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Abstract

Human brain activity is not merely responsive to environmental context but includes intrinsic dynamics, as suggested by the
discovery of functionally meaningful neural networks at rest, i.e., even without explicit engagement of the corresponding function.
Yet, the neurophysiological coupling mechanisms distinguishing intrinsic (i.e., task-invariant) from extrinsic (i.e., task-dependent)
brain networks remain indeterminate. Here, we investigated functional brain integration using magnetoencephalography throughout
rest and various tasks recruiting different functional systems and modulating perceptual/cognitive loads. We demonstrated that two
distinct modes of neural communication continually operate in parallel: extrinsic coupling supported by phase synchronization and
intrinsic integration encoded in amplitude correlation. Intrinsic integration also contributes to phase synchronization, especially
over short (second-long) timescales, through modulatory effects of amplitude correlation. Our study establishes the foundations
of a novel conceptual framework for human brain function that fundamentally relies on electrophysiological features of functional
integration. This framework blurs the boundary between resting-state and task-related neuroimaging.

Introduction

Human brain functions emerge from neural computations co-
ordinated across distant areas of the nervous system. This pro-
cess of functional integration is partly structured by the underly-
ing neuroanatomical connectivity but differs from it by its func-
tional nature, i.e., brain networks are generated dynamically
according to stimulus- or task-related demands. Functional
integration was thus first considered as an extrinsic, context-
dependent property' of brain activity enabling the recruitment
of the network configuration required by current environmen-
tal demands. However, neuroimaging studies also identified
several resting-state networks (RSNs)??, which anatomically
resemble extrinsic networks but spontaneously emerge at rest,
i.e., in the absence of any explicit stimulation or task.* This
discovery fundamentally shifted the conception of brain func-
tional organization. Besides reacting to environmental events,
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the brain continually probes network configurations prospec-
tively, presumably to favor the efficient recruitment of extrin-
sic networks when needed.? This hypothesis is suggestive of an
intrinsic mode of functional integration not directly driven by
environmental demands.>® Intrinsic functional integration has
hitherto been mostly studied through resting-state connectivity.
Still, this approach is insufficient to discriminate truly intrinsic
(i.e., contextually invariant') from extrinsic (i.e., including at
least some context-dependent features!) functional systems. In-
deed, resting-state activity includes spontaneous cognitive pro-
cesses (e.g., mind wandering), which are extrinsic as they are
subjected to cognitive and perceptual changes.” Disclosing in-
trinsic integration in the sense of being stimulation/task inde-
pendent would rather reveal purely mechanistic, endogenous
brain dynamics® maintaining, e.g., synaptic homeostasis’. Yet,
empirical disambiguation of intrinsic/extrinsic neural features
is still lacking, despite their critical significance for brain or-
ganization. Accordingly, fundamental questions remain open.
Are RSNs intrinsic or do they exhibit extrinsic properties? How
can intrinsic and extrinsic neural communication coexist? Do
they rely on different neurophysiological mechanisms, and are
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they functionally inter-related?

We addressed these questions by considering distinct electro-
physiological markers of functional connectivity, i.e., measures
of statistical inter-dependence reflecting aspects of neural com-
munication within the brain®. Connectivity measures between
the oscillatory activity of neural assemblies can be broadly sep-
arated into amplitude and phase coupling,'” which provide non-
redundant information about brain interactions.'! Both are as-
sumed to contribute to intrinsic networks® since RSN are iden-
tifiable from amplitude correlation'>'* and short-lived events
of phase synchrony', but these clues are limited to resting-
state connectivity and do not establish their stimulation/task in-
dependence. The role of phase synchronization in distributed
task-evoked neural activity'®!” further suggests that it supports
extrinsic coupling. We recorded the neuroelectric activity of
healthy adults with magnetoencephalography (MEG)'®, both
at rest and during several tasks recruiting different functional
systems and varying cognitive/perceptual load. We assessed
whether these functional connectivity measures changed ac-
cordingly. This experimental design allowed to disambiguate
the electrophysiological mechanisms of intrinsic and extrinsic
coupling, the former identified by task independence and the
latter by task-related modulations. It also allowed us to inves-
tigate extrinsic properties of RSNs and the functional relevance
of intrinsic integration for extrinsic coupling.

Results

NETWORK-LEVEL FUNCTIONAL CONNECTIVITY. We mapped the
large-scale human connectome by considering all connections
between 155 nodes densely parcellating the cortex into RSN
areas (Figure la) and defined from resting-state functional
magnetic resonance imaging (fMRI).!” Neuroelectric activity
at these nodes was reconstructed using minimum norm esti-
mation, with geometric correction of non-physiological leak-
age connectivity induced by magnetic field spread across two
nodes.?’ We measured frequency-specific amplitude and phase
couplings from 4 to 30 Hz using time-averaged envelope cor-
relation and phase-locking value respectively (Figure 1b).!? We
also applied power regression to exclude connectivity estima-
tion biases caused by local task-related changes in signal-to-
noise ratio?!. To identify intrinsic/extrinsic features, these func-
tional connectomes were computed separately at rest and dur-
ing task performance. We probed different functional systems
with MEG recordings from experiments conducted in several
groups of healthy adults engaged in motor sequence learning
(N = 26 subjects), speech-in-noise comprehension in a purely
auditory (N = 25) and an audiovisual (N = 25) modality,
covert language production (N = 30), or working memory (n-
Back, N = 35). In each experiment, perceptual or cognitive
loads were modulated by varying task difficulty (i.e., motor se-
quence complexity, auditory noise level or type, language pro-
duction process, and working memory load). Figures 1c,d illus-
trate the broadband connectivity strength within and between
RSNs throughout the n-Back experiment (Supplementary Re-
sults S1, for the other datasets). Amplitude correlation was sys-
tematically strongest within RSNs, both at rest'>"'* and during
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Figure 1: ELECTROPHYSIOLOGICAL MEASURES OF CONNECTIVITY. a, Network-based
brain parcellation used in this study and derived from a meta-analysis of resting-
state fMRL'® b, Amplitude and phase coupling between reconstructed oscilla-
tory brain signals. Amplitude correlation gauges the covariation of their Hilbert
envelope (overhanging blue curves). The phase-locking value evaluates the
consistency of the phase delay between them, as measured by the time lag be-
tween subsequent local maxima (vertical red dotted lines). Parts ¢ and d show
the broadband (i.e., average across frequency bands), network-level (i.e., aver-
age across RSN nodes) connectivity patterns for these two coupling measures
throughout the n-Back conditions. ¢, Amplitude correlation. d, Phase cou-
pling. VAN, ventral attentional network; DAN, dorsal attentional network; CN,
control-executive network; FPN, fronto-parietal network; DMN, default-mode
network; AUD, auditory network; VIS, visual network; SMN, sensorimotor
network.

task, suggesting that RSNs reflect intrinsic integration. Time-
averaged phase coupling was not structured that way, and ap-
peared extrinsic as it changed from rest to task.

That said, just because amplitude correlation is weaker be-
tween RSNs does not mean that it is absent.?>?* Amplitude
correlation was significantly above noise level (estimated from
empty-room MEG recordings) for 75 — 87% of intra-RSN links
and 51 — 62% of cross-RSN links (detection rates at p < 0.05
corrected for multiple comparisons over all connections, fre-
quencies, and conditions; range across datasets). Accordingly,
the whole connectome exhibits amplitude coupling, also be-
tween RSNs. Phase locking significantly above noise level was
much scarcer but still observable in all datasets (intra-RSN de-
tection rates: 8 — 11%, cross-RSN: 6 — 10%), including at rest.
The coarse RSN connectivity plots of Figure 1c¢ do not provide
clear insight into the intrinsic/extrinsic nature of cross-RSN am-
plitude correlation (because they are dominated by intra-RSN
correlations). They might also conceal extrinsic intra-RSN am-
plitude coupling at finer spatial and spectral scales. Likewise,
Figure 1d might miss intrinsic phase coupling (possibly due to
its transient nature'>). We thus turned to a systematic classifi-
cation of frequency-specific connections in terms of their task
dependence. Functional connectivity at finer timescales is con-
sidered afterwards.
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TASK-DEPENDENT STATES OF AMPLITUDE CORRELATION. For each
dataset and coupling type, we sought to identify the possible
ways connectivity was affected by task. We partitioned connec-
tions and frequencies in terms of how they vary with task, using
k-means clustering with robust estimation of the number of dif-
ferent patterns’*. We excluded beforehand frequency-specific
connections not significantly exceeding noise level in any con-
dition of the experiment, as noise could spuriously generate
task-independent patterns. This allowed to detect distinct task-
dependent connectivity states, i.e., functional networks reacting
differently to task. Classification of amplitude correlation re-
vealed one or two states per dataset. Figure 2a shows the two
n-Back states. All these states exhibited a homogeneously high
degree of similarity in their task dependence, independently of
the RSN structure (Figure 2a, top, for the n-Back) and systemat-
ically across all experiments (Supplementary Results S2). They
were also broadband except for the two n-Back states, which
split the connectivity spectrum into low- and high-frequency
bands (Figure 2a, middle). Importantly, this simple description
of amplitude coupling in terms of one or two states was very
accurate (goodness-of-fit > 96% across datasets; Supplemen-
tary Results S3). The entire connectome of amplitude coupling
thus evolves as a whole from rest to task.

To characterize how amplitude coupling depends on task,
we took advantage of the accuracy of state classification and
assessed the task-related evolution of mean state connectiv-
ity. Figure 2a (bottom) shows the evolution of low- and high-
frequency amplitude correlation from rest through the three n-
Back conditions, and suggests that neither is modulated by task
or perceptual/cognitive load. To test this hypothesis statistically
for each state of each experiment, we estimated mean state con-
nectivity at the individual level via dual regression of the clus-
tering model and applied a one-way ANOVA with condition
(e.g., rest, 0-Back, 1-Back, and 2-Back) as factor. The test was
non-significant for all states (F < 3.8, p > 0.33 across states
and datasets) with very low effect size (n%, < 5% of variance
explained by task-related changes; Figure 3, light grey). Given
the high accuracy of state classification and the wide variety
of experiments, we conclude that amplitude coupling is largely
dominated by intrinsic integration.

