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16  Abstract
17
18 Itis widely accepted that genetic evidence of disease association acts as a sound basis for
19 the selection of drug targets for complex common diseases and that propagation of genetic
20 evidence through gene or protein interaction networks can accurately infer novel disease
21  associations at genes for which no direct genetic evidence can be observed. However, an
22  empirical test of the utility of combining these beliefs for drug discovery has been lacking.
23
24  In this study, we examine genetic associations arising from an analysis of 648 UK Biobank
25 GWAS and evaluate whether targets identified as proxies of direct genetic hits are enriched
26  for successful drug targets, as measured by historical clinical trial data.
27
28  We find that protein networks formed from specific functional linkages such as protein
29 complexes and ligand-receptor pairs are suitable for even naive guilt-by-association network
30 propagation approaches. In addition, more sophisticated approaches applied to global
31 protein-protein interaction networks and pathway databases, also successfully retrieve
32  targets enriched for clinically successful drug targets. We conclude that network
33  propagation of genetic evidence should be used for drug target identification.
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Introduction

A number of studies have shown empirically that genetic evidence provides a sound basis
for the selection of new drug targets and the repurposing of existing drugs to new
indications™. However, there are several reasons why individual genes might be missing
direct genetic evidence associating them to diseases for which they could be used as drug
targets. Therefore, various forms of network and pathway-based analyses have been
proposed as a way to identify these ‘missing’ targets® by integrating the results of genome-
wide association studies (GWAS)*, gene interaction networks and signaling pathways>®.

The hypothesis that some form of genetic association linking a gene to a disease makes the
protein product of that gene a plausible drug target has a straightforward theoretical
underpinning and reasonably strong empirical evidence to support it. The theoretical
rationale is that genetic association, in contrast to most other forms of genomic association
analysis, implies a clear causal relationship between changes in the activity of a gene
product in humans and changes in the risk of developing the associated disease. This ability
to confidently assign causation is due to the lack (in most common diseases outside cancers)
of any plausible molecular mechanism for how the presence of disease could affect the DNA
sequence and implies that pharmacological modulation could plausibly be expected to
phenocopy the genotypic effect. To test this hypothesis, Nelson et al.?> showed through
analysis of historic drug discovery programs, that genes with a direct genetic link to a
disease have comprised 2% of preclinical drug discovery programs, compared to 8.2% of
approved drugs. This implies that those targets with direct genetic evidence are more likely
to succeed and therefore progress to approval than those without. Likewise, Cook et al.’
showed in an analysis of AstraZeneca’s drug discovery pipeline that projects in Phase Il that
had genetic evidence were successful 73% of the time compared to only 43% of the time for
projects without genetic evidence.

These statistics raise an important question however: If genetics is a good way to select
drug targets, why (to use the numbers cited by Nelson et al.) do 93.8% of approved drug
targets not have direct genetic evidence linking them to the disease for which they are
approved? The most likely answer to this is that, despite the exponential increase in the last
few decades in our ability to genotype human subjects, our ability to measure genetic
associations to the true disease phenotypes relevant for drug discovery is still limited,
leading to ‘missing’ genetic associations. Most obviously, the majority of disease
phenotypes for which GWAS are performed are related to risk of acquiring disease rather
than progression or severity of symptoms of disease, which are usually (with notable
exceptions such as cardiovascular disease’) the focus of current clinical practice and hence
drug development. Even in those cases where the phenotype for which we have genotypic
associations perfectly matches the phenotype of relevance for drug development, we may
have limited power to detect genetic association due to the size of genotyped cohorts. Also,
there may be an absence of suitable genetic instruments or we lack the ability to confidently
map disease association signals to their cis or trans effector genes.

Where power to detect associations is an issue, one way proposed of detecting ‘missing’
genetic association is by using biological networks as a source of prior knowledge, as the
propagation of genetic signals through those networks has been proposed as a ‘universal
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amplifier’® that would improve our ability to find disease associated genes. Again, the
theoretical rationale here is straightforward: As genes tend to interact with other genes that
perform related cellular functions®, it should be possible to infer from the existence of a
genetic disease association at one gene a link between that same disease and any other
genes that interact with the original gene. Here we define these other genes as ‘proxy’
genes.

