

1 Inspecting abundantly expressed genes in male strobili in sugi (*Cryptomeria japonica* D. Don)
2 via a highly accurate cDNA assembly

3

4 Fu-Jin Wei¹, Saneyoshi Ueno^{1*}, Tokuko Ujino-Ihara¹, Maki Saito², Yoshihiko Tsumura^{1,3},
5 Yuumi Higuchi⁴, Satoko Hirayama⁵, Junji Iwai⁶, Tetsuji Hakamata⁷, Yoshinari Moriguchi⁸

6

7 ¹ Forestry and Forest Products Research Institute, Forest Research and Management
8 Organization, Ibaraki, Japan

9 ² Forest Research Institute, Toyama Prefectural Agricultural Forestry and Fisheries Research
10 Center, Toyama, Japan

11 ³ Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

12 ⁴ Niigata Prefectural Forest Research Institute, Niigata, Japan (retired)

13 ⁵ Niigata Prefecture Niigata Regional Promotion Bureau, Niigata, Japan

14 ⁶ Niigata Prefectural Forest Research Institute, Niigata, Japan

15 ⁷ Shizuoka Prefectural Research Institute of Agriculture and Forestry, Shizuoka, Japan

16 ⁸ Graduate School of Science and Technology, Niigata University, Niigata, Japan.

17

18

19 * Corresponding author

20 E-mail: saueno@ffpri.affrc.go.jp (SU)

21 Abstract

22 Sugi (*Cryptomeria japonica* D. Don) is an important conifer used for afforestation in Japan.
23 The field of functional genomics is rapidly developing. The genomics of this gymnosperm
24 species is currently being studied. Although its genomic size is 11 Gbps, it is still too large to
25 assemble well within a short period of time. Transcriptomics is the one another approach to
26 address this. Moreover, it is a necessary step in obtaining the complete genomic data. Here we
27 designed a three stages assembling workflow using the *de novo* transcriptome assembly tools,
28 Oases and Trinity. The three stages in transcriptomics are independent assembly, automatic and
29 semi-automatic integration, and refinement by filtering out potential contamination. We found a
30 set of 49,795 cDNA and an equal number of translated proteins (CJ3006NRE). According to the
31 benchmark of BUSCO, 87.01 % were complete genes, including very high “Complete and
32 single-copy” genes—78.47%. Compared to other full-length cDNA resources, the extent of the
33 coverage in CJ3006NRE suggests that it may be used as the standard for further studies. When
34 two tissue-specific libraries were compared, principal component analysis (PCA) showed that
35 there were significant differences between male strobili and leaf and bark sets. The highest three
36 upregulated transcription factors stood out as orthologs to angiosperms. The identified signature-
37 like domain of the transcription factors demonstrated the accuracy of the assembly. Based on the
38 evaluation of different resources, we demonstrate that our transcriptome assembly output is
39 valuable and useful for further studies in functional genomics and evolutionary biology.

40

41 Introduction

42 *Cryptomeria japonica* D. Don (Japanese cedar), also known as sugi in Japan, is a large
43 evergreen conifer tree species. Because of its fast growth and its adaptation to most
44 environments in Japan, it has been an important material for the forestry industry. After World
45 War II, sugi plantations have increased to 42 % of Japan's artificial forests [1]. Thus, the need
46 for breeding better tree varieties is one of the main reasons to attain more knowledge of sugi
47 genomics. Other motivations include medical and other economic reasons. Its pollen led to
48 severe allergy in about 25% of the Japanese population [2]. Replacement by sugi with sterile
49 pollen is a possible solution to the problem, but it is not easy to implement and may take a long
50 time [3]. Fortunately, 23 genetically sterile male trees have already been identified [4]. Four loci
51 (*MS1*, *MS2*, *MS3*, and *MS4*) responsible for male sterility were located in four different linkage
52 groups (LG9, LG5, LG1, and LG4, respectively) [5]. In addition, male sterility is caused by
53 recessive alleles. Recent advances in technology are available to reveal more details on the
54 genetics related to these loci. To more precisely identify the genetic variation or the genes related
55 to male sterility, a functional genomic study via transcriptomics is a logical approach [6,7],
56 though a comprehensive genomic data of sugi is not currently available.

57 In gymnosperms, study on functional genomics is difficult because of the long life span of
58 trees and the large genome size. For instance, the genome sizes of Norway spruce (*Picea abies*)
59 [8], white spruce (*Picea glauca*) [9,10], loblolly pine (*Pinus taeda*) [11], ginkgo (*Ginkgo*
60 *bioloba*) [12], and sugi (*Cryptomeria japonica*) [13] are 20 Gb, 20.8 Gb, 20.15 Gb, 11.75 Gb,
61 and 11 Gb, respectively. So, far, only four gymnosperms have had their assembled genome
62 sequences published. That is, the Norway spruce [14], white spruce [9,10], loblolly pine [11],

63 and ginkgo [12]. The genomic sequences have been assembled from long length of contigs or
64 scaffolds. Decoding the genome using appropriate annotations is essential for determining the
65 functions. There has been an increase in the use of the emerging annotation software—
66 “MAKER” and “MAKER-P” for plant species [15]. Genomic information from assembled
67 genome sequences, RNA, and protein data can be combined and annotated. In other words,
68 regardless of the quality of the genomic sequence, abundant RNA or protein data is required for
69 the annotation process. Thus, even where a complete genome sequence is unavailable,
70 transcriptome analysis is needed for a functional genomic study [8,16-20].

71 Many assembled expressed sequence tags (EST) for sugi have been published in the public
72 databases [21,22] before the availability of high throughput sequencing technology—such as
73 next generation sequencing (NGS). This was sufficient for functional genomic studies for certain
74 specific purposes. However, NGS has proven to be greatly beneficial to the advancement of
75 functional genomic research due to its increased yields, reduced unit price, and multiple analysis
76 tools available [7,23]. Pacific Biosciences (PacBio) is a single-molecule real-time long-read
77 isoform third-generation sequencing tool. It provides a reasonable alternative to harvesting the
78 full-length cDNA. The length of a single read and the high speed were unprecedented [24].
79 However, errors still needs to be accounted for by hybrid genome sequencing assembly [25].
80 Choosing a suitable assembly tool is another issue in processing in the *de novo* assembly of
81 transcriptome data [26]. Transcriptomic integration is another option, which was performed well
82 in *Abies sachalinensis*, another conifer species [27].

83 Fundamental information on the transcriptome is an essential step for future work; we aim to
84 construct a high-quality cDNA assembly on sugi. Here, we independently assembled the
85 transcriptome data of 10 different genome accessions of sugi. These were then integrated with

86 half-manual integration using the EvidentialGene software [28]. To find and identify the male
87 strobili specific sterility genes, we had the 10 RNA-Seq libraries of uneven runs. In reference to
88 the benchmark testing and coverage of to- and by- different cDNA sources, we have high
89 confidence in our assembled cDNA.

90 Results

91 The integrated sugi EST library containing 49,758 transcripts, has been constructed by a
92 series of manipulation on the 10 RNA-Seq libraries. We joined two RNA-Seq *de novo*
93 assembling tools (Oases [29] and Trinity [30]); and used two methods to assemble and to
94 integrate the transcriptomic sequence with the RNA-Seq libraries (automatic assembly using
95 EvidentialGene [28] and half-manual assembly in multiple steps). We evaluated our library with
96 the benchmark tool using the built-up core reference database; and we compared our integrated
97 EST library to the other cDNA resources. The expressional result (Figure S2) showed the highest
98 effect by the tissue (Table 1) compared to the pedigree of samples (Figure S1). The purpose of
99 these evaluations is to assess the quality of the transcriptome assembly output from this method.

100

101 **Table 1** The statistics of raw reads and mapped read

Working ID	Accession	Tissue ^{&}	Seq. Tech. ^{\$}	Read pairs	Contig #	Gene #	Max. length
S1s	Nakakubuki-4	MS	H&M	79,807,618	100,433	34,937	16,581
S2s	T1NK4F1	MS	H&M	80,381,867	98,141	33,527	16,394
S3s	T5_normal_mixed	MS	H&M	227,248,962	124,448	42,861	17,669
S4s	T5_sterile_mixed	MS	H&M	231,666,349	119,627	41,875	20,848
S5s	S3T67_normal_mixed	MS	H&M	5,414,221	43,326	22,531	12,984
S6s	S3T67_sterile_mixed	MS	H&M	55,126,058	97,360	36,363	16,997
Ooi-7	Ooi-7	IBL	H	60,826,308	82,064	30,799	16,753
S1NK4	Shindai-1 × Nakabuki-4	MS&IBL	H	53,857,318	94,578	34,252	16,377
S5HK7	Shindai-5 × Higashikanbara-7	MS&IBL	H	55,303,023	88,771	32,348	17,018
S8HK5	Shindai-8 × Higashikanbara-5	IBL	H	50,816,212	81,387	31,021	16,221
CJ3006All	Integrated	MS&IBL	H&M	-	116,466	-	20,997
CJ3006NRE	Integrated	MS&IBL	H&M	-	49,758	-	17,669

102 [&]: MS: Male strobili; IBL: Inner bark & leaf.

