

1
2
3 **Enterendoctrine cells couple nutrient sensing to nutrient absorption by regulating ion**
4 **transport.**

5
6 Heather A. McCauley^{1,2}, Andrea L. Matthis³, Jacob R. Enriquez^{1,2}, Jonah Nichol^{1,2}, J. Guillermo
7 Sanchez^{1,2}, William J. Stone^{1,2}, Nambirajan Sundaram⁴, Michael A. Helmrath^{2,4}, Marshall H.
8 Montrose³, Eitaro Aihara³, and James M. Wells^{*1,2,5}

9
10
11 ¹Division of Developmental Biology
12 ²Center for Stem Cell and Organoid Medicine
13 ⁴Division of Pediatric General and Thoracic Surgery
14 ⁵Division of Endocrinology
15 Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
16 ³Department of Pharmacology and Systems Physiology
17 University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267
18
19 *corresponding author, james.wells@cchmc.org

20 **Summary**

21 The ability to absorb ingested nutrients is an essential function of all metazoans and utilizes a
22 wide array of nutrient transporters found on the absorptive enterocytes of the small intestine. A
23 unique population of patients has previously been identified with severe congenital
24 malabsorptive diarrhea upon ingestion of any enteral nutrition. The intestines of these patients
25 are macroscopically normal, but lack enteroendocrine cells (EECs), suggesting an essential role
26 for this rare population of nutrient-sensing cells in regulating macronutrient absorption. We used
27 human and mouse models of EEC deficiency to identify a new role for the EEC hormone
28 peptide YY in regulating ion-coupled absorption of glucose and dipeptides the small intestine.
29 We found that peptide YY is required in to maintain normal electrophysiology in the presence of
30 vasoactive intestinal polypeptide, a potent stimulator of ion secretion produced by enteric
31 neurons. Administration of peptide YY to EEC-deficient mice restored normal electrophysiology,
32 improved glucose and peptide absorption, diminished diarrhea and rescued postnatal survival.
33 These data suggest that peptide YY is a key regulator of macronutrient absorption in the small
34 intestine and may be a viable therapeutic option to treat patients with malabsorption.

36

37 **Keywords:** enteroendocrine, organoid, malabsorption, peptide YY, NEUROG3, vasoactive
38 intestinal polypeptide, ion transport, diarrhea, nutrient absorption

39 **Introduction**

40 Enteroendocrine cells (EECs) are a rare population of cells found in the gastrointestinal
41 epithelium that sense nutrients that are passing through the gut and in response secrete more
42 than 20 distinct biologically active peptides. These peptides act in an endocrine or paracrine
43 fashion to regulate all aspects of nutrient homeostasis including satiety, mechanical and
44 chemical digestion, nutrient absorption, storage and utilization (Gribble and Reimann, 2019).
45 Humans (Wang et al., 2006) and mice (Mellitzer et al., 2010) with genetic mutations that impact
46 formation or function of EECs have intractable malabsorptive diarrhea, metabolic acidosis, and
47 require parenteral nutrition or small-bowel transplant for survival. These findings were the first to
48 link EECs to the absorption of macronutrients; however, the mechanism by which EECs
49 contribute to this vital process is unknown. Poor absorption of macronutrients is a global health
50 concern, with underlying etiology including short-gut syndrome, enteric pathogen infection, and
51 malnutrition. Therefore, identification of factors regulating nutrient absorption has significant
52 therapeutic potential.

53 Absorption of carbohydrate and protein requires coordinated activity of nutrient and ion
54 transporters in the small intestine. Glucose is primarily absorbed via sodium-glucose
55 cotransporter SGLT1, which uses a downhill Na^+ gradient to transport one glucose or galactose
56 molecule with two sodium ions from the lumen into the enterocyte (Wright et al., 2011). The
57 majority of dietary protein absorption occurs via Na^+ - and H^+ -linked amino acid transporters and
58 PEPT1, which imports di- and tri-peptides coupled with a hydrogen ion (Chen et al., 2010). The
59 electrochemical gradients that drive nutrient absorption are maintained in part by ion
60 transporters, including the cystic fibrosis transmembrane receptor (CFTR), which exports
61 chloride (Wright et al., 1997), and sodium-hydrogen exchanger NHE3, which maintains Na^+ and
62 H^+ microclimates across the apical membrane (Thwaites et al., 2002). Activity of CFTR and

63 NHE3 are, in turn, regulated by levels of cyclic AMP (cAMP) (Burleigh and Banks, 2007; Yun et
64 al., 1997).

65 Most secreted EEC peptides signal via G protein-coupled receptors that act via second
66 messenger cascade effectors like cAMP. Given the requirement for EECs in regulating
67 macronutrient absorption, we investigated the possibility that EEC-derived peptides coupled
68 nutrient sensing to nutrient absorption by regulating electrogenic transport in neighboring
69 enterocytes. Two well-studied peptides governing ion and water homeostasis in the colon are
70 vasoactive intestinal peptide (VIP) and peptide YY (PYY). VIP, secreted from enteric neurons,
71 signals via the $G_{\alpha s}$ -coupled VIPR1 (VPAC1) on epithelial cells to raise levels of intracellular
72 cAMP. In contrast, EEC-derived PYY acts in a paracrine fashion on colonocytes to lower cAMP
73 via the epithelial $G_{\alpha i}$ coupled receptor NPY1R (Cox et al., 2010; Hyland et al., 2003; Moodaley
74 et al., 2017; Tough et al., 2011). We posited that the mechanism underlying malabsorptive
75 diarrhea in patients lacking EECs might be due to loss of a similar EEC-ENS regulatory
76 feedback in the small intestine, thus disrupting electrogenic nutrient absorption. Here, we found
77 that PYY regulates normal ion transport and ion-coupled nutrient absorption in mouse and
78 human small intestine, and that administration of exogenous PYY was sufficient to restore
79 normal electrophysiology, nutrient absorption, and survival in EEC-deficient animals.

80

81 **Results**

82 **The PYY-VIP axis regulates ion and water transport in mouse and human small intestine.**

83 If EECs were required for regulating the normal electrophysiology of the small intestine,
84 we would expect to see deranged ion transport in intestinal tissues lacking EECs. To investigate
85 this, we used EEC-deficient mice (*VillinCre;Neurog3^{fl/fl}*) (Mellitzer et al., 2010) and three
86 different human small intestinal tissue models all derived from pluripotent stem cells (PSCs):
87 human intestinal organoids (HIOs) derived *in vitro* (Spence et al., 2011), HIOs that were

88 matured to robust crypt-villus architecture *in vivo* (Watson et al., 2014), and epithelial organoids
89 (enteroids) derived from crypts of matured HIO tissues (Watson et al., 2014). We generated
90 EEC-deficient human small intestinal tissue by using PSC lines that had a null mutation in
91 *NEUROG3* (McGrath et al., 2015), the basic helix-loop-helix transcription factor required for
92 EEC formation in mice (Jenny et al., 2002) and humans (Wang et al., 2006). As previously
93 reported (Zhang et al., 2019), *NEUROG3*^{-/-} small intestinal organoids completely lacked EECs,
94 but were otherwise normal in appearance (Figure S1).

95 Ion and water transport in the colon are regulated by EEC-derived PYY and ENS-
96 derived VIP. To formally test whether the PYY-VIP axis operated in human and mouse small
97 intestine, we performed experiments in EEC-deficient tissues without a functional ENS wherein
98 we controlled PYY and VIP levels experimentally. We first determined the effects of the PYY-
99 VIP axis on small intestine by measuring CFTR-mediated ion and water efflux (Dekkers et al.,
100 2013) following exposure of human HIO-derived enteroids to the potent secretagogue VIP
101 (Figure 1A). EEC-deficient enteroids swelled significantly more than did wild-type but blocking
102 NPY1R in wild-type enteroids mimicked the EEC-deficient response (Figure 1A). Exogenous
103 PYY blocked VIP-induced swelling in both wild-type and EEC-deficient enteroids in an NPY1R-
104 dependent manner (Figure 1A), demonstrating that the PYY-VIP axis regulates ion and water
105 secretion in human small intestine. We next tested the activity of NHE3 as a measure of Na⁺-
106 dependent intracellular pH recovery after acidic challenge (Foulke-Abel et al., 2016) and found
107 that EEC-deficient enteroids displayed impaired NHE3 function (Figure 1B). There was no
108 difference in expression of *CFTR*, *SLC9A3* (encoding NHE3), *VIPR1* or *NPY1R* between wild-
109 type and EEC-deficient human small intestinal organoids or enteroids (Figure 1C and Figure
110 S2A-B). Together, these data suggest that PYY plays an important role in the regulation of ion
111 transport in the small intestine, and that the abnormal response to VIP in EEC-deficient
112 enteroids can be normalized by the addition of exogenous PYY.

113 If PYY were required to regulate electrochemical transport in the small intestine, we
114 would expect that disruption of PYY signaling in wild-type small intestinal tissue would cause
115 abnormal basal short-circuit current (I_{sc}). To investigate this we isolated full thickness intestinal
116 mucosa from *in vivo* matured human intestinal organoids and from the jejunum of wild-type mice
117 and measured basal I_{sc} in a modified Ussing chamber (Clarke, 2009). Chemical inhibition of
118 NPY1R in wild-type mouse jejunum and human intestinal organoids was sufficient to elevate the
119 basal I_{sc} to EEC-deficient levels (Figure S2C). Conversely, treatment of EEC-deficient mouse
120 and human tissues with exogenous PYY reduced the basal I_{sc} to wild-type levels in an NPY1R-
121 dependent manner (Figure S2C). These data indicated that endogenous PYY signaling plays an
122 essential role in maintaining normal electrophysiology in the small intestine.

123 We then investigated if PYY was required to modulate the stimulatory effects of VIP in
124 mouse and human small intestine. We inhibited voltage-gated neuronal firing in mouse jejunum
125 by including tetrodotoxin (Hyland et al., 2003) in all experiments so that we could precisely
126 monitor epithelial response to exogenous VIP. Chemical inhibition of NPY1R in isolated wild-
127 type tissues was sufficient to cause an elevated response to VIP (Figure 1D). This indicated that
128 endogenous PYY signaling was required in the small intestine to modulate the stimulatory
129 effects of VIP. Consistent with this, EEC-deficient mouse and human small intestinal tissue
130 similarly displayed an exaggerated I_{sc} response to exogenous VIP compared to wild-type
131 (Figure 1D). Addition of exogenous PYY to EEC-deficient small intestine was sufficient to
132 restore the I_{sc} to normal (Figure 1D). These data suggested that PYY is required for maintaining
133 a normal electrochemical response to VIP in the small intestine and that PYY can normalize this
134 process in EEC-deficient small intestinal tissue. Furthermore, these data suggest that imbalance
135 of this axis may be a mechanism underlying malabsorptive diarrhea suffered by patients without
136 EECs.

137

138 **PYY restores normal glucose absorption in EEC-deficient human and mouse small
139 intestine.**

140 While it is known that EECs sense nutrients, the mechanism linking sensing to the
141 control of nutrient absorption is unclear. A hint came from the effects of enteral feeding of EEC-
142 deficient patients, which resulted in a massive diarrheal response. This suggests that an inability
143 to sense luminal nutrients uncoupled the ability to adequately absorb them. To explore this
144 possibility we evaluated ion-coupled nutrient absorption in EEC-deficient small intestine. We
145 observed an accelerated initial response to luminal glucose in the presence of VIP in EEC-
146 deficient mouse and human intestinal tissues in the Ussing chamber (Figure 2C), as predicted if
147 the normal electrochemical gradients were perturbed (Figure 2A-B). This recapitulated the
148 exacerbated diarrhea observed in patients without EECs when they were fed with carbohydrate
149 (Wang et al., 2006). Exogenous PYY restored a normal glucose response in EEC-deficient
150 mouse and human tissue, and inhibition of NPY1R in wild-type caused an exaggerated initial
151 response to glucose (Figure 2C). These data indicate that PYY is both necessary and sufficient
152 to modulate glucose absorption in the small intestine. We found no defects in expression of
153 SGLT1, GLUT2, (Figure 2D and S2A) or maximum absorptive competency of Na^+ -coupled
154 glucose transport (Figure 2E-G) in human epithelium without EECs. These data suggest that
155 SGLT1 is competent to absorb glucose, but activity is dysregulated in the context of abnormal
156 ion transport in the absence of EECs.

157

158 **H^+ -coupled dipeptide absorption is impaired in EEC-deficient small intestine.**

159 Approximately 80% of ingested amino acids were recovered in the stool of the index
160 EEC-deficient patient (Wang et al., 2006), suggesting a critical role for EECs in regulating
161 protein absorption. Consistent with this, we observed a striking loss of ion-coupled dipeptide
162 absorption when human and mouse EEC-deficient small intestine were challenged with VIP

163 (Figure 3A), despite normal expression of PEPT1 (Figures 3B and S2A). VIP has an established
164 role in inhibition of NHE3 and PEPT1-mediated dipeptide absorption (Anderson et al., 2003;
165 Thwaites et al., 2002), but we were surprised to find that EEC-deficient intestine remained
166 unable to respond to dipeptide when PYY was provided (Figure 3A). This suggested that
167 dysregulated H⁺ gradients may be a more stable phenotype in EEC-deficient intestine, and not
168 easily reversed by PYY within minutes. To explore this possibility, we treated enteroids with or
169 without PYY for one week *in vitro* in the presence of VIP. Wild-type enteroids were able to
170 maintain their intracellular pH in the presence of VIP but EEC-deficient enteroids became
171 significantly more acidic (Figure 3C). However, EEC-deficient enteroids were restored to normal
172 intracellular pH levels and normal *SLC9A3* expression (encoding NHE3) in the presence of PYY
173 (Figures 3C and S3). This suggested that long-term exposure to an imbalanced EEC-ENS axis
174 dysregulates intestinal physiology, and that, over time, PYY may be sufficient to restore
175 intracellular pH and dipeptide absorption in EEC-deficient small intestine.

