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Abstract

Motivation: With Next Generation Sequencing becoming more affordable every year, NGS technologies
asserted themselves as the fastest and most reliable way to detect Single Nucleotide Variants (SNV) and
Copy Number Variations (CNV) in cancer patients. These technologies can be used to sequence DNA at
very high depths thus allowing to detect abnormalities in tumor cells with very low frequencies. A lot of
different variant callers are publicly available and usually do a good job at calling out variants. However,
when frequencies begin to drop under 1%, the specificity of these tools suffers greatly as true variants at
very low frequencies can be easily confused with sequencing or PCR artifacts. The recent use of Unique
Molecular Identifiers (UMI) in NGS experiments offered a way to accurately separate true variants from
artifacts. UMI-based variant callers are slowly replacing raw-reads based variant callers as the standard
method for an accurate detection of variants at very low frequencies. However, benchmarking done in the
tools publication are usually realized on real biological data in which real variants are not known, making
it difficult to assess their accuracy.
Results: We present UMI-Gen, a UMI-based reads simulator for targeted sequencing paired-end data.
UMI-Gen generates reference reads covering the targeted regions at a user customizable depth. After
that, using a number of control files, it estimates the background error rate at each position and then
modifies the generated reads to mimic real biological data. Finally, it will insert real variants in the reads
from a list provided by the user.
Availability: The entire pipeline is available at https://gitlab.com/vincent-sater/umigen-master under MIT
license.
Contact: vincent.sater@gmail.com

1 Introduction
Old sequencing technologies are quickly disappearing as their use is
relatively expensive, slow and doesn’t allow sequencing at very high
depths. Due to their limits, they are now replaced by Next Generation

Sequencers such as Thermo Fisher or Illumina. Prior to sequencing,
DNA must be extracted and amplified by PCR in order to generate
enough fragments to cover the wanted amplicons. After amplification, the
sequencer handles the obtained fragments and generates their sequences
in form of reads. The obtained reads must then be aligned to a reference
genome in order to be used effectively. Today, cancer diagnosis is a very
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Fig. 1. The difference between a true variant and an artifact from a UMI perspective. (A)
A true variant is present on the DNA fragment so when the UMI tag 1 is added, it tags the
fragment and the mutation as well. After amplification, all the fragments tagged with the
UMI tag 1 carry the same mutation. (B) An artifact is not present on the DNA fragment but
rather appears at the steps that follow the UMI introduction. That’s why not all fragments
with the same UMI tag 2 carry the same artifact.

active area of research and one of its most important applications is the
detection of Single Nucleotide Variants (SNV) in tumor cells. In fact, each
cancer type has a specific profile of genetic mutations in specific genes.
Therefore, establishing a precise profile of variants in a cancer patient
allows us to better understand the cancer evolution and let us customize
the treatment according to the established profile.

Performing variant calling analysis on the aligned reads is the step
in which variants are called. Generally, variant calling tools can detect
mutational events such as substitutions, insertions and deletions very
efficiently. However, at very low frequencies (under 1%), it becomes
very challenging for raw-reads-based variant callers to accurately call
variants. In fact, PCR amplification and the sequencing step can introduce
errors in the final reads. These errors are called artifacts and occur at very
low frequencies which can lead to the confusion between them and true
low-frequency variants. Multiple studies (Schmitt et al. (2012), Kukita
et al. (2015), Newman et al. (2016), Young et al. (2016) and Bar et al.
(2017)) have shown the effectiveness of using Unique Molecular Identifiers
as a way to filter out PCR and sequencing artifacts. UMIs are short
arbitrary oligonucleotide sequences that are attached to DNA fragments
by ligation before the PCR amplification. The UMI tags must be arbitrary
sequences so each fragment can have a unique short oligonucleotide
sequence attached to it, giving each fragment a unique sequence tag.
During the amplification, the UMI tags are amplified with their respective
fragments. After sequencing, each unique UMI tag can be figured out
from the reads. The idea behind using UMI tags in NGS experiments
to filter out artifacts is explained in Figure 1. In fact, if a variant is a
true mutation, it means that it must have been present on the initial DNA
fragment so when we tag the DNA fragment with a UMI, we are also
tagging the mutation. The fragments that result from the amplification of
that mutated DNA fragment must all be tagged by the same UMI tag and
carry the same mutation (Figure 1A). On the other hand, if the variant is
a sequencing error, it means that the initial DNA fragment didn’t have the
mutation in the first place and that it appeared later in the sequencing step.
Therefore, during the amplification step, all the fragments resulting from
the amplification of that DNA fragment should be tagged with the same
UMI and should not present the mutation. The mutation will be produced
later on, in the sequencing step, affecting only some reads and not all of
them, thus creating discrepancies in the same UMI group (Figure 1B).