There are many approaches to defining proxy genes. Given a hypothetical model of a
classical molecular signaling pathway (Figure 1A), consisting of ligand-receptor binding,
protein complex formation, a kinase signaling pathway, and downstream nucleic effects
(e.g. transcriptional regulation), we can define different functional categories to look for
genes that interact with one or more disease-associated gene. The most conservative, but
also naive, approaches, simply look at a gene’s closest neighbors across the different
functional categories. For example, if ligand a in Figure 1A is associated with a disease, an
obvious strategy would be to look for potential drug targets in its binding receptors (Figure
1B-i). Other high-confidence functional interactions also make sense in this context, such as
looking at stable protein complex partners of a disease-associated protein (b and Figure 1B-
ii). Less conservative approaches might extend this strategy to first and second neighbors in
the pathway of the disease-associated gene, or indeed extend the search to all genes in the
pathway (gene c and Figure 1B-iii). More advanced algorithms try to infer an optimal subset
of proteins to choose based on a combination of the patterns of direct genetic association
and connections between proteins (e.g. algorithms such as Random-Walk that define
disease-associated network modules based on these premises - genes d and e, and figure1B-
iv).
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109  Figure 1: A schematic of a hypothetical model of a classical signalling pathway (panel A). ‘a’
110 is an extracellular ligand that binds to a multimeric receptor. b’ is a member of a complex
111 that triggers a pathway of protein kinases, of which ‘c”is a member. ‘d”is a possible

112  regulator of that pathway but is not included in the canonical pathway definition

113  (interactome resources would show ‘d” interacting with members of the signalling pathway).
114  ‘e’is a transcription factor that regulates downstream expression. Panel B, i-iv show

115 additional possible drug targets defined across functional categories, as detailed in the main
116  text.

117

118  Several previous studies have applied the concepts of network propagation to disease

119  association, but none have directly and systematically addressed the question of whether
120  such approaches can maintain the empirically observed success of directly genetically

121  associated genes when selecting drug targets, which is what we focus on in this study. A
122 typical approach exemplified by Liu et al.” takes the results of a set of GWAS (9 asthma

123  related GWAS in this case), computes gene level scores and identifies a module or

124  subnetwork of genes within a larger global PPl network that contains both known disease
125  associated genes as well as a selection of novel targets. Nakka et al.' take a similar

126  approach using PEGASUS to compute gene scores and HotNet2'! to define the modules.
127  Carlin et al.'* formulate a general scheme for performing these types of analyses and

128 include infrastructure for storing and querying the derived networks in NDEx, a database of
129  biological networks. Other approaches such as NetWAS™® derive new networks from

130  molecular data that are then used alongside machine learning tools to produce systems that
131  canre-rank GWAS output to prioritize genes with weak or even below threshold

132  significance. Our own analysis of machine learning and network diffusion-based methods for
133  inference of new disease associations through biological networks suggests that many of
134  these methods™ perform very similarly and major differences in performance are driven
135 more by the choice of the underlying biological network. Probably the largest systematic
136  assessment of the use of network information to identify disease associations in complex
137  diseases comes from the ‘Disease Module Identification DREAM Challenge’®. The inference
138 task in this challenge is distinct from ours in that they aim to derive functional modules from
139 networks without using disease association data directly. Instead disease association data is
140 used to annotate and validate the function and biology of the derived networks. Another
141  recent review has also benchmarked network algorithms using a different set of

142  performance metrics and showed that network propagation performs well for target

143 prediction®™.

144

145  In this study, we first define a list of ‘high confidence genetic hits’ (HCGHs), which represent
146  genes for which there is both a clear genetic association derived from GWAS and a clear
147  mapping of the association to the gene through colocalization of the genetic disease

148  association with an expression quantitative trait locus (eQTL). Then, we define genetic

149  ‘proxy’ genes using various network and pathway analysis methods and sources of network
150 prior knowledge. Finally, we measure the enrichment of successful drug targets for the

151  given disease for both HCGHs and proxy genes with the aim of determining whether proxy
152  genes are enriched for clinically successful targets and which methods are best suited for
153  drug target selection.