176 We have demonstrated that inhibiting PYY signaling in isolated wild-type small intestinal
177 tissues was sufficient to perturb normal electrophysiology in both human and mouse. This
178 suggests that *in vivo* the mechanism of action of PYY could be paracrine rather than endocrine.
179 PYY-expressing EECs are abundant in mouse and human small intestine (Egerod et al., 2012)
180 (Figure S4). Moreover, PYY-expressing EECs extend long basal processes which underlie
181 several neighboring epithelial cells (Bohorquez et al., 2014; Bohorquez et al., 2015), raising the
182 possibility that they may exert paracrine effects on whole populations of nearby enterocytes. We
183 therefore investigated whether the effects of PYY on ion transport in the small intestine occurred
184 via paracrine mechanisms. To do this, we exploited the mosaicism of *VillinCre* mice to
185 determine if regions of EEC-deficient epithelium had different transporter activities as compared
186 to regions of epithelium that still had EECs. We observed in *VillinCre;Neurog3*^{flox/flox} mice that
187 4.38 \pm 2.56% of jejunum escaped tdTomato labeling (Figure S5) and that in regions that had

188 EECs, neighboring enterocytes had a normal intracellular pH indicating normal ion transport. In
189 contrast, enterocytes in EEC-deficient regions were significantly more acidic indicating
190 perturbed H⁺ transport (Figures 3D and S5). Together these data suggest that EECs control
191 local H⁺ transporter activity and dipeptide responsiveness in the small intestine via paracrine
192 mechanisms.

193

194 **Exogenous PYY rescues EEC-deficient mice from malabsorptive diarrhea and death and
195 restores normal glucose and dipeptide transport.**

196 As previously reported (Mellitzer et al., 2010), *VillinCre;Neurog3*^{flox/flox} mice suffer from
197 malabsorptive diarrhea and exhibit severely impaired postnatal survival, with only a small
198 fraction of mice surviving weaning. Our data suggested that treatment with PYY might restore
199 normal carbohydrate and protein absorption the intestines of EEC-deficient animals. We
200 therefore used *VillinCre;Neurog3*^{flox/flox} mice as a preclinical model to test if PYY could reverse
201 malabsorptive diarrhea and improve postnatal survival (Figure 4A-B). We began daily treatment
202 of mutant mice at postnatal day 10 with 10 µg PYY(1-36) by intraperitoneal injection. PYY can
203 be converted to PYY(3-36) by the protease DPP4 (Mentlein et al., 1993), and this form of PYY
204 has potent anorexic effects in the brain (Batterham et al.). We therefore co-injected PYY(1-36)
205 and a DPP4 inhibitor to prevent PYY cleavage and to better target the epithelial NPY1R
206 receptor that preferentially binds the 1-36 form (Hyland et al., 2003; Mentlein et al., 1993; Tough
207 et al., 2011). Patients with EEC-deficiency die without total parenteral nutrition, and similarly
208 very few EEC-deficient mice survive without treatment within the first few weeks. However, PYY
209 injections dramatically improved mutant survival up to 88% (Figure 4A). Moreover, PYY
210 treatment reduced diarrhea and improved fecal output of mutant mice to either be
211 indistinguishable from wild-type or only slightly wet but well-defined pellets, which was
212 independent of intestinal motility (Figures 4B and S6). Treatment of mutant mice with vehicle,

213 DPP4 inhibitor diluted in water, prolonged their survival but did not impact their fecal output or
214 basal electrophysiology (Figure 4A-C), consistent with therapeutic administration of supportive
215 fluids in diarrheal disease.

216 We investigated if the animals that survived in response to PYY injections had restored
217 electrophysiology and improved nutrient absorption in the small intestine. We found that PYY-
218 injections restored the basal I_{sc} of jejunum to normal (Figure 4C). Additionally, the response to
219 VIP (Figure 4D) and the response to luminal glucose (Figure 4E) were both normalized
220 indicating that PYY injections stably restored electrophysiology. Importantly, mice received their
221 last injection of PYY approximately 16 hours prior to sacrifice, demonstrating sustained action of
222 the peptide *in vivo*. The rescue of EEC-deficient intestinal tissue also extended to the human
223 model, where EEC-deficient HIOs were grown and matured *in vivo* and then host animals were
224 injected with exogenous PYY for 10 days prior to harvest. These EEC-deficient HIOs exposed
225 to PYY demonstrated electrogenic response to glucose that was indistinguishable from wild-
226 type (Figure 4E). Lastly, we investigated whether the PYY treated groups had improved amino
227 acid absorption as measured by H^+ export and response to the dipeptide Gly-Sar. By
228 administering PYY to the mosaic EEC-deficient reporter mice, we found PYY injections restored
229 intracellular pH in EEC-deficient intestinal cells to normal levels which would support PEPT1-
230 mediated dipeptide absorption (Figure 4F). Consistent with this, PYY-injected mouse and
231 human small intestine displayed a significantly improved electrogenic response to dipeptides
232 (Figure 4G), indicating that dipeptide absorption was restored. These data demonstrated
233 functional efficacy of PYY on improved ion and nutrient transport in EEC-deficient intestine.

234

235

236

237 **Discussion**

238 In this study, we found that loss of all EECs resulted in profound imbalance of ion
239 transport in the small intestine, with subsequent impairment of nutrient absorption. We
240 demonstrated that PYY is an essential regulator of normal electrophysiology and absorptive
241 function in the small intestine. Chemical inhibition of the epithelial NPY1R receptor in wild-type
242 small intestine isolated from human intestinal organoids and mouse demonstrated the
243 requirement of this pathway in the modulation of VIP-induced ion secretion. Administration of
244 PYY to EEC-deficient animals resulted in improvements in survival, diarrheal symptoms,
245 glucose absorption and protein absorption in the absence of all other EEC peptides.

246 Historically, mouse models have been exceedingly tolerant of loss of individual EEC
247 populations, largely due to functional overlap between EEC-derived peptides (McCauley, 2019).
248 This has rendered it difficult to assign roles of individual EEC peptides to physiologic functions.
249 Here, we were able to exploit a model which lacks all EECs to functionally evaluate the role of
250 one EEC peptide, PYY. However, other peptides like somatostatin have similar activities to PYY
251 and likely play a similar regulatory role *in vivo*. Somatostatin has many systemic targets (Patel,
252 1999) and the use of the somatostatin-analogue octreotide in the treatment of chylous effusion
253 and hyperinsulinemia causes an increased risk of necrotizing enterocolitis in infants (Chandran
254 et al., 2020). We therefore chose to use PYY in our preclinical model of malabsorptive diarrhea.

255 PYY has been classically defined as a satiety hormone that acts in an endocrine manner
256 wherein the DPP4-cleaved PYY(3-36) signals to the brain to reduce food intake (Batterham et
257 al.). However PYY(1-36) has been shown to act in a paracrine manner in the colon using
258 combination of genetic and pharmacological approaches (Cox, 2008; Hyland et al., 2003; Tough
259 et al., 2011). We and others (Egerod et al., 2012) observe abundant PYY+ cells in the small
260 bowel, suggesting that these cells may reprise their paracrine role described in the colon in the
261 regulation of ion and water transport in the small intestine, linking EECs to glucose and protein

262 absorption. These findings lend some clarity on how EECs integrate their nutrient sensing
263 function with nutrient absorption, providing us with a new way to approach management of
264 malabsorptive diseases and those in which EECs are commonly dysregulated.

265

266

267

268 **Figure Legends**
269

270 **Supplemental Figure 1. NEUROG3 is required for enteroendocrine cell development in**
271 **human intestinal organoids.**

272 A. Human intestinal organoids (HIOs) derived from human pluripotent stem cells with a null
273 mutation in *NEUROG3* lacked enteroendocrine cells (EECs) but otherwise had a normal
274 morphology. The epithelial morphology was assessed using a PSC line expressing a CDH1-
275 mRuby2 fusion protein (Ouchi et al., 2019) (red, bottom panels) and by co-staining with an
276 anti-CDH1 antibody (red, top panels). Loss of NEUROG3 did not alter markers of intestinal
277 identity (CDX2, purple). Only wild-type (top) and wild-type CDH1-mRuby2 (bottom) HIOs
278 generated Chromogranin A (CHGA)- expressing EECs (green). Scale bars = 50 μ m.

279 B. After maturation *in vivo*, HIOs develop well-defined crypt-villus architecture. Transplantation
280 of HIOs (~1 mm) into mice for 10-12 weeks results in growth (1-2 cm), morphogenesis and
281 maturation (Watson et al., 2014). The epithelium is labeled by CDH1-mRuby2. Scale bar =
282 500 μ m.

283 C. Transplanted HIOs with disrupted *NEUROG3* lacked EECs as marked by CHGA+, but were
284 otherwise morphologically normal. Scale bars = 100 μ m. Enteroids derived from the crypts
285 of transplanted HIOs produced EECs when differentiated, whereas those derived from EEC-
286 deficient HIOs never did. DAPI and CDH1 mark nuclei and epithelium, respectively. Scale
287 bars = 20 μ m.

288 D. Transplanted HIOs generated PYY+ and somatostatin (SST)+ EECs, which were never
289 detected in NEUROG3-deficient transplanted HIOs. DAPI and CDH1 mark nuclei and
290 epithelium, respectively. Scale bars = 100 μ m.

291 E. EEC-deficient transplanted HIOs (top) and EEC-deficient HIO-derived enteroids (bottom) did
292 not express mRNA for EEC markers CHGA (****P<0.001), PYY (**P=0.001) or SST

293 (***/P<0.0001). Neither wild-type nor EEC-deficient tissues expressed mRNA for *VIP* (n=9).

294 Error bars are \pm SEM.; statistics calculated by unpaired, two-tailed Student's *t*-test.

295 F. Regional patterning of transplanted HIOs was independent of NEUROG3. Transplanted
296 HIOs, with and without EECs, coexpressed CDX2 and the proximal small intestinal marker
297 PDX1. DAPI and CDH1 mark nuclei and epithelium, respectively. Scale bars = 100 μ m.

298 G. Regional identity of transplanted HIOs was maintained in enteroid culture. There was no
299 difference in *CDX2* or *PDX1* mRNA expression between wild-type and EEC-deficient
300 transplanted HIOs, or between wild-type and EEC-deficient HIO-derived enteroids. Error
301 bars are \pm SEM.; statistics calculated by unpaired, two-tailed Student's *t*-test.

302

303

304 **Figure 1. The PYY-VIP axis regulates ion and water transport in mouse and human small**
305 **intestine.**

306 A. PYY and VIP regulate ion and water transport in HIO-derived small intestinal enteroids.
307 Addition of VIP to enteroids induced ion and water transport as measured by swelling. EEC-
308 deficient enteroids had an elevated response to VIP compared to wild-type enteroids
309 (**P=0.004). Upon addition of PYY, there was no difference in swelling between wild-type
310 and EEC-deficient enteroids, and inhibition of VIP-induced swelling. Chemical inhibition of
311 the PYY receptor NPY1R with BIBO3304 resulted in swelling of wild-type enteroids to EEC-
312 deficient levels, and abolished the inhibitory effects of PYY in both wild-type and EEC-
313 deficient enteroids. VIP-induced enteroid swelling was CFTR dependent and blocked by the
314 CFTR inhibitor CFTR-172. Scale bars = 500 μ m. Black bars represent wild-type and gray
315 bars represent EEC-deficient enteroids. Error bars are \pm SEM. n=283 wild-type and n=351
316 EEC-deficient enteroids over three biologically independent enteroid lines. Statistics
317 calculated by two-way ANOVA with Sidak's multiple comparisons test.

318 B. EEC-deficient enteroids displayed impaired NHE3 activity. EEC-deficient enteroids exhibited
319 reduced Na^+ -dependent recovery of intracellular pH after an acid load using the ratiometric
320 pH indicator SNARF-4F. Quantification is of initial rate of Na^+ -dependent pH recovery (red
321 line). n=16 wild-type, n=18 mutant enteroids; *P=0.01. Error bars are \pm SEM; statistics
322 calculated by unpaired, two-tailed Student's *t*-test.

323 C. The localization of the VIP receptor VIPR1 and PYY receptor NPY1R was comparable
324 between wild-type and EEC-deficient human intestinal epithelium. PYY+ and CHGA+ cells
325 were only found in wild-type HIOs. Scale bars = 100 μ m.

326 D. PYY modulates the stimulatory effects of VIP in mouse and human small intestine. In the
327 Ussing chamber, EEC-deficient small intestine displayed a greater response (ΔI_{sc}) to 10 nM
328 VIP than did wild-type (mouse, n=20 wild-type, 8 mutant, ***P<0.0001; human, n=15 wild-

329 type, 9 mutant, **P=0.001). Inhibition of NPY1R in wild-type tissue with BIBO3304 resulted
330 in an elevated response to VIP compared to untreated wild-type (mouse, n=24, *P=0.01;
331 human, n=7, *P=0.04). Addition of exogenous PYY reduced the magnitude of EEC-deficient
332 response to VIP (n=8 mutant mice, ****P<0.0001; n=7 mutant HIOs, **P=.007) to wild-type
333 levels. Electrogenic responses to VIP were blocked by the CFTR inhibitor CFTR-172m
334 (dotted lines). One representative trace is shown (mouse), with baseline I_{sc} normalized to 0
335 $\mu\text{A}/\text{cm}^2$. Error bars are \pm SEM; statistics calculated by one-way ANOVA with Tukey's
336 multiple comparisons test.

337

338 **Supplemental Figure 2. PYY is required to maintain normal electrophysiology in mouse**
339 **and human small intestine.**

340 A. There was no difference in *NPY1R*, *VIPR1*, *SGLT1*, *GLUT2*, or *PEPT1* mRNA expression
341 between transplanted HIOs with EECs and those without EECs. Error bars are \pm SEM.
342 B. There was no difference in *NPY1R*, *VIPR1*, *CFTR* or *SLC9A3* mRNA expression between
343 enteroids generated from wild-type or EEC-deficient HIOs. Error bars are \pm SEM.
344 C. PYY modulates basal I_{sc} in human and mouse small intestine. EEC-deficient mouse and
345 human small intestine had significantly higher basal I_{sc} than wild-type (mouse, n=36 wild-
346 type, n=11 mutant, ****P<0.0001; HIO, n=7 wild-type, n=12 mutant, *p=0.03) after
347 equilibration in the Ussing chamber. Addition of 300 nM NPY1R inhibitor BIBO3304 to wild-
348 type tissues reproducibly increased the basal I_{sc} (mouse, n= 26, human, n=10), whereas
349 addition of 10 nM PYY lowered the basal I_{sc} in mutant mouse and human tissue (mouse,
350 n=9, human, n=9). Blocking NPY1R with BIBO3304 abolished the effect of PYY in both wild-
351 type and mutant tissues. Arrow indicates time of PYY or BIBO3304 application to the
352 experiment. One representative trace is shown (mouse). Error bars are \pm SEM; statistics
353 calculated by unpaired, two-tailed Student's *t*-test.

