failures or successes were then identified as ‘In Progress’, in 245 
that no record of success or failure yet exists in Pharmaprojects for these target-indication 246 
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pairs. For each pair, we also recorded the furthest clinical phase achieved by any past or 247 
current asset.  248 
 249 
For this analysis, we utilized those target-indication pairs classified as ‘Succeeded’ as our 250 
positive set, and those classified as ‘Clinical Failure’ as our negative set.  251 
 252 
Evaluation of Methods for Proxy Gene Set Definition 253 
 254 
The following methods were used to define proxy gene sets for the HCGHs for each GWAS. 255 
See below for details on data sources used:  256 
 257 

• Complex: All genes sharing a protein complex with a HGCH  258 
• Ligand Receptor: All genes in a ligand-receptor pair with a HCGH  259 
• Network First Neighbor: All first-degree interactors of a HCGH  260 
• Network Second Neighbor: All first and second-degree interactors of a HCGH  261 
• Pathway: All genes in the same pathway as a HCGH  262 
• Pathway First Neighbor: All first-degree interactors that also share a pathway with a 263 

HCGH  264 
• Pathway Second Neighbor: All first and second-degree interactors that also share a 265 

pathway with a HCGH  266 
• Random: 10000 randomly selected protein coding genes from the background of 267 

22758  268 
• Hotnet*: All genes found within a HotNet2 network module (see below)  269 
• Pascal/MAGMA identified genes (see below)  270 

 271 
Complex: Data downloaded from https://www.ebi.ac.uk/complexportal/home on 272 
21/01/2019. Ligand-Receptor: Data sourced from Ramilowski et al20 and parsed 273 
from Metabase (https://portal.genego.com/). In brief, Metabase was parsed for ligand-274 
receptor related keywords in the interaction metadata. Non-specific interaction types were 275 
then removed. Networks: Multiple different gene networks were used as follows:  276 
 277 

• OmniPath: The OmniPath interaction file was downloaded 14/02/2019  278 
• STRING: Human interaction data was downloaded from STRING on 14/02/2019  279 
• HuRI: Data downloaded from http://interactome.baderlab.org/ 280 
• InBio Map: Data downloaded 281 

from https://www.intomics.com/inbio/map.html#downloads 282 
 283 
For defining first and second neighbours from the network sources, each network was 284 
converted into an iGraph object in R. The iGraph functions neighbors() and neighborhood() 285 
were then used to find first/second neighbours, respectively. The list 286 
of first and second pathway interactors within pathways was created 287 
using Metabase pathway maps. First interactors for a gene were defined as all upstream and 288 
downstream direct interactors across all pathways. Then, the process was repeated starting 289 
with the first interactors, thus creating a list of second interactors. 290 
 291 
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Enrichment Calculations 292 
 293 
The enrichment of successful drug targets within the HCGHs and proxy gene sets 294 
was calculated for each GWAS/method pair. For each pair a 2x2 contingency table was 295 
constructed as follows: 296 
 297 