TASK-DEPENDENT STATES OF PHASE COUPLING. Phase connectiv-
ity exhibited more diverse task dependence, with 4 to 5 states
required for optimal classification (goodness-of-fit > 93%
across datasets; Supplementary Results S3). Figure 2b details
the states for the n-Back experiment. We identified a low-
frequency (< 11 Hz; state A) and a high-frequency (> 23
Hz; state B) visuo-attentional state, both involving phase cou-
pling within and across the visual, the ventral/dorsal attentional,
and the default-mode (DMN) networks. The high-frequency
state emerged during task only (not at rest) and was not mod-
ulated by working memory load, whereas the low-frequency
state was partially active at rest but its phase coupling strength
increased with working memory load (Figure 2b, bottom). We
also observed an intra-DMN state in the alpha band (8 — 13
Hz; state C) that was recruited at rest and during the simple 0-
Back condition but got disconnected during conditions involv-
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ing higher working memory load (1- and 2-Back). One last,
broadband state appeared spread across the connectome (state
D) but disclosed steadily increasing phase coupling from rest
to the 2-Back condition. Similar results held after eliminating
task event-related responses (Supplementary Results S4, which
includes further discussion).

Meaningful states of phase coupling also emerged in the
other experiments (Supplementary Results S2, for details).
Briefly, all phase connectivity states except one involved cou-
pling increases from rest to task and from lower to higher per-
ceptual/cognitive load, and they were maximally recruited dur-
ing task. Most states consisted of connections between net-
works that were functionally specific to the task at hand (motor
sequence learning, visual and motor; speech-in-noise compre-
hension and language production, auditory/language and mo-
tor) and attentional networks. The motor and speech-in-noise
datasets also evidenced states involving the DMN and atten-
tional networks with connectivity increasing from rest to task.
Finally, one language production state disclosed resting-state
intra-DMN phase synchronization that decreased from rest to
task, similarly to the n-Back state C.

We confirmed statistically this qualitative description of task-
dependent phase couplings using an ANOVA on mean state
phase connectivity. In stark contrast with amplitude correla-
tion, all states were significantly modulated by task (F > 11.3,
p < 0.0011, iﬁ, = 15 — 42% across states and datasets; Fig-
ure 3, dark grey), including those active at rest. Phase cou-
pling thus appears extrinsic. The reproducibility of our results
across all our five datasets, which encompassed distinct func-
tional systems, shows that results did not depend on a specific
cognitive task. They also proved resilient to methodological
changes in connectivity estimation (spectral range, brain par-
cellation, power regression, leakage correction, elimination of
event-related responses; Supplementary Results S4).

AMPLITUDE CORRELATION MODULATES PHASE COUPLING. The fact
that amplitude correlation is intrinsic prompts the question of its
functional relevance. To answer this question, we focused again
on the frequency-specific connections significantly exceeding
phase-locking noise level and examined the inter-dependence of
their resting-state amplitude coupling and their phase coupling
at rest or during task. A substantial proportion of those con-
nections disclosed significant, positive correlations (45 — 65%
of Spearman correlation tests computed over subjects for each
considered frequency-specific connection at p < 0.05 cor-
rected for multiple comparisons; range across conditions and
datasets). Accordingly, their distribution was heavily shifted
towards positive correlations (Figure 4a; non-parametric test
on distribution mean, p < 1077). These correlation distri-
butions were similar across tasks, suggesting that this partial
inter-dependence of amplitude and phase coupling'! is intrin-
sic. For a more functionally relevant relationship, we also
correlated resting-state amplitude coupling and phase connec-
tivity changes from rest to task. Their distribution was now
shifted towards negative correlations (Figure 4b), less promi-
nently (9—14% of significant correlations) but still significantly
for the mean (p < 10~%). Thus, connections with strong resting-
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Figure 2: CONNECTIVITY STATES FOR THE n-BACK EXPERIMENT. a, Amplitude correlation. b, Phase coupling. Each column corresponds to one state, for which we show
different characteristics: top, connectivity map; middle, spectral distribution (number of connections in the state per frequency bin); bottom, mean state connectivity
(i.e., average across all couplings in the state) per condition, noise estimate included. Links in these connectivity maps were weighted by a measure of similarity
between their task-dependent functional connectivity pattern and the state pattern shown at the bottom. For visualization purposes, the amplitude correlation state
maps were summarized using coarse network-level matrices due to the overwhelming number of links to draw. For phase coupling states, the similarity values were
converted into z scores to better emphasize color contrasts. The state connectivity bar plots at the bottom show the group mean and SEM across single-subject
values. The filling in each bar indicates the proportion of state links that are significantly above noise level in the corresponding condition (p < 0.05 corrected for
the false positive rate). Stars indicate significant differences across two conditions (¢ tests, p < 0.05, noise condition excluded). VAN, ventral attentional network;
DAN, dorsal attentional network; CN, control-executive network; FPN, fronto-parietal network; DMN, default-mode network; AUD, auditory network; VIS, visual

network; SMN, sensorimotor network.
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Figure 3: Task (IN)DEPENDENCE OF CONNECTIVITY STATES. The effect sizes of the
ANOVA applied to state connectivity patterns (see Figure 2, bottom, for the
n-Back states) are gathered across all our experiments. Each bar corresponds to
one state (light grey, amplitude correlation; dark grey, phase coupling). The ef-
fect size measures the fraction of variance explained by task-related changes in
group-level state connectivity. Stars indicate significance of the corresponding
ANOVA at p < 0.05. motor, motor sequence learning; a-SiN, auditory speech-
in-noise comprehension; av-SiN, audiovisual speech-in-noise comprehension;
lang, covert language production.

state amplitude correlation tend to exhibit a higher baseline of
phase connectivity and smaller phase coupling changes for task
processing. We conclude that intrinsic integration as encoded
in amplitude correlation facilitates the formation of extrinsic
phase coupling.

PHASE COUPLING EXHIBITS INTRINSIC DYNAMICS. This facilitation
effect suggests that amplitude coupling might induce intrinsic
features in phase coupling. We explored this idea using the
temporal development of amplitude correlation and phase lock-
ing (estimated over 10 s-long sliding windows??). Short-time
amplitude and phase coupling fluctuations were positively cor-
related in time (Supplementary Results S5, which also iden-
tifies their temporal standard deviation as intrinsic). This ex-
tends the facilitation effect to finer timescales. We then relied
on this temporal regression to isolate the part of time-averaged
phase connectivity explained by amplitude coupling dynam-
ics. This amplitude-based model of phase coupling was or-
ganized into RSNs (Figure 5a and Supplementary Results S1)
and state classification revealed a single, task-independent state
(goodness-of-fit > 94% across datasets, Supplementary Results
S3; F <2.1, p > 0.35, rﬁ, < 5% across conditions and datasets,
Figures 5b,c). This does not contradict our earlier results since
this contribution to time-averaged phase connectivity was sub-
dominant (explained variance < 11%). Besides its task-related
modulations, extrinsic phase coupling thus also exhibits intrin-
sic modulations closely tied to amplitude correlation dynamics.


https://doi.org/10.1101/2020.04.21.053579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053579; this version posted April 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Intrinsic/extrinsic duality of large-scale neural functional integration in the human brain

a oo
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

correlation

b av-SiN lang

-0.1
0.2 |
-0.3
-0.4
-0.5

correlation

Figure 4: CORRELATION BETWEEN AMPLITUDE AND PHASE COUPLING. a, Mean and SD
of Spearman correlations between resting-state amplitude correlation and phase
coupling in each condition of our five experiments. Each bar corresponds to
one condition. Only the connections that were included in phase connectivity
state classification contributed to this distribution. Thresholds for correlation
significance (p < 0.05 corrected for the false positive rate) are indicated in red.
b, Similar plot for the correlation between resting-state amplitude correlation
and phase coupling changes from rest to condition. motor, motor sequence
learning; a-SiN, auditory speech-in-noise comprehension; av-SiN, audiovisual
speech-in-noise comprehension; lang, covert language production.

Discussion

Our unique MEG dataset comprising 141 adult subjects and
14 experimental conditions provides invaluable insights into the
conception of functional brain organization’. The importance
of intrinsic activity was recognized rapidly after discovering the
DMN with positron emission tomography (PET) and then other
RSNs with fMRI.>? Its study has since been dominated by a
dichotomy between task-related and resting-state neuroimag-
ing. However, the resting state is not task free but an intro-
spective (albeit ill-controlled) condition alternating conscious
processing of inner and external stimuli with spontaneous cog-
nition (e.g., mind wandering).” We advocate here a novel con-
ceptual paradigm wherein intrinsic and extrinsic brain commu-
nications work in parallel and are dissociated by electrophysi-
ological couplings rather than experimental conditions. Previ-
ous works emphasized the coexistence of intrinsic and extrinsic
brain systems® but without fully separating or characterizing
them. We demonstrated that amplitude correlation is predomi-
nantly intrinsic, whereas phase coupling is extrinsic but still en-
dowed with intrinsic dynamics closely tied to that of amplitude
connectivity. The distinctive temporal resolution of MEG'® was
essential to unveil this dissociation to which PET and fMRI
are blind.?® This duality prompts the question of how they
can coexist on a common anatomical connectivity substrate
while showing strikingly different functionalities. This can be
answered by considering plausible underlying neural mecha-
nisms. The role of phase connectivity in network-level neural
processes is understood in terms of neural firing synchrony. 617
Phase locking gauges the tendency that pre-synaptic action po-
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Figure 5: AMPLITUDE-BASED MODEL OF PHASE CONNECTIVITY. Analysis of the part
of time-averaged phase coupling explained by amplitude correlation dynamics.
a, Illustration of the broadband network-level connectivity across the n-Back
conditions. b, Connectivity state obtained in the n-Back experiment. ¢, Ef-
fect sizes of the ANOVA applied to state phase connectivity across all exper-
iments. VAN, ventral attentional network; DAN, dorsal attentional network;
CN, control-executive network; FPN, fronto-parietal network; DMN, default-
mode network; AUD, auditory network; VIS, visual network; SMN, senso-
rimotor network; motor, motor sequence learning; a-SiN, auditory speech-
in-noise comprehension; av-SiN, audiovisual speech-in-noise comprehension;
lang, covert language production.

