bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.051268; this version posted April 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Modeling robust and efficient coding in the mouse primary visual
cortex using computational perturbations

Binghuang Cai*, Yazan N. Billeh!, Selmaan N. Chettih?, Christopher D. Harvey?, Christof Koch®,
Anton Arkhipov', Stefan Mihalas"?

! Allen Institute for Brain Science, Seattle, WA, USA

2 Department of Neurobiology, Harvard Medical School, Boston, MA, USA

% Correspondence: stefanm@alleninstitute.org

Abstract

Investigating how visual inputs are encoded in visual cortex isimportant for elucidating the roles
of cell populations in circuit computations. We here use a recently developed, large-scale model
of mouse primary visual cortex (V1) and perturb both single neurons as well as functional- and
cell-type defined population of neurons to mimic equivalent optogenetic perturbations. First,
perturbations were performed to study the functional roles of layer 2/3 excitatory neurons in
inter-laminar interactions. We observed activity changes consistent with the canonical cortical
model (Douglas and Martin 1991). Second, single neuron perturbations in layer 2/3 revealed a
center-surround inhibition-dominated effect, consistent with recent experiments. Finaly,
perturbations of multiple excitatory layer 2/3 neurons during visual stimuli of varying contrasts
indicated that the V1 mode has both efficient and robust coding features. The circuit transitions
from predominantly broad like-to-like inhibition at high contrasts to predominantly specific like-
to-like excitation at low contrasts. These in silico results demonstrate how the circuit can shift
from redundancy reduction to robust codes as a function of stimulus contrast.
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I ntroduction

The nervous system in general, and mammalian neocortex in particular, exhibit staggering
complexity. Just in the visual cortex of the mouse, recent studies characterized ~100
transcriptomic (Tasic et a. 2016) and 46 morpho-electric cell types (Gouwens et al. 2019).
However, the 6-layered structure is relatively similar across areas and species (Hill and Walsh
2005). How does this circuit represent the visual stimuli? Is the representation of visual input
robust to noisy environments? Is the coding of the cortical circuit efficient enough for the
representation of visual inputs? One approach to characterize cortical function isto consider the
cortex as ashallow hierarchy of areas (J. A. Harris et al. 2019), with each area preforming a set
of transformations from their inputsto their outputs that are a subset of possible transfer
functions.

Since a comprehensive experimental characterization of the input/output transfer functionsis out
of reach, we seek to perform such a characterization usng a comprehensive model of one
cortical area. We have constructed such a model for the mouse primary visual cortex (areaV1) at
two levels of neuronal granularity, generalized leaky integrate-and-fire neurons (GLIF) and
biophysically-detailed neurons with spatially extended dendritic trees (Billeh et al. 2020). The
mode is thoroughly constrained by experimental datain terms of distribution of cell types
(Teeter et a. 2018; Gouwens et al. 2018), connectivity and visual inputs (Durand et al. 2016),
and reproduces a variety of in vitro and in vivo observations of cellular activity under both two-
photon calcium imaging as well as Neuropixels recordings (Siegle et a. 2019; de Vrieset al.
2019).

The construction of the cortical model focused on reproducing in vivo activity. Here, we study
how our computer model responds to perturbations, and we compare the responses to published
experimental perturbations at the level of cell types (Olsen et al. 2012), single cells (Chettih and
Harvey 2019) and functional populations (Marshel et al. 2019).

Experimental perturbations have been used to study functional interactions within populations in
vivo. One of the questions asked is whether lateral interactions among excitatory neurons are
dominated by like-to-like excitation or inhibition. Structurally, a salient feature of the observed
connectivity is like-to-like in both probability (Gilbert and Wiesel 1989; Ko et al. 2011) and
strength (Cossell et al. 2015) between L2/3 excitatory neurons. This hasled to the proposal of a
functional amplification role for these connections (K. D. Harris and Mrsic-Flogel 2013).
However in vivo, predominantly a like-to-like inhibition has been observed (Vinje and Gallant
2000; Chettih and Harvey 2019).