154
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Methods

GWAS data and the Definition of High-Confidence Genetic Hits (HCGHs)

UK Biobank (UKB) GWAS were selected for inclusion if a phenotypic match could be made
between the (Medical Subject Headings) MeSH annotation of each trait and
the MeSH annotations for indications with drug target success/failure data available from
Citeline’s Pharmaprojects data (https://pharmaintelligence.informa.com/products-and-
services/data-and-analysis/pharmaprojects, see Clinical Data section). This match was
performed by fuzzy MeSH matching where one or more of the following conditions was
true:

e If the relationship was a MeSH parent-child connection.

e Co-occurrence in literature abstracts significantly more often than random.

e Where at least one of two ontology-based methods which take into account the

entire ontology structure®”*® gave a positive match.

For each GWAS, a set of genes were identified as ‘high confidence genetic hits’ (HCGHs)
using colocalisation of the GWAS summary statistics with GTEx eQTLs. Colocalisation was
performed® followed by filtering such that colocalisation eGenes were selected to give 1 or
0 HCGHs for each disease-associated locus in the genome where:

e The eGene is protein coding AND

e The GWAS p-value < 5e-8 AND

e The eQTL p-value < 1e-4 AND

e The GWAS/eQTL colocalisation p12 > 0.8 AND

e Where multiple such eGenes pass the above criteria for a single locus
the eGene with the highest posterior probability of colocalisation (H4, p12) across all
tissues was selected.

Only GWAS with > 1 HCGH and = 1 drug target with success/failure data available were
retained in the analysis. Because of the fuzzy MeSH matching, some surgical GWAS traits
were captured by this method but removed before further analysis. This resulted

in 648 GWAS covering 170 individual MeSH traits linked to 14374 distinct HCGH-GWAS
combinations, and 1045 distinct drug targets with success/failure data. All methods were
subsequently tested on these traits, genetic hits, and drug targets using the full protein-
coding gene list as the background gene universe (22758 genes).

Clinical Data

We extracted data from Citeline’s Pharmaprojects database
(https://pharmaintelligence.informa.com/products-and-services/data-and-
analysis/pharmaprojects, downloaded 5™ August 2017), reformatting available XML data
into a single tab-delimited form having one row for each asset. Each asset may be linked to
one or more targets, whether due to specific action at a complex or non-specific action
against multiple targets. Each asset may also be linked to progression against one or more
indications, each with its own pipeline status.
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We classified the 116,532 asset-indication pairs into one of 3

categories: ‘Succeeded’, ‘Failed’ or ‘In Progress’, based on the status listed

in Pharmaprojects for each indication. The 9,026 in the ‘Succeeded’ category consists
entirely of ‘Launched’ pairs. The 79,824 asset-indication pairs with ‘Failed’ status consist
of ‘Discontinued’ (24%), ‘No Development Reported’ (76%), ‘Withdrawn’ (<1%)

or ‘Suspended’ (<1%) asset-indication pairs, while the remaining 27,295 pairs, which
typically list the individual clinical or preclinical phase, are classified as ‘In Progress’.

We then classified the failures. Based on a collation of data from several text fields

in Pharmaprojects (Key Event Detail, Overview, Phase Ill, Phase Il, etc.), we manually
deduced the pipeline status (Preclinical, Phase I, Phase Il, Phase Ill) of each indication and
from ‘Key Event History’, the date of failure for the ‘Failed’ asset-indication pairs where
available. In general, assets with a single indication were straightforward to assign based on
the clinical phases that were mentioned; for those with multiple indications, we looked for
phrases which linked a specific indication with a specific clinical phase. We did not include
instances when a clinical phase did not actually appear to be undertaken based on the
available text, such as if the trial was 'planned’ or 'under consideration'. 26% of the failures
reported in Pharmaprojects could be determined to be clinical failures by this method.

To group similar findings together and prepare them for matching to evidence types, we
assigned each of the 1,340 unique indications in Pharmaprojects to one of 1,063 Medical
Subject Heading (MeSH) disease terms. 2,588 asset-indication pairs with indications
classified as 'ldeopathic disease, unspecified’, 'Not

applicable', 'Undisclosed' and 'Unspecified' or any of the 15 diagnosis terms were not
mapped and were not processed further, as a successful marker of the disease is not an
indication that the disease has been therapeutically treated. We also

used Pharmaprojects mappings for assets to human EntrezGene IDs to generate a list of
39,661 human target-asset pairs, correcting the single EntrezGene ID listed

in Pharmaprojects which is not currently used (SCN2A, from 6325 to the correct 6326). We
then produced a list of asset-EntrezGene-MeSH combinations, indicating whether the asset
binds to a single target or multiple targets, and whether it is being progressed against a
single indication or multiple indications.