tentials from one neural population arrives at the time of max-
imal post-synaptic potential in the other, thus favoring syn-
chronous firing and information transfer.!” With hindsight, its
extrinsic character appears unsurprising since firing patterns
largely govern neural computations’’. The mechanisms for
amplitude coupling are less understood. Amplitude correla-
tion presumably measures the tendency of neural populations
to simultaneously exhibit high levels of excitability.® Fluctua-
tions in neural excitability are thought to be related to slow,
endogenous variations in biophysical properties of neurons,?®
e.g., extracellular potassium concentration’”. They do not af-
fect neural firing directly, which explains the intrinsic charac-
ter of amplitude correlation, but indirectly modulate it.”® Co-
occurrence of high excitability favors firing in one population
upon incoming action potentials from the other and thus rein-
forces their phase synchronization. This phenomenon of phase-
coupling facilitation through amplitude correlation provides a
neurophysiological rationale for our identification of an intrin-
sic component of phase connectivity and its close interplay with
amplitude connectivity dynamics. In fact, it suggests that am-
plitude coupling (i.e., excitability covariation) drives intrinsic
phase coupling through modulatory effects. It further supports
recent work on highly transient phase coupling at rest', al-
though amplitude and phase connectivity were entangled there.
Our approach was specifically designed to disambiguate them,
at the expense of lower temporal resolution. Conversely, sus-
tained phase synchronization affects neural excitability through,
e.g., spike-timing dependent plasticity, and may thus slowly re-
organize amplitude correlations.® This suggests that amplitude
coupling is intrinsic only so long as plastic changes are negli-
gible. This was presumably the case in our experiments span-
ning 10 — 20 minutes. On the timescale of hours and longer,
experience- and learning-dependent plasticity builds up?' and
may reorganize intrinsic couplings.? For example, memory con-
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solidation appears to modulate amplitude connectivity after mo-
tor sequence learning.>? Still, short-term plasticity in visual
cortices®® might explain minute-scale topological changes in
amplitude correlation during, e.g., movie watching*.

This neurophysiological perspective triggers a demotion of
resting-state studies to characterize intrinsic activity®®. The
fact that intrinsic integration is organized into RSNs explains
why they are observable at rest, but it is not limited to RSNs
since amplitude correlation covered the whole connectome.
More strikingly, resting-state phase connectivity revealed an
extrinsic RSN, i.e., the phase-synchronized DMN, which fur-
ther supports the idea that resting-state connectivity is not
exclusively intrinsic. Phase coupling among DMN regions
was previously postulated from indirect considerations about
DMN mapping with MEG amplitudes.’® Here, we go fur-
ther and claim (alongside recent fMRI data’”) the existence of
two functionally distinct modes of DMN integration. In con-
trast to the intrinsic DMN, the extrinsic DMN exhibited de-
coupling during tasks with high cognitive load (language pro-
duction, 1- and 2-Back). This is akin to the goal-directed
PET/fMRI deactivations that historically defined the DMN.3
This analogy actually carries further. Phase DMN desynchro-
nization was accompanied by increased synchrony in atten-
tional networks, which is reminiscent of the fMRI anticorre-
lation between task-positive/task-negative networks®. Addi-
tionally, some DMN nodes increase their PET/fMRI activity
in tasks such as speech comprehension,*’ during which DMN
phase connectivity strengthened. These findings suggest that
extrinsic phase coupling represents a better neural correlate of
task-evoked PET/fMRI modulations than the slow amplitude
fluctuations usually considered in this context?®*'. Another,
more practical consequence is that the classical division be-
tween resting-state and task-related neuroimaging should be
alleviated and replaced by an informed choice of the relevant
neurophysiological coupling type. Phase connectivity should
be used to study active neural networks during stimulation or
task performance, but also at rest to characterize fleeting spon-
taneous brain processes, which are currently little understood’.
The resting state is generally used to compare physiological or
pathological conditions and, critically, assumes the absence of
task performance biases.*? Extrinsic phase coupling should un-
dergo such a bias, even at rest, as different subtypes of sponta-
neous cognition transiently reconfigure RSNs’. Further, phys-
iological processes such as ageing and brain disorders do af-
fect spontaneous cognition.*># In this light, findings of age-
or disease-related changes in phase connectivity*’*3 may need
careful reconsideration. Amplitude correlation appears better
suited to avoid these biases and identify reorganizations of in-
trinsic functional integration. Notwithstanding, phase connec-
tivity may still be used to reveal alterations in spontaneous brain
processes. We thus suggest that studies systematically disentan-
gle intrinsic and extrinsic aspects of resting-state activity when
comparing physiological processes or brain disorders.

In conclusion, the intrinsic/extrinsic duality of functional in-
tegration revealed in our study provides a novel conceptual
framework to human brain organization. This framework is
firmly grounded in the electrophysiology of long-range neural
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communication. Ultimately, it may prove invaluable to cogni-
tive and clinical applications of brain network science.

Methods

Experimental and analytical procedures along with associ-
ated references are available in the Supplementary Information.

Acknowledgements

This study was supported by the Fonds de la Recherche
Scientifique (FRS-FNRS, Brussels, Belgium; PDR 3.4558.12,
EOS “MEMODYN?”), the Wiener-Anspach Foundation (Brus-
sels, Belgium) which also funded M.S., the Fonds Erasme
(Brussels, Belgium; research conventions “Les Voies du
Savoir” and “Marc Errens”) which also funded M.S. (conven-
tion “Marc Errens”), A.D., M.N., and M.V.G. The program At-
tract of Innoviris supported M.B., ED., and J.B. (grant 2015-
BB2B-10). M.B. also acknowledges funding from the Span-
ish Ministry of Economy and Competitiveness (Spain, grant
PSI12016-77175-P) and the Marie Sktodowska-Curie Action of
the European Commission (grant 743562). The Fonds Weten-
schappelijk Onderzoek (FWO, Brussels, Belgium) supported
L.C. (aspirant grant 11B7218N), J.V.S. (“Krediet aan Na-
vorser”, 1501218N), and G.N. (“Fundamenteel klinisch man-
daat”, 1805620N). T.C. is Clinical Master Specialist Appli-
cant to a PhD and X.D.T. is Postdoctorate Clinical Master
Specialist at the FRS-FNRS. J.B. is supported by the Fonds
Marguerite-Marie Delacroix. G.N. acknowledges grants from
the Belgian Charcot foundation and Genzyme-Sanofi. M.W.W.
is supported by the NIHR Oxford Health Biomedical Research
Centre, the Wellcome Trust (106183/Z/14/Z, 203139/7/16/Z,
215573/Z/19/Z), and the New Therapeutics in Alzheimer’s Dis-
eases (NTAD) study (funded by UK MRC and the Dementia
Platform UK). The MEG project at the CUB Hopital Erasme
is financially supported by the Fonds Erasme (convention “’Les
Voies du Savoir”).

Author contributions

M.S.: study design, data collection, methodological develop-
ments, data analysis, data interpretation, writing paper. M.B.,
L.C., AD, T.C, LR, ED, J.B.,, MN., M.VG, J.VS.: data
collection, writing paper. G.N., C.U., PP, S.G., M.\W.W.: data
interpretation, writing paper. X.D.T.: conceptualization, study
design, data analysis, data interpretation, writing paper. V.W.:
conceptualization, study design, methodological developments,
data analysis, data interpretation, writing paper.

References

[1] Marshall, D. & Weatherson, B. Intrinsic vs. Extrinsic Properties. in The
Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Re-
search Lab, Stanford University, 2018).

[2] Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat Rev Neurosci 8,
700-711 (2007).


https://doi.org/10.1101/2020.04.21.053579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053579; this version posted April 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Intrinsic/extrinsic duality of large-scale neural functional integration in the human brain

[3] Deco, G. & Corbetta, M. The dynamical balance of the brain at rest. Neu-
roscientist 17, 107-123 (2011).

[4] Smith, S. M. et al. Correspondence of the brain’s functional architecture
during activation and rest. Proc Natl Acad Sci U A 106, 13040-13045
(2009).

[5] Raichle, M. E. Two views of brain function. Trends Cogn Sci 14, 180-190
(2010).

[6] Engel, A. K., Gerloff, C., Hilgetag, C. C. & Nolte, G. Intrinsic Coupling
Modes: Multiscale Interactions in Ongoing Brain Activity. Neuron 80, 867—
886 (2013).

[7]1 Kucyi, A., Tambini, A., Sadaghiani, S., Keilholz, S. & Cohen, J. R. Spon-
taneous cognitive processes and the behavioral validation of time-varying
brain connectivity. Netw. Neurosci. 2, 397-417 (2018).

[8] Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dy-
namical organization of resting-state activity in the brain. Nat Rev Neurosci
12, 43-56 (2011).

[9] Friston, K. J. Functional and effective connectivity: a review. Brain Con-
nect 1, 13-36 (2011).

[10] Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-
scale neuronal interactions. Nat Rev Neurosci 13, 121-134 (2012).

[11] Siems, M. & Siegel, M. Dissociated neuronal phase- and amplitude-
coupling patterns in the human brain. NeuroImage 209, 116538 (2020).
[12] de Pasquale, F. et al. Temporal dynamics of spontaneous MEG activity in

brain networks. Proc Natl Acad Sci U A 107, 6040-6045 (2010).

[13] Brookes, M. J. et al. Investigating the electrophysiological basis of resting
state networks using magnetoencephalography. Proc Natl Acad Sci U A 108,
16783-16788 (2011).

[14] Hipp, J. F, Hawellek, D. J., Corbetta, M., Siegel, M. & Engel, A. K.
Large-scale cortical correlation structure of spontaneous oscillatory activity.
Nat Neurosci 15, 884-890 (2012).

[15] Vidaurre, D. et al. Spontaneous cortical activity transiently organises into
frequency specific phase-coupling networks. Nat. Commun. 9, 1-13 (2018).

[16] Varela, F.,, Lachaux, J.-P., Rodriguez, E. & Martinerie, J. The brainweb:
Phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2,
229-239 (2001).

[17] Fries, P. A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn. Sci. 9, 474480 (2005).

[18] Himildinen, M., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Mag-
netoencephalography?theory, instrumentation, and applications to noninva-
sive studies of the working human brain. Rev Mod Phys 65, 413-497 (1993).

[19] Della Penna, S., Corbetta, M., Wens, V. & de Pasquale, F. The Impact
of the Geometric Correction Scheme on MEG Functional Topology at Rest.
Front. Neurosci. 13, (2019).

[20] Wens, V. et al. A geometric correction scheme for spatial leakage ef-
fects in MEG/EEG seed-based functional connectivity mapping. Hum Brain
Mapp 36, 4604-4621 (2015).

[21] Muthukumaraswamy, S. D. & Singh, K. D. A cautionary note on the in-
terpretation of phase-locking estimates with concurrent changes in power.
Clin. Neurophysiol. 122, 2324-2325 (2011).