103 [§]: H&M: HiSeq and MiSeq; H: HiSeq.
104 The minimum length of every library is 501 bps.
105

106 Assembly and annotation of EST library

107 There were 116,466 and 49,758 contig sequences in CJ3006All and CJ3006NRE,
108 respectively. The maximum cDNA length of CJ3006All and CJ3006NRE were 20,997 and
109 17,669, respectively. The N50 statistic of CJ3006All and CJ3006NRE were 1,256 and 1,819,
110 respectively. The basic number of each assembled library is presented in Table S1. In Trinity, the
111 number of contigs per library ranged from 43,326 (S5s) to 124,448 (S3s). In Oases, the number
112 of contigs per library ranged from 34,303 (S5s) to 105,184 (S3s). Obviously, the number of
113 contigs was affected by the number of reads per library (Table 1).

114 There were a total of 31,678 and 47,968 genes out of 49,758 to which we assigned a
115 functional annotation using InterProScan [31] and EvidentialGene [28], respectively. It is
116 difficult to identify the real gene isoform from the assembled transcriptomes without genomic
117 sequences. Although 17,079 gene isoforms (Table S2) of the 49,758 can be used as
118 representatives, we used all 49,758 genes to perform the following analysis.

119 In total, 1,291 genes related to transcription factors have been identified by Pfam [32]
120 annotation as in the list of transcription factors (Table S2). Within them, 974 genes were
121 considered as unigenes without isoforms (Table S2).

122 Using RepeatMasker [33], the number of transposable elements within CJ3006NRE was
123 estimated to be 7,029 and 2,282 for retrotransposon (Class 1) and DNA transposon (Class 2),
124 respectively. Repetitive sequences made up about 4.1 % of the whole cDNA sequences in
125 CJ3006NRE (Table S3). The majority of this was LTR elements, forming about 2.54% of

126 nucleotide bases in the total length of CJ3006NRE. However, only 3,197 and 772 were with
127 confidence after filtering out ones with low coverage rate (<20%) and too short length (< 200
128 bps) (data not shown). Although retrotransposons may account for the large size of the sugi
129 genome, most of them may be silenced in the collected 10 RNA-Seq libraries.

130 The cDNA and translated protein sequences were uploaded onto the ForestGEN database
131 (<http://forestgen.ffpri.affrc.go.jp/CJ3006NRE/clusterList> with username and password, which
132 will be freely accessible after acceptance of this manuscript). The metadata and annotation are
133 presented in a Supplementary Excel file (Table S2).

134 The benchmark of assembly

135 The coverage of the assembling result of the sugi EST library (Fig 1) was estimated by
136 BUSCO (version 3.0.2) [34] and its reference database, *embrophyta_odb9*. In comparison to
137 other assembled results from single libraries, S1s to S8HK5, the ratio of missing parts (to the
138 reference database) was lower in CJ3006NRE, 10.76%. Furthermore, completeness, especially
139 the “Complete (C) and single-copy (S),” was clearly higher (78.47%) than all other libraries
140 (41.88% to 49.24%). In general, the benchmark of CJ3006NRE is higher than any single
141 assembled library.

142

143 **Fig 1. The benchmark of the assembled contigs.** The y-axis shows the samples listed in Table
144 1. The reference database for BUSCO (v 3.0.2) was “*embrophyta_odb9*.” with 1,440 core genes
145 in total.

146

147 The coverage of different full length cDNA

148 For estimating the advantage of the RNA-Seq technology and integration method used in this
149 study, we compared the coverage between CJ3006NRE and two other cDNA sources, full-length
150 cDNA by Sanger sequencing and full-length cDNA by ISO-Seq results in our laboratory.

151 The full-length cDNA library was retrieved by using the keywords “*Cryptomeria japonica*
152 full-length” in the NCBI-Nucleotide database on 13th September, 2018. In total, 23,111
153 nucleotide sequences were retrieved, downloaded, and formatted as BLAST databases, called
154 “CJ_FLCDNA.”

155 Using the “pbtranscript-tofu” analysis suite, there were 56,399 transcripts clustered from three
156 ISO-Seq runs. Within them, 9,352 transcripts were classified as a high-quality subset, called
157 “ISOSeq0215hq”.

158 For screening on the BLAST result, we merged the High-scoring Segment Pairs (HSP) of the
159 same query-subject pair. Then, we separately calculated the coverage to query and to subject.
160 Thus, we calculated the coverage to the “query” sequence and to the “subject” sequence for each
161 query-subject pair. In Table 2, we only counted the sequences where the coverage was over 75%
162 of the length. Every row of Table 2 shows that using CJ3006NRE can cover a higher ratio of
163 another cDNA library than vice versa. Thus, using CJ3006NRE to present both cDNA resources
164 would have better overall coverage.

165

166 **Table 2.** The mutual coverage (more than 75%) between CJ3006NRE and other cDNA sources

cDNA source	Covered by CJ3006NRE†	Cover to CJ3006NRE‡
ISOSeq0215	45,612 (80.87%)	21,498 (43.21%)

ISOSeq0215hq	8,826 (94.38%)	9,178 (18.45%)
CJ_FLcDNA	15,903 (68.81%)	16,814 (33.79%)

167 † The proportion is divided by a total number of cDNA source, 56,399, 9,352 and 23,111 for
168 ISOSeq0215, ISOSeq0215hq and CJ_FLcDNA, respectively.

169 ‡ The proportion is divided by a total number of CJ3006NRE (49,758).

170

171 The mapping rate of RNA-Seq reads

172 The usage of the reads was counted based on the statistics of the mapping file. The mapping
173 rate (%) was calculated by dividing the number of unmapped reads by the total number of reads
174 of each library, and then subtracting from one hundred.

175 Since the integration process has been through several steps, we used mapping (usage) rate to
176 reveal how much information by sequencing was lost. Using CJ3006NRE as the reference, the
177 usage rate ranged from 91.99 % to 96.49% (Fig 2; Table S4). Theoretically, the usage rate
178 against the contigs assembled from the querying reads should be one hundred percent. However,
179 we could only have 96.27% (S5s) to 99.04% (S4s). After the integration, however, almost all
180 mapping rates reduced by around 0.87% (S3s) and 2.09% (S1s), except for S5s, which increased
181 by 0.74%. By filtering out the non-eukaryote assemblies (i.e., contamination), CJ3006NRE was
182 attained; the mapping rate reduced by another 1.58% (S4s) to 3.35% (S1NK4). Thus, there was
183 only a low number of reads that have been discarded by the integration and filtering processes.

184

185 **Fig 2. The mapping rates from different references.** The reads mapping rate was estimated by
186 samtools on the mapping file (BAM). The X-axis means the source of raw reads. The five colors

187 represent the different reference contigs. Self: the reference was the contigs assembled by the
188 same library of raw reads; CJ3006All: the contigs set of CJ3006All without filtering;
189 CJ3006NRE: the contigs set of CJ3006NRE, the CJ3006All without matching to any non-
190 Eukaryote in NCBI-NR; Only EviGene: CJ3006NRE without manual integrated set; FLcDNA:
191 the full-length cDNA set download from NCBI on 13th September, 2018. The Y-axis is the ratio
192 of mapped raw reads against the reference contigs.

193

194 For determining how much reads was enriched by manual integration, the column “Only
195 EviGene” was calculated (Table S4). It showed enrichments of 1.09% (S4s) to 2.31% (S1NK4).
196 Compared to the added contigs number of the manually integrated part, 7,580 contigs, which is
197 about 15.23% of CJ3006NRE, only a small amount of enrichment was given by the manual
198 integration.