We are interested in relating these perturbations with normative theories of cortical processing.
Oneinfluential theory isthat local circuits process the information efficiently (Barlow 1961;
Attneave 1954). As beautifully reviewed by (Chalk, Marre, and Tkacik 2018), two regimes of
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efficient coding are described. For low noise, there is a need for redundancy reduction. One
mechanism to implement it is functional like-to-like inhibition (Olshausen and Field 1996b; King,
Zylberberg, and DeWeese 2013), which leads to the formation of a sparse code. However, at

high noise, some redundancy needs to be preserved for optimal coding (Karklin and Simoncelli
2011; Doi and Lewicki 2014; Brinkman et al. 2016; lyer and Mihalas 2017) which can be
implemented with like-to-like excitation. Can the detailed cortical model match the observed
perturbations, and can it balance redundancy reduction and robustness?

In this study, we used this newly-built V1 model employing the GLIF neuron (Teeter et al. 2018)
representation to ssmulate experiments. It requires three orders of magnitude less computing time
than the biophysically detailed version (Billeh et al. 2020; Gouwens et al. 2018), allowing usto
more rapidly explore the space of inputs by conducting thousands of simulations, permitting
exploration of the characteristics and coding mechanisms of V1 in an efficient way.

Starting from the responses to visual inputs, we investigate the effects of three types of
optogenetic perturbations, smulated by direct de- or hyperpolarizing current injections. First,
perturbations were performed at the cell type population level, mimicking cell type specific
optogenetic perturbations to study the functional roles of excitatory layer 2/3 inter-laminar
interactions. We provide access to comprehensive stimulations of perturbations of al cell types
in the supplementary material. Second, single neuron perturbation simulations were conducted to
explore how activity change of one neuron influences nearby neurons and network activity. The
simulation results are generally consistent multiple features of the experimental observations
(Chettih and Harvey 2019) however, specific higher order interactions differ. Finally, multiple-
neuron perturbations were performed for co-tuned excitatory neurons of layer 2/3. While the
neurons with similar tuning properties are affected by the perturbations, populations of excitatory
neurons across tuning and retinotopic locations are barely affected. These changes are consi stent
with inhibition stabilization of the activity (Ozeki et al. 2009). The simulation results reveal a
transition between a specific like-to-like excitation to a broad like-to-like inhibition when
trangitioning from low to high contrasts, and as a function of the size of the perturbation.

Whileit isdesirable to have optimal behavior at both high and low noise levels, it is unclear how
complicated the underlying structure must be to realize such atransition. We here demonstrate
that our recently published biologically realistic moddl of mouse V1 (Billeh et al. 2020) precisely
shows such a transition without requiring any alteration or parameter tuning. This shows the
power of realistic models to generalize, and link to theoretical aspects outside of those for which
they were trained.

The models were constructed and simulated using the Brain Modeling ToolKit (BMTK;
https://alleninstitute.github.io/bmtk/) (Gratiy et a. 2018) interfaced with NEST (Peyser et .
2017) and utilized the SONATA modeling format (https.//github.com/Allenlnstitute/sonata) (Dai
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et al. 2019). These tools and our smulation results are publicly available as a free resource for
the community.

Results

The GLIF V1 model, detailed in (Billeh et al. 2020), is visualized in Fig. 1A-C, and briefly
outlined below. The model includes neuronsin five layers, as layers 2 and 3 are combined asis
standard for mouse cortex (Wang et al. 2020). Layer 1 has one (inhibitory) cell type, Htr3a,
while all other layers are each populated by one excitatory and three inhibitory (Pvalb, Sst and
Htr3a) cell types (Fig. 1A; 17 cell typesintotal). The network receives ssmulated visual input
from the lateral geniculate nucleus (LGN), in addition to simulated background (BKG) from
other cortical regions and experimentally imposed perturbation (PTB) that mimic the effect of
optogenetic manipulations (Fig. 1C). The area of visual cortex that the model covers (Fig. 1A)
contains a “core”, the portion of the model considered in all analyses here, a“periphery” that
supplies extensive connections into the “core”’ to prevent boundary artifactsin the latter. The
digtribution of different neuron populationsis visualized in Fig. 1B. All parameters are set asin
(Billeh et al. 2020); single cell parameters were obtained from patch clamp measurements
(Teeter et al. 2018); connectivity was constrained by literature and fit to reproduce background
activity and evoked responses to drifting gratings, as described in (Billeh et a. 2020). No
parameters were tuned to match known perturbation experiments for this study.