[22] de Pasquale, F. et al. A cortical core for dynamic integration of functional
networks in the resting human brain. Neuron 74, 753-764 (2012).

[23] Wens, V. et al. Synchrony, metastability, dynamic integration, and com-
petition in the spontaneous functional connectivity of the human brain. Neu-
rolmage 199, 313-324 (2019).

[24] Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters
in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 63,
411-423 (2001).

[25] Golland, Y. et al. Extrinsic and Intrinsic Systems in the Posterior Cortex
of the Human Brain Revealed during Natural Sensory Stimulation. Cereb.
Cortex 17, 766-777 (2007).

[26] Hall, E. L., Robson, S. E., Morris, P. G. & Brookes, M. J. The relationship
between MEG and fMRI. Neurolmage 102, 80-91 (2014).

[27] Gerstner, W., Kreiter, A. K., Markram, H. & Herz, A. V. M. Neural codes:
Firing rates and beyond. Proc. Natl. Acad. Sci. 94, 12740-12741 (1997).
[28] Schulz, D. J. Plasticity and stability in neuronal output via changes in
intrinsic excitability: it’s what’s inside that counts. J. Exp. Biol. 209, 4821—

4827 (2006).

[29] Krishnan, G. P., Gonzlez, O. C. & Bazhenov, M. Origin of slow spon-
taneous resting-state neuronal fluctuations in brain networks. Proc. Natl.
Acad. Sci. 115, 6858-6863 (2018).

[30] Tewarie, P. et al. Tracking dynamic brain networks using high temporal

M. Sjggard et al. (2020)

resolution MEG measures of functional connectivity. NeuroImage 200, 38—
50 (2019).

[31] Sagi, Y. et al. Learning in the Fast Lane: New Insights into Neuroplastic-
ity. Neuron 73, 1195-1203 (2012).

[32] Mary, A. et al. Age-related differences in practice-dependent resting-
state functional connectivity related to motor sequence learning. Hum. Brain
Mapp. 38, 923-937 (2017).

[33] Parks, N. A. & Corballis, P. M. Neural Mechanisms of Short-term Plas-
ticity in the Human Visual System. Cereb. Cortex 22, 2913-2920 (2012).
[34] Betti, V., Corbetta, M., Pasquale, F. de, Wens, V. & Penna, S. D. Topology
of Functional Connectivity and Hub Dynamics in the Beta Band As Tempo-
ral Prior for Natural Vision in the Human Brain. J. Neurosci. 38, 3858-3871

(2018).

[35] Raichle, M. E. et al. A default mode of brain function. Proc Natl Acad Sci
U A 98, 676-682 (2001).

[36] Sjggard, M. et al. Do the posterior midline cortices belong to the electro-
physiological default-mode network? NeuroIlmage 200, 221-230 (2019).
[37] Parker, D. B. & Razlighi, Q. R. Task-evoked Negative BOLD Response
and Functional Connectivity in the Default Mode Network are Represen-
tative of Two Overlapping but Separate Neurophysiological Processes. Sci.

Rep. 9, 1-17 (2019).

[38] Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s de-
fault network: anatomy, function, and relevance to disease. Ann N Acad Sci
1124, 1-38 (2008).

[39] Fox, M. D. et al. The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc Natl Acad Sci U A 102, 9673-9678
(2005).

[40] Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where Is the
Semantic System? A Critical Review and Meta-Analysis of 120 Functional
Neuroimaging Studies. Cereb. Cortex N. Y. NY 19, 2767-2796 (2009).

[41] Logothetis, N. K. What we can do and what we cannot do with fMRI.
Nature 453, 869-878 (2008).

[42] Fox, M. D. & Greicius, M. Clinical applications of resting state functional
connectivity. Front Syst Neurosci 4, 19 (2010).

[43] Zavagnin, M., Borella, E. & De Beni, R. When the mind wanders: Age-
related differences between young and older adults. Acta Psychol. (Amst.)
145, 54-64 (2014).

[44] Gyurkovics, M., Balota, D. A. & Jackson, J. D. Mind-wandering in
Healthy Aging and Early Stage Alzheimer’s Disease. Neuropsychology 32,
89-101 (2018).

[45] Keulers, E. H. H. & Jonkman, L. M. Mind wandering in children: Exam-
ining task-unrelated thoughts in computerized tasks and a classroom lesson,
and the association with different executive functions. J. Exp. Child Psychol.
179, 276-290 (2019).

[46] O’Callaghan, C., Shine, J. M., Hodges, J. R., Andrews-Hanna, J. R. &
Irish, M. Hippocampal atrophy and intrinsic brain network dysfunction re-
late to alterations in mind wandering in neurodegeneration. Proc. Natl. Acad.
Sci. 116, 3316-3321 (2019).

[47] Stam, C. J. et al. Graph theoretical analysis of magnetoencephalographic
functional connectivity in Alzheimer’s disease. Brain 132, 213-224 (2009).

[48] Tewarie, P. et al. Disruption of structural and functional networks in long-
standing multiple sclerosis. Hum. Brain Mapp. 35, 5946-5961 (2014).


https://doi.org/10.1101/2020.04.21.053579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053579; this version posted April 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Intrinsic/extrinsic duality of large-scale neural functional integration in the human
brain
Supplementary Information

Martin Sjggard, Mathieu Bourguignon, Lars Costers, Alexandru Dumitrescu, Tim Coolen, Liliia Roshchupkina, Florian Destoky,
Julie Bertels, Maxime Niesen, Marc Vander Ghinst, Jeroen van Schependom, Guy Nagels, Charline Urbain, Philippe Peigneux,
Serge Goldman, Mark W. Woolrich, Xavier De Tiege, Vincent Wens

Abstract
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Methods

SUBJECTS AND EXPERIMENTAL PROCEDURES. To demonstrate the
generality of our analysis, we considered five experiments tar-
geting different types of brain systems (e.g., motor, auditory,
language, or working memory). Each dataset was acquired in a
different group of healthy adult subjects. All were right-handed
(Edinburgh handedness inventory test!) with no history of neu-
rological or psychiatric disease, and no auditory deficit for the
speech-in-noise comprehension experiments. They participated
after signing a written informed consent. See Table S1 for de-
mographic information.

N  age (years, mean = SD) sex (female:male)
motor 26 232 +2.7 9:17
a-SiN 25 30.1 £3.2 12:13
av-SiN 25 23.0+2.9 15:10
lang 30 32.5+9.1 16:14
n-Back 35 432+92 22:13

Table S1: DEMOGRAPHIC INFORMATION. N, number of subjects; motor, motor se-
quence learning; a-SiN, auditory speech-in-noise comprehension; av-SiN, au-
diovisual speech-in-noise comprehension; lang, covert language production.

Each experiment included a resting state as well as several
attentional and cognitive tasks in which perceptual and cogni-
tive loads varied in each functional modality, as further detailed
below. During the resting-state conditions, subjects were in-
structed to relax with their gaze fixated either at a point on the
wall of the magnetic shielded room (where the MEG recordings
took place) or at a cross on a MEG-compatible screen. The rest-
ing state was systematically obtained as a session separate from
the other tasks. The different tasks of an experimental paradigm
were either performed sequentially as different sessions (mo-
tor sequence learning and auditory speech-in-noise comprehen-
sion) or intermingled within one uninterrupted session using a
block design (audiovisual speech-in-noise comprehension, lan-
guage production, and n-Back). Each task lasted about 5 min-
utes in total. The ordering of the rest and task conditions varied
across the experiments. Subjects were seated on the MEG arm-
chair, except in one experiment (audiovisual speech-in-noise
comprehension) in which subjects lied on a MEG-compatible
bed. The convergence of our main results indicates that they
were not affected by these differences in experimental proce-
dures or MEG data collection. To ensure the reproducibility of
our study, we describe below these procedures for each of the
five experiments reported in the main text. We had prior ap-
proval by the National MS Center Melsbroek and UZ Brussel
ethics committees for the n-Back experiment, and by the CUB
Hopital Erasme ethics committee for the others.

(i) Motor sequence learning. This paradigm targeted the mo-
tor system and the learning of a new finger motor sequence
(i.e., procedural learning). The experiment contained a resting-
state session (cross fixation) followed by a simple left finger
tapping task and then by a left finger sequence learning task.
These tasks were performed in two separate sessions and con-
sisted in the reproduction of a pattern of key presses on a MEG-
compatible four-button box (fORP, Current Designs Inc.). The
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simple finger tapping task required simultaneously pressing all
buttons with four fingers (index to little finger) every 5 sec-
onds upon an auditory cue. In the sequence learning task, sub-
jects had to reproduce a complex sequential pattern (4-1-3-2-4,
where 1 corresponds to the index and 4 to the little finger) as
fast and accurately as possible. These procedures were adapted
from a previous MEG experiment used to study motor sequence
learning.>#

(ii) Auditory speech-in-noise comprehension. This experiment
targeted the brain systems involved in connected speech pro-
cessing in the presence of informational noise’ with varying in-
tensity, which modulates subjects’ ability to understand speech.
It consisted in one resting-state (wall fixation) and three listen-
ing conditions performed in separate, randomly ordered ses-
sions. To each listening condition was assigned a noise level
(signal-to-noise ratio: noiseless, —5, and 5 dB) and a story
that subjects had to attend to. The stories were randomly
selected from a set of six recordings recounted by different
French-speaking readers (sex ratio 3:3) and obtained from an
audiobook database (http://www.litteratureaudio.com). Infor-
mational noise was built as a multi-talker background of six
French speakers (sex ratio 3:3) talking simultaneously, and
added to these recordings at a specified signal-to-noise ratio.
This audio material was delivered at an average intensity of
60 dB through a MEG-compatible 60 x 60 cm? flat-panel loud-
speaker (SSH sound shower, Panphonics) placed in front of the
subjects. Subjects were instructed to fixate a wall point and to
try and attend the story. Further background on this paradigm
and details on its use to identify slow-wave cortical oscillations
tracking the syllabic and phrasal speech content, are described
in previous publications.®’

(iii) Audiovisual speech-in-noise comprehension. This ex-
periment was similar to the previous one, except that it fo-
cused on the impact of noise type (i.e., non-informational vs.
informational®) rather than noise intensity, and included visual
support (speaker’s lips reading) to facilitate speech-in-noise
comprehensiong. Here, four sessions of the audiovisual task
preceded the resting state (fixation cross). The audiovisual ma-
terial was randomly selected from twelve different recordings
of four French-speaking actors telling a story. Each session
corresponded to one story told by a different actor, with vari-
ous types of speech noise occurring in randomly-ordered, 30-
second blocks; of which two were noiseless, two with non-
informational noise, and two with informational noise. Non-
informational noise consisted in a Gaussian white-noise signal
filtered between 100 and 10* Hz for one of the correspond-
ing blocks, and in a similar signal whose spectrum was mod-
ulated to match that of the speaker’s voice in the other block.
Informational noise consisted in a multi-talker background of
five French speakers of same gender than the speaker in one
block, and of opposite gender in the other. Informational noises
interfere with speech comprehension significantly more than
non-informational noises.”> Audio and video materials were pre-
sented time locked using a screen seen by the lying subjects
through a mirror placed above their head, and a 60 x 60 cm?
flat-panel loudspeaker (SSH sound shower, Panphonics; 60 dB
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intensity), both MEG-compatible and placed in front of the bed.
An extended version of this paradigm was used to investigate
the relationship between slow-wave brain tracking of speech,
noise type, and reading abilities in children and dyslexia.’