199 By mapping to full-length cDNA from NCBI, we determined how much the RNA-Seq data
200 covers the full-length cDNA, particularly for the cDNA collected from the same plant organ - the
201 male-strobilus. The result showed a distribution of 67.92% (S6s) to 84.69% (S4s) (Table S4).
202 The two highest mapping rate was contributed by two libraries with the highest numbers of
203 reads, S3s and S4s. This suggests the full-length cDNA from NCBI only covers less than 85% of
204 the total RNA, if we assume RNA-Seq as the total RNA.

205 Differential expression

206 The 10 RNA-Seq libraries could be classified into three groups, according to the type of tissue
207 sample collected: 1.) All from male strobili; 2.) All from the inner bark and leaf; and 3.) Mixed
208 with male strobili, inner bark, and leaf materials. Before looking at the differential expression

209 between any certain pair of groups or libraries, principal component analysis (PCA) and sample
210 heatmap were used to reflect the characters of the libraries. The two libraries collected from only
211 inner bark and leaf tissues (Ooi-7 and S8HK5) were very different from other libraries (Fig 3). In
212 PCA, either the first or second principal component divided the libraries from bark and leaf far
213 from the accessions from male strobili (Fig 3a). Although most of the samples were collected
214 from male strobili, bias during sampling or assembling may occur. In Fig 3b, the darker blue
215 indicated a higher dissimilarity between two accessions, as indicated by the X-axis and Y-axis.
216 With the exception of “Ooi-7 against S8HK5”, almost all other accessions against Ooi-7 or
217 S8HK5 showed higher dissimilarity (> 0.1 , darker color). This supported the previous PCA
218 result in one-to-one comparisons.

219

220 **Fig 3. Assessment of the gene expression data.** (a) The PCA result of each run. The green color
221 indicates samples collected from male strobili. The red color indicates samples from bark or leaf
222 tissue. (b) Paired divergence heatmap among each run. The darker blue indicates higher
223 divergence. (c) The heatmap of gene expression of potential genes downstream from MYB80s

224

225 Two runs of the S1 assembly (i.e., S1s_rep2 and S1s_rep3) showed high dissimilarity to
226 several other runs collected from different times. The explanation for the dissimilarity of these
227 two runs to the others is uncertain. However, two other runs of S1 (i.e., S1s_rep1 and S1s_rep4)
228 supported the similarity of S1s to those from the male-strobilus libraries. Nonetheless, the PCA
229 result showed S1s_rep1, S1s_rep2, and S1s_rep4 were all clustered with the other male-strobilus
230 accessions. Thus, the divergence did not have large effects on the overall clustering result.

231 The expression between the male-strobilus set (library S1s to S6s) and inner-bark-and-leaf set
232 (library Ooi-7 and S8HK5) were significantly different in 7,776 genes (P-value < 0.05) (Table
233 S5). Within these, 4,471 are upregulated in the male strobili with a fold change ranging from
234 $2^{0.33}$ to $2^{10.28}$. The fold change range for the rest of 3,305 down-regulated genes was from
235 $2^{-6.41}$ to $2^{-0.33}$. The heatmap showed different patterns among different tissue sets (Figure S2).

236 There was a total of 377 transcription factors within the 7,776 genes with significantly
237 different expression (Table S5). Of these, the three largest gene families were MYB DNA-
238 binding, HLH, and AP; which consisted of 56, 43, and 42 genes, respectively (Table S6).
239 Interestingly, the trend among these three gene families and between the two tissue types is the
240 same. The number of transcription factors in the male strobili was about 3 times higher than leaf
241 or inner bark, as well as higher levels of gene expression. Clearly, the activities occurring in
242 male strobili require higher gene regulation.

243

244 The downstream genes corresponded to AtMYB80 (At2g47040, named VGD1), are a glyoxal
245 oxidase (At1g67290, named GLOX1), and an A1 aspartic protease (At4g12920, named
246 UNDEAD) in *Arabidopsis*. The potential orthologs in CJ3006NRE are VGD1: CJt093663 and
247 CJt014021; GLOX1: CJt015940 and CJt035052; UNDEAD: CJt080243 and CJt088123. Since
248 the exact orthologs are unclear, the top two subjects were selected according to the HSP, which
249 covered over 80% of the length of query sequences. Within each potential orthologs group, only
250 one gene showed significantly higher expression in MF than in IBL. They are CJt093663,
251 CJt035052, and CJt080243 for VGD1, GLOX1, and UNDEAD, respectively (Table S7).
252 Although the downstream orthologs lack confirmation, the regulation patterns in conifers seem
253 different from angiosperms. However, the second highest scoring HSP for these genes showed

254 similar patterns to the proposed model - simplified in [35]. That is, UNDEAD-CJt088123
255 activated, whereas VGD1-CJt014021 and GLOX1-CJt035052 suppressed the gene expression
256 level in LF (leaf tissue). It should be noted that Phan *et al.* (2011) [35] used young floral bud
257 tissues as the control.

258 Accessions specific variant events

259 For further applications for the sugi breeding program or genetic study, we mined over
260 twenty-five thousands SNPs and indels of each group, which were assigned to seven parental
261 lines in Table S8. They all passed the customized filter - QUAL > 20 and DP > 3 (variant quality
262 value above 20 and sequence depth of the variant site above 3). The abundance of the variants is
263 based on counting the alternative alleles against the reference sequence. The variants has been
264 uploaded in compressed VCF format on ForestGEN.

265

266 Discussion

267 The CJ3006NRE sequence is the assembled product of the cDNA library integrated from 10
268 different libraries. We used two different approaches to integrate from each library's assembled
269 result. Then, we performed a second integration to unite the two integrated results into one. After
270 eliminating potential contamination by BLAST against the NCBI-NR database, and filtering out
271 potential assembly error by merging among libraries, the resulting sequence CJ3006NRE is
272 suitable for investigating differential gene expression and structural annotations.

273 Sequence depth is the one of the keys for accurate assembly

274 There is still some debate as to how to assemble the transcriptomic sequence data with high-
275 quality. A greater sequencing depth or number of reads is a part of key in sampling all
276 transcripts. In relation to the benchmark for S1s or S2s to S5s (Table1 and Fig 1), it is clear that a
277 higher abundance of sequencing can cover the missing core genes, even if the abundance is not
278 as high as S3s or S4s. Nevertheless, above some abundance, sequencing depth is no longer the
279 limitation to increase the accuracy of assembly. For example, if we attempt to decrease missing
280 parts to 15%, based on the number of reads and the BUSCO result, the optimal point would be at
281 about 33 million read pairs (the equation for trend-line of the Missing in Figure S3). This number
282 is not a perfect estimation; however it is a reasonable estimate from the trend.

283 Comprehensive union

284 The condition of this study was that there were several libraries from three types of tissues:
285 male-strobilus, leaf, and inner bark. However, these were collected from close but different
286 genetic backgrounds, an asymmetrical number of runs, and abundances. Considering that
287 alternative splicing happens among different conditions, e.g., tissues or treatment, we
288 independently assembled each library, and then joined them to an integrated library. In assembly
289 with Trinity, the assembled number of contigs ranged from 43,326 (S5) to 124,448 (S3s) for each
290 library (Table 1). The number of assembled contigs was about the same as that by Oases (Table
291 S1). We used EvidentialGene to integrate these 50 assemblies, including 10 by the Trinity and 40
292 by the Oases, into one library of 108,886 contigs. The second set consisted of 40,368 contigs
293 from 10 libraries, where the data were manually integrated and assembled in Trinity (Figure S4).

294 Using EvidentialGene as well as manually integration, the 49,758 sugi CJ3006NRE has resulted
295 in high confidence in the sequencing dataset.

296 Repetitive sequences and isoforms co-exist in CJ3006NRE. Their compositions reflect the
297 variation in the conditions of the samples collected. As for now (as it was in the pre-genomic era
298 of sugi), increases in accuracy and efforts toward completeness of the transcriptome data is
299 important. On the other hand, the redundancy has been dealt with using two separate methods,
300 EvidentialGene and manual integration. There are two advantages from integrate-after-assembly:
301 one is that the isoform can be kept, the other one is that they could be used to validate contigs
302 among libraries. It is obvious that if the assembly tools have a lower miss-assembly rate, then we
303 could keep the isoform for subsequent structural annotation, while the pseudomolecules are
304 available. The latter is to overcome the miss-assembly due to randomized k-mer alignment
305 processes. Because we only kept contigs which existed multiply among libraries, chance of
306 producing the same miss-assembled contig would be low, but the isoforms or gene family may
307 be a part of the miss-assembly.