The majority of ssimulations are based on perturbations during visual stimulation by a drifting
grating (with the following stimulus parameters, TF = 2Hz, SF = 0.04 cpd, contrast = 80%,
orientation = 270°), from 0.5 sto 3 s, or during the presentation of a grey screen in thefirst half
second. The stimulus conditions are varied while studying the effect of contrast on the
perturbations.

Cell Type Perturbations

We performed cell type specific optogenetic perturbations by injecting currents (either negative
or positive) into the neurons of the targeted population (Fig. 1C). We conducted two types of
perturbations: (i) complete silencing of an entire cell type population, and (ii) titrated activation
of asubset of cellswithin acell type (with E2/3 as an example). The results of the simulations
areshown in Figs. 1E, 2, S1-44.

The main analysis metric we are using is firing rate change, Af; = f* — f. ..o » COMputed for
every cell and then averaged over all cells within the analyzed selection of cells, where £ isthe
firing rate of neuron i during the perturbation, and £,,,.,; is the rate without the perturbation.
Additional metrics are discussed in the supplementary material.


https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.051268; this version posted April 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

One experimental cell type perturbation study which we can compare simulation results against
focused on layer 6 (Olsen et al. 2012). Positive current injectionsinto layer 6 excitatory neurons
(E6; Figs. S2A and S2B) show that these cells play a mildly inhibitory role on the upper layers
vialayer 6 Pvalb cells, which project to supragranular layers; correspondingly, suppressing layer
6 excitatory cells or layer 6 Pvalb cells resultsin disinhibition in upper layers, consistent with
(Olsen et a. 2012).
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Figure 1 Characterization of the GLIF V1 model used.

(A) Visualization of mouse posterior cortex illustrating the cortical surface area of V1 covered by the
model (400 um radius for the “core” within which neurons were analyzed and 845 um radius with the
surrounding annulus). (B) Visualization of half of the model to illustrate its composition. (C) Schematic
diagram of the inputs from the lateral geniculate nucleus (LGN), background (BKG) and perturbation
(PTB) with layers aligned to (B). Layer 1 contains asingle inhibitory class of Htr3a. All other layers have
an excitatory population and three inhibitory classes. Paravalbumin (Pvalb), Somatostatin (Sst), and Htr3a.
(C) Theinput from the LGN projectsto al layersin acell-type specific manner, as constrained by
experimental data (Ji et al. 2015). The model receives a 1kHz Poisson spike train background (BKG)
input to simulate the collective influence from other areas of the brain. The perturbation current is
injected by the PTB input to target cells. Inhibitory neuron types: Pvalb (blue), Sst (green) and Htr3a
(cyan); colors are the same in each layer. Excitatory neurons are colored in different hues of red across
layers 2/3, 4, 5, and 6. (D) Raster plot of a3 ssimulation of the model with LGN input as 0.5 s of grey
screen, followed by 2.5 s of a drifting grating. Note the neuron numbers for every population are ordered
based on the preferred their direction of motion. (E) Raster plot from a simulation where a subset of E2/3
neurons were activated (for the same stimulus as (D)). The perturbations applied to neurons that prefer
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motion 270°+/-45° and were situated within 100 pm from the center of the model. The injected current
was 3 times rheobase of the target population. An activity stripe in the perturbed neuronsin layer 2/3is
visible, with visual tuning being retained. The average Af for the entire E2/3 population during the
grating period increased by 0.49 Hz, leading to a barely perceptible increase of 0.07 Hz in al E5 neurons
and atiny decrease of 0.03 Hz and 0.05 Hz respectively in all E4 and E6 populations. While thereis a
large increase in the rate of the stimulated neurons, and excitatory neurons at similar orientations and
retinotopic locations, this causes an increased activation of inhibitory neurons, and a decrease in the rate
of excitatory neurons at other retinotopic locations or orientations. These changes translate to anear
balance at the level of the entire population, known as inhibition stabilization (Ozeki et al. 2009). The
color code for neuron typesin (B, D, E) isthesameasin (C).