  Success Failure
Hit  a  b  

Not Hit  c  d  
  298 
Depending on the method, some tables had a and/or b equal to 0 (i.e. no overlap between 299 
hits and failed or successful drugs). Tables with both a and b equal to 0 were removed. 300 
Where a or b were equal to 0, 0.5 was added to each cell in the contingency table (Haldane 301 
Correction19). The reason for this was to preserve information where otherwise the odds 302 
ratio would be undefined or infinite. To calculate an odds ratio and significance of 303 
enrichment for each method, a stratified Fisher’s Test was then used (the Cochran–Mantel–304 
Haenszel test), across all GWAS for each method. Odds ratios and 80% confidence intervals 305 
were then reported to measure by-method enrichment of successful drug targets.  306 
 307 
Network Propagation 308 
 309 
HotNet211 was used to define HCGH-enriched network modules. For this method, genes 310 
found in network modules, excluding the seed HCGHs, were defined as hits. HotNet2 takes 2 311 
inputs, a network and a gene list that defines the seed genes (in our case, the HCGHs) and 312 
their associated genetic scores. For each GWAS/network combination, the HCGH gene set 313 
was used as the input gene list and the score for each HCGH was derived from the 314 
p12 colocalisation probability for that gene. The p12 probabilities were transformed by –315 
log(1-p12, base=2). For the purpose of this study, the consensus modules were used and all 316 
genes contained within these modules were defined as hits for the GWAS/network.  317 
 318 
Gene score and pathway enrichment calculation 319 
 320 
Gene scores were calculated using two different algorithms: Pascal21 and MAGMA22. Pascal 321 
was run with default settings, using the 'sum' gene scoring method. The 'empirical' pathway 322 
enrichment p-value was taken as the measurement of pathway enrichment. For both Pascal 323 
and MAGMA the 1KG LD matrix was used and the definition of the gene locus was the gene 324 
body +/- 50kb. A number of different gene-sets were used as input for both methods: 325 
1) Metabase pathway maps, 2) Reactome pathways, 3) DREAM networks consensus PPI 326 
modules, 4) DREAM networks consensus co-expression modules. Gene-set enrichment p-327 
values were adjusted for multiple hypothesis testing using the BH method, calling pathways 328 
with the adjusted p-value < 0.05 significantly enriched for the tested GWAS trait. A manually 329 
curated list of HLA genes was excluded from both gene-set level analyses. We found that 330 
Pascal significantly outperformed Magma (supplementary Figure 6). Hence, we removed 331 
Magma from further analysis. 332 
  333 
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Results 334 
 335 
Naïve Approaches 336 
 337 
Our first approach is to look at a set of relatively naïve network expansion methods, the 338 
results of which are shown in Figure 2. For these methods the algorithm is simply the 339 
selection of first or first and second neighbors within the relevant protein-protein 340 
interaction network. Our positive control is the list of HCGHs for which there is clear, direct 341 
genetic association to disease. Consistent with previous work we confirm that such targets 342 
are significantly enriched for those which have proved to be successful (OR: 3.8; p < 1x10-6). 343 
Our negative control is a set of randomly chosen genes from the background set which we 344 
confirm to have no significant enrichment for successful drug targets (OR: 1; p = 0.8). 345 
 346 

 347 
 348 
Figure 2: Enrichment of successful drug targets (left) and number of targets implicated 349 
(right) within HCGHs and additional target sets identified by network expansion using HCGH 350 
seeds. The colours refer to the interaction categories used for the expansion (red; high-351 
confidence interactions – complexes and ligand-receptor pairs, green; protein-protein 352 
interaction network STRING, blue; interactions from pathways defined in Metabase) 353 

 354 
The first network we examine comprises stable protein complexes. In this network we 355 
model each complex as a fully connected clique (i.e. every member of the complex is a first 356 
neighbor of every other member). Taking HCGHs and performing network expansion using 357 
this network adds ~10 novel potential target genes to the average GWAS and those genes 358 
are enriched with successful drug targets to a similar level as the positive control (OR: 3.7; p 359 
= 1.4x10-3). This enrichment calculation (and all following calculations) is performed on the 360 
new proxy genes only with the original seed HCGHs removed. Since protein complexes 361 
comprise highly curated sets of genes that should have very high levels of shared cellular 362 
function, the result of observing high enrichment is not surprising, but it does confirm that 363 
this conservative level of network expansion is advisable in a target identification exercise. 364 
 365 
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The second network we examine comprises ligand-receptor pairs. In this network (which is 366 
not a simple 1:1 mapping), we model each ligand as being connected to all the proteins that 367 
comprise its receptors and vice-versa we connect each receptor subunit to all its possible 368 
ligands. Note that in this analysis we only consider first neighbors. We do not expand to 369 
second neighbors, which would have the effect of propagating genetic evidence from a 370 
ligand to its receptor and hence to all of that receptor’s ligands. Again, we find that the 371 
additional targets identified through this approach are enriched for successful drug targets 372 
(OR: 2; p < 1x10-5) and confirm that network expansion using this class of network is 373 
reasonable to perform when undertaking target identification. 374 
 375 
The third network we use is STRING for which we measure success enrichment amongst first 376 
neighbors and the union of first and second neighbors of the HCGHs. We observe no 377 
enrichment for successful drug targets amongst first neighbors of the HCGHs (OR: 1; p = 0.5) 378 
and a significant enrichment of failed targets amongst the first and second neighbors of the 379 
HCGHs (OR: 0.5; p < 1x10-5). This second observation is worthy of comment as the apparent 380 
conclusion – that second neighbors of genes genetically associated to a given disease are 381 
significantly more likely than a random gene to fail as drug targets for that disease – is not 382 
intuitive. The reason we arrive at this conclusion comes from a property of the network and 383 
the way in which historically tested drug targets are distributed within it; namely that a 384 
small number of genes are very highly connected within the network (expected due to the 385 
scale-free topology of most biological networks) and that these genes happen to have been 386 
the focus of historical drug discovery efforts, which mean they have been tested in a high 387 
number of trials and that those trials contain a high proportion of failures. This effect is 388 
shown graphically in supplementary Figure 2. In both cases (first and first & second 389 
neighbors), the number of additional targets implied by network expansion is very large 390 
(1000s and even 10,000s of additional targets for most GWAS). The use of alternative 391 
networks to STRING can somewhat ameliorate the effect observed of enrichment of failed 392 
targets within first and second neighbors. However, in no network do such simple 393 
algorithms provide value in terms of target selection (supplementary Figure 1). 394 
 395 
The fourth network is based on pathway maps taken from Metabase. In our first naïve 396 
analysis we consider a network where every pathway map is modelled as a clique – every 397 
member of the pathway connects to every other (Figure 1iv). Our other analyses take the 398 
pathway connectivity defined in Metabase pathways into account and restrict the expansion 399 
to first or first and second neighbors. As with the STRING network, taking the clique (OR: 400 
0.7; p < 1x10-6) and first and second neighbor (OR 0.7; p < 1x10-6) approaches within 401 
Metabase pathways leads to an enrichment of failed drug targets for the same reasons as 402 
above. Taking first neighbors within the pathway does provide a small enrichment of 403 
successful drug targets (OR 1.26; p = 0.07) and a similarly small number of additional 404 
targets. 405 
 406 
Advanced Approaches 407 
 408 
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 409 
 410 
Figure 3: Enrichment of successful drug targets within HCGHs and proxy gene sets (left) and 411 
the number of additional potential targets identified (right). The different enrichment 412 
categories are colour-labelled; for network propagation, the enrichment performance of 413 
running HotNet2 is shown together with the enrichment gained from including first 414 
neighbours of HCGHs. 415 