308 Discarding contamination

309 Filtering out contamination is an important step in reducing redundancy. CJ3006NRE was
310 selected based on the alignment results against NCBI-NR and the taxa belonging to “Eukaryote”.
311 Although algae and fungi could also be collected while sampling from sugi tissue, the term
312 “Eukaryote” may be too loose to filter out contamination. “Euphylophyta” and “Spermatophyta”
313 are the other potential thresholds, as they are more specific. However, considering that the
314 accumulation of genomic data for conifers has not been as established as it has been in the
315 angiosperms, orthologs in sugi may have less homology that could be identified by BLAST. We

316 used the “not Eukaryote” term as our negative threshold in order to discard the “non-Eukaryota”
317 types, including those in Archaea, Bacteria, etc. Surprisingly, the reduction in the mapping rate
318 of input reads was only less than 4%. Thus, we suggest the use of CJ3006NRE as the reference
319 transcriptome, in place of CJ3006All.

320 **Increasing the accuracy of assembly**

321 Based on the benchmark results, completeness, especially “single-copy,” increased to up to
322 78.47% of CJ3006NRE from less than 45% of the S4s library. This suggests the integration
323 process dramatically decreased the duplication and fragments. Following the ideas of BUSCO
324 [34], a higher number of duplicates may indicate a more erroneous assembly of haplotype. Thus,
325 according to the evaluation result using BUSCO, our assembled contig has less duplicates. So
326 our manipulation effectively increased the quality of the assembly.

327 The more full-length cDNA is available, the higher the accuracy for subsequent annotations
328 on the genomic sequences. We used both third-generation sequencing and full-length cDNA
329 library downloaded from NCBI as the validation resource. In the alternative method of classical
330 PCR procedures, primers would have to be designed and the labor costs of bench work would be
331 enormous. If we take ISOSeq0215 (56,399 sequences) as the validation standard and above 90%
332 coverage of genes as the threshold, CJ3006NRE could cover 35,741 (63.3%) ISOSeq0215
333 sequences by using only 12,231 (24.6 %) CJ3006NRE out of 49,758 (Table S9). Thus, we could
334 learn two points from here. The first, about 25% of CJ3006NRE could be validated by
335 ISOSeq0215 at least. The second, by the statistics, we found there were more CJ3006NRE with
336 the potential full-length cDNA than the other cDNA resources.

337 Overall, these results indicate that the methodology used in this study would be useful for
338 assembling transcriptome data of non-model plant organisms.

339 **Contig number and all sugi genes**

340 The total number of loci in sugi haplotype is uncertain without genomic sequencing. Since we
341 have the total RNA from male strobili, leaf, and bark, studies on other tissue types and
342 conditions will be fruitful with annotation as the goal. However, if we compare to two model
343 angiosperm species, *Oryza sativa* [36,37] and *Arabidopsis thaliana* [38,39], our result may be
344 better than the BUSCO benchmark estimation. Considering that these two model plant has been
345 extensively annotated and continuously updated for over a decade, both have fine genomic
346 sequences. Without discarding the transposable elements (TE), the loci numbers for rice and
347 *Arabidopsis* are 37,848 and 38,194, respectively. In CJ3006NRE, if we discard non-
348 representative isoforms, the gene number of with or without TE are 39,762 and 36,947,
349 respectively. The total gene number is similar to these two model plants.

350 Of course, the discovery of more functional genes from collecting different transcriptome data
351 from different tissues or conditions is expected in future. As BUSCO estimated (Figure 1), about
352 10.7% of the core genome has not been identified yet. Part of the 10.7% may include differences
353 between the core genome of angiosperms and gymnosperms. This may become clearer with the
354 development of more advanced sequencing technology and more gymnosperms genomic data
355 becoming available.

356 The gene number in sugi was higher than the two model plants. Within the 49,758 contigs,
357 487 (0.98%) genes were not TE and cannot be annotated by InterProScan or EvidentialGene.
358 Similar sequences were also not found in the NCBI-NR database, with an e-value = 10. The

359 length of these unidentified genes ranged from 382 bp to 5507 bp. The protein length by these
360 genes ranges from 18 to 197 amino acids. Thus, they have UTR and CDS regions that could be
361 translated into protein sequences. The 487 non-TE genes may be potentially novel genes that
362 could provide the new insights of functional genomics in conifers.

363 Different composition of transcription factors

364 Because the gene regulatory network represents the ordering of gene expression,
365 understanding the transcription factors is the key to understand the pathways and the
366 mechanisms involved in metabolism. In addition, as these transcription factors play a key role in
367 the fundamental pathways (e.g., the MYB gene family)[40,41], the highly conserved domain and
368 functionally conserved fragments reduce the potential for misidentification of orthologues. Since
369 we attained about 90% of the sugi total genome assessed by BUSCO, the transcription factors we
370 found should have approximately the same coverage to all transcription factors in the sugi
371 genome. The classification result of sugi and the two model plants is listed in Table S10.
372 Compared to *Arabidopsis* and rice, the total number of transcription factors in sugi is 1,340,
373 which is less than two angiosperms (1,924 and 1,455, respectively). The CSD (cold-shock
374 domain) is the one of the lowest in sugi, whose functions, under the name “cold-shock”, has been
375 identified to help the cell to survive under low temperature conditions. Surprisingly, only one has
376 been found in our samples. Sugi might have some different strategies to tolerate cold conditions
377 than the other two model species since the life cycle is long and perennial. This may represent
378 different strategies used to tolerate cold temperatures among conifers and angiosperms;
379 otherwise they may have not been expressed during the collection of mRNA. In the other
380 categories, some trends and numbers of transcription factors between sugi and the two

381 angiosperms were similar to that of a previous study [42], but not always. For example, although
382 the number of transcription factors is not as low as in maritime pine for “zf-Dof”(PF02701)
383 transcription factors [42], it was still the smallest in sugi. This number is the same as in the
384 model moss *Physcomitrella patens* [43]. Only 20 genes with zf-Dof in sugi were identified in our
385 study.

386 The number of transcription factors may reflect the complexity of the regulatory networks.
387 Especially there are differences in the scale of environmental changes over the whole life cycle
388 as well as the lifespan. Sugi trees could have a lifespan of over many years, but *Arabidopsis* lives
389 for around two months. However, the influence of the functional domain of a protein sequence is
390 the most important of all the features even between distant species. In previous studies of several
391 MYB gene families or categories, e.g., MYB80 [35,44] and 3R-MYB [45], the conserved
392 sequences are sometimes the key to normal function (e.g., metabolic), and could be used as a
393 footage to assess evolution in lineages.

394 Tissue-specific gene expression

395 Within the 7,776 significant differences in gene expression between the male strobili and leaf
396 materials, the MF (expression level higher in male strobili) group contains more genes than the
397 IBL (expression level higher in inner bark or leaf) group (4,471 vs. 3,305). Comprehensive
398 viewing of the distribution via gene ontology (GO) showed no obvious differences among the
399 categories (Table S11). However, the pattern of gene expression showed significant differences
400 based on the PCA analysis (Fig 3a).

401 We focused on transcription factors to further explore certain categories of genes. In the MF
402 group, the three MYB genes with highest expression level and significant difference against LF

403 were CJt069044, CJt099797, and CJt070090. Based on the phylogenetic analysis (Figure S5), the
404 first two are the orthologs of AtMYB35 (TDF1; AT3G28470) and AtMYB80 (AT5G56110). In
405 turn, they are considered to be highly expressed in the anthers and play the important role in
406 tapetum development [35,46]; and thus can also determine whether male sterility occurs. Our
407 results revealed that these two pairs of orthologs were highly expressed in the similar organs, in
408 the anthers of angiosperms and the male strobili of conifers. Although there was no validation
409 from orthologs, the potential orthologs of genes downstream from AtMYB80 nonetheless
410 showed similar trends in the male strobili (Figure 3c). This suggests the genes downstream of
411 MYB80 are homologous in angiosperms and gymnosperms. CJt070090 in sugi is a 3R-MYB.
412 The most similar gene in *Arabidopsis* is AtMYB3R4 (AT5G11510), which was highly expressed
413 in anther and young leaf tissues (based on the “BAR eFP Browser” in TAIR website). It has been
414 suggested that the gene may be involved in suppressing mitosis [47]. However, CJt070090 is
415 mostly not expressed in leaf tissues (Figure 3c). Although we cannot be sure about the
416 evolutionary relationships between CJt070090 and AtMYB3R4, either they are orthologous or
417 out-paralogous; the expression trend in different organs is the same as for CJt099797 (Figure 3c).
418 It means both CJt099797 and CJt070090 are only expressed in male strobili, but not in leaves.
419 This suggests CJt070090 may play more specific role in the male strobili of sugi in comparison
420 to AtMYB3R4 in anther and young leaf tissues of *Arabidopsis*.