354

355 **Figure 2. PYY restores normal glucose absorption in EEC-deficient human and mouse**

356 **small intestine.**

357 A. Schematic depicting the PYY-VIP paracrine axis regulating ion and water homeostasis.

358 EEC-derived PYY and ENS-derived VIP both act via G-protein coupled receptors (NPY1R
359 and VIPR1, respectively) on enterocytes. VIP signaling raises intracellular cAMP levels
360 resulting in activation of CFTR and efflux of chloride ions while concurrently inhibiting the
361 sodium-hydrogen exchanger NHE3. The downstream results are that water and sodium are
362 drawn to the intestinal lumen via paracellular spaces to balance the secreted chloride. PYY
363 is secreted in response to luminal nutrients and acts as a counterbalance to VIP by lowering
364 intracellular cAMP levels. Transport of luminal nutrients into the enterocyte depends on
365 these ion gradients; SGLT1 transports glucose with two Na^+ ions and PEPT1 transports di-
366 /tri-peptides with an H^+ ion.

367 B. In the absence of EECs, ion and water homeostasis is deregulated due to loss of one arm of
368 the PYY-VIP axis. In EEC-deficient small intestine, loss of PYY results in increased cAMP-
369 signaling, increased chloride transport, and increased water and sodium accumulation in the
370 intestinal lumen. Reduced NHE3 transport activity would cause accumulation of cytosolic H^+
371 and a decrease in pH. Subsequently, nutrient absorption would be dysregulated, with
372 diminished di-/tri-peptide absorption due to increased intracellular proton accumulation and
373 with increased uptake of glucose due to an exaggerated Na^+ gradient across the apical
374 membrane.

375 C. Na^+ -coupled glucose transport is deranged in EEC-deficient human and mouse small
376 intestine. Wild-type and EEC-deficient human and mouse intestinal tissues were treated with
377 VIP, then 25 mM D-Glucose was added to the luminal chamber. EEC-deficient intestine had
378 an elevated initial response to glucose (mouse, $n=28$ wild-type, $n=9$ mutant, $**P=0.001$;
379 HIO, $n=6$ wild-type, $n=4$ mutant, $**P=0.002$) that was returned to wild-type levels by pre-
380 treatment with 10 nM exogenous PYY (mouse, $n=7$, $*P=0.04$; HIO, $n=3$). Inhibition of the

381 NPY1R in wild-type tissues using the antagonist BIBO3304 caused an abnormal initial
382 response to glucose that mimicked EEC-deficient tissues (mouse, n=12, **P=0.005; HIO,
383 n=6). Bar graphs represent the slope of the curve depicted within the boxed area. Error bars
384 are \pm SEM; statistics calculated by one-way ANOVA with Tukey's multiple comparisons test.

385 D. The subcellular distribution of glucose transporters SGLT1 and GLUT2 is normal in human
386 intestinal tissue lacking EECs. Scale bars = 50 μ m.

387 E. SGLT1 is functional in EEC-deficient human small intestine. Human small intestinal tissue
388 was isolated and transport of glucose in response to saturating amounts of NaCl were
389 measured using the glucose analog 6-NBDG. EEC-deficient human small intestinal cells
390 displayed similar total 6-NBDG uptake in the presence of NaCl (*P=0.01) to wild-type human
391 intestinal cells (*P=0.01) and wild-type mouse jejunum cells (*P=0.01), demonstrating
392 functional SGLT1-mediated transport. Statistics calculated by one-way ANOVA with Tukey's
393 multiple comparisons test.

394 F. The ability of SGLT1 to transport Na⁺ is not altered in EEC-deficient enteroids. Enteroids
395 were stained with the Na⁺ fluorescent indicator NaGreen in the presence or absence of 25
396 mM glucose. The Na⁺ transport activity of SGLT1 in the presence of glucose is similar in
397 both wild-type and EEC-deficient epithelium as measured by fluorescence intensity (MFI)
398 (*P=0.01). Data represents 4 independent experiments. Statistics calculated by one-way
399 ANOVA with Tukey's multiple comparisons test.

400 G. Total glucose transport is similar in wild-type and EEC-deficient monolayer cultures. Wild-
401 type and EEC-deficient enteroids were cultured as monolayers on transwell inserts and
402 exposed to 25 mM D-glucose with 1 mM fluorescent glucose analog 2-NBDG on the apical
403 surface. The fluorescence intensity of the basal chamber was quantified after 30 minutes
404 (lower graph). The epithelium was then analyzed for 2-NBDG within CDH1-mRuby2-positive
405 epithelium. Data represents 8 independent experiments. Statistics calculated by unpaired t-
406 test.

407 **Figure 3. H⁺-coupled dipeptide absorption is impaired in EEC-deficient small intestine.**

408 A. EEC-deficient human and mouse small intestine did not respond to luminal Gly-Sar, a
409 nonhydrolyzable dipeptide, in the Ussing chamber when exposed to 10nM VIP (mouse, n= 9
410 wild-type, n=6 mutant, ****P<0.0001; human, n=11 wild-type, n=5 mutant, **P=0.006). 10
411 minutes pre-treatment of EEC-deficient tissue with 10 nM exogenous PYY (mouse, n=6), or
412 of wild-type tissue with 300 nM NPY1R inhibitor BIBO3304 (mouse, n=9; human, n=6) did
413 not alter the I_{sc} response to Gly-Sar. Error bars are \pm SEM; statistics calculated by one-way
414 ANOVA with Tukey's multiple comparisons test.

415 B. Expression and localization of peptide transporter PEPT1 is unchanged in EEC-deficient
416 human small intestine. Scale bars = 50 μ m.

417 C. The PYY-VIP axis regulates intracellular pH in human small intestinal cells. Wild-type and
418 EEC-deficient enteroids were differentiated in the presence of 10 nM VIP for 5-7 days.
419 EEC-deficient enteroids treated with VIP developed an H⁺ imbalance with an acidic
420 cytoplasm whereas wild-type enteroids were able to maintain their intracellular pH
421 (**P=0.004). Concurrent treatment with 10 nM PYY normalized the pH in EEC-deficient
422 enteroids and was dependent on NPY1R. pHrodo mean fluorescence intensity (MFI) was
423 normalized to vehicle-treated wild-type. n= 3 independent experiments. Error bars are \pm
424 SEM; statistics calculated by the Holm-Sidak method.

425 D. Small intestinal EECs regulate proton transport in a paracrine fashion. Using animals with
426 mosaic loss of EECs we found that regions of epithelium that escaped recombination had
427 normal pH and H⁺ transport. Adjacent regions that expressed tdTomato, indicating Cre
428 activity, had impaired elevated cytosolic H⁺ as measured by flow cytometry using the
429 fluorescent pH indicator dye pHrodo. There was no difference in pHrodo MFI between
430 mosaic regions in wild-type jejunum (n=8), but a significant increase in pHrodo MFI,
431 indicating relative acidic pH, in EEC-deficient jejunum compared to non-recombined

432 epithelial cells within the same segment of jejunum (n=4, ***P=0.0002). Error bars are \pm

433 SEM; statistics calculated by two-way ANOVA with Sidak's multiple comparisons test.

434

435 **Supplemental Figure 3. VIP and PYY regulate NHE3 expression in human small intestinal
436 epithelium.**

437 A. The PYY-VIP axis regulates *SLC9A3* expression. After 5-7 days of exposure to VIP,
438 *SLC9A3* expression was reduced in wild-type and in EEC-deficient enteroids (*P=0.04).
439 Exposure to PYY concurrently with VIP in EEC-deficient enteroids restored *SLC9A3*
440 expression to not significantly different from untreated. The effect of PYY was blocked with
441 the NPY1R inhibitor BIBO3304 (*P=0.02). While there was a trend for PYY treatment alone
442 to increase *SLC9A3* expression, this did not reach significance. n=6 independent
443 experiments. Error bars are \pm SEM; statistics calculated by one way ANOVA with Tukey's
444 multiple comparisons test.

445

446 **Supplemental Figure 4. PYY is abundant in mouse and human small intestine.**

447 A. PYY+ EECs (arrows) are abundant in mouse and human small intestine. CDH1 labels
448 epithelium in purple. Scale bars = 100 μ M.

449

450

451 **Supplemental Figure 5. *VillinCre; Neurog3*^{flox/flox}; *Rosa26*^{Flox-STOP-flox-tdTomato} mice display**
452 **incomplete recombination.**

453 A. The tdTomato reporter revealed regions of jejunal epithelium that escaped recombination by
454 *VillinCre*. ChgA+ EECs were abundant in tdTomato+ and tdTomato negative regions of wild-
455 type jejunum, but were only detected in tdTomato negative epithelium of *Neurog3*^{f/f} animals
456 (arrow). Scale bars = 20 μ m.

457 B. Representative dot plots and gating strategy from flow cytometric analysis of *VillinCre*;
458 *Neurog3*^{+/+}; *Rosa26*^{Flox-STOP-flox-tdTomato} and *VillinCre; Neurog3*^{flox/flox}; *Rosa26*^{Flox-STOP-flox-tdTomato}
459 jejunum.

460 C. Quantification of efficiency of recombination of *VillinCre*. Jejunum of *VillinCre; Neurog3*^{+/+};
461 *Rosa26*^{Flox-STOP-flox-tdTomato}, *VillinCre; Neurog3*^{f/+}; *Rosa26*^{Flox-STOP-flox-tdTomato} and *VillinCre*;
462 *Neurog3*^{f/f}; *Rosa26*^{Flox-STOP-flox-tdTomato} were subjected to flow cytometry. After doublet
463 discrimination, live, EpCam⁺ cells were analyzed for tdTomato expression. Approximately
464 5.675 \pm 1.98% of wild-type (n=8), 5.678 \pm 3.2% of heterozygous (n=9), and 4.38 \pm 2.56% of
465 mutant jejunum (n=5) escaped labeling with the tdTomato reporter.

466

467

468

469 **Figure 4. Exogenous PYY rescues EEC-deficient mice from malabsorptive diarrhea and**
470 **death and restores normal glucose and dipeptide transport.**

471 A. PYY treatment promotes survival of EEC-deficient mice. Survival curve of wild-type (n=100),
472 EEC-deficient (n=34) and EEC-deficient mice treated once daily with 10 μ g PYY (n=25)
473 beginning at postnatal day 10 (P10). Vehicle-treated mice received DPP4 inhibitor diluted in
474 100 μ l water (n=18). Mice were weaned at P21. Statistics calculated by log-rank Mantel-Cox
475 test.

476 B. Daily treatment of EEC-deficient mice with PYY reverses intractable diarrhea. As compared
477 to control, EEC-deficient mice have intractable watery diarrhea from birth (given score of 3,
478 gray bar; n=34; ****P<0.0001). Within 48 hours of PYY treatment, EEC-deficient animals
479 had an average score of 1 with slightly soft yet well-defined fecal pellets (n=25,
480 ****P<0.0001 from untreated mutant). Mutant mice treated with vehicle did not gain
481 improvement in diarrhea score (n=18, ****P<0.0001 from PYY-treated mutant, and not
482 significant from untreated mutant). Wild-type littermates produce well-defined fecal pellets
483 (given score of 0, black bar; n=100). Error bars are \pm SEM; statistics calculated by one-way
484 ANOVA with Tukey's multiple comparisons test.

485 C. PYY treatment of EEC-deficient animals restored a normal resting I_{sc} to small intestine.
486 Jejunum from wild-type (black), *VillinCre; Neurog3*^{fl/fl} (gray), *VillinCre; Neurog3*^{fl/fl} +
487 PYY injected (red) and *VillinCre; Neurog3*^{fl/fl} + vehicle injected (purple) mice were
488 mounted in the Ussing chamber. Mutant jejunum exhibited a significantly increased basal I_{sc}
489 compared to wild-type, which was significantly decreased after *in vivo* injections of PYY
490 (n=6, ****P<0.0001). Treatment of mutant mice with vehicle did not result in improved basal
491 I_{sc} (n=6). Wild-type and untreated mutant data points are the same as Supplemental Figure
492 2. Error bars are \pm SEM; statistics calculated by one-way ANOVA with Tukey's multiple
493 comparisons test.

494 D. Electrogenic response to VIP was elevated in EEC-deficient animals but restored to wild-
495 type levels in mutant mice treated with PYY (n=6, ****P<0.0001). Wild-type and untreated
496 mutant data points are the same as Figure 1. Error bars are \pm SEM; statistics calculated by
497 one-way ANOVA with Tukey's multiple comparisons test.

498 E. PYY treatment restores a normal glucose response in EEC-deficient mouse and human
499 intestine. (mouse, n=6, **P=.003; HIO, n=5, **P=0.004). Wild-type and untreated mutant
500 data points are the same as Figure 2. Error bars are \pm SEM; statistics calculated by one-way
501 ANOVA with Tukey's multiple comparisons test.

502 F. Proton transport is normalized in EEC-deficient animals following PYY treatment. Mean
503 fluorescent intensity (MFI) of pHrodo was normalized between EEC-deficient and EEC-rich
504 regions of the mosaic jejunum (n=2). MFI was normalized to untreated wild-type. Wild-type
505 and untreated mutant data points are the same as Figure 3. Error bars are \pm SEM; statistics
506 calculated by two-way ANOVA with Sidak's multiple comparisons test.

507 G. PYY improves dipeptide transport in EEC-deficient mouse and human intestine. Long-term
508 treatment of EEC-deficient animals and animals hosting transplanted HIOs with PYY
509 resulted in improved I_{sc} response to luminal Gly-Sar compared to untreated mutant tissue
510 (mouse, n=6, **P=.009; HIO, n=5, ***P=0.0001). Wild-type and untreated mutant data points
511 are the same as Figure 3. Error bars are \pm SEM; statistics calculated by one-way ANOVA
512 with Tukey's multiple comparisons test.

513

514 **Supplemental Figure 6. PYY(1-36) does not slow intestinal motility in EEC-deficient mice.**

515 A. The mechanism of improved survival and diarrhea in PYY-treated mutant animals does
516 not include slowing intestinal motility. Animals fed ad-lib were orally gavaged with dye-
517 colored water then sacrificed 30 minutes later. The distance traveled by the dye-front
518 was reported as percent of small intestinal length. n=15 wild-type mice, 6 wild-type +
519 vehicle mice, 5 mutant mice (**P=0.0002), 3 mutant + PYY mice, 7 mutant + vehicle
520 mice. Error bars are \pm SEM. Statistics calculated by one-way ANOVA with Tukey's
521 multiple comparisons test.