With the growing number of variant calling tools, it has become hard to
choose the right tool adapted to a certain experiment. Data simulation can
play an important role for testing different tools on a dataset that we have

control on, a control that we don’t have on real biological data. Many short
reads simulators exist at the moment. These tools are publicly available for
researchers and allow them to test their algorithms on a simulated dataset,
a dataset in which variants are inserted at different frequencies and at
different positions. The usage of the reads simulators enable having a very
accurate benchmarking of each variant calling tool ability. Surprisingly, no
simulation software exists at the moment that let users generate reads with
UMI tags. In this article, we present UMI-Gen, a UMI-based read simulator
that can be used not only to test raw-reads based variant callers but most
importantly, UMI-based ones. UMI-Gen uses multiple real biological
samples to estimate background error rate and base quality scores at each
position. Then, it will introduce real variants in the final reads. To test
our tool, we used 6 control samples and show exactly how our algorithm
estimate the background error rate at each position. Then we give it a list of
15 variants at different positions and at different frequencies to introduce
them in the final reads. Finally, we used 2 raw-reads-based variant callers:
SiNVICT (Kockan et al. (2017)) and OutLyzer (Muller et al. (2016)) and
two UMI-based variant callers: DeepSNVMiner (Andrews et al. (2016))
and UMI-VarCal (Sater et al. (2020)) in order to compare the 4 tools
performance and demonstrate that UMI-Gen correctly inserts the given
variants at their respective positions and at the correct frequencies.

2 Materials and methods

2.1 Software input

UMI-Gen requires a minimum of three parameters at execution: a list
of control BAM/SAM samples, the BED file with the coordinates of
the targeted genomic regions and a reference genome FASTA file with
BWA index files. UMI-Gen can also accept a fourth optional file under
the PILEUP format. In fact, when running UMI-Gen on control samples,
a PILEUP file is automatically produced. This file contains the A, C, G
and T average counts at each position for all the control samples. This file
can be given to UMI-Gen at execution time and will allow the software to
reload the pileup generated during the last analysis instead of regenerating
it. This will allow the user to gain some significant time since the pileup
generation is the most time-consuming step.

2.1.1 Control samples
Control samples are BAM/SAM files that are obtained by sequencing
healthy individuals and normally shouldn’t contain any somatic variant.
UMI-Gen can accept input files in BAM and SAM formats. A pileup is
performed on each sample and a final average pileup is generated from the
counts of all control samples.

2.1.2 Variants file
This file contains a list of the variants the user wishes to insert in the
simulated reads. These are the only variants that should be reported in the
variant callers VCF file during variant calling benchmarks. The variants
file is a Comma Separated Values (CSV) file that contains 2 columns: the
first column contains the variant ID with the HGVS nomenclature and the
second column being the variant’s desired frequency. UMI-Gen will then
go to each position and insert these variants in order to produce final reads.