(iv) Covert language production. This experiment targeted the
functional systems associated with verbal language production.
It consisted in a resting-state session (fixation cross) followed
by two covert verbal language production tasks executed within
a single session in a block design: a picture naming task where
subjects had to silently name an image presented on screen,
and a verb generation task where they had to silently gener-
ate verbs associated to such an image. The latter entails a
higher cognitive load than the former.!? For each subject, 40
images were randomly selected among 80 images taken from
two databases, one dedicated to picture naming'' and the other
to verb generation'?. The two tasks were presented in a total
of 20 alternating 30-second blocks. Each block was preceded
by a one second-long cue identifying the task to perform (the
choice for the initial block being random) followed by two sec-
onds of cross fixation before block start. Each block consisted
in the presentation of eight images shown during one second
on a MEG-compatible screen, with random inter-stimulus in-
tervals (cross fixation during 2.7 £ 0.8 s, mean SD) constrained
to sum to 22 seconds within the block.

(v) Multi-item visual n-Back. This classical paradigm target-
ing visuo-attentional processes and working memory was per-
formed at three levels of difficulty (n = 0, 1, 2) to modulate
attention and working memory load.'* This experiment con-
tained a resting-state session (wall fixation) and one continu-
ous n-Back session in which the three levels were presented by
block. Each level was assigned to four blocks, for a total of 12
blocks, with random ordering except that the same level could
not occur twice consecutively. Each block started with task
instructions shown during 15 seconds on a MEG-compatible
screen, followed by the presentation of 20 visual items (here,
letters) projected on the screen for one second and separated by
an inter-trial interval of 2.8 seconds. Subjects were instructed
to press a key on a MEG-compatible button box when the cur-
rent item corresponds to the letter ‘X’ (n = 0), the previous item
(n = 1), or the one before (n = 2). This setup has been used
in conjunction with MEG to characterize extensively the brain
electrical evoked and rhythmical activity involved during this
visual n-Back.!*

Dara acquisition.  Electrophysiological brain activity gen-
erates small extracranial magnetic fields (of the order of
10~15T) that are measurable using MEG based on supercon-
ducting quantum interference devices (SQUIDs).!>!¢ All MEG
recordings in this study were obtained with a 306-channel,
whole-scalp-covering SQUID neuromagnetometer (Neuromag
Vectorview™/Triux™, MEGIN, Helsinki, Finland) placed in
a light-weight magnetically shielded room with active internal
compensation of remnant slow magnetic drifts (Maxshield™,
MEGIN)!". They were collected using either a Vectorview sys-
tem (auditory speech-in-noise comprehension), a Triux system
(motor sequence learning, audiovisual speech-in-noise compre-
hension, and covert language production), or both (n-Back;
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Vectorview: 10 subjects, Triux: 25 subjects) due to an up-
grade from Vectorview to Triux. These two neuromagnetome-
ters have the same sensor array, organized into 102 triplets of
one magnetometer and two orthogonal planar gradiometers, '>'¢
with some differences in sensor dynamic range and magnetic
environment. Still, their noise levels were comparable, espe-
cially after environmental noise cancellation. Previous works
that mixed Vectorview and Triux recordings did not reveal any
significant change in data quality for task-related activity!'®!"
or resting-state functional connectivity’>?'. The MEG acqui-
sition electronics comprised an analog band-pass filter (0.1-
330 Hz) and digital conversion at the sampling rate of 1 kHz.
Head movements within the MEG helmet (which is not attached
to the subjects’ head) were tracked using four position indi-
cator coils continuously emitting a localizable high-frequency
(around 300 Hz) magnetic field during the recordings. For
the paradigms involving a block design (audiovisual speech-
in-noise comprehension, covert language production, and n-
Back), trigger signals were also sent to the MEG acquisition
electronics to identify the start, the type of condition, and the
ending of each block.

A standard 3D Tl-weighted cerebral magnetic resonance
image (MRI) of each subject was further acquired after the
MEG sessions, using a 1.5 T Intera™ scanner (Philips, Best,
The Netherlands) for the motor sequence learning and audi-
tory speech-in-noise comprehension experiments, a hybrid 3 T
SignaTM PET-MR scanner (General Electrics Healthcare, Mil-
waukee, Wisconsin, USA) for the audiovisual speech-in-noise
comprehension and covert language production experiments,
and a 3 T Achieva™ scanner (Philips) for the n-Back exper-
iment. The location of fiducials, position indicator coils, and
over 300 head-shape points were digitized to enable the co-
registration of MEG and MRI coordinate frames.

DATA PREPROCESSING AND SPECTRAL DECOMPOSITION. From thereon,
we processed in a similar way all continuous MEG data
recorded during the different sessions (i.e., before their sep-
aration into blocks). Signal space separation’”> was used
to suppress environmental magnetic interferences and correct
for head motion on the basis of the indicator position coils
(Maxfilter™ v2.2, MEGIN). We then eliminated physiological
magnetic interferences induced by cardiac and ocular activity
as well as electronic artefacts, with an independent component
analysis (FastICA algorithm with pre-whitening, dimension re-
duction to 30, and nonlinearity contrast function tanh)?? of the
MEG data filtered beforehand between 0.5 and 45 Hz. The
components corresponding to these artefacts were identified
and regressed out of the full-rank data®® (number of removed
components: 3.8 + 1.2, mean = SD across sessions, subjects,
and experiments; range: 3 — 6). The cleaned continuous MEG
signals were then decomposed spectrally by filtering them in
narrow, 1 Hz-wide non-overlapping frequency bins covering the
3.5 —30.5 Hz interval. We chose this interval because it covers
the theta (4—8 Hz), alpha (8—12 Hz) and beta (12—30 Hz) bands
that support the spectral content of MEG RSNs?, and because
the MEG signal is much noisier in delta (< 4 Hz) and gamma
(> 30 Hz) frequencies'®. The analytic MEG signals were ex-
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tracted with Hilbert transformation to obtain a time-frequency
decomposition amenable to frequency-specific amplitude and
phase connectivity analysis.

RECONSTRUCTION OF BRAIN ELECTRICAL ACTIVITY. Neuromagnetic
activity as measured with MEG is a blurred version of the
underlying neural electrical currents, because magnetic fields
spread in the course of their propagation from the brain to ex-
tracranial sensors. For this reason, reconstructing these cur-
rents from MEG data is an ill-posed problem that requires a
regularized inversion of this field spread.'> The neuromagnetic
field spread was estimated using MEG forward modeling, i.e., a
numerical computation of the magnetic field generated by any
current source distribution and propagating through head tis-
sues. We computed each forward model individually using the
single-layer boundary element method (MNE-C suite?®). This
approach provides an accurate approximation of the neuromag-
netic field spread by considering head conductivity as being ho-
mogeneous inside the brain volume and vanishing outside.'> In-
dividual, realistically-shaped brain volumes were obtained from
tissue segmentation of their anatomical MRI (Freesurfer®’), and
their geometric position with respect to MEG sensors were
determined by manual MEG-MRI co-registration (MRIlab™,
MEGIN). The forward model was computed for three orthogo-
nal current sources placed at each node of a grid sampling the
brain volume. This grid was built from a cubic, 5-mm grid
cropped within the Montreal Neurological Institute (MNI) tem-
plate MRI brain volume and normalized onto each subject’s
MRI (SPM12)?%2°, This allows to directly work with MNI
nodes and facilitates group analysis. In particular, the nodes
corresponding to the RSN-based brain parcels used in this work
(Figure 1a; see Figure S1 for more detailed views) could be di-
rectly identified from their MNI coordinates.

The current source distribution of brain oscillatory activity
was then reconstructed in the whole brain volume grid by mini-
mum norm estimation, i.e., a regularized inversion of the MEG
forward model.!>3° This choice of reconstruction algorithm
was based on a recent work demonstrating that full DMN imag-
ing with MEG amplitude correlation requires minimum norm
estimation instead of the popular beamforming approach.’! The
regularization was based here on a frequency-specific noise co-
variance estimated from empty-room MEG recordings (5 min-
utes, with environmental noise cancellation and spectral de-
composition similar to the resting-state/task data), and a reg-
ularization parameter adapted to the frequency-specific MEG
signal-to-noise ratio via the prior consistency condition®?. The
reconstructed current sources were finally projected onto their
direction of maximum variance®3* so as to fix optimally their
orientation and enable the usage of bivariate connectivity mea-
sures. Of note, in the context of amplitude correlation anal-
ysis, an alternative sometimes used is to work with the Eu-
clidean norm of three-dimensional current sources.>>3¢ Both
approaches yield very similar connectivity estimates.?! Source
power was computed as the signal variance of these projected
currents with proper noise standardization®’ to account for the
depth bias.