522 **Methods**

523 **Pluripotent stem cell culture and directed differentiation of HIOs**

524 Human embryonic stem cell (ESC) line WA01 (H1) was purchased from WiCell. We used H1
525 cells with a CRISPR/Cas9 generated null mutation in *NEUROG3* as previously described
526 (McGrath et al., 2015). Additionally, we inserted the CDH1-mRuby2 reporter construct (Ouchi et
527 al., 2019) into *NEUROG3*-/- H1 hESCs. CDH1-mRuby2 and non-reporter hESCs were used
528 interchangeably. hESCs were maintained in feeder-free culture. Cells were plated on hESC-
529 qualified Matrigel (BD Biosciences, San Jose, CA) and maintained at 37 °C with 5% CO₂ with
530 daily removal of differentiated cells and replacement of mTeSR1 media (STEMCELL
531 Technologies, Vancouver, Canada). Cells were passaged routinely every 4 days using Dispase
532 (STEMCELL Technologies). HIOs were generated according to protocols established in our lab
533 (Múnера and Wells, 2017; Spence et al., 2011).

534 ***In vivo* transplant of HIOs**

535 28-35 days after spheroid generation, HIOs were removed from Matrigel and transplanted under
536 the kidney capsule of immune deficient NOD.Cg-*Prkdc*^{scid}/*Il2rg*^{tm1Wjl}/SzJ (NSG) mice as
537 previously described (Watson et al., 2014). NSG mice were maintained on Bactrim chow for a
538 minimum of 2 weeks prior to transplantation and thereafter for the duration of the experiment (8-
539 14 weeks).

540 **Generation and maintenance of HIO-derived enteroids**

541 After approximately 10 weeks of *in vivo* growth, crypts were isolated from transplanted HIOs
542 and plated in 3D as previous described (Mahe et al., 2015). To promote growth, enteroids were
543 maintained in Human IntestiCult components A+B (STEMCELL Technologies). To promote
544 differentiation, HIOEs were cultured in gut media (Múnера and Wells, 2017) with 100 µg/ml EGF

545 for 5-7 days. Undifferentiated enteroids were passaged every 7-10 days into fresh Matrigel
546 (Corning) using a 25G x1/2 needle.

547 **Immunofluorescence**

548 Tissue was fixed in 4% paraformaldehyde, cryopreserved in 30% sucrose, embedded in OCT,
549 and frozen at -80 °C until cryosectioned. 8 µm cryosections were mounted on Superfrost Plus
550 slides and permeabilized, blocked and stained according to standard protocol. Primary
551 antibodies used are listed in the table below, and all secondary antibodies were conjugated to
552 Alexa Fluor 488, 546/555/568 or 647 (Invitrogen). Images were acquired using a Nikon A1
553 GaAsP LUNV inverted confocal microscope and NIS Elements software (Nikon).

<i>Primary antibody</i>	<i>Company</i>	<i>Host</i>	<i>Dilution</i>
CDX2	BioGenex	Mouse	1:300
CDX2	Cell Marquis	Rabbit	1:500
Chromogranin A	DSHB	Mouse	1:500
Chromogranin A	ImmunoStar	Rabbit	1:250
E-Cadherin (CDH1)	R&D	Goat	1:500
GLUT2	Santa Cruz	Goat	1:500
Muc2	Santa Cruz	Rabbit	1:250
NPY1R	Abcam	Rabbit	1:250
PDX1	Abcam	goat	1:5000
PEPT1	Santa Cruz	Rabbit	1:500

PYY	Abcam	Rabbit	1:1000
SGLT1	Santa Cruz	Rabbit	1:250
Somatostatin	Santa Cruz	Goat	1:200
VIPR1	Millipore	Mouse	1:200

554 **qPCR**

555 RNA was extracted using Nucleospin RNA extraction kit (Macharey-Nagel) and reverse
556 transcribed into cDNA using Superscript VILO (Invitrogen) according to manufacturer's
557 instruction. qPCR primers were designed using NCBI PrimerBlast. Primer sequences are listed
558 in the table below. qPCR was performed using Quantitect SYBR® Green PCR kit (QIAGEN)
559 and a QuantStudio 3 Flex Real-Time PCR System (Applied Biosystems). Relative expression
560 was determined using the $\Delta\Delta Ct$ method and normalizing to PPIA (cyclophilin A). Samples from
561 at least three independent passages were used for quantification.

PPIA (CPHA) FWD	CCCACCGTGGTCTTCGACATT
PPIA (CPHA) REV	GGACCCGTATGCTTTAGGATGA
CHGA FWD	TGTGTCGGAGATGACCTCAA
CHGA REV	GTCCTGGCTTTCTGCTCTG
PYY FWD	CGAGACTAAATGTGGCGGGT
PYY REV	GAGCATGCAGTTCTGAGGGT
SST FWD	TGGGTTCAGACAGCAGCTC
SST REV	CCCAGACTCCGTCAGTTCT

VIP FWD	CCCTGTACCAGTCAAACGTCA
VIP REV	GAGTCTCCATGCAGGCTTCT
PDX1 FWD	CGTCCGCTTGTCTCCTC
PDX1 REV	CCTTCCCATGGATGAAGTC
CDX2 FWD	GGGCTCTCTGAGAGGCAGGT
CDX2 REV	GGTGACGGTGGGTTAGCA
NPY1R FWD	ATTCCTAGGCAATGCTTCCCC
NPY1R REV	ACGCCTCCTAAAGCCGAAC
VIPR1 FWD	GATAGGAGCCTGCTGGTCAC
VIPR1 REV	GGGAAACCAAGCCAATCCAA
CFTR FWD	GGCACCCAGAGTAGTAGGTC
CFTR REV	AGGCGCTGTCTGTATCCTTT
SLC9A3 (NHE3) FWD	GCTGGTCTTCATCTCCGTGT
SLC9A3 (NHE3) REV	CCAGAGGCTTGATGGTCAGG

562

563 **Swelling assay**

564 Enteroids were plated in 10 μ L Matrigel on an 8-chamber glass bottom slide (Ibidi) and
565 maintained as described above. 3-5 days post-plating, the slide was mounted on an inverted
566 confocal microscope (Nikon) fitted with an incubation chamber set to 37 °C and 5% CO₂. Media
567 was changed to include 10 nM VIP (Tocris). In some experiments, the media was changed 24

568 hours prior to imaging to include 300nM BIBO3304 trifluoroacetate (Tocris), 20 μ M CFTR(inh)-
569 172 (Millipore Sigma) and/or 10 nM PYY (Phoenix Pharmaceuticals). Images were acquired
570 every 5 minutes at 4X magnification. After 6 hours, some HIOEs swelled to the point of bursting;
571 therefore, we used images acquired at time 0 and at 6 hours for quantification. The area of 10
572 representative enteroids per well was quantified using NIS Elements software at both time
573 points. The outline of individual enteroids was traced manually and the area calculated by NIS
574 Elements. Fold change at 6 hours over baseline was reported. Data include a minimum of three
575 independent experiments per condition on three wild-type and three EEC-deficient HIO-derived
576 enteroid lines.

577 **NHE3 activity assay**

578 NHE3 activity was determined as previously described (Foulke-Abel et al., 2016) with minor
579 modifications. Enteroids were plated in 5 μ L Matrigel on an 8-chamber glass bottom slide (Ibidi)
580 and maintained as described above. 3-5 days post-plating, media was changed to Na^+ media
581 containing 5 μ M SNARF-4F 5-(and-6)- carboxylic acid, acetoxyethyl ester, acetate (Molecular
582 Probes) and allowed to incubate for 30 minutes. The slide was then mounted on an inverted
583 confocal microscope (Nikon), fitted with an incubation chamber set to 37 °C and 5% CO_2 . Fresh
584 Na^+ media was provided before image acquisition. Images were acquired every 2 minutes for 2
585 hours at 10X magnification with excitation at 488 nm and emission at 561 nm and 640 nm.
586 Media was changed to NH_4Cl to acid-load the epithelium, then to tetramethylammonium (TMA)
587 media to withdraw Na^+ . Na^+ containing media was then added and NHE3 activity quantified as a
588 measure of initial pH recovery. 1 mM probenecid and 5 μ M SNARF were present in all buffers,
589 and all buffers were set to pH 7.4. Intracellular pH was calibrated using the Intracellular pH
590 Calibration Buffer kit (Invitrogen) at pH 7.5, 6.5 and 5.5 in the presence of 10 μ M valinomycin
591 and 10 μ M nigericin at the conclusion of each experiment. The ratio of 561/640 was determined
592 using NIS Elements software by drawing a region of interest and quantifying the fluorescence

593 intensity of each wavelength over the period of the experiment. A minimum of 3 enteroids in 3
594 wells over two independent passages were quantified. The ratio of 561/640 was converted to
595 intracellular pH using the equation provided by the manufacturer.

596 Na^+ media: 130 mM NaCl, 5 mM KCl, 2 mM CaCl_2 , 1 mM MgSO_4 , 20 mM HEPES, 5 mM NaOH,
597 1 mM (Na)PO₄, 25 mM D-glucose

598 NH₄Cl media: 25 mM NH₄Cl, 105 mM NaCl, 2 mM CaCl_2 , 1 mM MgSO_4 , 20 mM HEPES, 8 mM
599 NaOH, 5 mM KCl, 1 mM (Na)PO₄, 25 mM D-glucose

600 TMA media: 130 mM TMA-Cl, 5 mM KCl, 2 mM CaCl_2 , 1 mM MgSO_4 , 20 mM HEPES, 8 mM
601 TMA-OH, 1 mM (TMA)PO₄, 25 mM D-glucose

602 **Electrophysiology**

603 Electrophysiological experiments were conducted as described (Clarke, 2009) with minor
604 modifications. Mouse jejunum and transplanted HIOs were dissected and immediately placed in
605 ice-cold Krebs-Ringer solution. Tissues were opened to create a flat epithelial surface. Because
606 seromuscular stripping is associated with release of cyclooxygenases and prostaglandins
607 (Clarke, 2009), and prostaglandins can stimulate L-cells to release GLP1, GLP2 and PYY
608 (Briere et al., 2013), we performed the Ussing chamber experiments in intestinal tissue with an
609 intact muscular layer. Tissues were mounted into sliders (0.031 cm² area slider, P2307,
610 Physiological Instruments) and placed in an Ussing chamber with reservoirs containing 5 mL
611 buffer (115 mM NaCl, 1.2 mM CaCl_2 , 1.2 mM MgCl_2 , 25 mM NaHCO_3 , 2.4 mM K_2HPO_4 and 0.4
612 mM KH₂PO₄). The mucosal and serosal tissue surfaces were bathed in the same solution, with
613 the exception of 10 mM glucose in the serosal buffer and 10 mM mannitol in the luminal buffer.
614 Mucosal and serosal reservoir solutions were gassed with 95 % O₂ and 5 % CO₂ to pH 7.4 and
615 maintained at 37 °C by a circulating water bath behind the reservoir
616 chambers. Electrophysiology parameters were recorded as previously described (Matthis et al.,

617 2019). Tissue was allowed to equilibrate to a basal steady-state for a minimum of 30 minutes
618 before the addition of chemicals or peptides. 10 nM tetrodotoxin (Tocris) was added to the
619 serosal buffer bathing mouse intestine to inhibit voltage-gated neuronal firing, and allowed to
620 incubate for a minimum of 10 minutes before basal I_{sc} recording. D-glucose and Gly-Sar were
621 added to the luminal side of the chamber once the VIP-induced I_{sc} had stabilized at a maximum
622 value.

Tetrodotoxin	Tocris	10 nM
BIBO3304 trifluoroacetate	Tocris	300 nM
VIP	Tocris	10 nM
PYY(1-36)	Phoenix Pharmaceuticals	10 nM
CFTR-172	Millipore Sigma	20 μ M
D-glucose	Sigma Aldrich	25 mM
Gly-Sar	Sigma Aldrich	20 mM

623

624 **Glucose uptake assays**

625 **6-NBDG**

626 Transplanted HIOs were removed from the murine kidney, bisected to expose the lumen, and
627 incubated with 100 mM 6-(*N*-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (6-
628 NBDG) (Life Technologies) in 10 nM Tris/HEPES buffer containing 150 mM KCl or 150 mM
629 NaCl for 30 minutes at 37 °C. Tissues were washed with ice-cold 10 mM Tris/HEPES buffer,
630 then dissociated to single-cell suspension in 5 mL Tryple Select (Gibco) + 10 μ M Y-27632
631 (Tocris), filtered, and subjected to analysis by flow cytometry.

632 **Sodium Green**

633 HIOEs were differentiated for 5-7 days, then were removed from Matrigel and enzymatically
634 dissociated into single-cell suspension using 0.25% Trypsin-EDTA. Each cell preparation was
635 split into two samples: one incubated with 25 mM D-glucose and one incubated in the absence
636 of glucose. Each sample was incubated in Live Cell Imaging Solution (Invitrogen) containing 5
637 μ M final concentration of Sodium Green tetraacetate (Molecular Probes) for 30 minutes at 37
638 °C, washed with ice-cold PBS and analyzed by flow cytometry.

639 **2-NBDG on Transwell filters**

640 Undifferentiated enteroids that were “ready to split” were dissociated and plated on transwell
641 inserts (Corning) as previously described (Moon et al., 2014), with the exception of first coating
642 the transwells with Collagen IV (Sigma-Aldrich). 300,000 cells were plated per 6.5 mm transwell
643 insert. Differentiation was initiated at 24 hours post-plating and monolayers were analyzed after
644 5-7 days. 1 mM fluorescent glucose analog 2-(*N*-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-
645 Deoxyglucose (2-NBDG, Life Technologies) was diluted in Live Cell Imaging Solution
646 (Invitrogen) containing 25 mM D-glucose, added to the apical surface of HIOE monolayers and
647 the fluorescence intensity of fresh Live Cell Imaging Solution in the basal chamber was
648 quantified after 30 minutes at 37 °C. Intact barrier function was confirmed by co-incubation,
649 quantification and exclusion of Cascade Blue conjugated 3000 MW dextran (Life Technologies)
650 in every experiment.

651 **Intracellular pH assay**

652 Enteroids were differentiated for 5-7 days in the presence of vehicle (water or DMSO), 10 nM
653 VIP (Tocris), 10 nM PYY (Phoenix Pharmaceuticals) and/or 300 nM BIBO3304. On the final
654 day, enteroids were removed from Matrigel and enzymatically dissociated into single-cell
655 suspension using 0.25% Trypsin-EDTA. Cell suspensions were counted and equal cell numbers

656 of dissociated HIOEs were incubated in pHrodo Green AM Intracellular pH indicator
657 (ThermoFisher Scientific) according to manufacturer's directions for 30 minutes at 37C, washed
658 with 1X PBS, and analyzed by flow cytometry.