 416 
All methods used in the above analyses (naïve) rely on careful selection of highly curated 417 
protein interaction networks followed by the application of very simple – essentially trivial - 418 
algorithms to select first or first and second neighbors of the HCGH seed genes. 419 
Unsurprisingly these algorithms perform very poorly when applied naively to a densely 420 
connected network such as STRING. An obvious and frequently used extension to these 421 
algorithms is to apply some form of network propagation. Here we use the HotNet210,11 422 
algorithm and search for enrichment of successful drug targets on four different protein 423 
interaction networks, as shown in Figure 3. 424 
 425 
The genes found within modules detected by HotNet2’s network propagation and module 426 
selection algorithms (Figure 3; green) are significantly enriched for successful drug targets in 427 
the InBio Map and OmniPath networks (OR: 1.88/1.37; p < 1x10-4 / p = 3x10-4). HotNet2 428 
does not reach significance with STRING (OR: 1.2; p = 0.42). The odds ratio point estimate 429 
for enrichment for HotNet2 applied to HuRI is also insignificant and close to unity, though 430 
with considerable error bars (OR: 1; p = 0.94). In all cases HotNet2 identifies 60-70 new 431 
targets through inclusion in the modules detected. 432 
 433 
The final scenario we test is based on the pathway enrichment of gene scores that are 434 
derived from Pascal. We test what happens if we select as targets sets of genes that are 435 
both within a pathway or a network module that is itself significantly enriched for genetic 436 
association to a disease as measured by a GWAS (based on a Pascal gene score threshold) 437 
and have a nominally significant (P < 0.05) Pascal gene score to the same disease in the 438 
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same GWAS. We use Pascal22 to test the performance of this strategy, which is also shown 439 
in Figure 3. 440 
 441 
The genes found within pathways and modules detected by the Pascal algorithm (Figure 3; 442 
purple) are significantly enriched for successful drug targets across all tested sources of 443 
pathway gene sets and network modules, apart from the Reactome pathways. Pascal 444 
analysis on DREAM co-expression modules resulted in an enrichment close to that of HCGHs 445 
themselves with an OR: 3.09 and p = 3x10-4. Analysis of network modules, both PPI and co-446 
expression variants, however, yielded a limited number of new targets (3-7), while the 447 
analysis of pathways yielded ~30 new targets. 448 
 449 
The full results across all methods can be found in supplementary Table 1 and 450 
supplementary Figure 3. 451 
 452 
One possible reason that we observe drug targets with no genetic evidence is that our 453 
ability to find genetic associations between these targets and their respective diseases is 454 
hampered by underpowered association studies. This would suggest that our proxy targets 455 
should have some higher level of genetic association signal compared to random genes even 456 
if the signal does not reach genome wide significance. Figure 4 shows the distribution of 457 
gene level disease association scores calculated using Pascal15 for the proxy genes identified 458 
by each of the methods described above. Gene scores are given only for the GWAS trait 459 
implicated by the original seed HCGH. HCGHs themselves have consistently high (on a -460 
log(P) scale) gene scores as one would expect (some HCGHs do not have significant gene 461 
scores calculated by Pascal as the colocalization used to define them can be driven by 462 
enhancers outside the gene body window used by Pascal). What is more revealing is that all 463 
the proxy gene sets identified in these networks have an average gene score higher than a 464 
random distribution and that the size of this effect largely tracks the enrichments observed 465 
above: unsurprisingly the effect is larger in the more advanced methods such as Pascal that 466 
use the genetic signal directly (Figure 4; right) but is also demonstrated for naïve methods 467 
(Figure 4; left, and supplementary Figure 4), and is true even based on very different 468 
underlying network structures (supplementary Figure 5). This observation is consistent with 469 
previous work that has shown that genes with nominally significant Pascal scores from a 470 
GWAS can be used with network information to predict genetic associations subsequently 471 
found in independent genetic studies for the same trait14472 
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. 473 
 474 