FREQUENCY-SPECIFIC FUNCTIONAL CONNECTIVITY. We estimated
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functional connectivity between the reconstructed MEG oscil-
latory activity at each pair of nodes in the brain parcellation
(Figures la and S1) and in each frequency bin. Connectivity
measures are afflicted by the spatial leakage effect, i.e., spuri-
ous coupling inflation due to the typical spatial smoothness of
minimum norm estimates (which is eventually rooted in mag-
netic field spread).’® We controlled for spatial leakage using a
geometric correction that models the leakage effect at one (tar-
get) node from another (seed) node based on the MEG forward
model, and then subtracts it from the target before connectiv-
ity estimation.’> Compared to other, popular corrections based
on signal orthogonalization,>* this method offers the advan-
tage of preserving zero phase-lag synchronization and also sup-
presses the leakage screening effect (i.e., a spurious coupling
reduction) recently reported*’. This preservation was a priori
deemed important for our study, especially given the expecta-
tion of zero-lag linear synchronization within the DMN?!. (See
CROSS-CORRELATION OF AMPLITUDE AND PHASE CONNECTIVITY, for an
additional benefit of the geometric correction.) Amplitude cou-
pling was computed as the temporal Pearson correlation be-
tween the Hilbert envelopes of the seed and leakage-corrected
target signals.?>*34 Phase coupling was computed using the
phase-locking value*' based on the instantaneous phase differ-
ence of their analytical signals.*? For each subject and experi-
mental condition, time-averaged connectivity (used in the bulk
of our analyses) was estimated over the entire time periods cor-
responding to the condition. Their temporal development was
extracted by measuring connectivity in short, 10 s-long win-
dows sliding across these time periods by steps of 5 s.2!43 For
both coupling types (and each time window when appropriate),
connectivity estimates across all seed-target pairs were gath-
ered in a node-by-node connectivity matrix, which was fur-
ther averaged with its transpose to account for slight asymme-
tries induced by leakage correction’>. The alternative would
be to use the symmetrical multivariate orthogonalization** that
avoids this issue. However, it was inapplicable in our case since
it is limited to sparser brain parcellations. Finally, given that
power changes may reflect modifications in signal-to-noise ra-
tio and thus bias connectivity estimation,® each node-to-node
connectivity measure was further corrected by regressing out
source power at the two corresponding nodes.

The significance of time-averaged connectivity measures was
assessed statistically by one-sided paired ¢ tests against their
noise level (estimated from empty-room MEG recordings).
Given the multiple comparisons involved (11935 links and 30
frequency bins to test) and that each experiment contained sev-
eral conditions (one resting state and 2 — 3 tasks), we relied
on a maximum statistic***’ (here, the maximum ¢ value taken
over all connections, frequencies, and conditions) to detect
frequency-specific couplings significantly above noise level in
at least one experimental condition while controlling the false
positive rate at p < 0.05. To perform the test, we generated
non-parametrically 2000 null samples of this statistic under the
hypothesis that all conditions only disclosed connectivity noise.
Each sample was simulated by exchanging, independently in
each condition and for a random selection of subjects, the con-
nectivity data obtained in the said condition with the corre-
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Figure S1: NETWORK-BASED BRAIN PARCELLATION. Detailed location of the parcel nodes in the MNI brain, shown per RSN. We refer to Table 1 in Della Penna et al.*?
for the corresponding list of MNI coordinates and labels. VAN, ventral attentional network; DAN, dorsal attentional network; CN, control-executive network; FPN,
fronto-parietal network; DMN, default-mode network; AUD, auditory network; VIS, visual network; SMN, sensorimotor network.

sponding noise estimates. We then located significant couplings
by masking out all connections disclosing a univariate ¢ value
below the 95" percentile of these null samples in all conditions
(resting state and tasks).**’ We restricted all subsequent anal-
yses to couplings within this mask.

TASK-DEPENDENT CONNECTIVITY STATE CLASSIFICATION. We used
Lloyd’s algorithm for k-means clustering®® to partition group-
mean functional connectivity data across experimental condi-
tions into distinct states. The distance measure between two
task-dependent connectivity patterns, treated in the algorithm
as c-vectors (where ¢ denotes the number of experimental con-
ditions), was taken as one minus the cosine of their angle. Ac-
cordingly, the angle cosine allowed to measure the degree of
similarity between the task-dependent pattern of one coupling
in a state and its mean state pattern. In our setup, each state
corresponds to a subset of frequency-specific couplings. Task-
dependent mean state connectivity was defined as group-mean
functional connectivity averaged over this subset separately in
each experimental condition. Individual mean state connectiv-
ity was inferred via dual regression, i.e., by performing this sub-
set average independently for each subject. This data was sub-
jected to a repeated-measure ANOVA to detect a statistically
significant effect of the experimental condition on group-level
mean state connectivity. The associated effect size was mea-
sured using Cohen’s partial eta squared 773,.%

Building on the fact that clustering is a particular case of lin-
ear modeling, we assessed the goodness-of-fit of these state
models as the fraction of explained variance in the connec-
tivity data. Specifically, we built connectivity state models at
the single-subject level by assigning the individual mean state
connectivity value to each frequency-specific coupling in the
corresponding state. Goodness-of-fit was then measured as the
fraction of connectivity variance across subjects and conditions
explained by this model data. One issue in state classification
is that the number k of states to classify must be selected be-
forehand. This parameter is often chosen qualitatively by run-
ning state classification for a range of k values and drawing a
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so-called elbow curve to identify a compromise between high
model goodness-of-fit (ensured at large k) and low model com-
plexity (small k). See Results S3 for an illustration. Instead, we
used here a robust method to select the optimal k value based
on the gap statistics®®. This approach also has the advantage
of being able to detect situations where connectivity data are
not separable into distinct states (k = 1), which was ideally ex-
pected for intrinsic integration (i.e., a single, task-independent
state).

CROSS-CORRELATION OF AMPLITUDE AND PHASE CONNECTIVITY. We
examined the inter-dependence between time-averaged resting-
state amplitude correlation and either (i) phase coupling at rest
or in a task condition, or (ii) the difference between phase cou-
pling during a task condition and phase coupling at rest. We
used Spearman rank correlation computed across subjects and
independently for each frequency-specific coupling. Analo-
gously to the 7 tests described above (see FREQUENCY-SPECIFIC
FUNCTIONAL CONNECTIVITY), we controlled the false positive rate
at p < 0.05 using a maximum statistic***’, i.e., the maximum
(case 1) or the minimum (case ii) in the distribution of corre-
lation values taken over all frequency-specific couplings and
over all conditions (case i) or condition differences (case ii).
Null samples were simulated by randomly reshuffling subjects
ordering in the resting-state amplitude correlation data before
re-computing this distribution (2000 permutations). We also
tested whether the mean of this distribution was positive (case
i) or negative (case ii) by extracting null samples of this mean
statistic in the course of these simulations.

Crucially, our usage of the geometric spatial leakage
correction®? when estimating functional connectivity was key
to enable these correlation analyses. Signal orthogonalization
mixes phase and amplitude signals® and spuriously hides any
inter-dependence between amplitude and phase couplings.!
This bias is not shared by the geometric correction.

AMPLITUDE-BASED MODEL OF PHASE COUPLING. We isolated the
part of phase connectivity explained by amplitude correlation at
the intra-subject level, by designing a linear regression model


https://doi.org/10.1101/2020.04.21.053579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053579; this version posted April 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Intrinsic/extrinsic duality of large-scale neural functional integration in the human brain

with sliding-window phase locking as dependent variable and
sliding-window amplitude correlation as independent variable.
This was done separately for each entry of the frequency-
specific connectome, each subject, and each experimental con-
dition. This temporal regression captured the dynamical rela-
tionship between phase and amplitude coupling. Usage of this
model at the level of time-averaged connectivity allowed to sin-
gle out the dynamic contribution of amplitude correlation to
phase locking.

Results

S1. NETWORK-LEVEL FUNCTIONAL CONNECTIVITY PLOTS (FIGURE
S2). In the main text, we used the n-Back data to illustrate
the fact that time-averaged amplitude correlation (Figure 1c)
and amplitude-based phase coupling (Figure 5a) are promi-
nently structured in terms of RSNs, whereas time-averaged
phase coupling is not (Figure 1d). Figure S2 shows similar data
for the other four experiments considered in this study (mo-
tor sequence learning, auditory and audiovisual speech-in-noise
comprehension, and covert language production) and demon-
strates that these claims are reproducible.

S2. FURTHER DETAILS ON TASK-DEPENDENT CONNECTIVITY STATES
(Ficures S3-S7). Task-related connectivity state classification
was illustrated in the main text with the n-Back dataset. We
describe here the states that emerged from the motor sequence
learning (Figure S3), auditory (Figure S4) and audiovisual (Fig-
ure S5) speech-in-noise comprehension, and language produc-
tion (Figure S6) tasks. Throughout all datasets and consis-
tently with the n-Back case (Figure 2a), all amplitude corre-
lation states exhibited spatial homogeneity and task indepen-
dence (as was shown in Figure 3). All phase connectivity states
were task dependent (as again shown in Figure 3) but their spa-
tial distribution was specific to the task at hand. Their maps are
gathered in Figure S7, where we show them with node labels.
All these states involved phase coupling increases from rest to
task, except for the two intra-DMN states (i.e., n-Back state
C, see Figure 2b, and language production state D, see Figure
S6b).

(i) Motor sequence learning (Figure S3). We identified two
visuo-attentional states, one characterized by alpha-band phase
coupling unmodulated across the two motor tasks (state A), and
the other by low frequency (< 12 Hz) phase coupling increase
from simple finger tapping to sequence learning (state B). The
latter was reminiscent of the n-Back state A (Figure 2b). We
also identified two motor-attentional states, with a similar dis-
crimination in their task dependence (states C and D). State E
involved most prominently the DMN and attentional networks
and was characterized by a boost in phase coupling during se-
quence learning.

(ii) Auditory speech-in-noise comprehension (Figure S4). This
experiment revealed an auditory/language-motor-attentional
state exhibiting higher theta-band (4 — 8 Hz) phase coupling in
the presence of speech noise, but independently of noise level
(state A). We also observed three states involving the DMN and
attentional networks (states B—D), somewhat akin to the motor
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sequence learning state E. Their phase coupling was not clearly
modulated by speech noise or its level. State E was less obvious
to interpret.

(iii) Audiovisual speech-in-noise comprehension (Figure
S5).  As in the purely auditory paradigm, we identified
auditory/language-motor-attentional states (states A—C) and
DMN/attentional states (states D and E). States A, C, and
D were characterized by a phase coupling increase in the
presence of speech noise, but independently of noise type.
States B and E disclosed steadily increasing phase coupling
and in particular stronger synchronization in the informational
noise condition, which impedes speech comprehension more
than then non-informational noise condition. These two noise
type-dependent states were spectrally concentrated on the
alpha band.