421 Conclusion

422 In this work, we performed *de novo* assembly of *Cryptomeria japonica*, sugi, by integrating
423 transcriptome data from unequal runs of 10 libraries. They were collected from two different
424 types of tissues with a slightly different genetic background within a short period. By using the

425 public pipeline, EvidentialGene and half-manual integration, we balanced controlling miss-
426 assembly and wasting too many raw reads. According to the pedigree of the samples, the
427 potential SNPs and indels recognized in this study could be useful for future breeding or genetic
428 research. The high confidence of the contigs and translated protein sequences is a novel resource
429 for the conifer study community. Furthermore, evolutionary studies will be benefited by the
430 additional gymnosperm genomic data.

431 Materials and methods

432 Plant materials

433 Ten accessions were prepared for mapping the male-sterile gene. The pedigree is shown in
434 Figure S1. ‘Nakakubuki-4’ is the male parent of ‘T1NK4F1’. T5_normalMIX_ms1 and
435 T5_sterileMIX_ms1 are from the progeny of ‘T1NK4F1’ backcrossed with ‘Toyama MS’, and
436 are the male fertile *Ms1/ms1* and male sterile *ms1/ms1*, respectively. These four accessions will
437 be called T5 family hereafter. S3T67_normalMIX_ms1 and S3T67_sterileMIX_ms1 are samples
438 from the progeny crossed with ‘T1NK4F1’ (male fertile) and ‘Shindai-3’ (male sterile),
439 respectively. ‘Ooi-7’ carries a heterozygous male-sterile gene (*Ms1/ms1*). ‘S1NK4’ is the F1
440 hybrid of ‘Shindai-1’ and ‘Nakakubuki-4’. ‘S5HK7’ is the F1 hybrid of ‘Shindai-5’ and
441 ‘Higashikanbara-7’. ‘S8HK5’ is the F1 hybrid of ‘Shindai-8’ and ‘Higashikanbara-5’. Most
442 parental lines of these crosses above are not included in this study, except for ‘Nakakubuki-4’;
443 but they provided four different male-sterile genes. Since the genetic characters of these male-
444 sterile genes have been well studied, they are all recognized to be recessive genes. In these
445 samples, only T5_sterileMIX_ms1 and S3T67_sterileMIX_ms1 are clearly male-sterile groups.

446 Extraction of RNA and sequencing

447 The 10 RNA-Seq libraries were constructed from 10 different accessions. For S3s, S4s, S5s,
448 and S6s, RNA was extracted from several individuals (up to 50 individuals) and the RNA
449 mixture of progeny was sequenced. RNA-Seq for S1s to S6s was carried out, as described in
450 [19]. For the rest of the libraries, we extracted RNA from different tissues (Table 1) following
451 the method used in [19], and the mixture of RNA from these tissues was sequenced on
452 HiSeq2000 (Hokkaido System Science Co., Ltd, Sapporo, Japan). We performed ISO-Seq using
453 the RNA of S2s and sequenced on PacBio RS (Takara Bio Inc.) with four cells by P3C5
454 chemistry.

455 Assembly and annotation

456 Quality control and independent assembly

457 Before assembly, the raw reads were passed through four quality controls using Cutadapt
458 [48]. These included: (1) cutting 13 bases from five prime sides, (2) cutting the over-reading due
459 to adapters or primers, (3) cutting the low quality base tails, and (4) setting the minimum length
460 threshold to 35 bases after the other steps. The filtered numbers of reads are listed in Table 1.
461 Hereafter, “library” means the union of one or multiple runs of RNA-Seq data from the same
462 accession or variety.

463 All 10 libraries were assembled using two different software - Oases, v0.2.08 [29] and Trinity
464 v 2.4.0 [30]. Since the maximum k-mer for Trinity was 32, we performed only a single run for
465 each library. For Oases (Velvet), we used the k-mer in the range from 35 to 43 (odd numbers),
466 with five runs for each library. For both software, the minimum length of contigs was 500 and

467 300 for Trinity and Oases, respectively. The minimum length for Oases has considered the
468 existence of non-coding RNA.

469 **Integration**

470 Contig integration was used to overcome the bias from sampling to assembly. We used two
471 integration methods to increase the reliability of integrated contigs (Figure S4). One method was
472 automatic pipeline using EvidentialGene [28], which is open source software. The other is half-
473 manual pipeline using homemade scripts to manipulate the assembled result from Trinity. The
474 coding languages used include Shell script, AWK, and Python.

475 In the workflow through EvidentialGene [28], each library was processed by tr2aacds.pl once
476 to produce 10 independently integrated contigs (FASTA files). This step was intended to keep
477 the isoforms that were produced under different conditions. Then, the 10 contig FASTA files
478 were concatenated into one and again processed by tr2aacds.pl. The only customized parameter
479 was the setting for the minimum length of CDS with 90, ie. “--MINCDS90”.

480 After the second integration using EvidentialGene, there were 107,674 transcripts which
481 could be converted into 108,886 protein sequences.

482 To begin the half-manual integration, the assembled contigs have been translated to the
483 longest open reading frame as the represented protein sequences.

484 The half-manual integration process includes three modules: 1) finding the seed sequence, 2)
485 mining more paralogs, and 3) abstracting by homologs; named module-1, module-2, and
486 module-3, respectively. Both nucleotide and protein sequences could be used as an operating
487 object, depending on whether the alignment within species or among species.

488 In module-1, the main objective was to pick seed sequences via BLASTX. We expected these
489 seeds contained the functional domain. These do not necessarily have to be orthologs of the
490 subject. We used SwissProt [49] (downloaded June 11, 2017) as a reference to find the
491 orthologous genes for each library. Two filters were applied to the BLASTX result: 1) Minimum
492 ratio of the sum of HSP against the subject's sequence was 50%; 2) Minimum HSP length was
493 20 amino acids. The contigs with the best score were selected for every SwissProt gene. Thus,
494 one SwissProt gene was only linked to one contig. On the contrary, after a backward filtering,
495 one contig was only linked to one SwissProt gene. After this step, we obtained one set of cDNA
496 sequence used as the “seed” sequence for the next step.

497 In module-2, we aimed to extend and concentrate by identifying paralogs. The similar genes
498 have been identified in module-1 as seed genes, which represented the most similar genes across
499 angiosperms and gymnosperms. Any duplication after the separation of angiosperms and
500 gymnosperms, which produced the paralogs, could be identified from the seed genes in this step.
501 The “extend” query used the seed sequences to fish for more paralogs. We used “seed”
502 sequences as a query against all 10 libraries, including the source library of the “seed”. There
503 were no customized conditions for running the BLAST on this step. In this step, since the contigs
504 were from the same species, we expected to retrieve as many homologous contigs in the
505 sequence as possible. The “concentrate” query was used to reduce the duplication sequences to
506 be as representative as possible. To find the representative sequence among homologs, the
507 maximum tolerance for mismatches and gaps was 2 bps. However, we only kept the
508 representative sequence that could be found similar enough and existed at least two libraries.

509 The last step in module-2 was to include the correct (“good”) singletons. Since the previous
510 “extent” and “concentrate” steps resulted in singletons, we passed the filter “Find seed

511 sequences”, but did not find homologs in any other library. These “good” singletons have to be
512 added back in the next step.

513 In the last step, module-3, by referring to the taxonomic information in the NCBI-NR
514 database, we discarded those that matched to non-eukaryotes, but kept those that matched to
515 eukaryotes and others to unclassified.

516 Annotation

517 We used two tools, EvidentialGene [28], and InterProScan (v 5.30) [31], to annotate the
518 integrated library (CJ3006NRE). The reference databases for running namegenes.pl, the
519 annotation tool in EvidentialGene, were UniRef50 (downloaded May 2018) [50] and CDD
520 (Conserved Domains Database, v 3.16). The reference database used for annotation was
521 InterPro5 v 69.0.

522 The isoforms would be identified using BLAST against all contigs with a parameter, “word
523 size = 100 bps.” Then, the contig was matched to another contig with over 90% of genes
524 identified. An HSP length of over 150 bps would be considered as an isoform.

525 For identifying the transcription factors of sugi, we re-scanned all the contigs using pfamScan
526 [32]. The list of transcription factors was based on a joint list with the work of [42] and a Pfam
527 list published online, www.transcriptionfactor.org [51].

