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Abstract 
High-throughput data-independent acquisition (DIA) is the method of choice for quantitative proteomics,            

combining the best practices of targeted and shotgun proteomics approaches. The resultant DIA spectra are,               

however, highly convolved and with no direct precursor-fragment correspondence, complicating the analysis of             

biological samples. Here we present PARADIAS (PARAllel factor analysis of Data Independent Acquired             

Spectra), a GPU-powered unsupervised multiway factor analysis framework that deconvolves multispectral           

scans to individual analyte spectra, chromatographic profiles, and sample abundances, using the PARAFAC             

tensor decomposition method based on variation of informative spectral features. The deconvolved spectra             

can be annotated with traditional database search engines or used as a high-quality input for ​de novo                 

sequencing methods. We demonstrate that spectral libraries generated with PARADIAS substantially reduce            

the false discovery rate underlying the validation of spectral quantification. PARADIAS covers up to 33 times                

more total ion current than library-based approaches, which typically use less than 5 % of total recorded ions,                  

thus allowing the quantification and identification of signals from unexplored DIA spectra.   
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Introduction 
 

The ideal proteomic method should precisely quantify large sets of proteins across multiple samples. To this                

end, data-independent acquisition ​(Venable ​et al​, 2004) (DIA) is an effective compromise between targeted              

proteomics using selected reaction monitoring (SRM) and label-free shotgun proteomics with data-dependent            

acquisition (DDA), combining the respective benefits of high accuracy and consistency ​(Vowinckel ​et al​, 2018;               

Rosenberger ​et al​, 2017) with high-throughput ​(Messner ​et al​, 2019)​. Multiple issues are addressed, such as                

the inconsistent quantification due to stochasticity between runs, noticeable especially in DDA experiments             

with large sample series ​(Collins ​et al​, 2017; Zhang ​et al​, 2016)​. Despite this, an inherent issue is related to                    

the exhaustive fragmentation of the specific mass range using defined isolation windows or “swaths” ​(Gillet ​et                

al​, 2012)​. Due to the width of these windows, fragment signals are highly overlapped or “convolved”, with                 

multiple precursors falling in the same window, producing a set of highly overlapping ion mass spectra                

(Pappireddi ​et al​, 2019; Peckner ​et al​, 2018; Demichev ​et al​, 2019)​. A computational solution to deconvolve                 

such data would expand the coverage and efficacy of the DIA approach. Thus, development of novel data                 

analysis approaches is currently among major goals in high-throughput proteomics. 

 

The current standard approach for DIA analysis is targeted quantification of the acquired fragment data using                

spectral libraries containing fragmentation information for a particular peptide ​(Bruderer ​et al​, 2015; Demichev              

et al​, 2019; Röst ​et al​, 2014; Peckner ​et al​, 2018)​. Library generation is however time-consuming, specific to                  

the instrument, chromatography, and experimental condition, ideally requiring physical sample fractionation           

complemented with shotgun spectra acquisition ​(Schubert ​et al​, 2015)​. Another limitation is that only a small                

portion of analytes are recovered, especially when library generation is based on data-dependent acquisition              

of relatively few selected high intensity precursors ​(Ludwig ​et al​, 2018; Deutsch ​et al​, 2018)​. Thus, the                 

targeted search for DDA precursor fragments does not take full advantage of resulting digital records of all                 

ions in scans generated in a data-independent manner ​(Gillet ​et al​, 2012)​. Recent approaches based on large                 

synthetic peptide libraries enable accurate prediction of peptide spectra directly from sequence data ​(Gessulat              

et al​, 2019; Gabriels ​et al​, 2019)​. Computational approaches that utilize MS1 - MS2 co-elution information to                 

generate pseudo-spectra do not require creating experimental libraries ​(Tsou ​et al​, 2015; Wang ​et al​, 2015; Li                 

et al​, 2015)​. These, however, suffer from the same overlapping fragment signal problem inherent to DIA, which                 

is addressed using heuristics such as interference correction ​(Bao ​et al​, 2013; Keller ​et al​, 2015; Demichev ​et                  

al​, 2019)​.  

 

Multiway tensor decomposition and other so-called “matrix methods” ​(Likić, 2009)​, such as Parallel Factor              

Analysis (PARAFAC) ​(Harshman & Others, 1970; Carroll ​et al​, 1970; Bro & Others, 1997)​, use the entire                 

acquired data to extract individual analyte signals and have have been used for over four decades in mass                  

spectrometry and other analytical technologies ​(Likić, 2009)​. PARAFAC enables decomposition of multiway            

data arrays and facilitates the identification and quantification of independent underlying signals, termed             

“components”, from convolved spectral data. Conveniently, DIA data can be naturally represented as a              
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three-dimensional array or tensor, resulting from the linear combination of individual peptide mass spectra,              

their elution profiles, and their relative sample contribution, making it amenable to PARAFAC decomposition.              

However, given the sheer size of DIA proteomics datasets, where an experiment of 100 samples can easily                 

generate more than half a terabyte of numerical data, computational decomposition of DIA proteomics data               

using conventional CPU-based multiway analysis frameworks ​(Andersson & Bro, 2000) is not feasible.             

Furthermore, existing PARAFAC applications usually involve smaller data sets consisting of at most a few               

hundred known analytes, so far limiting PARAFAC applications to relatively simple computational problems.             