We then grouped these 80,804 asset-target-indication triples (that is, those asset-indication
pairs with a human target) into 27,064 unique target-indication pairs, noting which of these
assets were labelled as interacting with one target (‘Selective’), and those which interacted
with more than one target (‘Non-Selective’). Non-Selective assets could represent poly-
pharmacology or binding of the asset to a complex of targets. If at least one ‘Selective’ asset
for a given target-indication pair was identified as successful, then the target-indication pair
was classified as ‘Succeeded’. Of the remaining target-indication pairs, if at least

one ‘Selective’ asset had a clinical failure then it was classified as ‘Clinical Failure’. We then
processed the data in the same way for ‘Non-Selective’ assets. The remaining data were
processed in the same order for ‘Preclinical Failures’. Those target-indication pairs which
had not yet been indicated as failures or successes were then identified as ‘In Progress’, in
that no record of success or failure yet exists in Pharmaprojects for these target-indication
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pairs. For each pair, we also recorded the furthest clinical phase achieved by any past or
current asset.

For this analysis, we utilized those target-indication pairs classified as ‘Succeeded’ as our
positive set, and those classified as ‘Clinical Failure’ as our negative set.

Evaluation of Methods for Proxy Gene Set Definition

The following methods were used to define proxy gene sets for the HCGHs for each GWAS.
See below for details on data sources used:

e Complex: All genes sharing a protein complex with a HGCH

e Ligand Receptor: All genes in a ligand-receptor pair with a HCGH

e Network First Neighbor: All first-degree interactors of a HCGH

e Network Second Neighbor: All first and second-degree interactors of a HCGH

e Pathway: All genes in the same pathway as a HCGH

e Pathway First Neighbor: All first-degree interactors that also share a pathway with a
HCGH

e Pathway Second Neighbor: All first and second-degree interactors that also share a
pathway with a HCGH

e Random: 10000 randomly selected protein coding genes from the background of
22758

e Hotnet*: All genes found within a HotNet2 network module (see below)

e Pascal/MAGMA identified genes (see below)

Complex: Data downloaded from https://www.ebi.ac.uk/complexportal/home on
21/01/2019. Ligand-Receptor: Data sourced from Ramilowski et a/*® and parsed

from Metabase (https://portal.genego.com/). In brief, Metabase was parsed for ligand-
receptor related keywords in the interaction metadata. Non-specific interaction types were
then removed. Networks: Multiple different gene networks were used as follows:

e OmniPath: The OmniPath interaction file was downloaded 14/02/2019
e STRING: Human interaction data was downloaded from STRING on 14/02/2019
e HuRl: Data downloaded from http://interactome.baderlab.org/
e InBio Map: Data downloaded
from https://www.intomics.com/inbio/map.html#fdownloads

For defining first and second neighbours from the network sources, each network was
converted into an iGraph object in R. The iGraph functions neighbors() and neighborhood()
were then used to find first/second neighbours, respectively. The list

of first and second pathway interactors within pathways was created

using Metabase pathway maps. First interactors for a gene were defined as all upstream and
downstream direct interactors across all pathways. Then, the process was repeated starting
with the first interactors, thus creating a list of second interactors.
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Enrichment Calculations

The enrichment of successful drug targets within the HCGHs and proxy gene sets
was calculated for each GWAS/method pair. For each pair a 2x2 contingency table was
constructed as follows:

Success Failure
Hit a b
Not Hit C d

Depending on the method, some tables had a and/or b equal to O (i.e. no overlap between
hits and failed or successful drugs). Tables with both a and b equal to 0 were removed.
Where a or b were equal to 0, 0.5 was added to each cell in the contingency table (Haldane
Correction®®). The reason for this was to preserve information where otherwise the odds
ratio would be undefined or infinite. To calculate an odds ratio and significance of
enrichment for each method, a stratified Fisher’s Test was then used (the Cochran—Mantel—
Haenszel test), across all GWAS for each method. Odds ratios and 80% confidence intervals
were then reported to measure by-method enrichment of successful drug targets.

