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Abstract 
 

Time-lapse live cell imaging of a growing cell population is routine in many biological 

investigations. A major challenge in imaging analysis is accurate segmentation, a process to define 

the boundaries of cells based on raw image data. Current segmentation methods relying on single 

boundary features have problems in robustness when dealing with inhomogeneous foci which 

invariably happens in cell population imaging. Here, we demonstrated that combined with multi-layer 

training set strategy, a neural-network-based algorithm Cellbow can achieve accurate and robust 

segmentation of cells in broad and general settings. It can also facilitate long-term tracking of cell 

growth and division. Furthermore, Cellbow is customizable and generalizable. It is broadly applicable 

to segmenting fluorescent images of diverse cell types with no further training needed. For bright-

field images, only a small set of sample images of the specific cell type from the user may be needed 

for training. To facilitate the application of Cellbow, we provide a website on which one can online 

test the software, as well as an ImageJ plugin for the user to visualize the performance before software 

installation.  
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1. Introduction 

Imaging has become a standard tool for the detection and analysis of cellular phenomena. 

Bright-field (BF) and fluorescent microscopy are widely used to quantify single-cell features1. The 

accurate quantification of such features critically depends on cell segmentation2.  

Segmentation (the identification of cell boundaries for individual cells) is based on cell edge 

properties in images3. In fluorescent images, the edge properties of cells are very uniform, and only 

depend on the expression of fluorescent proteins (Fig. 1A). However, the typical appearance of a BF 

image depends on the imaging depth. As the depth changes, the images of cells change from bright 

border and dark interior to dark border and bright interior (Fig. 1B). Although this is often being used 

as an advantage to achieve the segmentation of cells, most of the existing methods rely solely on a 

single boundary feature4-5. However, due to the cell size variability and the imperfect alignment of 

cells with the focal plane, the problem of inhomogeneous focus often occurs6. Especially during cell 

growth, when the cell density changes rapidly, cells exhibit multiple edge features in the same image, 

e.g., when large cells exhibit bright edge features, small cells would exhibit dark edge features (Fig. 

1C). As an algorithm based on a single feature would typically miss a subpopulation of cells, a large 

amount of subsequent manual correction work is required.  

In addition to local features such as dark or bright edges, cells also display many non-local 

features, such as specific shapes, size and length-to-width ratio. Such information is useful in 

identifying cells3. For example, floating agglomerated cells and impurities can exhibit edge 

characteristics similar to cells, but unlike cells, they have very different shapes (Fig. 1D, E). However, 

the discrimination of non-local features does not have a general solution7, so traditionally, different 

algorithms have been designed based on different cell shapes85. For example, algorithms for yeast 

cells are usually classified into either ball-shaped budding yeast algorithms91011 or rod-shaped fission 

yeast algorithms6,12,13. In practice, we often need to integrate and discriminate many aspects of shape. 

For example, rod-shaped fission yeast appear spherical under certain culture conditions (Fig. 1F). 

Therefore, a universal algorithm for non-local feature recognition is needed.  
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Another common problem with the design of cell segmentation program was user friendliness. 

Although a large number of algorithms have been designed, they are rarely accessible to users. Users 

have to overcome the cumbersome steps of full software installation before determining whether or 

not the algorithm is useful for analyzing their own data. One solution would be that the algorithm 

designer provides users with an easy demo which is very convenient to test user’s own image, such 

as a website or familiar image processing platform like ImageJ14. 

In the current study, we set out to develop a segmentation algorithm based on a deep neural 

network15 that can identify cell boundaries with inhomogeneous focus, using yeast cells as an 

example. It is a universal algorithm that can be applied to segment cells with multiple shape features 

and/or different imaging methods, such as ball-shaped budding yeast cells and rod-shaped fission 

yeast cells with bright-field images as well as fluorescent images. We then set out to design a website 

and ImageJ plugin for easy users’ test. Software for the algorithm is also available on the website.  

 
2. Results 

2.1 Multi-layer training dataset strategy solves the inhomogeneous foci problem 

The difficulty of the inhomogeneous foci problem is that when the cells are at different 

imaging depths, their boundary characteristics will change (Fig. 1B). It could be solved by 

summarizing all the boundary features at various imaging depths, and carefully designing algorithms 

to identify them separately. This seemingly difficult task can be naturally accomplished by deep 

learning algorithm. Deep neural networks are good at extracting and summarizing boundaries features 

from the provided training images. Therefore, we trained the network to recognize multiple cell 

boundary features by providing a multi-layer training set. 