On the other hand, with DIA proteomics data, one deals with an unknown set of tens of thousands of analytes,                    

thus requiring a way to search a much larger model space than is currently achievable.  

 

Hence, here we present a GPU-accelerated multiway tensor decomposition approach called ​PARAllel factor             

analysis of Data-Independent Acquired Spectra (PARADIAS), consisting of a data decomposition pipeline that             

enables spectra retrieval and quantification of analytes directly from DIA data. By using a data partitioning                

scheme and relying on the massive parallelism of modern GPUs, we achieve a technical leap, enabling                

untargeted decomposition of very large, high-throughput proteomics data. Moreover, the central method to the              

pipeline, PARAFAC, does not require ​a priori ​spectral information about the analytes in order to perform the                 

decomposition. The individual deconvolved spectra produced by our pipeline may be analyzed with             

conventional peptide search engines ​(Park ​et al​, 2008; Deutsch ​et al​, 2015; Kim & Pevzner, 2014) to produce                  

peptide-spectrum matches (PSMs) for building high-accuracy spectral libraries. We show that, by using             

PARADIAS, we can extract up to 33 times more analyte signal from DIA scans compared to library-based                 

approaches, and, moreover, cover the entire m/z space of scans, enabling the usage of the majority of                 

noise-accounted signal ions obtained from a sample. We also demonstrated that spectra recovered by              

PARADIAS circumvent the problem of false quantifications, a major challenge present in targeted DIA              

proteomics. 
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Results 

PARADIAS: A GPU-accelerated software pipeline for deconvolving DIA        

data 

We developed the PARADIAS pipeline, capable of recovering spectral features in unsupervised fashion and              

computationally feasible time (Figure 1a), by leveraging the power of the modern tensor algebra frameworks               

PyTorch ​(Paszke ​et al​, 2017) and Tensorflow ​(Abadi ​et al​, 2016)​, which take advantage of the parallelism and                  

throughput of floating point operations in graphic processing units (GPU), as well as the distributed Big Data                 

computing framework Apache Spark ​(Zaharia ​et al​, 2016)​. Briefly, PARADIAS partitions all provided DIA scans               

into a collection of small, independent tensors, corresponding to precursor isolation windows and time              

intervals (Methods M1). It then performs multiple decompositions of each of these tensors in parallel,               

accounting for a range of possible numbers of components in each tensor (Figure 1a, Methods M2). As the                  

observed intensities in DIA LC-MS/MS scans result from linear combinations of individual fragmented peptide              

spectra, their elution profiles, and their relative abundance across all samples, each PARAFAC component              

ideally represents an analyte as a triplet of its m/z spectrum, retention time peak and relative sample                 

contribution (Figure 1b). The decomposition results are then refined by selecting the best models based on the                 

quality of reconstructed signals, i.e. the unimodality of the elution profile. (Methods M3, Supplementary Note               

S1-1). A critical step in constructing a PARAFAC model is deciding ​a priori the number of components F,                  

complicated by the fact that PARAFAC models do not “nest”, i.e. a model for F+1 is not simply a model for F                      

with an extra component ​(Smilde ​et al​, 2005)​. Deciding the value automatically is generally an open problem                 

(Liu ​et al​, 2016)​, and the various diagnostics and procedures used to this end ​(Bro & Kiers, 2003) often require                    

human verification, which is not feasible for data-rich proteomics workflows, with hundreds of thousands of               

models that need to be examined. Our approach therefore exhaustively constructs all possible models within               

the expected range, and then uses the shape of the resulting elution profiles and accounts for noise to                  

automatically select valid models, resulting in optimal precursor identifications. The recovered m/z spectra             

(Figure 1c) can be directly searched using standard tool sets such as Crux ​(McIlwain ​et al​, 2014)​, TPP                  

(Deutsch ​et al​, 2015)​, and MS-GF+ ​(Kim & Pevzner, 2014) to (i) produce peptide-spectrum matches (PSMs)                

(Figure 1d), (ii) build spectral libraries (Methods M4), (iii) be used for ​de novo sequencing, or (iv) be used                   

directly as linearly independent features for machine learning applications.  
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Figure 1. The PARADIAS pipeline, illustration of PARAFAC decomposition, and example results. ​(a) High-level              

structure of the PARADIAS framework. Under the hood, PARADIAS uses tools typically applied for processing of big data                  

(on the order of hundreds of GB of numerical data) to perform PARAFAC decomposition of similarly large DIA data. It                    

operates in a parallelized way, employing tensor computation frameworks that leverage the speed of GPU cards for these                  

types of matrix operations. PARADIAS takes in all provided DIA scan files together, partitions them into a collection of                   

independent tensors according to swath and retention time windows, then performs multiple decompositions of each of                

these tensors, accounting for a range of possible number of components, to account for an unknown number of peptides                   

in each partition. The best models are selected such that most components have unimodal elution profiles (Methods M3,                  

Figure 3). PARADIAS output consists of a file in mzXML format containing the deconvolved spectra. This file is orders of                    

magnitude smaller than the input scan files, which speeds up downstream analytical methods. (b) Conceptual illustration                

of the PARAFAC decomposition method for two components. Acquired DIA signals can be expressed as a linear                 

combination of individual peptide mass spectra, their elution profiles, and their relative sample contribution. PARAFAC               

considers all sample scans at once and decomposes the three-dimensional (m/z, retention time, sample) tensor structure                

into deconvolved components. (c) Example of PARAFAC output spectrum matched to a peptide by Comet. Theoretical                

spectrum (predicted with Prosit ​(Gessulat ​et al​, 2019)​) of the peptide (black) is plotted against fragments matched (66%)                  

to the deconvolved spectrum output by the pipeline (red). (d) Peptide identification using Crux and MS-GF+ on                 