2.2 Generating the final pileup

2.2.1 Pileup
The first step of the workflow (Figure 2) consists of generating the
final_pileup. For each control sample, our pileup algorithm will count
the occurrences of each A, C, G and T. The counts will be stored for each
position of the BED file as well the average quality of the position and
its depth. This is basically the same algorithm that is used by UMI-based
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Fig. 2. Background error estimation workflow. (A) The first step runs over every position
in all control samples and counts the total occurrences of every A, C, G and T. It also stores
the average base quality score for each position. (B) The second step’s goal is to remove
any suspected variant from the pileup as our objective is to estimate background error noise
only. (C) In this step, the counts are converted to probabilities by dividing them by the depth
for each position. (D) The final step consists of converting the base quality score of each
position to the corresponding ASCII + 33 character.

variant caller UMI-VarCal that’s been reintegrated in this tool for its high
efficiency in treating reads with UMI tags. When all the pileups for all
the control samples are ready, they will be merged in a final pileup that
contains the average statistics (counts, depth and quality score) at each
position based on the observations on all control samples (Figure 2A).
When the average_pileup is complete and ready, it will be automatically
dumped as a PILEUP file that contains all the calculated information on
the set of controlled samples. If the user wishes to generate simulated
data based on the same BED file and the same set of control samples, the
dumped pileup can be used directly which allows the program to skip the
pileup generation step and go directly to the variant calling step, saving
the user much significant time.

2.2.2 Variant Calling
Even though the control samples are theoretically variant-free, SNP and
undetected mutations could still be present in the files. These potential
variants must be removed so they would not be present in the final reads.
To do so, we used the same variant calling method implemented in UMI-
VarCal to call out potential variants and remove them from the pileup. This
step will produce what we call a filtered_pileup (Figure 2B).

2.2.3 Background noise estimation
The background noise estimation step consists of calculating the frequency
of observing an A/C/G/T at each position. Without the background errors,
at each position the reference base should have a frequency of 1 while
remaining three bases should be at 0. The total of the four frequencies must
be equal to 1. However, we know that artifacts exist in our control samples
and these artifacts represents the background noise that we normally
encounter in a normal NGS experiment. Since our aim is to simulate
reads that resemble the most to reads produced under real and normal
sequencing experiments, UMI-Gen calculates the real base frequencies
from the control samples at each position. The frequencies will then be
used as a probability matrix when producing the final reads. When this
step is complete, a probability_pileup is generated (Figure 2C). Insertions
and deletions are not considered during the background noise estimation
and thus, are not present in the final_pileup as their occurrence is very low
especially in second and third generation sequencers. Therefore, we judge
that their inclusion is not worth complicating the algorithm for.

Fig. 3. The difference between adding a true variant and adding an artifact in generated
reads. (A) Adding an artifact is relatively easy as all the tool has to do is to modify the base
at the wanted position without touching the read’s UMI tag. (B) On the other hand, in order
to add a true variant, the software must change the base at the wanted position on a set of
reads. Then it will create a new UMI tag (UMI tag 3) and change the UMI tag of all the
affected reads to UMI tag 3.

2.2.4 Quality scores estimation
Our tool was developed on sequencing files produced by an Illumina
sequencer. In the FASTQ files produced by Illumina sequencers, quality
scores are encoded into a compact form, which uses only 1 byte per quality
value. In this encoding, the quality score is represented as the character
with an ASCII code equal to its value + 33. The lowest quality score
of a base can be 0, the corresponding ASCII code is 33 and the ASCII
character that is found in the FASTQ quality string is ’!’. The highest
quality score is 41 and the corresponding ASCII character is the letter
’J’. The full table of correspondence is available in Table S1. UMI-Gen
is therefore only compatible with sequencers that use the same encoding.
UMI-Gen calculates the average quality score for each position based on
the qualities in all control samples and then converts the quality score to
the corresponding ASCII character to be inserted in the final FASTQ file.
This is the final step of the pileup generation workflow and will produce
the final_pileup (Figure 2D).

2.3 Producing the reads

The main objective of UMI-Gen is to generate paired-end reads that mimic
reads obtained from real life experiments. That’s why, it starts exactly the
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Fig. 4. UMI-Gen’s workflow: Control samples are used to create a background noise
frequency matrix and the user provides a CSV file with a list of the wanted variants. Using
the FASTA and the BED files, UMI-Gen creates a first set of UMI-tagged reference reads.
Artifacts are then inserted to mimic the sequencer’s background noise. Finally, the tool uses
the list provided by the user to insert variants at their exact locations.