We chose budding yeast to test the multi-layer training dataset strategy. Five layers of budding 

yeast images from 40 different fields of view, in which the cell boundary characteristics changed 

from bright border/dark interior to dark border/bright interior, were collected as the budding yeast 

dataset (Fig. 2A). Among that, 80% were used for training, 20% for testing. As the five layers of 

images were all from the same field of view, they shared a common labelling mask. Therefore, this 
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strategy did not increase the annotation burden. As a control, we made a second layer of the 40 fields 

of view to provide a single-layer budding yeast training set in parallel.  

 For the design of the neural network, we used fully connected neural network (FCNN) which 

has been applied to image segmentation tasks16 (Fig. 2B). The coding part, consisted of two down-

sampling convolutional and max pooling operators, and the de-coding part consisted of two up-

sampling de-convolutional and max pooling operators. The activation function was defined as 

sigmoid. Other detailed network structure parameters and training parameters are explained in the 

Methods. We name the network architecture “Cellbow”. After training, Cellbow was used to predict 

the cell body and background from a given new image. The predicted pixel values showed a bimodal 

distribution with peaks at 0 and 1, in which the background pixels were close to 0, and the cellular 

interior pixels were close to 1. Further thresholding was used to convert the prediction image into a 

binary mask.  

Firstly, we demonstrated that the network trained with the multi-layer dataset strategy 

(Cellbow-M) successfully recognized cells from all five layers (Fig. 2C). Meanwhile the network 

based on the single-layer training dataset (Cellbow-S) only captured cells from the second layer (Fig. 

2C). As expected, Cellbow-S failed to deal with the inhomogeneous focused cells. However, Cellbow 

-M captured both brighter and darker cell boundaries in the same image (Fig. 2C). Thus, the multi-

layer training dataset strategy enabled Cellbow to overcome the most commonly encountered 

inhomogeneous focus problem during the imaging process, resulting in robust cell segmentation.  

 In order to quantify the prediction performance, we calculated the pixel-based F1, DI17 (Dice), 

and JI17 (Jaccard) based on the network prediction R and ground truth images S. The equations for 

F1, DI, and JI are given in the Methods. The average F1 of Cellbow-M was 0.93 (DI value, 0.93; JI 

value, 0.87).  
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2.2  Cellbow: Universal local and non-local feature extraction 

To further investigate the ability of Cellbow to integrate and discriminate multiple cell shapes, 

we provided another multi-layer training set of bright-field rod-shaped fission yeast (Fig. 3A). In 

total, it contained 40 labeled focuses (each had 5 layers in depth). One hundred-eighty images were 

used for training and 20 were left for testing. Together with the ball-shaped budding yeast dataset, 

we retrained the neural network. Now named Cellbow-BF, it successfully identified both the rod-

shaped fission yeast cells as well as ball-shaped budding yeast cells (Fig. 3B). In addition to the cell 

shape, we noted that it excluded floating agglomerated cells and culture medium edges which 

exhibited local characteristics similar to cells (Fig. 3C). This indicated that Cellbow was able to 

discriminate non-local features in the training set. The average F1 of Cellbow-BF was 0.87.  

 
2.3 Cellbow is universal and individually customizable 

Cellbow was shown to be a rather universal algorithm that can summarize the local and non-

local features in the training set. This would greatly improve cell recognition tasks. Traditionally, 

recognition algorithms were designed based on fixed boundary features of a given type images. Often 

different imaging methods and cell types used completely different algorithms. The user needed to 

search for a suitable software for his/her own project. This process was quite time consuming and 

energy exhausting. 

Now the user can personalize Cellbow by offering their own training sets. Despite the fact 

that Cellbow can be a very accurate cell segmentation program, the required training set was small 

or even none. We demonstrated its versatility through the fluorescent image examples. In the 

fluorescent image, the cell boundaries only depend on the expression of fluorescent protein (Fig. 1A). 

Although the size and shape of different types of cells vary greatly, the feature of cell boundary is 

very consistent.  

The training dataset contained 40 images of the fluorescence-labelled cytoplasm of fission 

yeast. We trained the same network as above, and named the trained network Cellbow-Fluo. We 

found that using only rod-shaped fission yeast as a training set, Cellbow-Fluo accurately segmented 
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multiple cell types, such as the Synthetic cells (BBC005) and the Human U2OS cells (out of focus, 

BBBC0060) from Broad Bioimage Benchmark Collection18 (Fig. 4A).  