PARADIAS output (top) largely matches the distribution of input DIA scan MS 1 intensities (bottom, single yeast lysate                  

scan). Peptide count and intensities are shown per retention time (RT) and precursor isolation windows, according to the                  

pipeline’s data partitioning scheme. RT windows are highlighted with light gray vertical lines. The horizontal streaks that                 

show up in the ranges 11 - 17 minutes and 527 - 559 m/z (lower-left) are likely contaminants (e.g. nothing was identified                      

by Spectronaut (FDR < 5%) in this range) and are not reflected in any PARADIAS identifications. 
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Precise protein identification and quantification with PARADIAS 
 

We first evaluated whether PARADIAS-deconvolved spectra were identifiable by conventional peptide search            

engines. First, we tested our approach on a ​S. cerevisiae lysate dataset ​(Vowinckel ​et al​, 2018)​, referred to                  

here as ​yeast replicates​, which consisted of 9 consecutive injections acquired in SWATH mode on a                

conventional Sciex 5600 QqTOF instrument with microflow setup. To identify the precursors, PARADIAS             

solved a total of 176175 PARAFAC models (29 swaths x 75 1-min windows x 81 models) on a standard                   

GPU-equipped workstation. As a benchmark for comparison, we used DIA-Umpire ​(Tsou ​et al​, 2015)​, a widely                

used tool for building spectral libraries directly from DIA data, and considered results from Crux (Comet                

coupled with Percolator) and MS-GF+ search engines separately, to assess their performance. Whilst             

MS-GF+ and Crux respectively identified a total of 1032 and 2014 proteins using the DIA-Umpire               

pseudo-spectra produced for each yeast replicate, in contrast, only 489 and 684 proteins (1750 and 1553                

peptides), respectively, were identified using the same search tools on the output from PARADIAS. However,               

when considering only the proteins that appear in at least 8 of the technical replicates, as low as 66 and 583                     

proteins were found at 1% FDR using DIA-Umpire in conjunction with MS-GF+ and Crux respectively, pointing                

at false positive identifications (Figure 2a). PARAFAC decomposition, in contrast, captures the same analytes              

across all input samples, thus the commonality of high-confidence protein IDs across technical replicates is               

inherent to the method. Overall, 53% overlap, consisting of 439 common proteins, was detected between               

PARADIAS and DIA-Umpire coupled with Crux (considering only proteins identified in at least 8 samples), with                

245 proteins unique to the former (Figure 2a). The peptide quantifications (Figure 2b) based on the                

reconstructed spectral library are precise (median CV = 9.3% for the yeast replicates dataset) and               

reproducible (mean Pearson’s ​r​ = 0.99 and ​p​-value < 1e-16 between the replicates). 

 
The inconsistencies in peptide quantifications are often attributed to data-dependent acquisition approaches            

(Zhang ​et al​, 2016)​, due to their stochastic nature of peptide selection, which is dependent on instrument                 

performance. Although DIA methods typically produce far more complete data matrices ​(Collins ​et al​, 2017)​,               

the consistency of identification may be highly dependent on the inference correction procedures and the way                

false discovery rate is estimated from DIA data. To exemplify this further, we built a library based on ​in silico                    

digestion of a yeast proteome, where we randomly shuffled 50% of amino acids in each peptide sequence.                 

Despite the fact that only peptides which did not exist in the original organism were considered, we quantified                  

2457, 546, and 188 proteins, using the conventional library-based search tools Skyline ​(Pino ​et al​, 2017)​,                

DIA-NN ​(Demichev ​et al​, 2019)​, and Spectronaut ​(Bruderer ​et al​, 2015)​, respectively, with 5% FDR (Methods                

M5). This is on average over 22 times above the expected number of false discoveries (Figure 2c). All of these                    

identifications were attributed solely to the unique fragments arising from the mutated precursors, that would               

otherwise not be present in the original yeast spectral library. In contrast, quantification with these tools using                 

a library constructed from PARADIAS output spectra yielded an average of 41 identifications, which is below                

the average expected number of 47 false positives at 5% FDR across all three tools, pointing to the validity of                    

identifications when using PARAFAC-recovered spectra. 
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We next evaluated whether PARADIAS could resolve spectra in a complex background such as the               

LFQbench HYE110 dataset ​(Navarro ​et al​, 2016)​, containing two mixtures with different ratios of human,               

Escherichia coli, and ​S. cerevisiae, the latter two of which are present in quantities close to the limit of                   

detection (5%) alternatively in the two mixtures. As, typically, the number of detected and quantified proteins is                 

highly dependent on the particular tool and FDR estimation method, one would expect to find differences                

between available tools ​(Navarro ​et al​, 2016) and PARADIAS, given that the latter works by searching against                 

deconvolved spectra rather than matching against scans using a library. Nevertheless, running Crux and              