(iv) Language production (Figure §6). These tasks generated
three broad language-motor-attentional states (states A, B, and
C), only one of them (state B) being more coupled during the
behaviorally more difficult verb generation condition than dur-
ing picture naming. State D corresponded mainly to a DMN
state exhibiting phase desynchronization from rest to task, sim-
ilarly to the n-Back state C.

S3. STATE CLASSIFICATION ACCURACY AND ROBUST ESTIMATION OF
NUMBER OF PATTERNS (FIGURE S8). To assess whether k-means
clustering as used in the main text provided a good description
of functional connectivity data across tasks, we plotted the frac-
tion of residual variance (i.e., one minus the goodness-of-fit) of
the state models as a function of the number & of states to be
classified (Figure S8). These curves correspond to a version
of the elbow curves as they provide a qualitative assessment of
the balance between low residual variance and low complex-
ity. The k value derived from the gap statistics is emphasized
in Figure S8. The residual variance for time-averaged ampli-
tude correlation was systematically low even at k = 1, with a
moderate decrease at k = 2 (Figure S8a). This is in agreement
with the gap statistics selecting either k = 1 or kK = 2 depend-
ing on the dataset. The curve for time-averaged phase coupling
was higher, especially at low k values, but presented a sharp de-
crease before flattening at k = 3 to 5 (Figure S8a). Again this
agrees with the gap statistics. Finally, the residual variance for
amplitude-based phase coupling (Figure S8b) and the temporal
standard deviation of both short-time amplitude and phase cou-
pling (Figure S8c, used in Results S5) were very low already at
k = 1, which is once again consistent with the gap statistics.
Because using the right number k of clusters is crucial for a
valid classification, we double checked the results of the gap
statistics by developing a non-parametric test on the curves of
residual variance shown in Figure S8. Our method relies on
the observation that k-means clustering is an example of lin-
ear model, and is actually applicable to any categorical linear
model. We identified the k values disclosing a statistically sig-
nificant drop in residual variance when allowing one additional
state in the model (i.e., when passing from & to k + 1). We then
selected the first value of k failing to show a significant drop,
which corresponds to the least complex state model for which
increasing complexity does not increase the goodness-of-fit sig-
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Figure S2: BROADBAND NETWORK-LEVEL CONNECTIVITY. These plots show the broadband (i.e., average across frequency bands), network-level (i.e., average across RSN
nodes) connectivity patterns throughout the conditions of four experiments. a, Amplitude correlation. b, Phase coupling. ¢, Amplitude-based phase coupling. motor,
motor sequence learning; tapping, simple finger tapping task; learning, complex sequence learning task; a-SiN, auditory speech-in-noise comprehension; noiseless,
speech comprehension task without noise; —5 dB, with informational noise at —5 dB; 5 dB, with informational noise at 5 dB; av-SiN, audiovisual speech-in-noise
comprehension; noiseless, speech comprehension task without noise; noninfo, with non-informational noise; info, with informational noise; lang, covert language
production; name, picture naming task; verb, verb generation task; VAN, ventral attentional network; DAN, dorsal attentional network; CN, control-executive
network; FPN, fronto-parietal network; DMN, default-mode network; AUD, auditory network; VIS, visual network; SMN, sensorimotor network.
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Figure S3: CONNECTIVITY STATES FOR THE MOTOR SEQUENCE LEARNING EXPERIMENT. a, Amplitude correlation. b, Phase coupling. Each column corresponds to one state,
for which we show different characteristics: top, connectivity map; middle, spectral distribution (number of connections in the state per frequency bin); bottom,
mean state connectivity (i.e., average across all couplings in the state) per condition, noise estimate included. Links in these connectivity maps were weighted
by a measure of similarity between their task-dependent functional connectivity pattern and the state pattern shown at the bottom. For visualization purposes, the
amplitude correlation state maps were summarized using coarse network-level matrices due to the overwhelming number of links to draw. For phase coupling states,
the similarity values were converted into z scores to better emphasize color contrasts. The state connectivity bar plots at the bottom show the group mean and SEM
across single-subject values. The filling in each bar indicates the proportion of state links that are significantly above noise level in the corresponding condition
(p < 0.05 corrected for the false positive rate). Stars indicate significant differences across two conditions (¢ tests, p < 0.05, noise condition excluded). tapping,
simple finger tapping task; learning, complex sequence learning task; VAN, ventral attentional network; DAN, dorsal attentional network; CN, control-executive
network; FPN, fronto-parietal network; DMN, default-mode network; AUD, auditory network; VIS, visual network; SMN, sensorimotor network.
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Figure S4: CONNECTIVITY STATES FOR THE AUDITORY SPEECH-IN-NOISE COMPREHENSION EXPERIMENT. a, Amplitude correlation. b, Phase coupling. We refer to Figure S3 for
details. noiseless, speech comprehension task without noise; —5 dB, with informational noise at —5 dB; 5 dB, with informational noise at 5 dB.
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for details. noiseless, speech comprehension task without noise; noninfo, with non-informational noise; info, with informational noise.
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Figure S6: CONNECTIVITY STATES FOR THE COVERT LANGUAGE PRODUCTION EXPERIMENT. a, Amplitude correlation. b, Phase coupling.
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Figure S7: DETAILED VIEW OF PHASE CONNECTIVITY

TE MAPS. This figure gathers all phase conr
learning; a-SiN, auditory speech-in-noise comprehension; av-SiN, audi

ctivity state maps (see top part of Figures 2 and S3-S6, b), now with
ual speech-in-noise comprehension; lang, covert language production.

the label of the nodes involved in state connections. We refer to Table 1 in Della Penna et al.*? for the corresponding list of node labels. motor, motor sequence
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nificantly. Significant drops in residual variance were detected
using a minimum statistic***’ on the discrete derivative of the
curves shown in Figure S8. Samples of this statistic were gen-
erated non-parametrically under the null hypothesis that these
curves are flat, i.e., residual variance is assumed equivalent
across all k£ values. Specifically, we started from single-subject
connectivity k-state models (Methods, TASK-DEPENDENT CONNEC-
TIVITY STATE CLASSIFICATION) and randomly shuffied their k label
(e.g., the k = 3 model would be seen as a k = 7 model, which
is allowed under the null of exchangeable k values), indepen-
dently for each subject. The minimum derivative of the result-
ing curve of residual variance then provided a null sample of
the statistic. We used this procedure to simulate 2000 samples.
Significant drops in residual variance were identified as those
beneath the 5™ percentile of this set of null samples. In particu-
lar, the case k = 1 corresponded to the complete absence of any
significant drop.

Although this non-parametric approach is fairly differ-
ent from the gap statistics, which relies on parametric
assumptions,®® both approaches concurred in all the cases con-
sidered in Figure S8. This convergence thus further argues for
the robustness of our state classification of task-dependent func-
tional connectivity.

S4. ROBUSTNESS TO METHODOLOGICAL CHANGES (FIGURES S9-S14).
Our main analysis entailed methodological choices that might
a priori affect our results. We explore here the effect of several
parameters and show that they did not have a dramatic impact,
using the n-Back dataset as case study. Only the parameter of
interest was changed while keeping all the others as per the
analysis reported in the main text.

(i) Spectral range (Figure S9). We extended the spectral range
from 4 — 30 Hz to 1 — 45 Hz (Figure S9) to include the delta
(1 — 4 Hz) and low-gamma (30 — 45 Hz) bands, which are nois-
ier but still carry functional correlates in MEG signals'®. We
did not consider frequencies beyond 45 Hz given how typically
low their MEG signal-to-noise ratio is, especially with regard
to RSN connectivity.?’

(ii) Brain parcellation (Figure S10). The network-based par-
cellation we used directly allows to assess the organization of
functional connectomes into RSN’ (Figure S1).4% To check that
our results are not tied to this specific parcellation scheme, we
re-computed functional connectomes with a widely-used brain
atlas based on automated anatomical labelling (AAL)?. We
placed nodes at the center-of-mass of each extended parcel and
assigned them to RSNs based on their distance to the original
parcellation nodes (Figure S1) to keep a uniform presentation
of results.

(iii) Power regression (Figure S11). Regressing out power from
connectivity estimates allowed to avoid detecting possible spu-
rious connectivity modulations due to changes in signal-to-
noise ratio* across experimental conditions. However, gen-
uine connectivity modulations might also induce concurrent
changes in node power,>® in which case this regression step
might overshadow genuine task-related connectivity modula-
tions. We checked that our results are not driven by such false
negatives by repeating our analyses without the power regres-
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sion step. Convergence of results would also show that they
are not dramatically affected by false positives in the absence
of power regression either.

(iv) Spatial leakage correction (Figures S12, S13). As reviewed
above (Methods, FREQUENCY-SPECIFIC FUNCTIONAL CONNECTIVITY),
spatial leakage correction is essential to functional connectiv-
ity mapping, yet correction methods have limitations.*>>* We
assessed the robustness of our analysis against leakage correc-
tion by replacing our geometric correction with signal orthogo-
nalization (Figure S12), and also by removing leakage correc-
tion altogether (Figure S13). Given that our analysis is mainly
designed to detect task-related connectivity contrasts, and that
spatial leakage is subdominant after contrasting (although it re-
mains a confoundss), we expected results to hold in both cases.
Their robustness even without leakage correction would also
rule out connectivity asymmetry (due to pairwise corrections**)
as a major issue.

(v) Event-related fields (Figure S14). Task-related phase con-
nectivity changes may reflect, at least partially, event-related
responses to the task at hand. These responses are by definition
time locked to externally-controlled events, such as auditory or
visual stimulation.!® Therefore, the different brain regions in-
volved in distributed event-related activity will tend to exhibit
increased phase locking. We examined to what extent this effect
drove our detection of task-related phase connectivity modula-
tions by re-estimating functional connectivity after elimination
of the event-related MEG responses. We cut the MEG data into
epochs from —500 ms to 1000 ms relative to each stimulus (item
visual presentation identified by a trigger signal), subtracted
their temporal average over the baseline (from —200 ms to 0
ms), and averaged over epochs.'* The contribution of the event-
related response to the continuous MEG data was then modeled
as the temporal convolution of this averaged epoch MEG signal
with the trigger signal, and was eliminated from the continuous
MEQG data by subtraction. Functional connectivity was then es-
timated on this corrected data.