We compared Cellbow-Fluo with two fluorescent cell segmentation algorithms, the Cell 

Segmentation Generalized Framework (CSGF) 19,20 and the human cell pipeline in CellProfiler5. 

According to the ground truth provided by the database and segmented masks from three 

algorithms, F1, DI and JI were compared (Table1). The Cellbow-Fluo consistently outperformed 

the other two algorithms. This can also be seen from the scatter plots in Fig. 4A. We further 

analyzed where the accuracy has been improved. As it can be seen in Fig. 4A and B, the 

improvement of Cellbow was mainly located within the inter-cell gap, and these improvements 

were essential for accurate cell separation. In addition, we noticed that Cellbow’s differentiation of 

intercellular space was even better than the provided ground truth (Fig. 4B). Therefore, it can be 

seen that Cellbow not only achieved a significant improvement over the previous algorithms, but 

also needed no more training with further specific data for segmenting fluorescent images of 

diverse cell types. For bright field images, it may need training with a small set of customer-

provided images.  

 

2.4 Accurate segmentation facilitates long-term monitoring of cell populations 

Automated image analysis at the cellular level provides rich information. However, time-lapse 

cellular analysis is often hampered by inhomogeneous foci and the exponentially increasing cell 

density. In previous sections, we demonstrated that Cellbow, combined with a multi-layer training 

strategy, overcame the inhomogeneous foci problem robustly. To separate and identify single cells, 

we further applied distance transform-based watershed21 segmentation to the binary mask to achieve 

the final segmentation output (Fig. 5A). Once segmented into individual cells, we then identified the 

boundary, area, and centroid for each cell in the image. By using this algorithm, we tracked the cell 

number and cell size distribution of budding yeast and fission yeast (Fig. 5B, C).   
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To track the cells, we kept the cell body position in the image of the previous frame and 

searched for the most overlapped cell in the next frame. With this simple cell-tracking algorithm, we 

were able to trace the area growth curve of individual cells (Fig. 5D-G).   

 

2.5 Cellbow Website  

 Users prefer to test their own images, but the cumbersome and time-consuming software 

installation steps deter many of them. To facilitate the adoption and future development of Cellbow, 

we set up a dedicated website (http://cls.pku.edu.cn:808/online/home/) and designed two 

demonstration versions and one full version of Cellbow. The demonstration versions were designed 

for the users to try their own data directly and quickly. It contained an online prediction website and 

an ImageJ plugin.  The full version was tensor-flow-based source code22.  

 Website submission is easy and does not require any configuration by the user. A flowchart 

of how Cellbow predicts masks of cells from given images is shown in Fig. 6. The main webpages of 

the website are “Evaluation” and “Image Processing”. In “Evaluation” page, user can estimate the 

optimal objective magnification. It could be slightly different from the actual objective magnification 

value, because the performance of the network critically depend on the number of pixels occupied by 

a single cell. So the objective magnification difference depends on different imaging conditions and 

nutritional culture conditions. In “Image Processing” page, users can upload an image of their own, 

select the parameters, and click “Image Processing” button. Then, the cell mask images are generated 

and can be downloaded.  

 Another easy way to test Cellbow is using ImageJ plugin. Currently, we offer two plugins 

(Cellbow-BF for bright-field images of cells and Cellbow-Fluo for fluorescent images). Since it was 

written by macro language, no additional configuration is required. The user can just download the 

plugin and run it with their own image.  
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 We strongly recommend the user use the website and/or the ImageJ plugin as a first step. 

After selecting the satisfactory version of Cellbow, they can apply the fully version. The software has 

very fast processing speed, e.g. it takes 1s for the segmentation of 10 images on a personal computer. 

 

3. Discussion  

 In this work, we built a segmentation model Cellbow which simultaneously captured many 

features of cell boundaries in cell images. It overcame the most commonly-encountered 

inhomogeneous foci problem and facilitated long-term single-cell monitoring. Through the Cellbow 

website, users can test their input images following these steps: 

1. For fluorescent images of diverse types of cells, user can upload their input images and get the 

output masks on the website (Cellbow-Fluo). Usually no custom training is needed. 

2. For bright-field budding/fission yeast cells, users can upload their input images and get the output 

masks on the website (Cellbow-BF). Usually no custom training is needed.  

3. For other types of images or when the user does not get a satisfactory results, one can personalize 

Cellbow with a labelling set of ~40 images.  