 475 
 476 
Figure 4: Pascal gene scores for HCGHs and all proxy genes found using each method 477 
indicated. Scores for the original seed HCGHs are excluded from the results across all the 478 
network expansion methods. The order of methods is the same as Figure 2 (left) and Figure 479 
3 (right). 480 

 481 
Discussion 482 
 483 
Our results confirm the widely held intuition that inference of disease associations through 484 
a combination of direct causal evidence at single genes (provided by genetics) and 485 
propagation of that evidence through a protein interaction network (that captures genuine 486 
functional relationships) is a sound strategy for drug discovery. We go further than this 487 
though in providing a more thorough empirical understanding of the types of protein 488 
networks for which this strategy is valid and the types of algorithms which should be used 489 
for propagation. We also provide additional quantitative understanding of the ways in which 490 
diffusion of disease association within a protein network is manifested in observable genetic 491 
associations. 492 
 493 
Our headline conclusion for simple first or first and second neighbor ‘guilt-by-association’ 494 
approaches to target identification is that these are valid and useful for networks of protein 495 
complex members or ligand receptor pairs, but not for other commonly used forms of 496 
network or pathway information. An open question we do not answer is whether other 497 
specific interaction types exist that would have similar properties to complexes or ligand-498 
receptor pairs. Our observation of weak but significant enrichment of successful drug 499 
targets amongst first neighbors within pathway maps and an enrichment of weak genetic 500 
associations within HCGH PPI first neighbors may well imply that such networks do exist. 501 
Kinase-substrate or phosphatase-substrate networks would be obvious choices to inspect in 502 
that they often define the core elements of signaling pathways. Alternatively, enzymatic 503 
pathways (linking enzymatic producers of a compound to consumers) could also be tested 504 
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especially where metabolomic QTL or other evidence exists for associating the cognate 505 
metabolites to disease as well23. 506 
 507 
Our second conclusion is that more advanced network propagation algorithms can provide 508 
the ability to detect patterns of useful disease association within even densely connected 509 
proteome-scale interaction networks such as InBio Map and genome-scale signaling 510 
pathway maps such as OmniPath. This effect is primarily due to the ability of HotNet2 to 511 
exclude as potential targets large numbers of genes that are close to HCGH seeds, but do 512 
not sit within a coherent pattern of disease association within the network. A weakness of 513 
our study is that we do not test other network propagation methods. However, many such 514 
methods are based around some version of the random walk with restart algorithm or a 515 
mathematically equivalent conception and in previous work we have showed that many 516 
such algorithms perform equivalently on a highly related problem14. One potential avenue 517 
for development in this area would be in graph based deep learning that could explicitly 518 
model other additional sources of disease association such as those from target information 519 
integration platforms such as Open Targets24. Figure 5 also highlights the importance of 520 
these more advanced approaches in discovering the mechanisms behind genetic association 521 
with disease. Here we have two independent methods, Pascal and HotNet2, using 2 522 
different network sources (Metabase pathways and OmniPath), homing in on the same 523 
biology that underlies hyperlipidaemia. 524 
 525 
Our final conclusion is that what these processes are modelling is the diffusion of disease 526 
association. Causal disease association is the property one fundamentally looks for in drug 527 
targets and genetic association is one of, if not the, best way to detect such associations. 528 
 529 
The first limitation of our study to recognize is that we only test network propagation of 530 
genetic evidence and in fact restrict ourselves to one specific form of genetic evidence, 531 
namely colocalization of eQTL and disease association loci. However, given the evidence 532 
supporting truth set enrichment from colocalization, we anticipate that it would have a 533 
relatively low false positive rate for identifying truly disease associated genes. The 534 
thresholds we use mean that the evidence for disease association itself at a given locus 535 
should be robust as well as the evidence for colocalization of the disease locus with gene 536 
eQTLs. The major source of false positives will be through loci containing either pleiotropic 537 
eQTL signals or many independent eQTLs leading to misassignment of the effector gene. 538 
The downside of this approach however is that we also have a high false negative rate in 539 