528 For additional prediction of metabolic enzymes, we used a pipeline called E2P2, downloaded
529 from the “Plant Metabolic Network” (PMN) [52].

530 In order to mark the repetitive sequences, RepeatMarker v 4.0.7
531 (<http://www.repeatmasker.org>) [33] and RepBase v 22.05 were used as the reference databases.

532 Evaluation

533 For evaluating the proportion of input reads that have been wasted during integration, we
534 aligned the input reads, as done for assembling, to the originally assembled contigs and the
535 integrated one. We used BWA [53,54] as mapping tools. Considering that *Cryptomeria japonica*
536 is a heterogeneous species, we tuned down the parameter of penalty. For BWA, we used “bwa
537 mem” module and one of the parameters we set was “-O 4,4”, representing penalties for
538 deletions and insertions, which means gaps on reads and on references, respectively.

539 For estimating the coverage of the core orthologous genes, we used BUSCO (v 3.0.2) [34] for
540 testing all 10 libraries and the integrated library. The testing model was “transcriptome” and the
541 version of the reference database was “embryophyta_odb9”. For each of 10 RNA-Seq libraries,
542 we used their own assembled contig as the input; for the integrated library, we used the
543 CJ3006NRE sequence as the input.

544 The ISO-Seq data were processed using the “pbtranscript-tofu” analysis suite v 1.0.0.177900
545 [55]. The only customized parameter was 300 bps as the minimum length; the rest were default
546 values.

547 A total of 23,111 full-length cDNA sequences were downloaded from NCBI. We retrieved
548 these sequences by using the keywords, “*Cryptomeria japonica*”, “full-length”, and “cDNA”
549 using the NCBI web-based searching interface on 13th September, 2018. .

550 Differential expression

551 Using our integrated library, CJ3006NRE, as a reference, we compared the expression levels
552 among the 10 libraries. “Kallisto” [56] was used to quantify the transcript abundances using

553 bootstrap estimation from 100 repetitions. “Kallisto” is a package which calculates the building
554 index of the reference sequence and quantifies the abundance from FASTQ files. The output of
555 “Kallisto” was processed in differential expression analysis using “sleuth.”
556

557 Gene Ontology (GO) annotation

558 The GO terms were assigned with InterProScan during the annotation process. The
559 classification of the GO terms was done using CateGORizer [57] using Plant_GOslim as the
560 classification list.

561 Variant calling

562 Upon obtaining the mapped files—BAM (binary SAM), we used samtools [58] and bcftools
563 (<https://github.com/samtools/BCFtools>) to call the variants. The group-specific variants were
564 classified using the “isec” command in bcftools. Appendix S1 shows an example of command
565 lines. Table S8 summarized the variations among the accessions against CJ3006NRE cDNA
566 set. The variant-calling done by bcftools. According to this Table and pedigree (Figure S1), we
567 extracted the group (or accession) specific variant. E.g., for ‘Shindai 3’, there was only one site
568 with allele “1” in S5 and S6s, and allele “1” was not present in the rest of the sites (Figure S6).

569 Accession numbers

570 Sequences used in the present study have accession numbers DRR174638 to DRR174656.

571 Acknowledgements

572 The authors would like to thank Shinji Itoo for producing a part of the materials used in
573 the current study. Arboretum and Nursery Office, FFPRI was involved in the maintenance of *C.*
574 *japonica* nursery. Computations were mostly performed on the supercomputer of AFFRIT,
575 MAFF, Japan. This work was partly supported by a Grant-in-Aid from the Program for
576 Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry
577 (No.28013B), JSPS KAKENHI (Grant Number 25450223), Research grants #201119 and
578 #201421 from the Forestry and Forest Products Research Institute, and grants from the Project of
579 the NARO Bio-oriented Technology Research Advancement Institution (Research program on
580 development of innovative technology (No.28013BC)).

581

582 References

- 583 1. Forestry agency M (2018) Annual Report on Forest and Forestry in Japan. Forestry Agency,
584 Ministry of Agriculture, Forestry and Fisheries, Japan.
- 585 2. Saito Y (2014) Japanese cedar pollinosis: Discovery, nomenclature, and epidemiological
586 trends. *Proceedings of the Japan Academy, Series B* 90: 203-210.
- 587 3. Otake T (2017) When pollen attacks! Experts reveal new approaches to combating hay fever.
588 Japan Times.
- 589 4. Saito M (2010) Breeding Strategy for the Pollinosis Preventive Cultivars of *Cryptomeria*
590 *japonica* D. Don. *Journal of the Japanese Forest Society* 92: 316-323.
- 591 5. Moriguchi Y, Uchiyama K, Ueno S, Ujino-Ihara T, Matsumoto A, et al. (2016) A high-density
592 linkage map with 2560 markers and its application for the localization of the male-sterile
593 genes *ms3* and *ms4* in *Cryptomeria japonica* D. Don. *Tree Genetics & Genomes* 12.
- 594 6. Mishima K, Hirao T, Tsubomura M, Tamura M, Kurita M, et al. (2018) Identification of novel
595 putative causative genes and genetic marker for male sterility in Japanese cedar
596 (*Cryptomeria japonica* D. Don). *BMC Genomics* 19.
- 597 7. Tsubomura M, Kurita M, Watanabe A (2016) Determination of male strobilus developmental
598 stages by cytological and gene expression analyses in Japanese cedar (*Cryptomeria*
599 *japonica*). *Tree Physiology* 36: 653-666.
- 600 8. Chen J, Uebbing S, Gyllenstrand N, Lagercrantz U, Lascoux M, et al. (2012) Sequencing of
601 the needle transcriptome from Norway spruce (*Picea abies* Karst L.) reveals lower
602 substitution rates, but similar selective constraints in gymnosperms and angiosperms.
603 *BMC Genomics* 13: 589.
- 604 9. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, et al. (2013) Assembling the 20 Gb
605 white spruce (*Picea glauca*) genome from whole-genome shotgun sequencing data.
606 *Bioinformatics* 29: 1492-1497.
- 607 10. Warren RL, Keeling CI, Yuen MMS, Raymond A, Taylor GA, et al. (2015) Improved white
608 spruce (*Picea glauca*) genome assemblies and annotation of large gene families of
609 conifer terpenoid and phenolic defense metabolism. *The Plant Journal* 83: 189-212.
- 610 11. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, et al. (2014) Sequencing
611 and Assembly of the 22-Gb Loblolly Pine Genome. *Genetics* 196: 875.
- 612 12. Guan R, Zhao Y, Zhang H, Fan G, Liu X, et al. (2016) Draft genome of the living fossil
613 *Ginkgo biloba*. *GigaScience* 5.
- 614 13. Hizume M, Kondo T, Shibata F, Ishizuka R (2001) Flow Cytometric Determination of
615 Genome Size in the Taxodiaceae, Cupressaceae *sensu stricto* and Sciadopityaceae.
616 *CYTOLOGIA* 66: 307-311.
- 617 14. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, et al. (2013) The Norway spruce
618 genome sequence and conifer genome evolution. *Nature* 497: 579-584.
- 619 15. Campbell MS, Holt C, Moore B, Yandell M (2014) Genome Annotation and Curation Using
620 MAKER and MAKER-P. *Current Protocols in Bioinformatics* 48: 4.11.11-4.11.39.
- 621 16. Canas RA, Li Z, Pascual MB, Castro-Rodriguez V, Avila C, et al. (2017) The gene
622 expression landscape of pine seedling tissues. *Plant J* 91: 1064-1087.
- 623 17. Carrasco A, Wegrzyn JL, Durán R, Fernández M, Donoso A, et al. (2017) Expression
624 profiling in *Pinus radiata* infected with *Fusarium circinatum*. *Tree Genetics & Genomes*
625 13.

626 18. Rigault P, Boyle B, Lepage P, Cooke JEK, Bousquet J, et al. (2011) A White Spruce Gene
627 Catalog for Conifer Genome Analyses. *Plant Physiology* 157: 14-28.

628 19. Ueno S, Kentaro U, Moriguchi Y, Ujino-Ihara T, Matsumoto A, et al. (2019) Scanning RNA-
629 Seq and RAD-Seq approach to develop SNP markers closely linked to *MALE STERILITY*
630 *I* (*MSI*) in *Cryptomeria japonica* D. Don. *Breeding Science*.