way a real-life sequencing experiment starts: getting the DNA fragments.
At the beginning, our tool will generate a number of initial sequences
that only present the reference base at each position. Then, a unique UMI
tag is attached to each initial sequence. Depending on the amplification
factor and the desired depth chosen by the user, the algorithm will keep
amplifying the initial sequences until the desired depth is reached at all
positions. Once we have the reference reads, the second step consists of
adding the background noise (refer to section 2.2.3) to these reads (Figure
3A). Using the probability matrix calculated before, UMI-Gen modifies
the reads at each position for them to match the calculated probabilities.
These modifications are done without changing the reads UMI so they
mimic PCR and sequencing artifacts: they are false positives and should
not be called by variant callers. Finally, UMI-Gen parses the variants file
provided by the user in order to insert true mutations in the final reads. The
algorithm will go to each position, change the probability of the variant
to the corresponding frequency from the variants file. In this step, since
UMI-Gen is adding a true variant, the UMI tags of the modified reads
are also modified in order to produce concordant UMI tags (Figure 3B).
A concordant UMI tag is a UMI whose all reads carry the exact same
mutation. Also, since UMI-Gen generates paired-end data, when adding a
mutation on one read, the variant is automatically added to its mate.

2.4 Software output

Once all variants are inserted, UMI-Gen will generate the two FASTQ
files (R1 and R2). It will then call BWA (Li and Durbin (2009)) to do
the alignment, a step that will produce a BAM file. SAMtools (Li et al.
(2009)) is finally called to create the BAM’s index file and convert the BAM
into SAM. All five files are generated in the desired output directory. In
addition, UMI-Gen generates a binary PILEUP file that corresponds to the
average pileup dumped. This file can be used to skip the pileup regeneration
and load the pileup directly if the analysis was already done on the same
control samples.

2.5 Implementation

Launching UMI-Gen’s workflow (Figure 4) is handled by a main Python
script that controls many Python3 modules. In order to achieve better
overall performance, Cython was used to compile all Python modules.
UMI-Gen requires for the tools BWA and SAMtools to be installed on
the PC/server: BWA is called for the alignment step and SAMtools for
converting, sorting and indexing the generated BAM files. Our tool can be

Fig. 5. The A,C,G and T breakdown at the position 2 493 165 of the chromosome 1 for the
six control samples.

executed through a UNIX/Linux command line interface. In total, UMI-
Gen can accept 20 parameters at execution. Managing these parameters
allows the user to have full control over his simulated data. A list of all the
parameters and thresholds is available in Table S2.

3 Results

3.1 Control samples

A targeted sequencing panel was designed at the Centre Henri Becquerel
in Rouen (France) to search for specific mutations in the DNA of patients
suffering from Diffuse Large B cell Lymphoma (DLBCL). This panel of
76 630 bases is designed to identify genomic abnormalities within a list
of 36 genes that are most commonly impacted in this type of lymphoma.
The panel was specifically designed for QIAseq chemistry allowing UMI
introduction in the DNA fragments during the construction of the library.
A list of the genes used in the panel and their corresponding number of
targeted regions is provided in the supplementary Table S3. In order to test
our tool’s ability to mimic and reproduce average sequencer background
noise in the produced sample, we randomly selected 6 samples from a very
large number of patients whose DNA were sequenced at the Centre Henri
Becquerel. All six samples are liquid biopsies with circulating cell-free
DNA that was checked to be adequate for sequencing. We preferred the
use of liquid biopsies as these samples tend to be loaded with very low
frequency variants and artifacts. Using such samples as control samples
will produce simulated data with a relatively high number of artifacts. This
will allow us to have an accurate estimate of the specificity of each tested
variant caller.