659 **Flow cytometry**

660 After mechanical and enzymatic dissociation, tissues were filtered through a 40 μ m cell strainer
661 to obtain a single-cell suspension. In all experiments, samples were labeled with either CDH1-
662 mRuby2 or Anti-EpCam-APC (BD Biosciences) to distinguish epithelial cells and incubated with
663 SYTOX Blue dead cell stain (Life Technologies) or 7-AAD (BD Pharmingen). Forward scatter
664 and side scatter were used to discriminate doublets and cellular debris. A minimum of 50,000
665 events per sample was recorded using an LSR Fortessa flow cytometer (BD Biosciences) and
666 data was analyzed using FACSDiva software (BD Biosciences).

667 **Mice**

668 B6.Cg-*Tg(Vil1-cre)^{997Gum/J}* (*VillinCre*) (JAX stock 004586), *Neurog3*^{flox/flox} (Mellitzer et al., 2010)
669 and B6.Cg-*Gt(ROSA)26Sor^{tm1(CAG-tdTomato)Hze}*/J (tdTomato) (Madisen et al., 2010) mice were
670 maintained on a C57BL/6 background and genotyped as previously described. Mice were
671 housed in a specific pathogen free barrier facility in accordance with NIH Guidelines for the
672 Care and Use of Laboratory Animals. All experiments were approved by the Cincinnati
673 Children's Hospital Research Foundation Institutional Animal Care and Use Committee
674 (IACUC2019-0006) and carried out using standard procedures. Mice were maintained on a 12-
675 hour light/dark cycle and had *ad libitum* access to standard chow and water.

676 *VillinCre;Neurog3*^{flox/flox} mice⁴ and their littermates were weighed, genotyped and visually
677 examined for liquid feces daily beginning at postnatal day 10. We established a diarrhea score,
678 with 3 representing wet, yellow feces that smeared the perianal fur, and 0 representing normal,
679 dry, brown, well-defined pellets. Mutant mice which suffered from diarrhea score 3 were

680 included in the rescue experiment. 10 μ g PYY (Phoenix Pharmaceuticals) was diluted in water
681 and added to 20 μ l DPP4 inhibitor (Millipore) to a final volume of 100 μ l per mouse. Mice were
682 injected intraperitoneally with this cocktail within 2 hours of the onset of the dark cycle (7pm)
683 daily until analysis at postnatal day 28-35. Mice were given access to solid chow on the floor of
684 the cage beginning at postnatal day 10 and weaned at postnatal day 21. Small intestinal transit
685 was determined by oral gavage of food coloring diluted in 100 μ l to ad-lib fed mice, then sacrifice
686 and measurement of the distance traveled by the dye-front 30 minutes post-gavage.
687 NSG mice hosting HIOs were treated with 25 μ g PYY (Phoenix Pharmaceuticals) diluted in
688 water to 100 μ L by intraperitoneal injection. Mice were treated daily for a minimum of 10 days
689 after HIOs had been maturing for 8 weeks, then dissected and analyzed.

690 **Statistics**

691 Data is presented as the mean \pm SEM unless otherwise indicated. Significance was determined
692 using appropriate tests in Graph Pad Prism, with $P \geq 0.05$ not significant; * $P < 0.05$, ** $P < 0.01$,
693 *** $P < 0.001$, **** $P < 0.0001$.

694

695 **Acknowledgements**

696 We thank Dr. Gerard Gradwohl and Dr. Andrew Leiter for providing the *Neurogenin3*^{flox/flox} mice;
697 Dr. Mary Estes, Dr. Sarah Blutt and Ms. Xi-Lei Zeng for training in generating HIO-derived
698 enteroid monolayer culture systems; Ms. Catherine Martini for technical assistance. We
699 acknowledge support provided by the Confocal Imaging Center, the Pluripotent Stem Cell
700 Facility, and Research Flow Cytometry Core at CCHMC. We would like to thank the members of
701 the Wells, Zorn, and Helmrath laboratories for reagents and feedback.

702 This work was supported by the grants from the NIH, U19 AI116491 (JMW), P01 HD093363
703 (JMW), UG3 DK119982 (JMW), U01 DK103117 (MAH); S&R Foundation and American
704 Physiological Society (EA); the American Diabetes Association, 1-17-PDF-102 (HAM); and the
705 Allen Foundation (JMW). We also received support from the Digestive Disease Research
706 Center (P30 DK078392).

707 **Author contributions**

708 HAM and JMW conceived and initiated the project, designed experiments, and wrote the
709 manuscript, with conceptual input from MAH, MHM and EA. HAM performed all experiments in
710 collaboration with: JRE, JGS and WJS on mouse transplantation; NS and MAH in generating
711 HIO-derived enteroids; ALM, MHM and EA on electrophysiological studies. HAM, EA and JMW
712 interpreted data. JMW supervised the project. All authors have edited and approved the
713 manuscript.

714 **Competing interests**

715 The authors declare no competing interests.

716 **Materials and correspondence**

717 Requests for materials and correspondence should be directed to james.wells@cchmc.org.

718

719

720 **References**

721 Anderson, C.M.H., Mendoza, M.E., Kennedy, D.J., Raldua, D., and Thwaites, D.T. (2003).
722 Inhibition of intestinal dipeptide transport by the neuropeptide VIP is an anti-absorptive effect via
723 the VPAC1 receptor in a human enterocyte-like cell line (Caco-2). *British Journal of*
724 *Pharmacology* 138, 564-573.

725 Batterham, R.L., Cowley, M.A., Small, C.J., Herzog, H., Cohen, M.A., Dakin, C.L., Wren, A.M.,
726 Brynes, A.E., Low, M.J., Ghatei, M.A., et al. Gut hormone PYY3-36 physiologically inhibits food
727 intake.

728 Bohorquez, D.V., Samsa, L.A., Roholt, A., Medicetty, S., Chandra, R., and Liddle, R.A. (2014).
729 An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy. *PLoS One*
730 9, e89881.

731 Bohorquez, D.V., Shahid, R.A., Erdmann, A., Kreger, A.M., Wang, Y., Calakos, N., Wang, F.,
732 and Liddle, R.A. (2015). Neuroepithelial circuit formed by innervation of sensory
733 enteroendocrine cells. *J Clin Invest* 125, 782-786.

734 Briere, D.A., Barrett, D.G., Franciskovich, J.B., O'Farrell, L.S., Beavers, L.S., Michael, M.D.,
735 Syed, S.K., DuBois, S.L., Coskun, T., and Efanov, A.M. (2013). Activation of Prostaglandin E
736 Receptor 4 Triggers Secretion of Gut Hormone Peptides GLP-1, GLP-2, and PYY.
737 *Endocrinology* 154, 45-53.

738 Burleigh, D.E., and Banks, M.R. (2007). Stimulation of intestinal secretion by vasoactive
739 intestinal peptide and cholera toxin. *Autonomic Neuroscience* 133, 64-75.

740 Chandran, S., Agarwal, A., Llanora, G.V., and Chua, M.C. (2020). Necrotising enterocolitis in a
741 newborn infant treated with octreotide for chylous effusion: is octreotide safe? *BMJ Case*
742 *Reports* 13, e232062.

743 Chen, M., Singh, A., Xiao, F., Dringenberg, U., Wang, J., Engelhardt, R., Yeruva, S., Rubio-
744 Aliaga, I., Näslö, A.-M., and Kottra, G. (2010). Gene ablation for PEPT1 in mice abolishes the
745 effects of dipeptides on small intestinal fluid absorption, short-circuit current, and intracellular
746 pH. *American Journal of Physiology-Gastrointestinal and Liver Physiology* 299, G265-G274.

747 Clarke, L.L. (2009). A guide to Ussing chamber studies of mouse intestine. *Am J Physiol*
748 *Gastrointest Liver Physiol* 296, G1151-1166.

749 Cox, H.M. (2008). Endogenous PYY and NPY mediate tonic Y(1)- and Y(2)-mediated
750 absorption in human and mouse colon. *Nutrition* (Burbank, Los Angeles County, Calif.) 24, 900-
751 906.

752 Cox, H.M., Tough, I.R., Woolston, A.M., Zhang, L., Nguyen, A.D., Sainsbury, A., and Herzog, H.
753 (2010). Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of
754 gastrointestinal mucosal responses. *Cell Metab* 11, 532-542.

755 Dekkers, J.F., Wiegerinck, C.L., de Jonge, H.R., Bronsveld, I., Janssens, H.M., de Winter-de
756 Groot, K.M., Brandsma, A.M., de Jong, N.W.M., Bijvelds, M.J.C., Scholte, B.J., et al. (2013). A
757 functional CFTR assay using primary cystic fibrosis intestinal organoids. *Nature Medicine* 19,
758 939.

759 Egerod, K.L., Engelstoft, M.S., Grunddal, K.V., Nøhr, M.K., Secher, A., Sakata, I., Pedersen, J.,
760 Windeløv, J.A., Füchtbauer, E.-M., and Olsen, J. (2012). A major lineage of enteroendocrine
761 cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neuropeptid Y but not somatostatin.
762 *Endocrinology* 153, 5782-5795.

763 Foulke-Abel, J., In, J., Yin, J., Zachos, N.C., Kovbasnjuk, O., Estes, M.K., de Jonge, H., and
764 Donowitz, M. (2016). Human Enteroids as a Model of Upper Small Intestinal Ion Transport
765 Physiology and Pathophysiology. *Gastroenterology* 150, 638-649 e638.

766 Gribble, F.M., and Reimann, F. (2019). Function and mechanisms of enteroendocrine cells and
767 gut hormones in metabolism. *Nat Rev Endocrinol* 15, 226-237.

768 Hyland, N.P., Sjoberg, F., Tough, I.R., Herzog, H., and Cox, H.M. (2003). Functional
769 consequences of neuropeptide Y Y 2 receptor knockout and Y2 antagonism in mouse and
770 human colonic tissues. *Br J Pharmacol* 139, 863-871.

771 Jenny, M., Uhl, C., Roche, C., Duluc, I., Guillermin, V., Guillemot, F., Jensen, J., Kedinger, M.,
772 and Gradwohl, G. (2002). Neurogenin3 is differentially required for endocrine cell fate
773 specification in the intestinal and gastric epithelium. *Embo J* 21, 6338-6347.

774 Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter,
775 R.D., Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput Cre reporting
776 and characterization system for the whole mouse brain. *Nat Neurosci* 13, 133-140.

777 Mahe, M.M., Sundaram, N., Watson, C.L., Shroyer, N.F., and Helmrath, M.A. (2015).
778 Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy.
779 *Journal of visualized experiments: JoVE*.

780 Matthijs, A.L., Kaji, I., Engevik, K.A., Akiba, Y., Kaunitz, J.D., Montrose, M.H., and Aihara, E.
781 (2019). Deficient Active Transport Activity in Healing Mucosa After Mild Gastric Epithelial
782 Damage. *Digestive diseases and sciences*, 1-13.

783 McCauley, H.A. (2019). Enteroendocrine regulation of nutrient absorption. *Journal of Nutrition*.

784 McGrath, P.S., Watson, C.L., Ingram, C., Helmrath, M.A., and Wells, J.M. (2015). The Basic
785 Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human
786 Endocrine Pancreas. *Diabetes* 64, 2497-2505.

787 Mellitzer, G., Beucher, A., Lobstein, V., Michel, P., Robine, S., Kedinger, M., and Gradwohl, G.
788 (2010). Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis
789 and impairs postnatal survival. *The Journal of clinical investigation* 120, 1708-1721.

790 Mentlein, R., Dahms, P., Grandt, D., and Kruger, R. (1993). Proteolytic processing of
791 neuropeptide Y and peptide YY by dipeptidyl peptidase IV. *Regul Pept* 49, 133-144.

792 Moodaley, R., Smith, D.M., Tough, I.R., Schindler, M., and Cox, H.M. (2017). Agonism of free
793 fatty acid receptors 1 and 4 generates peptide YY-mediated inhibitory responses in mouse
794 colon. *British journal of pharmacology* 174, 4508-4522.

795 Moon, C., VanDussen, K.L., Miyoshi, H., and Stappenbeck, T.S. (2014). Development of a
796 primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that
797 modulate IgA transcytosis. *Mucosal Immunol* 7, 818-828.

798 Múnера, J.O., and Wells, J.M. (2017). Generation of gastrointestinal organoids from human
799 pluripotent stem cells. In *Organ Regeneration* (Springer), pp. 167-177.

800 Ouchi, R., Togo, S., Kimura, M., Shinozawa, T., Koido, M., Koike, H., Thompson, W., Karns,
801 R.A., Mayhew, C.N., McGrath, P.S., et al. (2019). Modeling Steatohepatitis in Humans with
802 Pluripotent Stem Cell-Derived Organoids. *Cell Metabolism*.

803 Patel, Y.C. (1999). Somatostatin and Its Receptor Family. *Frontiers in Neuroendocrinology* 20,
804 157-198.

805 Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., Hoskins, E.E.,
806 Kalinichenko, V.V., Wells, S.I., and Zorn, A.M. (2011). Directed differentiation of human
807 pluripotent stem cells into intestinal tissue in vitro. *Nature* 470, 105.

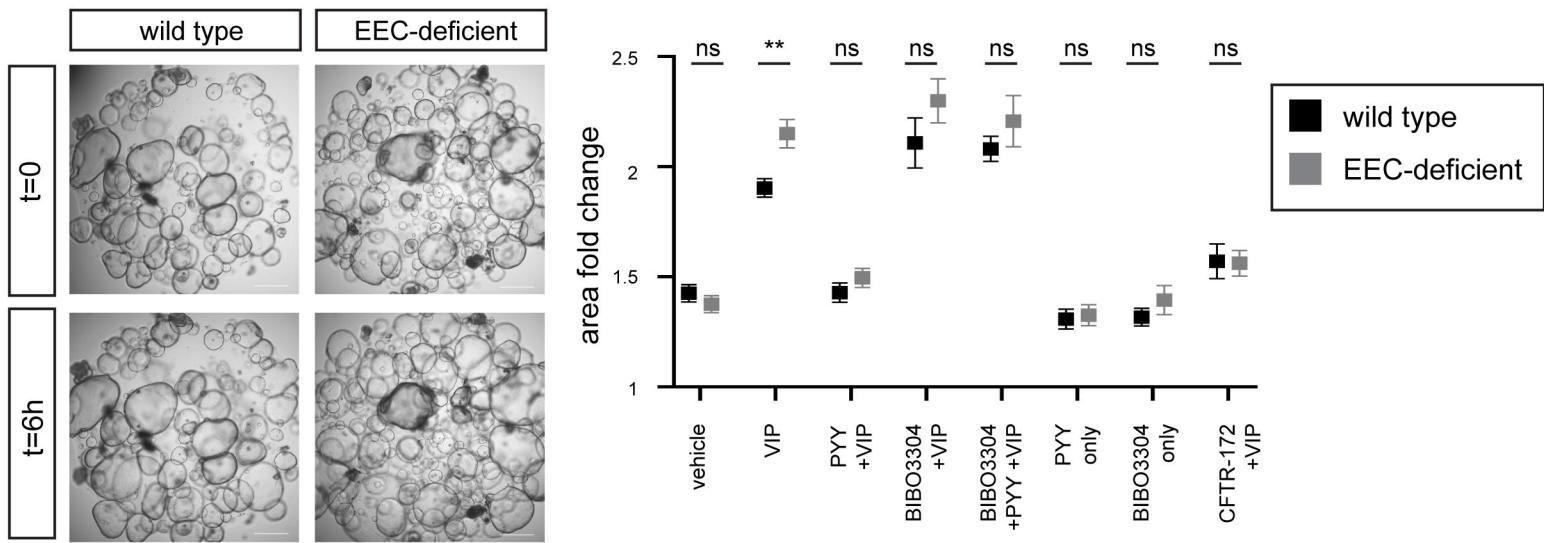
808 Thwaites, D.T., Kennedy, D.J., Raldua, D., Anderson, C.M.H., Mendoza, M.E., Bladen, C.L.,
809 and Simmons, N.L. (2002). H⁺/dipeptide absorption across the human intestinal epithelium is
810 controlled indirectly via a functional Na⁺/H⁺ exchanger. *Gastroenterology* 122, 1322-1333.