MS-GF+ with an FDR threshold of 1% on PARADIAS output spectra yielded a total of 3024 proteins,                 

comparable to the other methods in the benchmark study ​(Navarro ​et al​, 2016)​, albeit at an overall lower rate                   

of peptide identification (5908 peptides, with a median ratio of peptides to protein of 4, see Figure S1-1). Out                   

of these proteins, 1508 were unique to PARADIAS (Figure 2d), which is 16 higher than the median number of                   

unique proteins of the other methods. We noticed that 601 proteins not identified with PARADIAS were instead                 

found using all methods that, in essence, use the same target-decoy fragment mass search algorithm for FDR                 

estimation ​(Reiter ​et al​, 2011)​. Analogously to the yeast example above, we built an ​in silico ​library of                  

randomized peptide sequences, where this time we reduced the amino acid shuffling to 30%, which resulted in                 

a library with no peptides present in the non-randomized protein sequences of any of the three target                 

organisms. The results were different between the tools, with up to 1857 false protein identities found (Figure                 

S1-2). As all false identities were based on fragments that did not originate from the nonrandomized spectral                 

library, considering the false positive rate underestimation of the conventional tools, up to 70% (421 of the 601                  

common proteins shown in Figure 2d) of proteins identified at 1% FDR with tools other than PARADIAS are                  

thus put into the question. The quantification based on a PARADIAS library, built using conventional methods                

(Navarro ​et al​, 2016; Demichev ​et al​, 2019) with an FDR threshold of 1%, resulted in precise ratios between                   

the two mixtures A and B in the dataset (Figure 2e), showing precise quantification using a spectral library                  

constructed directly from the decomposed spectra. 
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Figure 2. Precise protein identification and quantification with PARADIAS. ​(a) Proteins identified with Crux and               

MS-GF+ run on DIA-Umpire pseudo-spectra for each replicate, counted according to their prevalence across the               

replicates, compared with Crux results on PARADIAS output. Strikingly, MS-GF+ identifies very few proteins in all 9                 

replicates. PARADIAS produces deconvolved spectra from all input replicates, thus the number of IDs reflects the entire                 

dataset. Inset: Overlap of proteins identified by Crux with DIA-Umpire in at least 8 replicates, and proteins identified with                   

PARADIAS. ​(b) Precursor quantity coefficient of variation (median CV = 9.3%, plotted as dashed vertical line) across the                  

yeast replicates dataset, obtained from DIA-NN using a PARADIAS library. Inset: an example of highly correlated                

quantities between two replicates. ​(c) False positives count underestimation on the yeast replicates dataset, across               

different software, at 5% FDR. The bar plots show the number of protein IDs under a randomized trial (where all results                     

are false positives), both with and without using PARADIAS as a source of the spectral library, compared to the average                    

expected number of false positives (47) based on baseline (nonrandomized) runs for each tool. ​(d) Overlap between                 

proteins identified with PARADIAS coupled with Crux and MS-GF+ on the LFQbench HYE110 dataset, and published                

results from other tools. PARADIAS results have 10-fold more unique identifications. ​(e) LFQbench HYE110 results for                

PARADIAS coupled with DIA-NN, showing quantification of human (green), ​S. cerevisiae (orange), and ​E.coli ​(purple)               

peptides. The DIA data are acquired from two hybrid proteome mixtures A and B with known organism concentrations.                  

Plotted are log-transformed ratios (log ​2​(A/B)) of peptide concentrations over the log-transformed intensity of sample B,               

against the expected values for each organism (black dashed lines). Regression curves are shown with black dashed                 

lines. 
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DIA spectra are still proteomic “dark matter” 

Among the advantages of DIA is that acquired data represent a digital snapshot of all ions obtained from a                   

sample ​(Gillet ​et al​, 2012)​. While the idea is appealing, current library-based methods retrieve only a minor                 

fraction of analytes present in a sample, leaving the majority of acquired DIA spectra unused. To demonstrate                 

this, we calculated the overlap between m/z values of a DIA scan from the HYE110 dataset ​(Navarro ​et al​,                   

2016) and the corresponding published library. Allowing for a 5-minute retention time (RT) and a 50 ppm m/z                  

tolerance, the spectral library matched 80.77% of the m/z space of this scan. However, summing over the                 

corresponding signal intensities, the library covered only 2.2% of total ion current (TIC) recorded in the scan                 

(Figure 3a), showing that the majority of matched m/z points comprise baseline signals. Indeed, by filtering out                 

all scan intensities below 1, the covered m/z space drops to 3.46%. Thus, the remaining analyte signals, i.e.                  

unlabeled features, are missed by current conventional tools that rely on targeted quantifications. On the               

contrary, the PARAFAC decomposition method considers virtually all m/z space (Methods M2) in a DIA scan                

and discards unsystematic noise by leveraging the variability between scans to produce deconvolved spectra              

(Smilde ​et al​, 2005)​. Thus, a reconstructed scan obtained by recombining PARAFAC output modes (Methods               

M6) covered 72% of the same HYE110 scan TIC (Figure 3a), which is 33 times higher than what is covered by                     

the spectral library. Analogous results were obtained from ​Saccharomyces cerevisiae lysate and its             

corresponding spectral library built using fractionation ​(Vowinckel ​et al​, 2018)​, where the reconstructed             

PARAFAC pseudo-scan accounted for 12-fold more TIC than the corresponding library (Figure S1-3).  

 

Extracting the realistic number of analytes, however, is dependent on the choice of the correct number of                 

components ​(Smilde ​et al​, 2005)​. The challenge is to identify the number of components that would best                 

match the number of precursors in the samples. Finding the optimal number of components is however an                 

NP-complete problem ​(Håstad, 1989)​. Thus, to minimize the risk of overfitting due to an overestimated number                

of components, we developed an effective empirical approach that functions under the assumption that every               

analyte has to elute as a single chromatographic peak, our so-called “unimodality criterion” (Methods M3).               