that there will be many genes with strong and obvious genetic evidence for a trait that we 540 
miss (protein coding variants for instance). Our aim however is not to perfectly catalog all 541 
genetically associated genes for these traits (this is left as an exercise for the reader), but 542 
rather to test the validity of our network and propagation models given some reliable form 543 
of genetic evidence. Our expectation would be that the same approaches would be valid no 544 
matter the source of the genetic association evidence, whether it be eQTL based or from 545 
protein coding variants or even based on rare Mendelian genetics; though we have not 546 
formally shown this. 547 
 548 
The more important limitation of our study arises from the way in which we measure the 549 
performance of the various methods and networks using historical drug discovery data. The 550 
limitation of this data is that it is highly biased and has a large amount of missing data in 551 
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terms of providing a true measurement of the universe of good drug targets for a given 552 
disease. Both effects are well known and described; firstly, genes are not chosen as drug 553 
targets in an unbiased way; instead certain families of genes (G-protein coupled receptors 554 
and protein kinases for instance) are much more likely to be chosen as targets25 compared 555 
to others. This is because of properties, such as druggability, that are entirely orthogonal to 556 
the strength of disease association alone. Also, genes that themselves have been highly 557 
studied in terms of their molecular and cellular function are more likely to be chosen as 558 
targets compared with genes of unknown or poorly understood function. In addition, 559 
targets that have been tested against a large number of diseases are more likely to have a 560 
higher proportion of failures than those which have only been tested against only a few 561 
diseases (supplementary Figure 2). This probably reflects the decreasing marginal cost of 562 
each additional clinical trial for a given drug since most of the typical preclinical and Phase I 563 
costs are already sunk. This in turn makes increasingly riskier trials for additional indications, 564 
based on weaker disease association evidence, worthwhile from a commercial risk-reward 565 
perspective. Secondly, the large amount of missing data arises simply from the fact that 566 
drug discovery activities and clinical trials especially are expensive and therefore relatively 567 
few of the potential targets for a given disease have ever been tested clinically. 568 
 569 
It is important to bear in mind therefore that what we are measuring when looking at 570 
historical trial outcomes is not an unbiased measure of any given gene’s true disease 571 
associations, but rather a view on how useful a given evidence source or analytical method 572 
has been for choosing drug targets based on current and historical drug discovery practices. 573 
Dramatic changes in these practices in the future could render some of our conclusions 574 
obsolete, though the fundamental observation that genetic association itself is retained in 575 
molecular networks will remain valid. It is especially important to bear these facts in mind 576 
when considering our apparently counter-intuitive result that first and second neighbors of 577 
HCGHs for a given disease are enriched for failed drug targets against that disease. Taken 578 
naively that would imply that one should deliberately ignore potential drug targets that are 579 
first or second neighbors of HCGHs in a target identification exercise, but this would be a 580 
very odd conclusion that is hard to rationalize biologically. More realistically we would 581 
suggest that the true conclusion to draw from this part of our study is that such naïve 582 
approaches are not detectably better than a random selection of drug targets and that 583 
further work on the development of graph-based machine learning algorithms for the 584 
selection of drug targets based on genetics and other disease association information is 585 
therefore warranted. 586 
 587 
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 588 
 589 
Figure 5: An example of where Pascal pathway enrichment and HotNet2 home in on the 590 
same pathway causal of Hyperlipidaemia. The Hotnet2 module (black interactions) was 591 
detected using HCGHs (red) from a Hyperlipidaemia GWAS and the OmniPath network. This 592 
module is enriched for 3 successful drug targets (bold node border), one of which, PCSK9, 593 
was not categorised as a HCGH in the input. The Pascal enriched pathway (red interactions) 594 
is the lipoprotein metabolism pathway from Metabase. Genes that have a significant Pascal 595 
gene score are highlighted in yellow: it can also be seen that an additional novel drug target 596 
was recovered (MTTP) using this method that did not have any type of genetic evidence 597 
associated with it. 598 

 599 
  600 
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