811 Tough, I.R., Forbes, S., Tolhurst, R., Ellis, M., Herzog, H., Bornstein, J.C., and Cox, H.M.
812 (2011). Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility
813 and transit differentially via Y1 and Y2 receptors. *British journal of pharmacology* 164, 471-484.

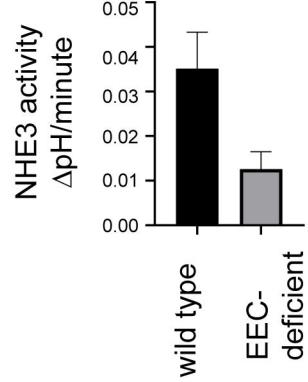
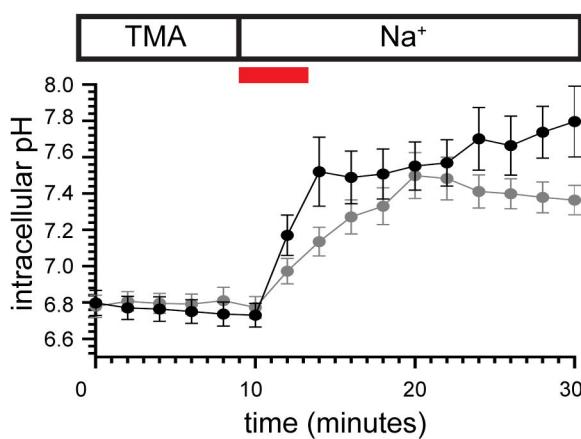
814 Wang, J., Cortina, G., Wu, S.V., Tran, R., Cho, J.-H., Tsai, M.-J., Bailey, T.J., Jamrich, M.,
815 Ament, M.E., and Treem, W.R. (2006). Mutant neuregulin-3 in congenital malabsorptive
816 diarrhea. *New England Journal of Medicine* 355, 270-280.

817 Watson, C.L., Mahe, M.M., Múnера, J., Howell, J.C., Sundaram, N., Poling, H.M., Schweitzer,
818 J.I., Vallance, J.E., Mayhew, C.N., and Sun, Y. (2014). An in vivo model of human small
819 intestine using pluripotent stem cells. *Nature medicine* 20, 1310.

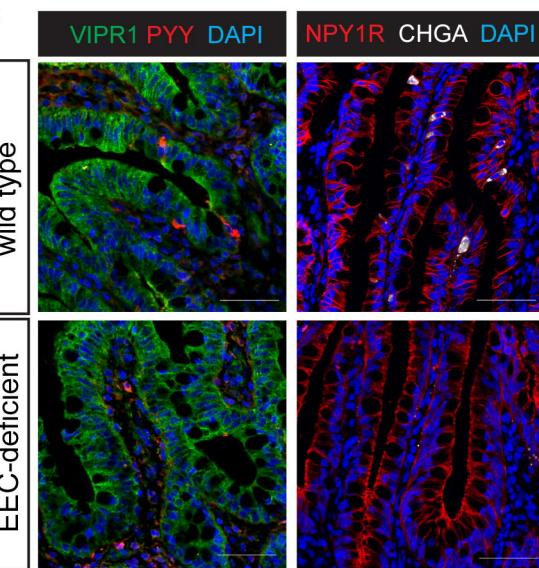
820 Wright, E.M., Hirsch, J.R., Loo, D.D., and Zampighi, G.A. (1997). Regulation of Na⁺/glucose
821 cotransporters. *Journal of Experimental Biology* 200, 287-293.

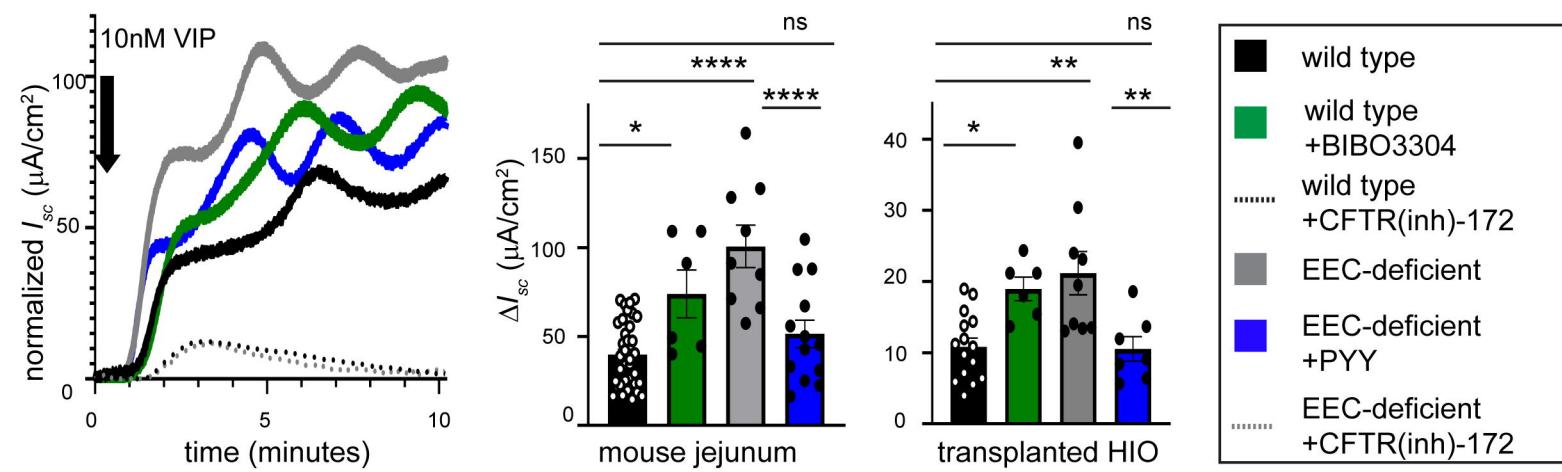

822 Wright, E.M., Loo, D.D.F., and Hirayama, B.A. (2011). Biology of human sodium glucose
823 transporters. *Physiological reviews* 91, 733-794.

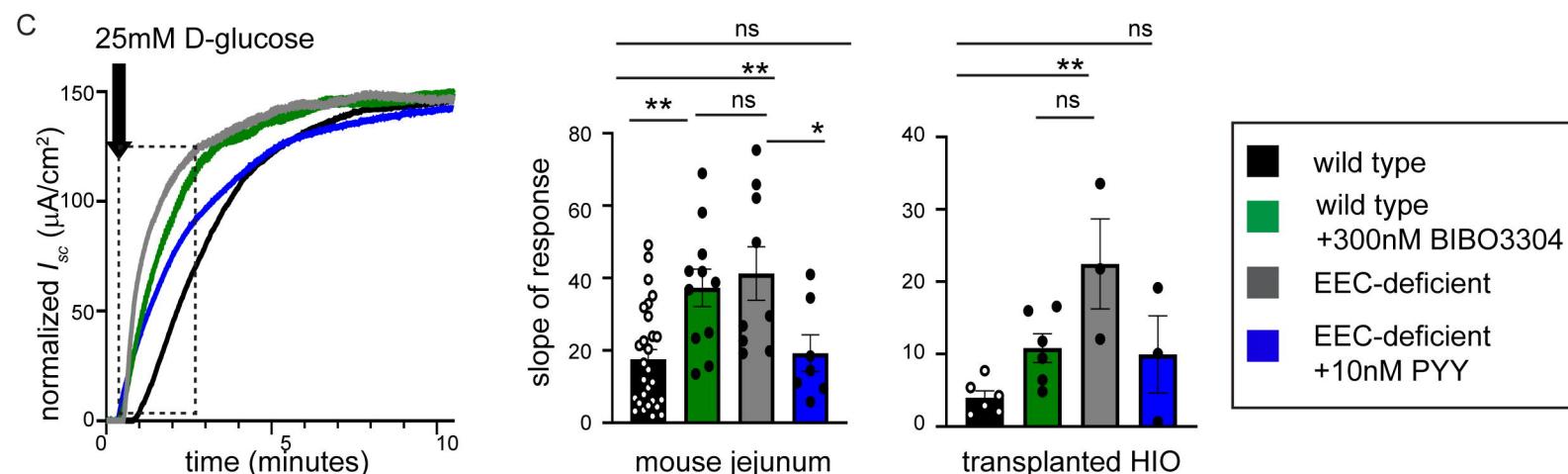
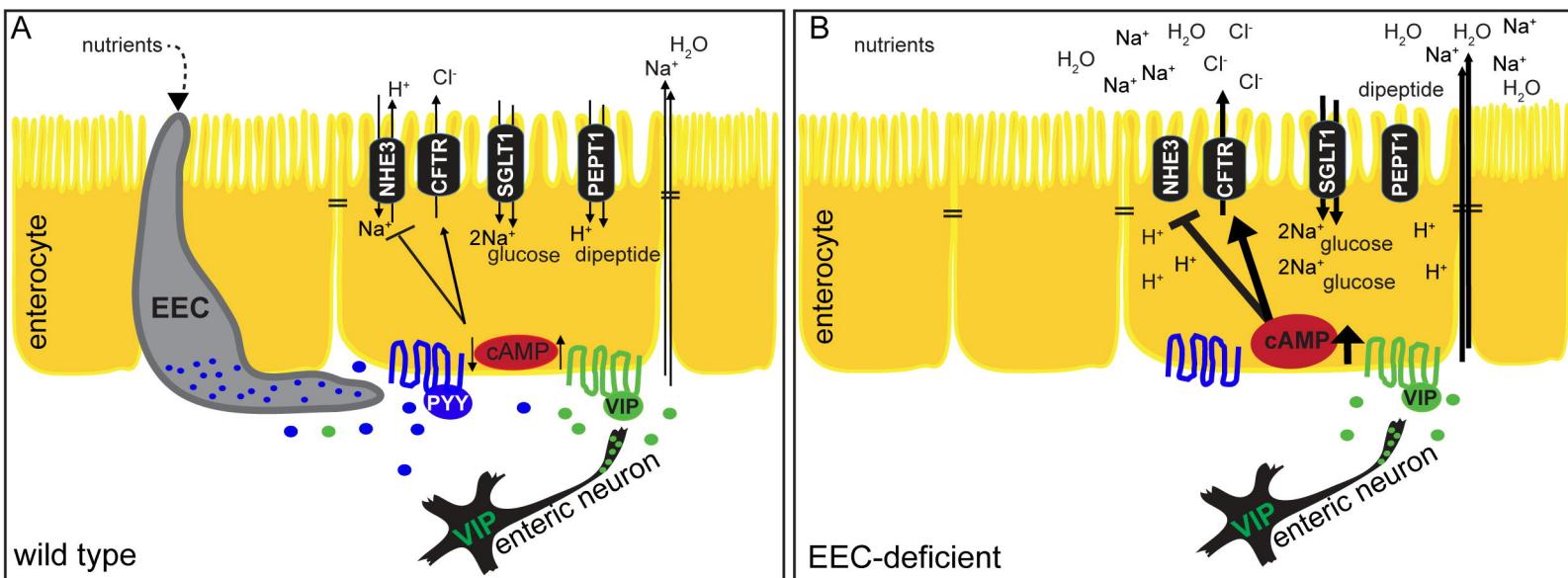
824 Yun, C.H.C., Oh, S., Zizak, M., Steplock, D., Tsao, S., Tse, C.-M., Weinman, E.J., and
825 Donowitz, M. (1997). cAMP-mediated inhibition of the epithelial brush border Na⁺/H⁺
826 exchanger, NHE3, requires an associated regulatory protein. *Proceedings of the National
827 Academy of Sciences* 94, 3010-3015.