Indeed, choosing the number of PARAFAC components with most unimodal elution profiles resulted in the               

highest number of significant (FDR < 1%) precursor identifications (Figure 3b). An increase in number of                

components did not result in more peptide identifications, rather, it resulted in about half of the amount yielded                  

by the optimal set. This is not surprising, as beyond the correct value, more components will start modeling                  

noise ​(Smilde ​et al​, 2005)​. As an intuitive example, Figure 3c compares a pair of best and worst models for the                     

yeast replicates dataset, by showing the time modes (elution profiles) of each component in a single slice                 

(single swath and time window), as output by PARAFAC. As demonstrated, the best model captures proper                

elution curves, whereas non-optimal models comprise a significant number of fragmented or very narrow,              

single-point curves, representing noise, which is also reflected in 54% lower number of precursor              

identifications compared to the optimal model (Figure 3b). For the yeast lysate dataset, as the median of the                  
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unimodality fraction across best models is 87% (Figure 3d), we attributed the remaining 13% of components to                 

captured noise. 

 

As empirical evidence of the quality of PARADIAS results, the total number of identified proteins for the yeast                  

lysate dataset is comparable to library-based methods (Figures 2a and 2d), and the median number of                

recovered precursors per protein is 8, which is similar to what is typically expected from these approaches                 

(Navarro ​et al​, 2016) (Figure S1-4). Accounting for noisy deconvolutions, the majority (median across datasets               

= 85%) of recovered spectra (i.e. components) were not mapped to peptide space, and this remaining set of                  

PARAFAC components is overall uncorrelated with the set of identified components (mean Pearson's ​r =               

﹣7e-4) (Figure 3e). This was assessed by decomposing the dataset from ​(Vowinckel ​et al​, 2018)​, consisting of                 

30 yeast lysate samples from a study of the TOR pathway, and calculating the correlation between identified                 

and unidentified unimodal sample modes (the sample mode of a component holds the contribution of that                

component to each sample, i.e. analyte abundance in sample). For this dataset, the average unimodal fraction                

was 90% and, by considering only these non-noisy components, we showed that unidentified components              

contain non-redundant information that could be leveraged by e.g. machine learning approaches ​(Zelezniak ​et              

al​, 2018; Haas ​et al​, 2017)​. 

 

Lastly, to extract information from the set of unidentified spectra using existing methods, we searched them for                 

post-translational modifications using MS-GF+ and, moreover, performed ​de novo ​sequencing using the state             

of the art machine-learning-based approach DeepNovo ​(Tran ​et al​, 2017)​, as well as the established tool                

Novor ​(Ma, 2015) (Methods M7). ​De novo sequencing benefits from deconvolved input ​(Muth & Renard,               

2018)​. In total, we identified 186 PTMs in the non-enriched yeast repalicates (Tables S1-1, S1-2), which was                 

twice more than using DIA-Umpire. Moreover, the latter exhibited very low prevalence of identifications, with               

only 8.2% appearing in at most 2 replicates (Figure S1-6). Likewise, DeepNovo and Novor respectively yielded                

4 and 24 times more high confidence (over 80% sequence correctness probability) ​de novo sequences from                

PARADIAS output, compared to running on DIA-Umpire output (Note S1-2).  
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Figure 3. DIA spectra are still proteomic “dark matter”. (a) Typical DDA spectral library coverage (2.2%) of the total                   

ion current (TIC) in a centroided DIA scan, compared with that of recovered PARAFAC components (72%). Shown is the                   

TIC per 1 second window of one HYE110 sample scan (black), along with the TIC of the scan spectra matched to the                      

library (blue), and the TIC of a reconstructed scan from PARAFAC output (red), as an approximation of the input DIA                    

scan. Matching with the library allowed for a 5-minute retention time (RT) and a 50 ppm m/z tolerance, and at least 4                      

library fragments (product m/z points) needed to match for a spectrum to be considered covered. The reconstructed scan                  

was obtained by taking the sum of the outer products of each unimodal component’s m/z and time mode, scaled                   

according to the sample mode coefficient for this scan and the maximum scan intensity (Methods M6). ​(b) Number of                   

peptides identified by Crux in the yeast replicates dataset, using the most unimodal models, compared with two control                  

model sets. The number of Crux (Comet with Percolator) peptide matches at 1% FDR is plotted for models with number                    

components chosen to maximize unimodality fraction (red), and compared against matches for sets of models containing                

half (blue) and twice (black) the optimal number of components, respectively. In total, 3405 peptides were identified using                  

models chosen based on unimodality, 1222 with models containing half the number of components, and 1837 with                 

models containing twice the number of components. ​(c) ​Unimodality fractions of all models solved for an example slice of                   

the yeast replicates dataset (MS 1 isolation window 479 - 496 m/z, RT time window 29 - 30 minutes) are shown top-left.                      