631 20. Xiang X, Zhang Z, Wang Z, Zhang X, Wu G (2015) Transcriptome sequencing and
632 development of EST-SSR markers in *Pinus dabeshanensis*, an endangered conifer
633 endemic to China. *Molecular Breeding* 35.

634 21. Brenner ED, Katari MS, Stevenson DW, Rudd SA, Douglas AW, et al. (2005) EST analysis
635 in *Ginkgo biloba*: an assessment of conserved developmental regulators and gymnosperm
636 specific genes. *BMC Genomics* 6: 143.

637 22. Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, et al. (2008) Characterization of
638 expressed sequence tags from a full-length enriched cDNA library of *Cryptomeria*
639 *japonica* male strobili. *BMC Genomics* 9: 383.

640 23. Du S, Sang Y, Liu X, Xing S, Li J, et al. (2016) Transcriptome profile analysis from different
641 sex types of *Ginkgo biloba* L. *Frontiers in Plant Science* 7.

642 24. Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, et al. (2016) A survey of the
643 sorghum transcriptome using single-molecule long reads. *Nature Communications* 7:
644 11706.

645 25. Zimin AV, Puiu D, Luo MC, Zhu T, Koren S, et al. (2017) Hybrid assembly of the large and
646 highly repetitive genome of *Aegilops tauschii*, a progenitor of bread wheat, with the
647 MaSuRCA mega-reads algorithm. *Genome Res* 27: 787-792.

648 26. Geniza M, Jaiswal P (2017) Tools for building de novo transcriptome assembly. *Genomic*
649 resources and databases 11-12: 41-45.

650 27. Ueno S, Nakamura Y, Kobayashi M, Terashima S, Ishizuka W, et al. (2018) TodoFirGene:
651 Developing Transcriptome Resources for Genetic Analysis of *Abies sachalinensis*. *Plant*
652 *Cell Physiol* 59: 1276-1284.

653 28. Gilbert DG (2019) Longest protein, longest transcript or most expression, for accurate gene
654 reconstruction of transcriptomes? *bioRxiv*: 829184.

655 29. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq
656 assembly across the dynamic range of expression levels. *Bioinformatics* 28: 1086-1092.

657 30. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length
658 transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol*
659 29: 644-652.

660 31. Jones P, Binns D, Chang HY, Fraser M, Li W, et al. (2014) InterProScan 5: genome-scale
661 protein function classification. *Bioinformatics* 30: 1236-1240.

662 32. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, et al. (2008) The Pfam protein families
663 database. *Nucleic Acids Res* 36: D281-288.

664 33. Smit AFA, Hubley R, Green P (2013-2015) RepeatMasker Open-4.0.

665 34. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO:
666 assessing genome assembly and annotation completeness with single-copy orthologs.
667 *Bioinformatics* 31: 3210-3212.

668 35. Phan HA, Iacuone S, Li SF, Parish RW (2011) The MYB80 transcription factor is required
669 for pollen development and the regulation of tapetal programmed cell death in
670 *Arabidopsis thaliana*. *Plant Cell* 23.

671 36. Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, et al. (2008) The Rice
672 Annotation Project Database (RAP-DB): 2008 update. *Nucleic Acids Res* 36: D1028-
673 1033.

674 37. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. (2013)
675 Improvement of the *Oryza sativa* Nipponbare reference genome using next generation
676 sequence and optical map data. *Rice (N Y)* 6: 4.

677 38. Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, et al. (2001) The
678 *Arabidopsis* Information Resource (TAIR): a comprehensive database and web-based
679 information retrieval, analysis, and visualization system for a model plant. *Nucleic Acids
680 Research* 29: 102-105.

681 39. Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, et al. (2015) The arabidopsis
682 information resource: Making and mining the “gold standard” annotated reference plant
683 genome. *genesis* 53: 474-485.

684 40. Altay G, Emmert-Streib F (2010) Inferring the conservative causal core of gene regulatory
685 networks. *BMC Systems Biology* 4: 132.

686 41. Strygina KV, Khlestkina EK (2019) Myc-like transcriptional factors in wheat: structural and
687 functional organization of the subfamily I members. *BMC Plant Biology* 19: 50.

688 42. Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, et al. (2014) De novo assembly
689 of maritime pine transcriptome: implications for forest breeding and biotechnology. *Plant
690 Biotechnology Journal* 12: 286-299.

691 43. Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, et al. (2016) PlantTFDB 4.0: toward a central
692 hub for transcription factors and regulatory interactions in plants. *Nucleic Acids Research*
693 45: D1040-D1045.

694 44. Browne RG, Iacuone S, Li SF, Dolferus R, Parish RW (2018) Anther Morphological
695 Development and Stage Determination in *Triticum aestivum*. *Frontiers in Plant Science*
696 9: 228.

697 45. Feng G, Burleigh JG, Braun EL, Mei W, Barbazuk WB (2017) Evolution of the 3R-MYB
698 Gene Family in Plants. *Genome Biology and Evolution* 9: 1013-1029.

699 46. Zhu J, Chen H, Li H, Gao J-F, Jiang H, et al. (2008) Defective in Tapetal Development and
700 Function 1 is essential for anther development and tapetal function for microspore
701 maturation in *Arabidopsis*. *The Plant Journal* 55: 266-277.

702 47. Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection
703 of *Arabidopsis* cells at the powdery mildew infection site reveals site-
704 specific processes and regulators. *Proceedings of the National Academy of Sciences* 107:
705 460.

706 48. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing
707 reads. *EMBnetjournal*; Vol 17, No 1: Next Generation Sequencing Data Analysis.

708 49. Bairoch A, Apweiler R (1996) The SWISS-PROT protein sequence data bank and its new
709 supplement TREMBL. *Nucleic Acids Res* 24: 21-25.

710 50. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, et al. (2015) UniRef clusters: a
711 comprehensive and scalable alternative for improving sequence similarity searches.
712 *Bioinformatics* 31: 926-932.

713 51. Kummerfeld SK, Teichmann SA (2006) DBD: a transcription factor prediction database.
714 *Nucleic Acids Research* 34: D74-D81.

715 52. Schlapfer P, Zhang P, Wang C, Kim T, Banf M, et al. (2017) Genome-Wide Prediction of
716 Metabolic Enzymes, Pathways, and Gene Clusters in Plants. *Plant Physiology* 173: 2041.

717 53. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler
718 transform. *Bioinformatics* 26: 589-595.
719 54. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler
720 transform. *Bioinformatics* 25: 1754-1760.
721 55. Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, et al. (2015) Widespread Polycistronic
722 Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. *PLOS ONE* 10:
723 e0132628.
724 56. Pimentel HJ, Bray N, Puente S, Melsted P, Pachter L (2016) Differential analysis of RNA-
725 Seq incorporating quantification uncertainty. -.
726 57. Hu Z-L, Bao J, Reecy JM (2008) CateGORizer: a web-based program to batch analyze gene
727 ontology classification categories. *Online Journal of Bioinformatics* 9: 108-112.
728 58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence
729 Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078-2079.

730

731

732 Supporting Information Captions

733 Table S1. Statistics of assembled libraries.

734 Table S2. The annotation of CJ3006NRE

735 Table S3. Major components of the transposable elements within CJ3006NRE and other libraries (a) and

736 RepeatMasker output for CJ3006NRE (b)

737 Table S4. The mapping rate of raw reads against different reference sequences

738 Table S5. Differentially expressed transcription factors between "male strobilus" (MF) and "inner bark and leaf"
739 (IBL) tissue set

740 Table S6. Gene families and number of transcription factors in sugi showing significant differences between male
741 strobilus (MF) and inner bark and leaf (IBL).