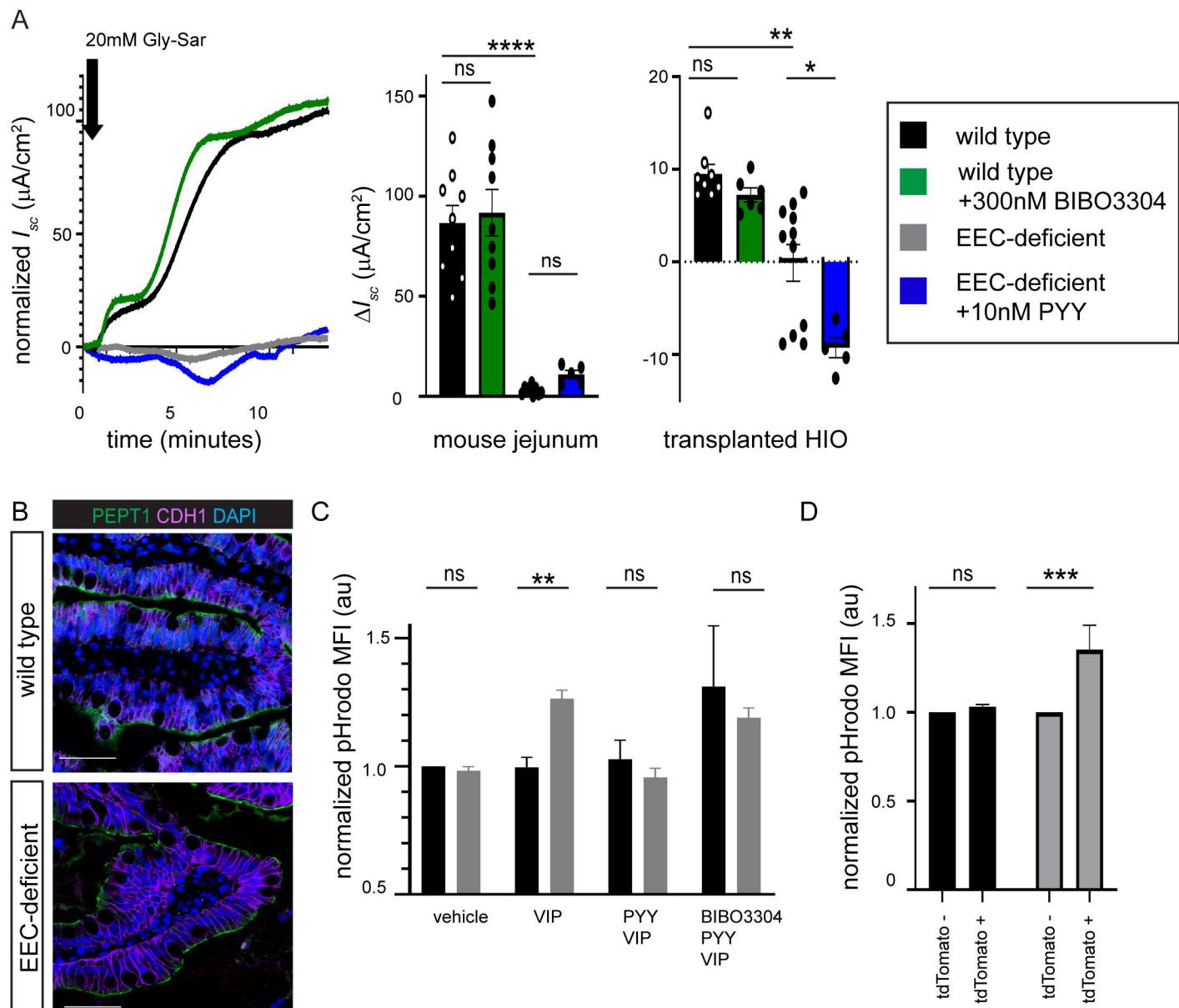


828 Zhang, X., McGrath, P.S., Salomone, J., Rahal, M., McCauley, H.A., Schweitzer, J., Kovall, R.,
829 Gebelein, B., and Wells, J.M. (2019). A Comprehensive Structure-Function Study of
830 Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid
831 Development. *Developmental Cell*.

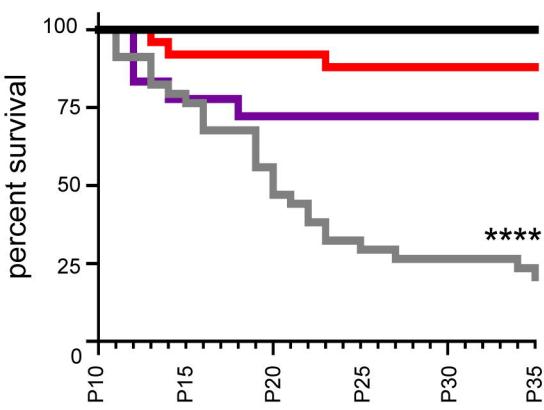
832

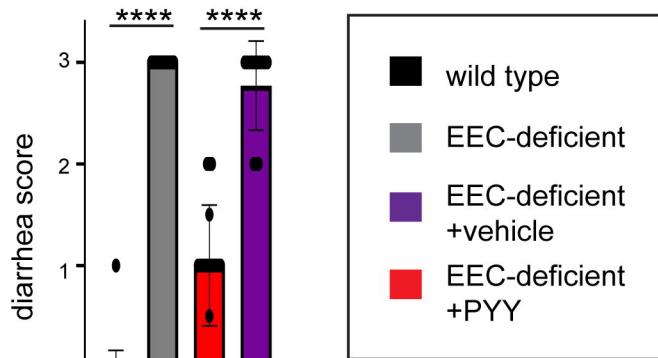

A

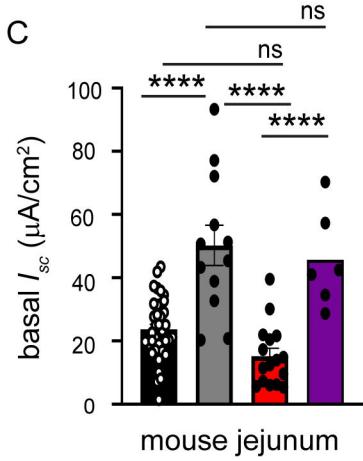

B

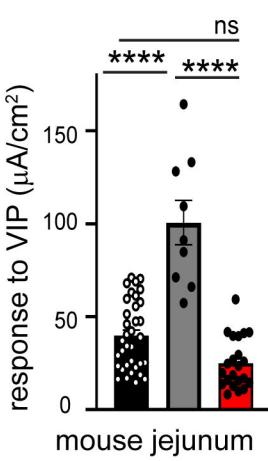



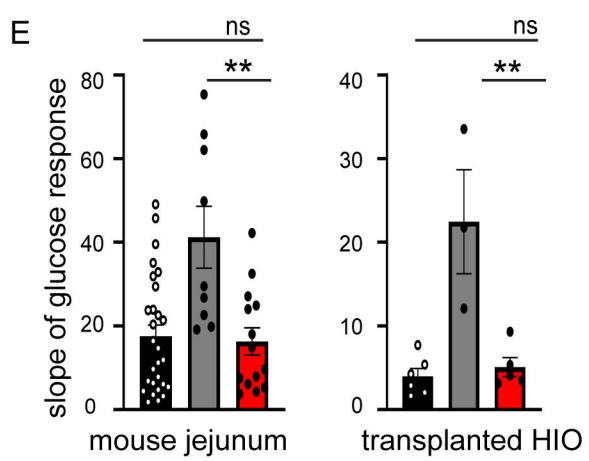

C

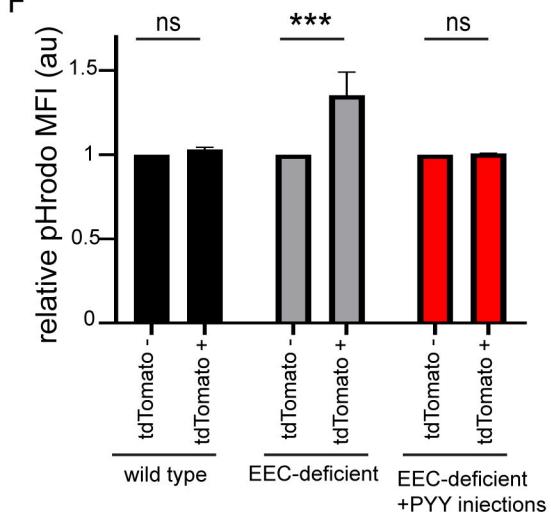

D

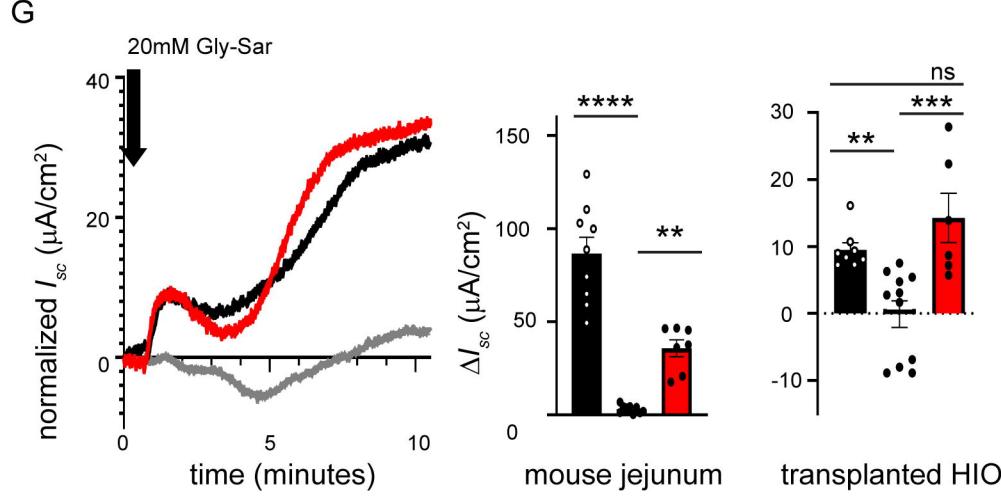


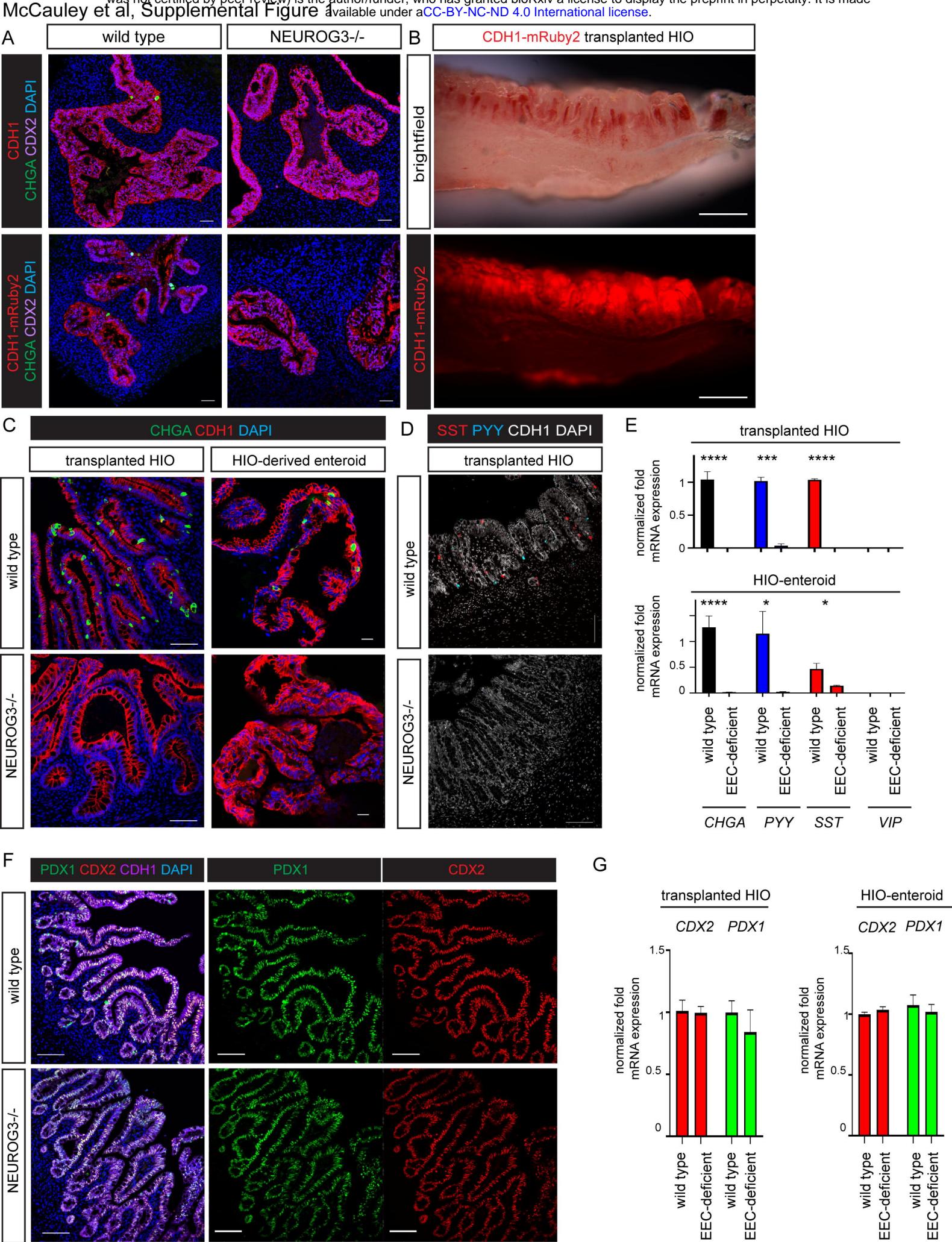

A


B

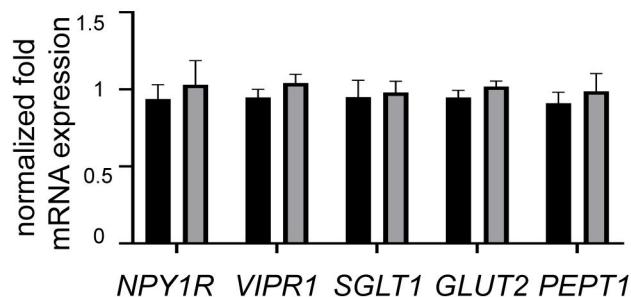

C

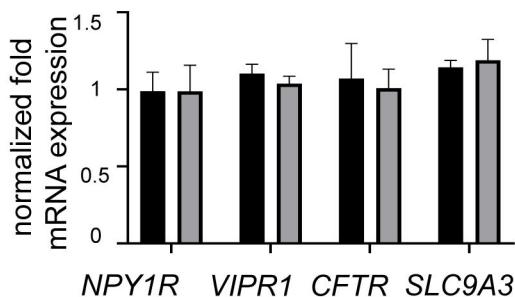

D


E

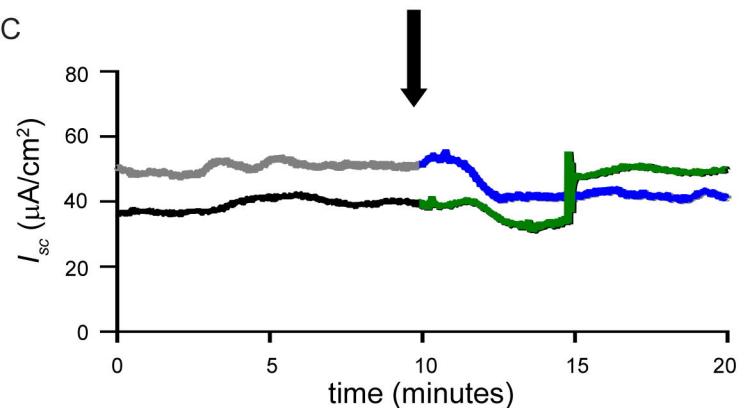


F

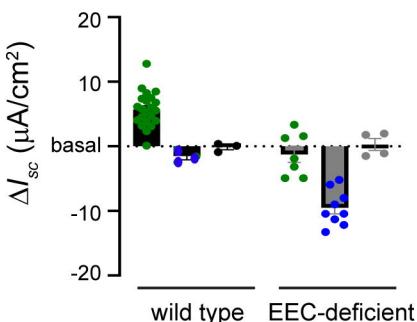
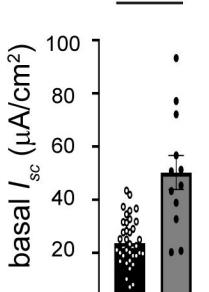