The best model (marked with a red dot) was chosen as F = 23, since this is the (lowest) F with 100% unimodal time                        

components. This best model is compared to the worst (F = 88, marked with a blue dot), with the lowest fraction (78%) of                       

unimodal time components. One can see how some of the curves in the worst model are fragmented (higher count of                    

detected peaks) or very narrow (even point-like, resulting in no peak detection). A slice spans 60 seconds and the                   

expected full-width at half maximum (FWHM) of a peak is 12 seconds ​(Vowinckel ​et al​, 2018)​. We thus considered the                    
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non-unimodal components to be noise. ​(d) Heatmap of unimodality fraction across best models for each slice, resulting                 

from the decomposition of the yeast replicates dataset. Inset: Distribution of best model unimodality fraction, with a                 

median of 0.87. ​(e) Heatmap of absolute Pearson correlations between sample modes of identified and unidentified                

components. Inset: The histogram of Pearson correlations.  
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Discussion 
Here we presented PARADIAS, a GPU-powered multiway decomposition framework enabling unsupervised           

and untargeted extraction of analyte signals from DIA data (Figure 1b). PARADIAS solves thousands of               

decompositions in real time, enabling multiway analyses of dense data-independent-acquired spectra. Parallel            

factor analysis ​(Harshman & Others, 1970; Carroll ​et al​, 1970)​, a multiway analysis technique behind               

PARADIAS, takes advantage of cross-sample analyte variation, enabling deconvolution of mass spectra            

belonging to individual precursors (Figure 1b, c). The recovered spectra can then be searched using               

conventional peptide search engines ​(McIlwain ​et al​, 2014; Kim & Pevzner, 2014) or ​de novo ​sequencing tools                 

(Tran ​et al​, 2017; Ma, 2015)​, to assign analyte identifications. Specifically, we demonstrated PARADIAS              

quantification precision by building a library from recovered spectra and analysing consecutive injections from              

yeast lysates acquired using a microflow setup ​(Vowinckel ​et al​, 2018)​. We also showed PARADIAS               

performance in quantifying complex background samples, i.e. in an unsupervised fashion, our framework             

identified peptides and their correct corresponding mixture quantity ratios with high confidence (peptide-level             

FDR < 1%) in the LFQ benchmark HYE110 dataset ​(Navarro ​et al​, 2016) (Figure 2e). Apart from being a                   

challenging benchmark from an acquisition point of view, as the samples contain a mixture of species in                 

different ratios, correctly identifying peptides and mixture ratios is also not trivial from the data analysis                

perspective: i) it requires estimating the correct number of components, corresponding to the realistic number               

of analytes present in the sample; ii) the identification of highly-quality recovered spectra is analogous to                

data-dependent acquisition directly from MS2 data without MS1 precursor mass isolation; iii) the quantification              

had to be correct for these recovered spectra in order to yield accurate ratios. Despite these challenges, our                  

unsupervised framework yielded similar results to the established targeted methods (Figure 2). 

 

The quantification and identification of specific analytes requires accurate estimation of false discovery rates,              

especially crucial when performing unsupervised and untargeted analyte quantification. For DIA data, the             

procedure is semi-targeted ​(Ludwig ​et al​, 2018)​, i.e. untargeted acquisition with the targeted analyte              

quantification either based on an experimental library or ​in silico methods ​(Yang ​et al​, 2020)​. Conversely,                

PARADIAS does not depend on a library, but instead builds one using recovered spectra from the observed                 

data, with analyte identification performed ​post-hoc using conventional peptide search engines. Comparison of             

PARADIAS results to those of other methods showed substantial differences in protein identifications, e.g. in               

the LFQbench HYE110 dataset, 601 proteins were quantified by all other methods except PARADIAS,              

whereas 1508 proteins with at least one peptide were uniquely quantified by PARADIAS using a library                

constructed from recovered DIA spectra. We considered that, despite the differences in false discovery rate               

estimation procedures of benchmarked software, in essence, they all use the similar target-decoy FDR              

estimation procedure ​(Reiter ​et al​, 2011)​. This led to the hypothesis that the observed differences between                

PARADIAS and other methods were due to the way FDR estimation is performed in targeted quantifications.                

Indeed, by randomly shuffling up to 50% of amino acids in peptide sequences and building ​in silico ​libraries for                   

targeted approaches (such that none of the shuffled libraries shared precursor fragments with the              

experimental library, Methods M5), and using these shuffled sequences as search databases to identify the               
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recovered spectra from PARADIAS, up to 20-fold more false identities were reported by other tools when not                 

using a PARADIAS library (Figure 2c, Figure S1-2). A potential explanation is that decoy generation               

techniques, such as random shuffling, sequence reversal, or introducing specific systematic mutations ​(Wang             

et al​, 2009; Levitsky ​et al​, 2017) would generate unrealistic scores, by having very different fragmentation                

patterns than those present in natural proteomes. The resulting decoy score distributions calculated from DIA               

data thus allow even 50% mutated peptides to be identified as hits, as opposed to running search engines on                   

deconvolved spectra output from PARADIAS, which uses spectral properties instead of DIA data target-decoy              

features and results in a more sensitive matching. Therefore, PARADIAS can be used for building               

high-confidence spectral libraries directly from data, and these can also be used with other targeted               

approaches to prevent false identification.  

 

Furthemore, we found that PARADIAS-recovered spectra contain on average twice more confidently identified             

(1% FDR) posttranslationally modified peptides than by using pseudo-spectra from established methods            

(Table S1-1). Although we consistently identified a total of only 101 modified peptides in our yeast lysate                 

replicates dataset, these were identified directly from a regular chromatography setup, without applying             

specialized PTM enrichment techniques ​(Zhao & Jensen, 2009)​. We demonstrated that recovered spectra can              

also be ​de novo sequenced, using combinatorial and deep learning approaches ​(Ma, 2015; Tran ​et al​, 2017)​,                 

resulting in up to 24 times more peptide sequences. 