Network Propagation

HotNet2! was used to define HCGH-enriched network modules. For this method, genes
found in network modules, excluding the seed HCGHs, were defined as hits. HotNet2 takes 2
inputs, a network and a gene list that defines the seed genes (in our case, the HCGHs) and
their associated genetic scores. For each GWAS/network combination, the HCGH gene set
was used as the input gene list and the score for each HCGH was derived from the

p12 colocalisation probability for that gene. The p12 probabilities were transformed by —
log(1-p12, base=2). For the purpose of this study, the consensus modules were used and all
genes contained within these modules were defined as hits for the GWAS/network.

Gene score and pathway enrichment calculation

Gene scores were calculated using two different algorithms: Pascal** and MAGMA?2. Pascal
was run with default settings, using the 'sum' gene scoring method. The 'empirical' pathway
enrichment p-value was taken as the measurement of pathway enrichment. For both Pascal
and MAGMA the 1KG LD matrix was used and the definition of the gene locus was the gene
body +/- 50kb. A number of different gene-sets were used as input for both methods:

1) Metabase pathway maps, 2) Reactome pathways, 3) DREAM networks consensus PPI
modules, 4) DREAM networks consensus co-expression modules. Gene-set enrichment p-
values were adjusted for multiple hypothesis testing using the BH method, calling pathways
with the adjusted p-value < 0.05 significantly enriched for the tested GWAS trait. A manually
curated list of HLA genes was excluded from both gene-set level analyses. We found that
Pascal significantly outperformed Magma (supplementary Figure 6). Hence, we removed
Magma from further analysis.
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334  Results

335

336  Naive Approaches
337

338  Our first approach is to look at a set of relatively naive network expansion methods, the
339  results of which are shown in Figure 2. For these methods the algorithm is simply the

340 selection of first or first and second neighbors within the relevant protein-protein

341 interaction network. Our positive control is the list of HCGHs for which there is clear, direct
342  genetic association to disease. Consistent with previous work we confirm that such targets
343 are significantly enriched for those which have proved to be successful (OR: 3.8; p < 1x10°®).
344  Our negative control is a set of randomly chosen genes from the background set which we
345  confirm to have no significant enrichment for successful drug targets (OR: 1; p = 0.8).

346
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347 Odds Ratio Average Number of Additional Hits per GWAS

348

349  Figure 2: Enrichment of successful drug targets (left) and number of targets implicated

350 (right) within HCGHs and additional target sets identified by network expansion using HCGH
351 seeds. The colours refer to the interaction categories used for the expansion (red; high-
352  confidence interactions — complexes and ligand-receptor pairs, green; protein-protein

353 interaction network STRING, blue; interactions from pathways defined in Metabase)

354

355  The first network we examine comprises stable protein complexes. In this network we

356 model each complex as a fully connected clique (i.e. every member of the complex is a first
357 neighbor of every other member). Taking HCGHs and performing network expansion using
358 this network adds ~10 novel potential target genes to the average GWAS and those genes
359 are enriched with successful drug targets to a similar level as the positive control (OR: 3.7; p
360 = 1.4x107%). This enrichment calculation (and all following calculations) is performed on the
361 new proxy genes only with the original seed HCGHs removed. Since protein complexes

362 comprise highly curated sets of genes that should have very high levels of shared cellular
363  function, the result of observing high enrichment is not surprising, but it does confirm that
364 this conservative level of network expansion is advisable in a target identification exercise.
365
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The second network we examine comprises ligand-receptor pairs. In this network (which is
not a simple 1:1 mapping), we model each ligand as being connected to all the proteins that
comprise its receptors and vice-versa we connect each receptor subunit to all its possible
ligands. Note that in this analysis we only consider first neighbors. We do not expand to
second neighbors, which would have the effect of propagating genetic evidence from a
ligand to its receptor and hence to all of that receptor’s ligands. Again, we find that the
additional targets identified through this approach are enriched for successful drug targets
(OR: 2; p < 1x10™) and confirm that network expansion using this class of network is
reasonable to perform when undertaking target identification.