Although in this article, we used multi-layer training set from the same field of view, but this 

is not necessary. Images can also come from different fields of view. As long as the training set 

contains multiple layers of data sets, the same improvement can be achieved. Compared with the two 

strategies, training sets from the same field of view reduces the labeling workload, and there is no 

essential difference otherwise.  

When testing on the budding yeast, we noticed that the small buds of budding cells were 

sometimes missed by Cellbow. The main reason for this was that the manually labeled daughter cells 

in the training set were not perfect, and some smaller bud cells were omitted when they were manually 

labeled. Also, the daughter cells accounted for a small proportion in the training set, so they were 

biased. After discovering this problem, we perfected the labelling of daughter cells in the training set 

and retrained the network. Part of the daughter cells were identified, but there were still failed 
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daughter cells. We need to work more in the future to solve this problem. This problem did not happen 

in the fission yeast cells. Therefore, the current algorithm was very successful for the statistics of 

mother cells, but caution should be taken when dealing with the budding daughters in budding yeast. 

  Finally, in applications we found that the follow-up segmentation and tracking procedure 

could be critical. Here we only used a simple watershed algorithm and centroid recognition to 

segment and track. In some cases, over-segmentation or under-segmentation can occur. Thus, for 

better performance it can be combined with some current downstream processing software.  
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4. Methods 

4.1 Input Datasets  

 Training set generation is one of the most crucial steps for any neural network application. 

We first generated ground truth masks for the first layer. Then, the ground truth masks were 

generalized to the remaining layers which were acquired under the same focus of view. The filled 

cell body was chosen for the facilitation of final segmentation. 

 In this study, five input datasets were generated: budding yeast bright-field dataset (256x256 

pixels), fission yeasts bright-field dataset (512x512 pixels), fission with various shape dataset 

(512x512 pixels), various contrast bright-field dataset (512x512 pixels), fluorescent dataset (512x512 

pixels). 

 
4.2  Image Preprocessing   

 This section mainly includes image labelling and augmentation step. The input images are 

regarded as matrixes of their original size square with labels in which inner-cell area is marked as 1 
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while background 0. In the process of data augmentation, we tend to acquire more images from origin 

sets to train the network with several ways like cropping, resizing and flipping, even though these 

new sub-images are exactly part of the original training set. However, they can actually provide 

efficient segment features to help the neural network achieve its best performance. 

 

4.3 Deep Neural Network Architecture and Training  

For encoding, we used two down-sampling convolutional and max-pooling operators; the 

down-sampling ratio was 1/2, take input image size of 256x256 pixels for example, it changed the 

image size from 256×256×1 to 128×128×16 in layer 2 and 64×64×32 in layer 3, and for decoding, 

we used two up-sampling de-convolutional and max-pooling operators. Notably, we chose sigmoid 

as the activation function following the convolutional and de-convolutional operators. The receptive 

field size of the FCNN was 5 in each layer, which is close to the diameter of a cell.  

Several training hyperparameters are set as iteration steps = 100000 while learning rate = 0.0001 

based on AdamOptimizer. After trained network predicting, one image for evaluating is transferred 

into a matrix of the same size while pixels are real numbers near 0 and 1, then the watershed algorithm 

is used to recognize independent cells. Our code is based on the open-source framework Tensor-flow, 

and trained on CLS H.P.C. (website: http://cls.pku.edu.cn:8080/clshpc/). 

 

4.4 Segmentation and Post-processing   

 Yeast-bow network had a same input and output size, which realized pixel-to-pixel prediction. 

However, cells boundaries in the output probability mask may not be separated perfectly under the 

condition like cells from a high-density population or mother-daughter cells. To further separate and 

identify single cells, watershed segmentation was applied to the probability mask to get the final 

segmentation output. The input of watershed is a distance map, where the intensity of seeds has the 

lowest value. Finally, cell binary centers and minimal convex closure polygon boundaries are 
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presented using another MatLab built-in function REGIONPROPS. Here, we ignore cells with an 

area less than a given threshold, here say it is 20 (default value). 

First, only keeping the cells you want to track in the first image and erase the rest of the cells. 

Followed by iterative tracking. During each iteration, the position of the center of mass of the cells 

in the next image is first identified, and then it is determined whether each mass center is in the 

presence of cells in the previous image, and if so, the cells where the mass center is located are 

retained. 

 

4.5 Evaluation Metrics  

 F1, DI (Dice Index) and JI (Jaccard Index) were used to evaluate the pixel-based segmentation 

performance of the FCNN by using an evaluation dataset. The prediction R from the network and 

ground truth images S determines these three metrics. The calculation of these metrics is given below. 
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