 

Moving forward, we anticipate that further improvements to the framework will increase not only the quality and                 

quantity of results, but also running time. For this study, the method performed well due to the high-quality,                  

robust chromatographic gradients in our datasets ​(Vowinckel ​et al​, 2018; Navarro ​et al​, 2016)​, i.e. the yeast                 

and HYE110 datasets had less than 5% average variability in retention times. To account for less reproducible                 

gradients, adding a retention time alignment step ​(Lange ​et al​, 2008; Röst ​et al​, 2016) would certainly improve                  

spectra recovery and, correspondingly, the number of peptide identifications, as this is crucial for PARAFAC to                

perform well, since the trilinearity assumption is no longer guaranteed to hold when shifts on the retention time                  

axis are present ​(Smilde ​et al​, 2005)​. Additionally, a different decomposition method can potentially improve               

results, i.e. the theoretically better model in this case would be PARAFAC2, which allows for slight                

nonlinearities in one mode (retention time shifts in this case) ​(Bro ​et al​, 1999)​, thus alleviating the requirement                  

for robust gradients. However, at the time of this study no efficient implementation existed. Presently, the                

relative quantification is performed using a library constructed from deconvolved spectra, whereas the sample              

mode of each component already gives the relative contribution of that component to each sample. In practice,                 

we have seen this to be too imprecise to use for high-quality quantification. Thus, improvements to the                 

decomposition would enable analyte quantification from sample modes directly. Our framework can be readily              

adapted to other types of DIA data, including sliding MS1 window techniques ​(Messner ​et al​, 2019; Moseley ​et                  

al​, 2018) and small molecule metabolomics data ​(Zhu ​et al​, 2014)​. As the pipeline relies on the high-level                  

Python multiway framework TensorLy (compatible with major machine learning backends ​(Kossaifi ​et al​,             

2019)​), it can be readily adapted to include additional separation dimensions such ion-mobility separation              

(d’Atri ​et al​, 2018) using either four-way PARAFAC or Tucker3 decomposition. To conclude, as a               
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state-of-the-art computational solution to deconvolve MS scans, PARADIAS shows potential to greatly expand             

the coverage and efficacy of the DIA approach, and we hope it can serve as a general platform for multiway                    

analysis of mass spectrometry data. 
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Methods 

M1. Preprocessing 

DIA scans were partitioned and combined to form independent tensors for the decomposition stage. To               

determine the size of these partitions or “slices”, we used the MS 1 precursor isolation windows or “swaths” to                   

cut the scans along the m/z axis, and a reasonable time window to cut the retention time axis, depending on                    

the chromatography. Partitioning according to swaths is a natural approach, as precursor-product spectra             

within one swath are independent of those in other swaths. For the yeast replicates and TOR study datasets,                  

the time window was chosen as 1 minute, whereas for the HYE110 dataset, 5 minute windows were taken.                  

This choice balanced the number of expected elutants, due to differences in gradients (e.g. 20 minute vs 40                  

minutes) and hence, the range of possible models, against the resulting number of slices. To facilitate                

processing, the scan files were converted to tabular format and partitioned in parallel using the distributed                

computing framework Apache Spark. Each such slice thus contained the same (m/z, RT) partition for all input                 

scan files, which were then “stacked”, resulting in a (m/z, RT, sample) tensor structure, encoded as a NumPy                  

(Oliphant, 2006) array. Technically, each MS 1 survey scan and its respective MS 2 spectra were aligned                 

along the time axis, as they ought to form a single variable, i.e. the same column in the resulting matrix. The                     

preprocessing step resulted in a collection of independent tensors that span the entire m/z and RT range of                  

each sample. For more details, see Supplementary Note S1-3. 

M2. PARAFAC decomposition 

Each slice tensor (​D​) resulting from the preprocessing step was decomposed using PARAFAC into a sample                

mode ​S​, a (retention) time mode ​T​, and an m/z mode ​M​, plus a residual error term ​E​, for a given number of                       

components F spanning a predetermined range. For an explicit form using the Kruskal operator ​(Kolda &                

Bader, 2009)​, see Eq. 1. 

D​ = [[​S ​, ​T ​,​ M | ​F]]  + ​E ​ ,    for  F = 10, …, 90                                      (Eq. 1) 

Each of these three mode matrices consist of F components, which correspond to separable analyte signals.                

That is, assuming perfect decomposition, each column in ​S​, each column in ​M​, and each row in ​T corresponds                   

to the m/z spectrum, elution profile, and sample contribution of a single peptide. As this number F is unknown                   

a priori​, we performed the decomposition for an expected number of peptides within a slice. The choice of F                   

value range was informed by inspecting a scan with Spectronaut. A nonnegativity constraint was imposed on                

all modes. All slice tensors were decomposed in parallel using the TensorLy GPU-adapted implementation.              