742 Table S7. Differential expression of MYB80 related genes of male strobili (MF) against inner bark and leaf (IBK)

743 Table S8. Specific variations of each parental line

744 Table S5. Mutual number of sequences (CJ3006NRE/cDNA source) under different coverage threshold

745 Table S10. Number of transcription factors in CJ3006NRE and other two model plants

746 Table S11. Number of gene ontology annotations for differentially expressed CJ3006NRE genes between male

747 strobili (MF) and inner bark and leaf (IBL) sample

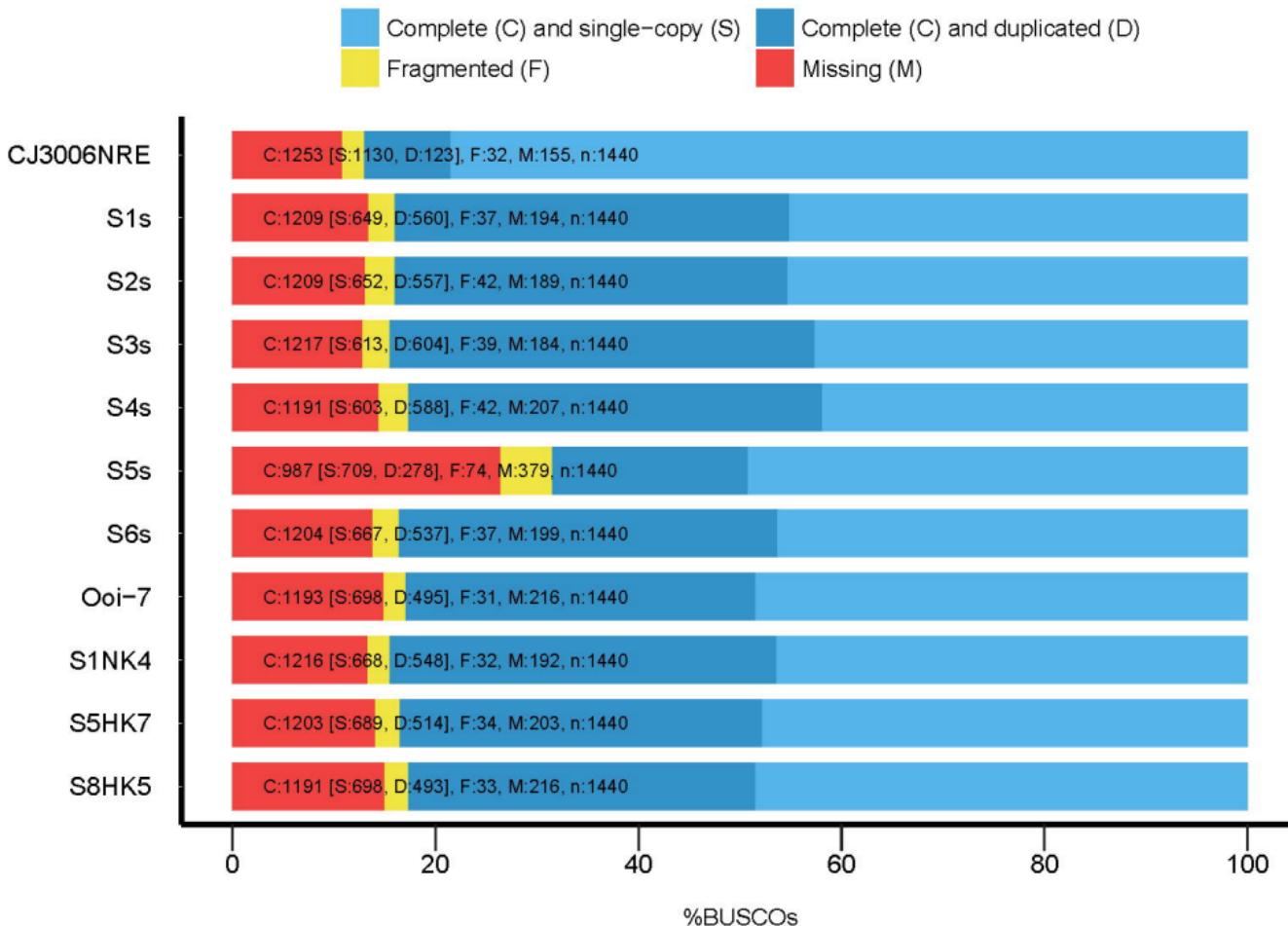
748 Figure S1. The pedigree of accessions.

749 Figure S2. Heatmap of significant differences in expressed genes among different tissue types.

750 Figure S3. The read number against the BUSCO benchmark result.

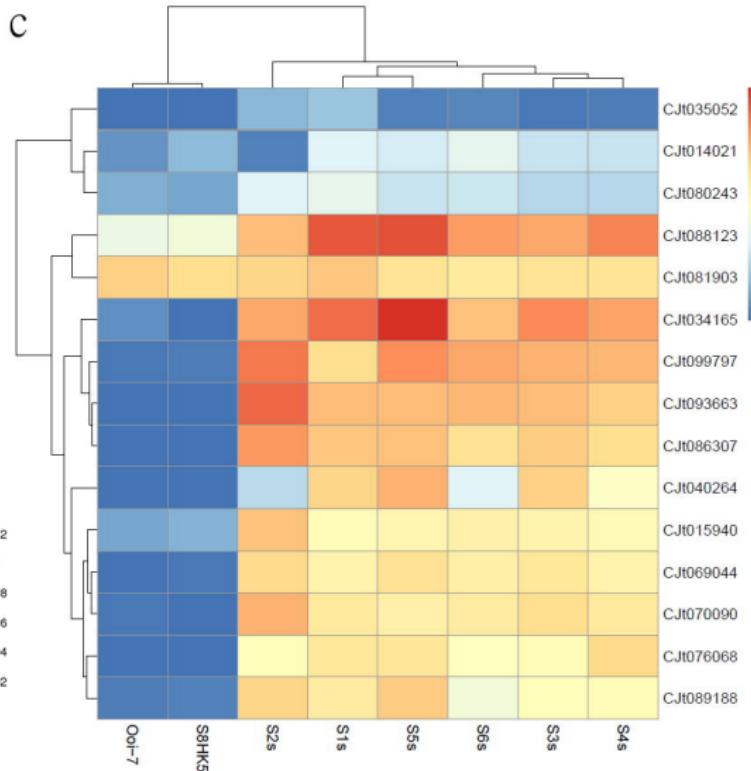
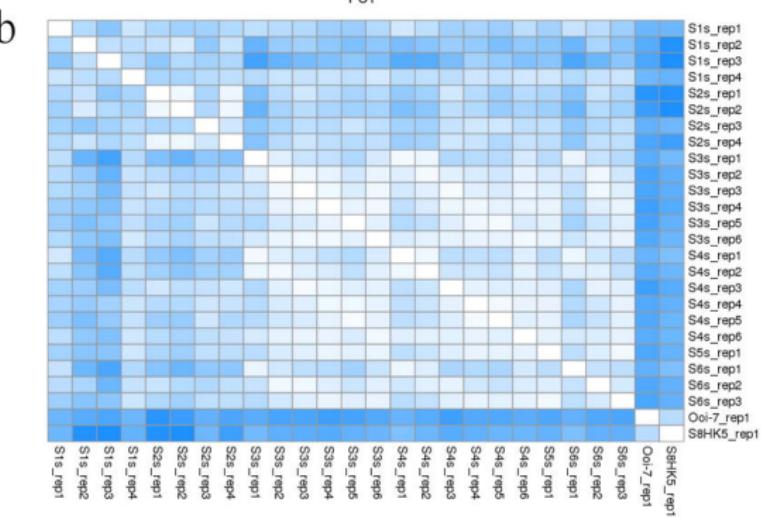
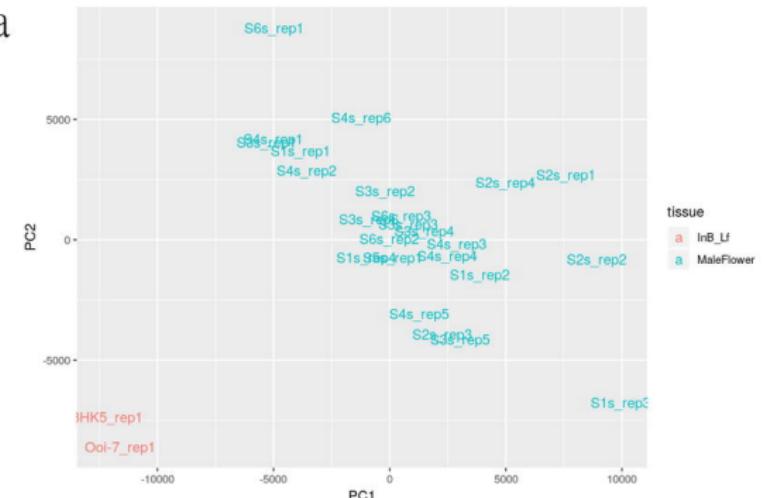
751 Figure S4. Workflow of assembly: a.) The general workflow of assembly; b.) The workflow of half-manual

752 assembly


753 Figure S5. Phylogenetic tree for classifying three sugi MYBs.

754 Figure S6. Diagram for identifying group-specific variants.

755 Appendix S1 Example of command lines for variant calling.




756

BUSCO Assessment Results

Reads mapping rate against different references