The third network we use is STRING for which we measure success enrichment amongst first
neighbors and the union of first and second neighbors of the HCGHs. We observe no
enrichment for successful drug targets amongst first neighbors of the HCGHs (OR: 1; p = 0.5)
and a significant enrichment of failed targets amongst the first and second neighbors of the
HCGHs (OR: 0.5; p < 1x10™). This second observation is worthy of comment as the apparent
conclusion — that second neighbors of genes genetically associated to a given disease are
significantly more likely than a random gene to fail as drug targets for that disease —is not
intuitive. The reason we arrive at this conclusion comes from a property of the network and
the way in which historically tested drug targets are distributed within it; namely that a
small number of genes are very highly connected within the network (expected due to the
scale-free topology of most biological networks) and that these genes happen to have been
the focus of historical drug discovery efforts, which mean they have been tested in a high
number of trials and that those trials contain a high proportion of failures. This effect is
shown graphically in supplementary Figure 2. In both cases (first and first & second
neighbors), the number of additional targets implied by network expansion is very large
(1000s and even 10,000s of additional targets for most GWAS). The use of alternative
networks to STRING can somewhat ameliorate the effect observed of enrichment of failed
targets within first and second neighbors. However, in no network do such simple
algorithms provide value in terms of target selection (supplementary Figure 1).

The fourth network is based on pathway maps taken from Metabase. In our first naive
analysis we consider a network where every pathway map is modelled as a clique — every
member of the pathway connects to every other (Figure 1iv). Our other analyses take the
pathway connectivity defined in Metabase pathways into account and restrict the expansion
to first or first and second neighbors. As with the STRING network, taking the clique (OR:
0.7; p < 1x10°®) and first and second neighbor (OR 0.7; p < 1x10°®) approaches within
Metabase pathways leads to an enrichment of failed drug targets for the same reasons as
above. Taking first neighbors within the pathway does provide a small enrichment of
successful drug targets (OR 1.26; p = 0.07) and a similarly small number of additional
targets.

Advanced Approaches
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Figure 3: Enrichment of successful drug targets within HCGHs and proxy gene sets (left) and
the number of additional potential targets identified (right). The different enrichment
categories are colour-labelled; for network propagation, the enrichment performance of
running HotNet2 is shown together with the enrichment gained from including first
neighbours of HCGHs.

All methods used in the above analyses (naive) rely on careful selection of highly curated
protein interaction networks followed by the application of very simple — essentially trivial -
algorithms to select first or first and second neighbors of the HCGH seed genes.
Unsurprisingly these algorithms perform very poorly when applied naively to a densely
connected network such as STRING. An obvious and frequently used extension to these
algorithms is to apply some form of network propagation. Here we use the HotNet2'%!
algorithm and search for enrichment of successful drug targets on four different protein
interaction networks, as shown in Figure 3.

The genes found within modules detected by HotNet2’s network propagation and module
selection algorithms (Figure 3; green) are significantly enriched for successful drug targets in
the InBio Map and OmniPath networks (OR: 1.88/1.37; p < 1x10™ / p = 3x10™). HotNet2
does not reach significance with STRING (OR: 1.2; p = 0.42). The odds ratio point estimate
for enrichment for HotNet2 applied to HuRl is also insignificant and close to unity, though
with considerable error bars (OR: 1; p = 0.94). In all cases HotNet2 identifies 60-70 new
targets through inclusion in the modules detected.

The final scenario we test is based on the pathway enrichment of gene scores that are
derived from Pascal. We test what happens if we select as targets sets of genes that are
both within a pathway or a network module that is itself significantly enriched for genetic
association to a disease as measured by a GWAS (based on a Pascal gene score threshold)
and have a nominally significant (P < 0.05) Pascal gene score to the same disease in the
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same GWAS. We use Pascal®® to test the performance of this strategy, which is also shown
in Figure 3.

The genes found within pathways and modules detected by the Pascal algorithm (Figure 3;
purple) are significantly enriched for successful drug targets across all tested sources of
pathway gene sets and network modules, apart from the Reactome pathways. Pascal
analysis on DREAM co-expression modules resulted in an enrichment close to that of HCGHs
themselves with an OR: 3.09 and p = 3x10™. Analysis of network modules, both PPI and co-
expression variants, however, yielded a limited number of new targets (3-7), while the
analysis of pathways yielded ~30 new targets.

The full results across all methods can be found in supplementary Table 1 and
supplementary Figure 3.