To make sure that the artifacts were correctly added to the reads, we
used IGV (version 2.4.16) (Robinson et al. (2011)) to visualize the reads.
Figure 5 shows the exact counts of A, C, G, T for the position 2 493 165
on the chromosome 1 for each control sample. The fist control sample
counts (0,11,10,874), the second sample has (0,1,7,843), the third one
has (0,2,2,860), the fourth sample shows (1,6,9,965), the fifth one has
(1,2,4,867) and the final one counts (3,2,2,880). As explained in section
2.2.3, UMI-Gen will calculate an average count for each base and then
estimate its probability. In our case and for this position, the obtained
average count has 4 A, 24 C, 34 G and 5289 T with a total count of 5351
bases. To obtain the probabilities for this position on this chromosome, we
simply divide each base count by the total count of the 4 bases, obtaining the
final probability vector (0.0007, 0.0045, 0.0064, 0.9884). If for example
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Fig. 6. The A, C, G and T breakdown at the position 2 493 165 of the chromosome 1 in
the produced samples: Sample 1 with the depth of 1000x (A) and Sample 2 with the depth
of 10000x (B).

we wanted to produce a BAM file with a depth of 3000x, this position
would have 2 A, 14 C, 19 G and 2965 T. The probability matrix mentioned
in section 2.2.3 is basically the probability vectors of each position of the
panel, merged together. In our test and in order to demonstrate our results,
we simulated two artificial samples in which we added the calculated
background error noise. The first sample or Sample 1 has an average depth
of 1000x (+/- 15% at each position) and Sample 2 has an average depth of
10000x. Figure 6 shows how the background error noise is properly and
very accurately added at position 2 493 165 of chromosome 1 with the
probabilities calculated from the 6 control samples above.

3.2 Inserted Variants

Two different lists of mutations were created to go along with each
simulated sample. The first list contains 11 substitution variants with
frequencies that go from 0.9 (90%) to 0.01 (1%), one deletion at 1% and
one insertion at 1%. This list is used to produce the simulated Sample 1 with
a depth of 1000x. The second list contains 13 substitution variants with
frequencies that go from 0.9 (90%) to 0.001 (0.1%), one deletion at 1%
and one insertion at 1%. This list is used to produce the simulated Sample
2 with a depth of 10000x. Two very low frequency variants (frequency <
1%) were added to the second list to test the variant insertion accuracy of
UMI-Gen. In fact, very low frequency variants are the hardest to detect
and should be systematically used to rigorously test any variant caller. In
order to verify that the wanted variants were added at the exact locations
with the correct frequencies, we used IGV to visualize the reads. Figure 7
shows and details the variants added in both samples and Table 1 details
the exact variants that we inserted at the specific locations. The location
of each variant is chosen carefully to make sure that it is not inserted in a
long homopolymer region. Figure 8 demonstrates that our tool is capable
of accurately adding variants in the final reads at the specified locations
for both samples.

3.3 Variant Detection

We tested the ability of four different variant callers to correctly detect the
true variants added in section 3.2 and filter out sequencing errors/artifacts
added in 3.1. We used SiNVICT and OutLyzer, two raw-reads-based
variant callers specifically developed to detect low frequency variants
and two UMI-based variant callers with a very low frequency detection
threshold and that analyze UMI tags in order to produce more accurate
results. The four variant callers were tested on the two artificial samples:
Sample 1 that contains 13 known variants and a depth of 1000x and Sample
2 that contains 15 known variants and a depth of 10000x. Both samples

Position Reference allele Variant allele Frequency Sample
2 488 101 G A 0.9 S1 & S2
2 489 200 C A 0.8 S1 & S2
2 491 260 A G 0.7 S1 & S2
2 493 201 T A 0.6 S1 & S2
2 494 300 G A 0.5 S1 & S2
23 885 600 C A 0.4 S1 & S2
23 885 800 A T 0.3 S1 & S2
27 022 900 C A 0.2 S1 & S2
27 023 200 C A 0.1 S1 & S2
27 093 001 G A 0.05 S1 & S2
27 100 350 C A 0.01 S1 & S2
27 106 500 G A 0.005 S2 only

117 057 400 T A 0.001 S2 only
120 458 000 C CTA 0.1 S1 & S2
120 466 600 TGTC T 0.1 S1 & S2

Table 1. Detailed list of the inserted mutations. In this test, all mutations are
inserted on chromosome 1.

Fig. 7. Along with the reference genome FASTA file and the BED file, two different lists
were used, one with 13 variants and the other with 15 variants to respectively produce the
artificial samples Sample 1 and Sample 2.