Figures S9-S14 show the task-dependent connectivity states
obtained with the analyses (i)—(v) (compare to Figure 2 in the
main text). State classification accurately summarized the pat-
terns of task dependence through the n-Back conditions in all
cases (amplitude correlation, goodness-of-fit > 93%; phase
coupling, > 92%), and confirmed the task independence of am-
plitude correlation (F3 102 < 4.1, p > 0.26, rﬁ, < 6% across all
states and methodological variants) and the task modulations
of phase coupling (F3102 > 9.2, p < 0.002, n% = 17 — 55%).
The characteristics of connectivity states remained qualitatively
similar, although details differed. Either one (Figures S9, S10,
S14) or two (Figures S11-S13) amplitude connectivity states
emerged. In the latter cases, the two states split the spectrum
into a low- and high-frequency band, as in Figure 2a, whereas
in the former case the state was broadband, similarly to what
was found in the other experiments (Results S2, Figures S3—
S6). Each phase connectivity state described in the main text
(Figure 2b) could also be identified whatever the methodologi-
cal parameter changed, with similar spectrum and task-related
pattern. Notably, the correction of event-related fields reduced
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Figure S9: CONNECTIVITY STATES FOR THE 7-BACK EXPERIMENT, WITH WIDER SPECTRAL RANGE. a, Amplitude correlation. b, Phase coupling.
functional connectivity data computed over a larger frequency band (1 — 45 Hz).
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Figure S11: CONNECTIVITY STATES FOR THE n-BACK EXPERIMENT, WITHOUT POWER REGRESSION. a, Amplitude correlation. b, Phase coupling. Similar to Figure 2, for
functional connectivity data without power regression.
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Figure S12: CONNECTIVITY STATES FOR THE n-BACK EXPERIMENT, WITH SIGNAL ORTHOGONALIZATION. a, Amplitude correlation. b, Phase coupling.
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Figure S13: CONNECTIVITY STATES FOR THE n-BACK EXPERIMENT, WITHOUT LEAKAGE CORRECTION. a, Amplitude correlation. b, Phase coupling. Similar to Figure 2, for
functional connectivity data with spatial leakage left uncorrected.
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Figure S14: CONNECTIVITY STATES FOR THE 7-BACK EXPERIMENT, WITH CORRECTION FOR EVENT-RELATED RESPONSES. a, Amplitude correlation. b, Phase coupling. Similar to
Figure 2, for functional connectivity data obtained after elimination of event-related MEG responses.

the involvement of visual couplings in state A and displaced
its connectivity spectrum from the theta band to the alpha band
(compare Figure S14b with Figure 2b), but otherwise preserved
all other state features. The optimal number of phase coupling
states was similar (Figure S10) or higher (Figures S9, S11-
S14). Consequently, in the latter cases, some states appeared
split into two or three states. A notable exception was the ex-
trinsic DMN state C exhibiting phase desynchronization during
the 1- and 2-Back tasks, which remained undivided. Interest-
ingly, the cases where possible confounds are left uncontrolled,
i.e., without power regression (Figure S11) or leakage correc-
tion (Figure S13), led to substantially more phase connectivity
states, which presumably reflects higher processing noise in the
functional connectivity data. Still the main property of interest,
i.e., their extrinsic nature, persisted.

These analyses thus confirmed the robustness of our results
against the methodological variations (i)—(v). The last case (v)
specifically deserves further discussion, especially in light of
the conceptual framework developed in the main text. Should
we exclude task-related modulations in phase connectivity ex-
plained by event-related responses? The analog of this effect in
slow-wave fMRI signals is considered to confound task-related
connectivity,”® but at the higher temporal resolution of MEG
the situation is different. Distributed event-related responses
generally emerge from functional integration and thus reflect
precisely task-related neural communication. The only method-
ological confound is that stimulation may co-activate separate
regions without them actually communicating, but this possi-
bility is restricted to zero-lag phase synchronization between
homologous primary cortices. This agrees with our observation
that correcting for event-related responses only removed intra-
visual theta-band couplings in the n-Back phase connectivity
state A of Figure 2b (Figure S14b). Since no task-dependent
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phase connectivity state was limited to primary cortices (as at-
tentional networks were systematically involved), we conclude
than they all reflected genuine functional connectivity modu-
lations. More conceptually, event-related responses only rep-
resent a part of active, extrinsic neural processes. They are
highlighted, somewhat artificially, because we control them ex-
perimentally and we can thus disambiguate them from back-
ground brain activity. However, several uncontrolled active
processes will also take place, e.g., spontaneous cognition or
sustained task-related attention, but not directly time locked
to stimuli. Accordingly, we surmise that such processes con-
tribute to extrinsic phase coupling and were detectable with our
block-design, time-averaged connectivity analysis. The n-Back
phase connectivity states shown in Figure S14 would indeed
precisely reflect these extrinsic processes. The DMN state C
provides a striking example of this statement. It exhibits high
phase coupling in conditions of low cognitive load (here, rest
and 0-Back), possibly reflecting active spontaneous cognitive
processes such as recurrent mind-wandering episodes’. This
state then decouples in conditions of high cognitive load (here,
1- and 2-Back) as attentional resources are shifted towards ex-
ternal tasks and the opportunity to shift towards spontaneous
cognitive processes is drastically reduced.

S4. TEMPORAL FLUCTUATIONS OF SHORT-TIME FUNCTIONAL CONNEC-
tivity (Ficures S15, S16). We claimed in the main text that
the relationship determined between time-averaged amplitude
and phase coupling at the group level (Figure 4a) generalizes
to short-time connectivity dynamics. This result detailed here
was obtained by analyzing the temporal fluctuations of sliding-
window connectivity around their time average (i.e., after mean
centering). We estimated the Spearman correlation between the
time-locked fluctuations of amplitude and phase coupling, sep-
arately for each frequency-specific connection disclosing time-
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Figure S15: TEMPORAL CORRELATION BETWEEN SHORT-TIME AMPLITUDE AND PHASE
COUPLING FLUCTUATIONS. Mean and SD of temporal Spearman correlations be-
tween short-time fluctuations of amplitude and phase connectivity in each con-
dition of our five experiments. Each bar corresponds to one condition. Only the
connections that were included in time-averaged phase connectivity state classi-
fication contributed to this distribution. Thresholds for correlation significance
(p < 0.05 corrected for the false positive rate) are indicated in red. motor, mo-
tor sequence learning; a-SiN, auditory speech-in-noise comprehension; av-SiN,
audiovisual speech-in-noise comprehension; lang, covert language production.

averaged phase locking significantly above noise level, and for
each experimental condition. Connectivity time series were
temporally concatenated across subjects beforehand to gener-
ate a group-level analysis. Importantly, the inter-subject cor-
relation effect reported in Figure 4a was excluded thanks to
mean centering, so this analysis specifically focused on the
intra-subject, dynamic effect. The distribution of these correla-
tions was clearly shifted towards positive values (Figure S15),
with a significantly positive mean (p < 0.001 across condi-
tions and datasets). Accordingly, 42 — 56% of correlations
(range across conditions and datasets) were significantly pos-
itive at p < 0.05 corrected for multiple comparisons (Methods,
CROSS-CORRELATION OF AMPLITUDE AND PHASE CONNECTIVITY, for a
description of these statistical procedures.) We used this result
in the main text to justify our construction of the amplitude-
based model of phase coupling.

What this result also entails is that short-time phase cou-
pling fluctuations may be expected to exhibit intrinsic dynam-
ics closely tied to that of amplitude correlation. To further il-
lustrate this claim, we describe here an analysis of the tempo-
ral standard deviation (SD) of short-time couplings (rather than
their time average as done in the main text). First, the whole
connectome (i.e., all connections and frequencies) revealed
that both amplitude and phase sliding-window connectivity SD
was significantly higher than their noise estimates over the en-
tire connectome (p < 0.05 with false positive rate controlled
by maximum statistics, along the lines described in Meth-
0ds, FREQUENCY-SPECIFIC FUNCTIONAL CONNECTIVITY). This simple
yet crucial observation demonstrates the existence of a short-
time brain coupling dynamics beyond mere statistical variabil-
ity (a point sometimes debated in the literature**®). Sec-
ond, while time-averaged amplitude correlation was stronger
within RSNs (Figures lc and S2a), amplitude correlation SD
emerged most prominently between RSNs. This shows that
cross-RSN integration is temporally more unstable than within-
RSN integration (Figure S16a). This is in line with data putting
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cross-RSN amplitude coupling at the center of dynamic brain
integration?®#33%60 " Phase-locking SD did not appear struc-
tured that way (Figure S16b), which is reminiscent of its time
average (Figures 1d and S2b). Finally, we examined whether
connectivity SD was modulated by task using k-means clus-
tering (as was used on time-averaged connectivity in the main
text). Both amplitude and phase coupling required a single
state of connectivity SD (goodness-of-fit > 96% across datasets
and coupling types; Figure S8c), which was task independent
(ANOVA; F < 3.9, p > 0.34, 5 < 7%; Figures S16¢c—e). We
conclude that the temporal variability of both short-time ampli-
tude and phase coupling is dominated by an intrinsic dynamics.
Our results in the main text show that this intrinsic dynamics
becomes subdominant after time averaging over a few minutes.
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Figure S16: TEMPORAL VARIABILITY IN SHORT-TIME CONNECTIVITY FLUCTUATIONS. The spatial patterns of connectivity SD are illustrated using broadband (i.e., average
across frequency bands), network-level (i.e., average across RSN nodes) plots. a, Amplitude correlation. b, Phase coupling. Part ¢ shows the effect sizes of the
ANOVA applied to task-dependent connectivity SD averaged across all connections and frequencies, for each experiment (light grey, amplitude correlation; dark
grey, phase coupling). These small effect sizes are illustrated in the case of the n-Back experiment by plotting the mean connectivity SD (i.e., average across all
connections and frequencies) as a function of condition (noise estimate included). d, Amplitude correlation. e, Phase coupling. motor, motor sequence learning;
tapping, simple finger tapping task; learning, complex sequence learning task; a-SiN, auditory speech-in-noise comprehension; noiseless, speech comprehension
task without noise; —5 dB, with informational noise at —5 dB; 5 dB, with informational noise at 5 dB; av-SiN, audiovisual speech-in-noise comprehension; noiseless,
speech comprehension task without noise; noninfo, with non-informational noise; info, with informational noise; lang, covert language production; name, picture
naming task; verb, verb generation task; VAN, ventral attentional network; DAN, dorsal attentional network; CN, control-executive network; FPN, fronto-parietal
network; DMN, default-mode network; AUD, auditory network; VIS, visual network; SMN, sensorimotor network.
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