One possible reason that we observe drug targets with no genetic evidence is that our
ability to find genetic associations between these targets and their respective diseases is
hampered by underpowered association studies. This would suggest that our proxy targets
should have some higher level of genetic association signal compared to random genes even
if the signal does not reach genome wide significance. Figure 4 shows the distribution of
gene level disease association scores calculated using Pascal® for the proxy genes identified
by each of the methods described above. Gene scores are given only for the GWAS trait
implicated by the original seed HCGH. HCGHs themselves have consistently high (on a -
log(P) scale) gene scores as one would expect (some HCGHs do not have significant gene
scores calculated by Pascal as the colocalization used to define them can be driven by
enhancers outside the gene body window used by Pascal). What is more revealing is that all
the proxy gene sets identified in these networks have an average gene score higher than a
random distribution and that the size of this effect largely tracks the enrichments observed
above: unsurprisingly the effect is larger in the more advanced methods such as Pascal that
use the genetic signal directly (Figure 4; right) but is also demonstrated for naive methods
(Figure 4; left, and supplementary Figure 4), and is true even based on very different
underlying network structures (supplementary Figure 5). This observation is consistent with
previous work that has shown that genes with nominally significant Pascal scores from a
GWAS can be used with network information to predict genetic associations subsequently
found in independent genetic studies for the same trait**
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477  Figure 4: Pascal gene scores for HCGHs and all proxy genes found using each method

478  indicated. Scores for the original seed HCGHs are excluded from the results across all the
479  network expansion methods. The order of methods is the same as Figure 2 (left) and Figure
480 3 (right).

481

482  Discussion

483

484  Our results confirm the widely held intuition that inference of disease associations through
485  a combination of direct causal evidence at single genes (provided by genetics) and

486  propagation of that evidence through a protein interaction network (that captures genuine
487  functional relationships) is a sound strategy for drug discovery. We go further than this

488  though in providing a more thorough empirical understanding of the types of protein

489  networks for which this strategy is valid and the types of algorithms which should be used
490 for propagation. We also provide additional quantitative understanding of the ways in which
491  diffusion of disease association within a protein network is manifested in observable genetic
492  associations.

493

494  Our headline conclusion for simple first or first and second neighbor ‘guilt-by-association’
495  approaches to target identification is that these are valid and useful for networks of protein
496 complex members or ligand receptor pairs, but not for other commonly used forms of

497  network or pathway information. An open question we do not answer is whether other

498  specific interaction types exist that would have similar properties to complexes or ligand-
499  receptor pairs. Our observation of weak but significant enrichment of successful drug

500 targets amongst first neighbors within pathway maps and an enrichment of weak genetic
501 associations within HCGH PPI first neighbors may well imply that such networks do exist.
502 Kinase-substrate or phosphatase-substrate networks would be obvious choices to inspect in
503 that they often define the core elements of signaling pathways. Alternatively, enzymatic
504  pathways (linking enzymatic producers of a compound to consumers) could also be tested
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505 especially where metabolomic QTL or other evidence exists for associating the cognate
506 metabolites to disease as well*>.

507

508  Our second conclusion is that more advanced network propagation algorithms can provide
509 the ability to detect patterns of useful disease association within even densely connected
510 proteome-scale interaction networks such as InBio Map and genome-scale signaling

511 pathway maps such as OmniPath. This effect is primarily due to the ability of HotNet2 to
512  exclude as potential targets large numbers of genes that are close to HCGH seeds, but do
513  not sit within a coherent pattern of disease association within the network. A weakness of
514  our study is that we do not test other network propagation methods. However, many such
515 methods are based around some version of the random walk with restart algorithm or a
516 mathematically equivalent conception and in previous work we have showed that many
517  such algorithms perform equivalently on a highly related problem'*. One potential avenue
518 for development in this area would be in graph based deep learning that could explicitly
519 model other additional sources of disease association such as those from target information
520  integration platforms such as Open Targets**. Figure 5 also highlights the importance of
521 these more advanced approaches in discovering the mechanisms behind genetic association
522  with disease. Here we have two independent methods, Pascal and HotNet2, using 2

523  different network sources (Metabase pathways and OmniPath), homing in on the same
524  biology that underlies hyperlipidaemia.