Variant Caller TP FP FN TN
SiNVICT 8 / 241 233 / 241 5 / 76 389 76 384 / 76 389
OutLyzer 11 / 109 98 / 109 2 / 76 521 76 519 / 76 521
DeepSNVMiner 0 / 4 4 / 4 13 / 76 626 76 613 / 76 626
UMI-VarCal 13 / 13 0 / 13 0 / 76 617 76 617 / 76 617

Table 2. Variant calling results on Sample 1. Four variant callers were tested:
SiNVICT, OutLyzer, DeepSNVMiner and UMI-VarCal and for each tool, True
Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives
(TN) are reported.

have a total of 76 630 sequenced positions which corresponds to the size
of the sequencing panel.

3.3.1 Sample 1
Table 2 details the results of each tool for Sample 1. The total number of
positives corresponds to the number of variants found in the result VCF
file. The total number of negatives is then calculated by subtracting total
positives from the total number of positions (76 630).

Starting with SiNVICT, the tool detected 241 variants in total which
corresponds to 76 389 negatives. Among the positives, 8 of them are true
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Fig. 8. The inserted mutations were correctly added to the reads with their exact locations at
their corresponding frequencies. Here, we see four mutations: chr1:2491260A>G at 70%,
chr1:27022900C>A at 20%, chr1:120458000C>CTA at 10% and chr1:27093001G>A at
5%.

Variant Caller TP FP FN TN
SiNVICT 8 / 463 455 / 463 7 / 76 167 76 160 / 76 167
OutLyzer 12 / 342 330 / 342 3 / 76 288 76 285 / 76 288
DeepSNVMiner 0 / 4 4 / 4 15 / 76 626 76 611 / 76 626
UMI-VarCal 15 / 15 0 / 15 0 / 76 615 76 615 / 76 615

Table 3. Variant calling results on Sample 2. Four variant callers were tested:
SiNVICT, OutLyzer, DeepSNVMiner and UMI-VarCal and for each tool, True
Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives
(TN) are reported.

positives that can be found in the variants list. However, 233 of the 241
were false positives (96.68 %). Among the negatives, 5 of the 76 389 are
false ones. These five variants are in the variants list that we provided and
were not detected by the tool. On the other hand, 76 384 positions were
correctly not called and considered as true negatives by SiNVICT.

Moving on to OutLyzer, it detected 109 variants in total which
corresponds to 76 521 negatives. Among the positives, 11 of them are
true positives that can be found in the variants list. However, 98 of the 109
were false positives (89.9 %). Among the 76 521 negatives, only 2 are
false ones and 76 519 positions were correctly not called and considered
as true negatives by OutLyzer.

Concerning DeepSNVMiner, the tool detected only 4 variants in total
which corresponds to 76 626 negatives. Surprisingly, none of the positives
are true positives and the 4 positives were all false positives (100 %).
Among the negatives, 13 of them are false negatives and 76 613 positions
were correctly considered as true negatives by DeepSNVMiner.

Finally, UMI-VarCal was able to detect 13 variants in total which
corresponds to 76 617 negatives. All of the detected positives are true
positives and no false positives were called by this variant caller (0 %).
Among the 76 617 negatives, none is a false negative and 76 617 positions
were correctly not called and considered as true negatives by UMI-VarCal.

3.3.2 Sample 2
Table 3 details the results of each tool for Sample 2. Positives and negatives
are calculated in the same way as for Sample 1.

Again starting with SiNVICT, the tool detected 463 variants in total
which corresponds to 76 167 negatives. Among the positives, 8 of them
are true positives that can be found in the variants list. However, 455 of the
463 were false positives (98.27 %). Among the negatives, 7 of the 76 167
are false ones. These seven variants are in the variants list that we provided

and were not detected by the tool. On the other hand, 76 160 positions were
correctly not called and considered as true negatives by SiNVICT.

Moving on to OutLyzer, it detected 342 variants in total which
corresponds to 76 288 negatives. Among the positives, 12 of them are
true positives that can be found in the variants list. However, 330 of the
342 were false positives (96.49 %). Among the 76 288 negatives, only 3 are
false ones and 76285 positions were correctly not called and considered
as true negatives by OutLyzer.