G


A

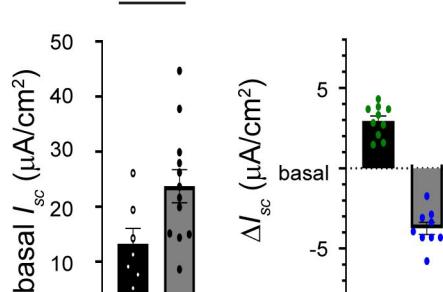
transplanted HIO

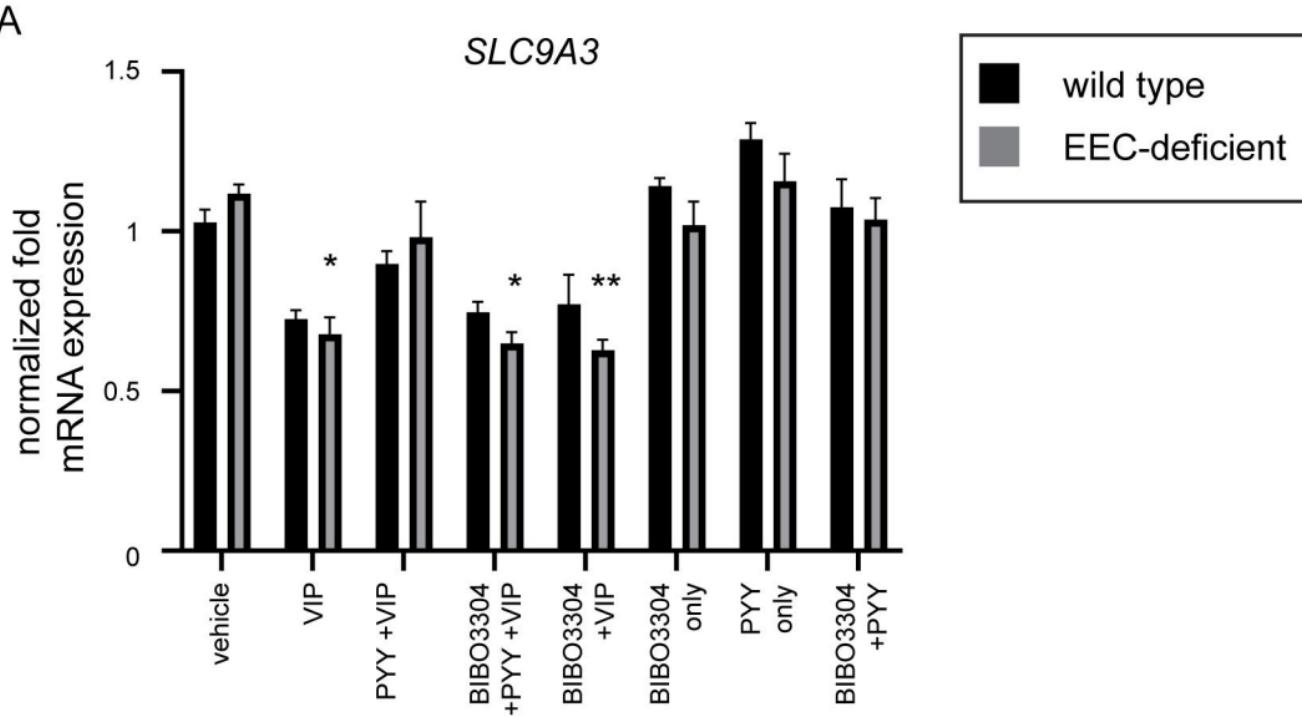


B



HIO-derived enteroids

C

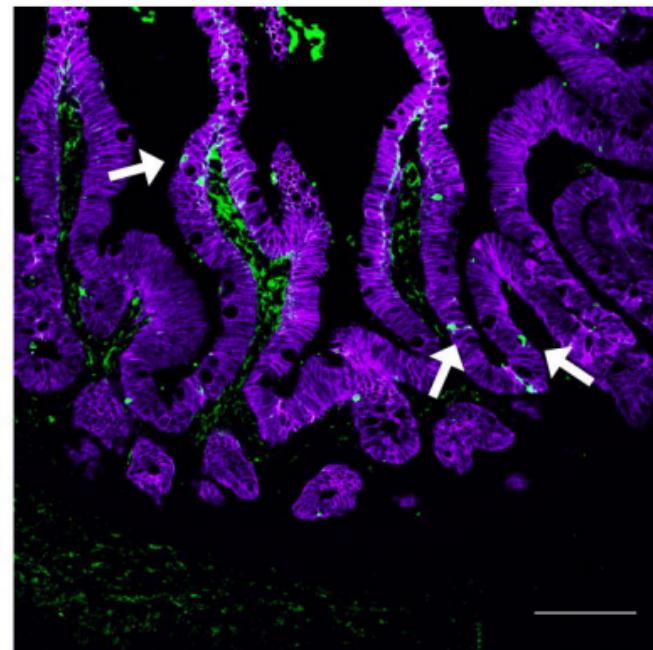
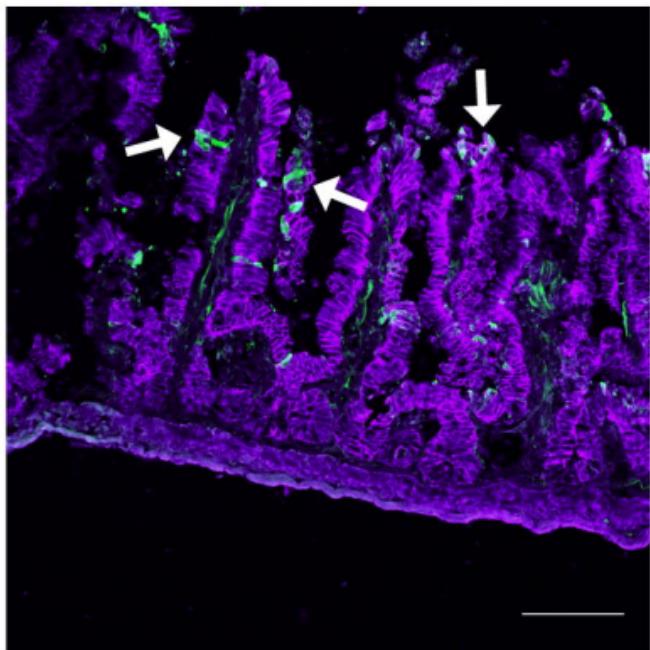



mouse jejunum

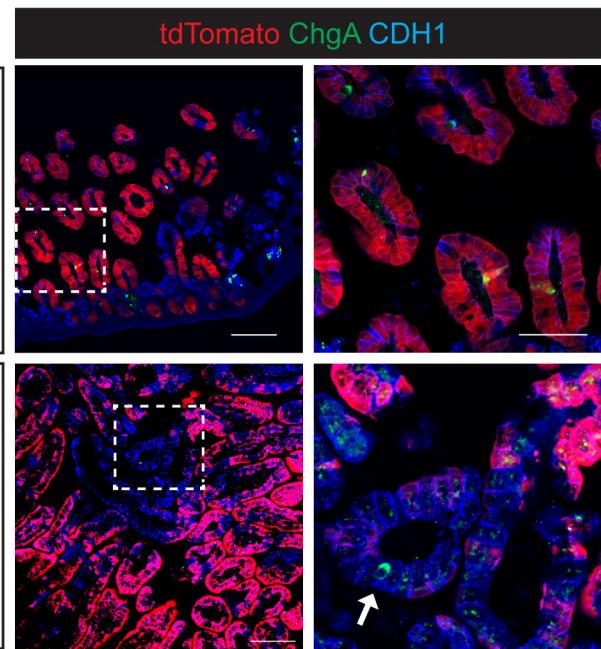
*

transplanted HIO

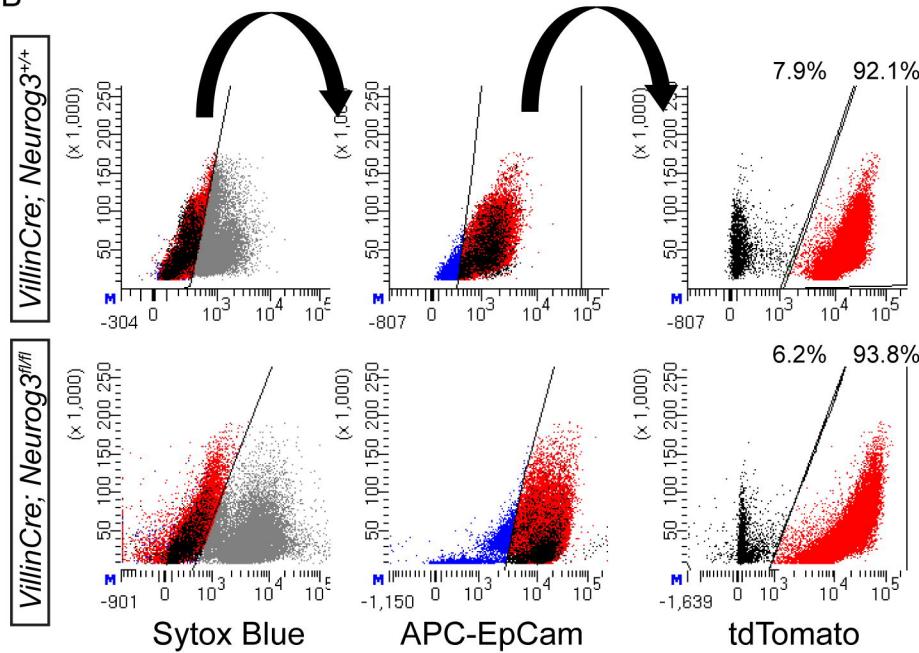
A

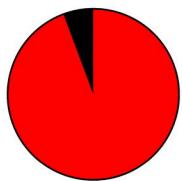
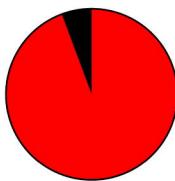
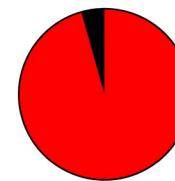



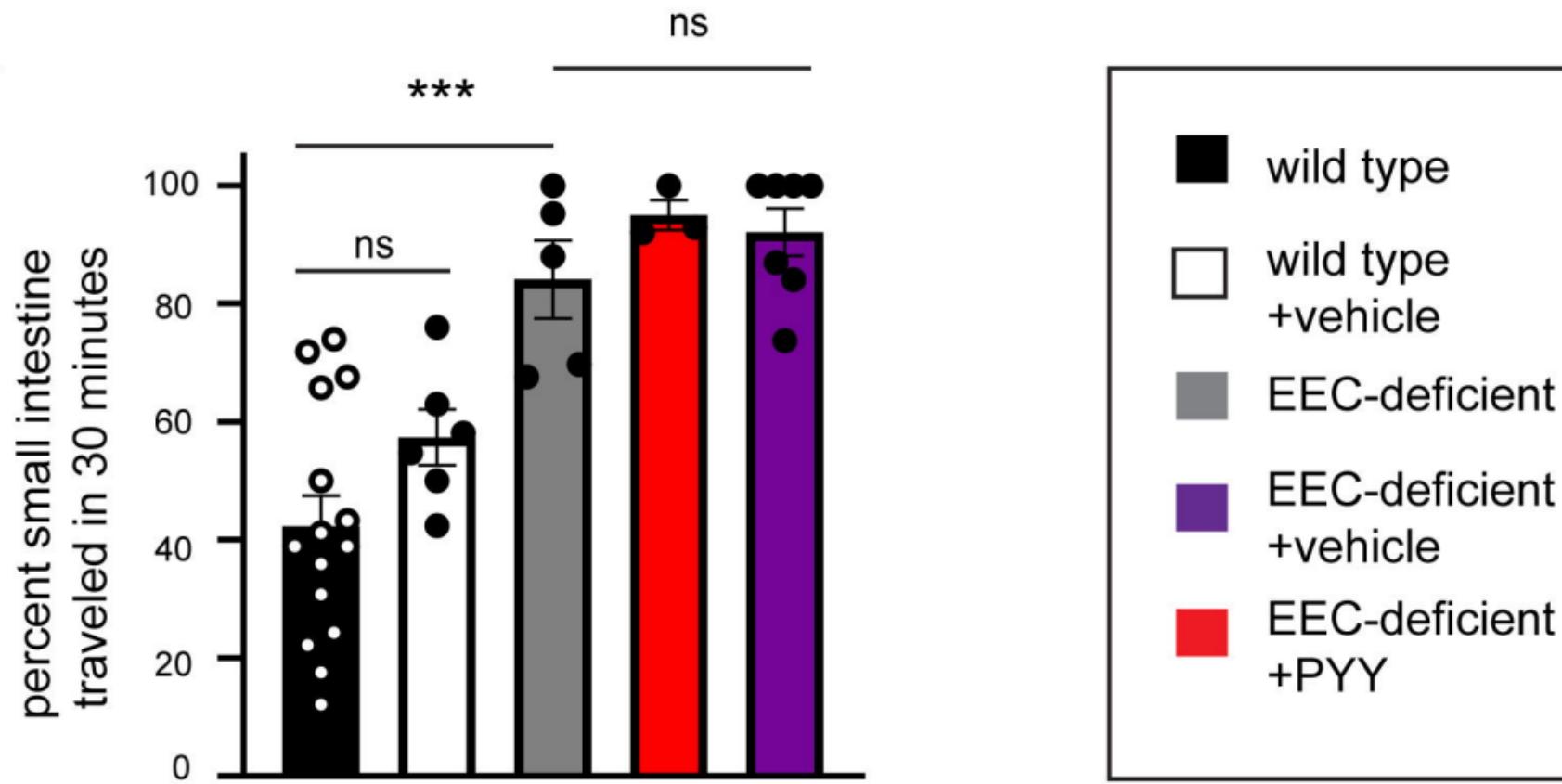
A


mouse jejunum

transplanted HIO


PYY CDH1




A


B

C

VillinCre; Neurog3^{+/+}VillinCre; Neurog3^{fl/+}VillinCre; Neurog3^{fl/fl}

A