525

526  Our final conclusion is that what these processes are modelling is the diffusion of disease
527  association. Causal disease association is the property one fundamentally looks for in drug
528 targets and genetic association is one of, if not the, best way to detect such associations.
529

530 The first limitation of our study to recognize is that we only test network propagation of
531 genetic evidence and in fact restrict ourselves to one specific form of genetic evidence,
532 namely colocalization of eQTL and disease association loci. However, given the evidence
533  supporting truth set enrichment from colocalization, we anticipate that it would have a
534  relatively low false positive rate for identifying truly disease associated genes. The

535 thresholds we use mean that the evidence for disease association itself at a given locus
536  should be robust as well as the evidence for colocalization of the disease locus with gene
537 eQTLs. The major source of false positives will be through loci containing either pleiotropic
538 eQTL signals or many independent eQTLs leading to misassignment of the effector gene.
539 The downside of this approach however is that we also have a high false negative rate in
540 that there will be many genes with strong and obvious genetic evidence for a trait that we
541  miss (protein coding variants for instance). Our aim however is not to perfectly catalog all
542  genetically associated genes for these traits (this is left as an exercise for the reader), but
543  rather to test the validity of our network and propagation models given some reliable form
544  of genetic evidence. Our expectation would be that the same approaches would be valid no
545  matter the source of the genetic association evidence, whether it be eQTL based or from
546  protein coding variants or even based on rare Mendelian genetics; though we have not
547  formally shown this.

548

549  The more important limitation of our study arises from the way in which we measure the
550 performance of the various methods and networks using historical drug discovery data. The
551 limitation of this data is that it is highly biased and has a large amount of missing data in
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552  terms of providing a true measurement of the universe of good drug targets for a given
553 disease. Both effects are well known and described; firstly, genes are not chosen as drug
554  targets in an unbiased way; instead certain families of genes (G-protein coupled receptors
555  and protein kinases for instance) are much more likely to be chosen as targets®® compared
556 to others. This is because of properties, such as druggability, that are entirely orthogonal to
557  the strength of disease association alone. Also, genes that themselves have been highly
558  studied in terms of their molecular and cellular function are more likely to be chosen as
559 targets compared with genes of unknown or poorly understood function. In addition,

560 targets that have been tested against a large number of diseases are more likely to have a
561 higher proportion of failures than those which have only been tested against only a few
562  diseases (supplementary Figure 2). This probably reflects the decreasing marginal cost of
563 each additional clinical trial for a given drug since most of the typical preclinical and Phase |
564  costs are already sunk. This in turn makes increasingly riskier trials for additional indications,
565 based on weaker disease association evidence, worthwhile from a commercial risk-reward
566  perspective. Secondly, the large amount of missing data arises simply from the fact that
567  drug discovery activities and clinical trials especially are expensive and therefore relatively
568 few of the potential targets for a given disease have ever been tested clinically.

569

570 Itis important to bear in mind therefore that what we are measuring when looking at

571 historical trial outcomes is not an unbiased measure of any given gene’s true disease

572  associations, but rather a view on how useful a given evidence source or analytical method
573  has been for choosing drug targets based on current and historical drug discovery practices.
574  Dramatic changes in these practices in the future could render some of our conclusions
575 obsolete, though the fundamental observation that genetic association itself is retained in
576  molecular networks will remain valid. It is especially important to bear these facts in mind
577  when considering our apparently counter-intuitive result that first and second neighbors of
578 HCGHs for a given disease are enriched for failed drug targets against that disease. Taken
579 naively that would imply that one should deliberately ignore potential drug targets that are
580 first or second neighbors of HCGHs in a target identification exercise, but this would be a
581  very odd conclusion that is hard to rationalize biologically. More realistically we would

582  suggest that the true conclusion to draw from this part of our study is that such naive

583  approaches are not detectably better than a random selection of drug targets and that

584  further work on the development of graph-based machine learning algorithms for the

585 selection of drug targets based on genetics and other disease association information is
586  therefore warranted.

587
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589

590 Figure 5: An example of where Pascal pathway enrichment and HotNet2 home in on the
591 same pathway causal of Hyperlipidaemia. The Hotnet2 module (black interactions) was

592  detected using HCGHs (red) from a Hyperlipidaemia GWAS and the OmniPath network. This
593 module is enriched for 3 successful drug targets (bold node border), one of which, PCSK9,
594  was not categorised as a HCGH in the input. The Pascal enriched pathway (red interactions)
595 s the lipoprotein metabolism pathway from Metabase. Genes that have a significant Pascal
596 gene score are highlighted in yellow: it can also be seen that an additional novel drug target
597  was recovered (MTTP) using this method that did not have any type of genetic evidence
598  associated with it.

599
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