Concerning DeepSNVMiner, the tool detected only 4 variants in total
which corresponds to 76 626 negatives. Surprisingly again, we obtained
the same 4 false positives from Sample 1 with no true positives. Among
the negatives, 15 of them are false negatives and 76 611 positions were
correctly considered as true negatives by DeepSNVMiner.

Finally, UMI-VarCal was able to detect 15 variants in total which
corresponds to 76 615 negatives. Once again, all of the detected positives
are true positives and no false positives were called by the tool (0 %).
Among the 76 615 negatives, none is a false negative meaning that all
of them were correctly not called and considered as true negatives by
UMI-VarCal.

4 Discussion
Tagging DNA fragments with UMI tags have proved itself as a very reliable
method to significantly reduce - if not completely remove - the number
of false positives upon variant calling. A huge number of variant callers
are publicly available at the moment but unfortunately, only 4 of them are
specifically developed to treat UMI tags in reads. For raw-reads-based
variant callers, a lot of artificial reads simulator exist and can satisfy
everyone’s needs. However, at our knowledge, no tool is publicly available
to simulate artificial reads with UMI tags. Such tool is very important as it
allows developers to accurately test the specificity and sensitivity of their
variant callers on artificial reads in which real variants are known instead of
testing them on biological samples whose mutational profile is completely
or partially unknown.

Our main objective was to develop a UMI-tagged reads simulator that
is fast, accurate and reliable. UMI-Gen is able to estimate the background
error noise of a given control dataset and then reproduce it accurately in the
produced reads. Doing so, it allows to mimic the sequencer’s background
noise of a real sequencing experiment. We also showed that our simulator
is able to accurately insert variants if provided with a list of variants with
exact locations and their corresponding frequencies. In our tests, we were
able to insert mutations as low as 0.1% but theoretically, we can go as low
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as we want provided that the depth of the produced sample is accordingly
increased.

Moreover, in our variant callers comparison, SiNVICT did a somewhat
good job detecting the 8 of the added variants and went as low as 5%.
Impressively, we judge the performance of OutLyzer as excellent as it
detected 12 of the 15 variants (Sample 2) and showed a detection threshold
of 0.5% which is very respectable. However, SiNVICT and OutLyzer
being raw-reads-based variant callers, UMI tags were not treated in the
reads and therefore, both tools produced a very high percentage of false
positives. DeepSNVMiner results were surprising since it couldn’t detect
any inserted variants and only called out 4 false positives. This is rather
weird given that it is supposed to be a variant caller that treats UMI tags
and should show increased sensitivity and specificity when compared to
raw-read-based ones. UMI-VarCal on the other hand was successfully able
to treat UMI tags allowing it to filter out all false positives and only call
out the 13 added variants in Sample 1 and all of the 15 in Sample 2. These
results demonstrate UMI-VarCal’s very high sensitivity and specificity on
both samples. It performed better than the three tools we tested and showed
a detection threshold of 0.1%.

5 Conclusion
Here, we present UMI-Gen: a standalone UMI-based reads simulator for
variant calling evaluation in paired-end sequencing NGS libraries. UMI-
Gen produces sequencing files (FASTQ, BAM and SAM) for an artificial
sample to be used for UMI-based variant calling testing purposes. By using
a set of control DNA samples, our tool is capable to accurately mimic the
background error noise of the sequencer and add it into the reads. After
that, it can insert specific mutations at specific locations and at very precise
frequencies that can go as low as 0.1% (and even lower). In our tests, all
added artifacts were correctly inserted in the reads, causing a high number
of false positives in the raw-reads-based variant callers results. Also, all
inserted true variants were visualized with a genome visualizing tool (IGV)
and were detected by at least one of the four variant calling tools we tested.
Finally, we note that UMI-Gen’s filters and parameters (such as read length
and UMI tag length) are customizable which gives the user total control
over his produced samples. This level of customization allows the tool to
be adequate for a high number of research applications.
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