(Kossaifi ​et al​, 2019)​, with PyTorch as a backend. 
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M3. Model selection 

To select the best model per slice from the range generated in the previous step, we counted the peaks of the                     

time mode of each component of each model, using a continuous wavelet transformation approach ​(Du ​et al​,                 

2006)​, implemented in the SciPy package ​(Virtanen ​et al​, 2020)​. As each analyte should have a single elution                  

peak, we counted, per model, the fraction of components with a single peak. Among all models generated for                  

a slice, we chose the simplest model (lowest F) with maximum fraction of unimodal time modes (see Figure 3c                   

for an illustration). To test the performance of this criterion, we constructed spectra files from two other model                  

sets, with the number of components set to half and twice the optimum F according to unimodality,                 

respectively, for each slice. These spectra files were then analyzed with Crux (Comet and Percolator) and the                 

number of high-confidence peptide identifications was compared. The models with highest unimodality had the              

best performance (Figure 3b).  

M4. Identification and Quantification 

The spectra from the best models are saved to an mzXML file. This resembles a DDA file since each scan                    

entry consists of the MS 2 part of the deconvolved spectrum, along with its corresponding highest intensity                 

MS 1 peak as precursor. This file was then searched using Comet and MS-GF+ to produce PSMs in                  

conjunction with a proteome FASTA database, using the same mass tolerance as the initial acquisition (i.e. 40                 

ppm for the yeast replicates and TOR study datasets, and 50 ppm for the HYE110 dataset). Comet results                  

were then filtered using Percolator at 1% FDR. The confidence assessment for both MS-GF+ and Percolator                

was done using reversed decoys. To search for PTMs, MS-GF+ was pre-configured to account for               

acetylations, succinylations, phosphorylations, and core 1 GalNAc glycosylations as variable modifications           

anywhere in the peptide, allowing for maximum 384 variable modifications. 

 
The output PARADIAS mzXML file was used to construct a spectral library following the protocol in ​(Schubert                 

et al​, 2015)​, using Comet as a source of PSMs. DIA-NN was then run on the initial DIA scan files using this                      

library to produce peptide quantities, using default parameters. Benchmark results for the HYE110 dataset              

were obtained using the lfqbench R package ​(Navarro ​et al​, 2016)​. 

M5. False positive assessment 

Proteome FASTA database files were randomized such that 50% and 30% of each trypsin-digested protein               

sequence got shuffled, for the yeast replicates and HYE110 results, respectively. DIA-NN and Spectronaut              

were run in library-free mode (called “directDIA” for the latter), generating a spectral library ​in silico based on                  

the shuffled database. The same mode was used for their baseline results on the original (nonrandomized)                

databases. As Skyline does not have ​in silico library generation, the library created by DIA-NN from shuffled                 

sequences was used as its source of transitions, and published spectral libraries ​(Vowinckel ​et al​, 2018;                

Navarro ​et al​, 2016) for baseline results. To assess the effect of using PARADIAS as a preprocessor, all tools                   
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were run using a spectral library created from the PARADIAS deconvolved spectra and the corresponding               

shuffled library, following the protocol in ​(Schubert ​et al​, 2015)​. For all these runs, we removed any resulting                  

spectra that were also found in the published libraries, thus ensuring we generated exclusively false positives.                

In terms of parameters, Skyline was run analogously with ​(Navarro ​et al​, 2016)​, Spectronaut and DIA-NN with                 

default settings, except with a 100% FDR threshold to allow selecting results at different false discovery levels. 

M6. Scan reconstruction from a PARAFAC model 

The output PARAFAC sample mode ​S​, retention time (RT) mode ​T​, and m/z mode ​M​, consisting of F                  

components resulting from the decomposition of a dataset, were used to reconstruct a pseudo-scan              

comprised of the deconvolved analytes. A pseudo-scan ​P​i is an (m/z, RT) matrix corresponding to the input                 

DIA scan ​i in the dataset. It is obtained by summing over the outer products of the m/z mode ​m and RT mode                       

t​, multiplied by contribution to scan i from the sample mode ​s​, for all unimodal PARAFAC components ​r in the                    

model.  

                                                            for input sample scan ​i ​                              (Eq. 2)(i)P i = ∑
F

r=1
(m )r ⊗ tr · sr  

Lastly, the resulting intensities in ​P​i were scaled back to the values in the corresponding scan ​i, ​and multiplied                   

by the model R​2​, as PARAFAC solutions do not preserve the scaling of the input tensor ​(Smilde ​et al​, 2005)​.                    

This is, in effect, the reverse operation to PARAFAC for a single input sample, discarding the residuals (Eq. 1                   

and Note S1-1, Eq. 2). The above operation was done piecewise, for each independent tensor produced by                 

PARADIAS partitioning of the input dataset. 

M7.​ De novo​ sequencing 

The output PARADIAS mzXML was converted to MGF format and subsequently set as input to Novor ​(Ma,                 

2015) and DeepNovo ​(Tran ​et al​, 2017)​. Novor was run using a mass tolerance of 50 ppm and DeepNovo a                    

tolerance of 10 ppm. Novor was set to CID fragmentation and TOF mass analyzer, using otherwise default                 

parameters. For DeepNovo, the pre-trained ​yeast.low.coon_2013 model was used, with a beam size of 5. For                

the baseline DIA-Umpire results, only the highest quality (Q1) extracted features were used, since these are                

far more likely to lead to good sequencing results, as good fragment coverage is needed ​(Muth & Renard,                  

2018)​. Moreover, we considered only sequences that appear in at least 6 out of 9 replicates based on                  

DIA-Umpire features. 

 

M6. Software availability 

The PARADIAS pipeline is available on GitHub at ​https://github.com/fburic/paradias​ .  
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