Functional Population Perturbation

Perturbation of awhole cell type may not reflect biologically relevant dynamics. With recent
perturbations (Chettih and Harvey 2019; Packer et al. 2012; Yang et al. 2018; Peron et al. 2020;
Carrillo-Reid et al. 2019) targeting smaller populations or even individual neurons, we
investigated how perturbations of sub-populations may affect our V1 circuit. While we are not
addressing the question of whether a percept emerges from the subjective perspective of an
animal asaresult of such targeted perturbations, we are investigating how the external
“optogenetic” perturbation limited to neurons that share common response preference affects
network dynamics.

We applied perturbations to groups of neurons that prefer the same or similar directions of

motion of drifting grating: 270°+/-45°, 270°+/-22.5°, or 270°+/-11.25°. Furthermore, the
perturbation was limited to neurons occupying the central portion of the model within radii of 50,
100, 150, 200 or 250 um. Due to retinotopy, this selects for of neurons that share preferences for
asmall region of visual space. With an average cortical magnification of 70°/mm in the azimuth,
these correspond to smulating 3.5 to 17.5° of visual field (Kalatsky and Stryker 2003; Schuett,
Bonhoeffer, and Hubener 2002). All these perturbations were applied to a subset of E2/3 neurons.
Ten trials of the drifting grating stimuli were run for each perturbation smulation, with results
shown in Figs. 1E, 2, S3-S6.

It should be noted that while the effects of the perturbation on the firing rate of stimulated cells
aswell asthe cells of the same orientation and same retinotopic location in other populations can
be big (Fig. 2), dueto inhibition of cells at different retinotopic locations or of dissimilar
orientation, the effects at the level of the population are very small (Fig. 1E, Figs. S3-S5). The
guantitative analysis of the inhibition of cells at different retinotopic locations and at different
orientations for one stimulated cell isdescribed in Fig. 3, and their dependence on the number of
neurons activated and the contrast of the visual stimulus are described in Fig 4.
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Figure 2 Functional population perturbations of excitatory neurons of layer 2/3 with the
presentation of adrifting grating (TF = 2Hz, SF = 0.04 cpd, contrast = 80%, orientation = 270°).
The injected current is three times each neuron’ s rheobase. Perturbations were applied to neurons
that prefer motion in the direction of (A) 270°+/-11.25°, (B) 270°+/-22.5°, (C) 270°+/-45°,
within different radii (i.e., 50, 100, 150, 200 and 250 um) from the center, asillustrated in the pie
plot at the top. The activity changes (i.e., Af) are shown as heatmaps. The labels along the top x-
axis of these heatmaps correspond to the radii of the relevant populations that are being

perturbed with the number of neurons being perturbed at the bottom. The y-axis indicates the
population for which Af isevaluated. Af is computed using only the neurons that have the same
direction preference and radial positions as the perturbed population. The figure indicates
successful imprinting by exciting the layer 2/3 population, leading to distinct patterns of
activation. As expected, the effect of the perturbation becomes stronger as the number of
perturbed neurons increases.
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As an illustrative example, the raster plot of one of the perturbations applied to E2/3 neurons that
prefer motion in three directions (270°+/-11.25°, 270°+/-22.5° and 270°+/-45° within 100um
from the center of the model) is shown in Fig. S3. We can see stronger activity for the neurons
being perturbed in Figs. 1E and S3 for E2/3 population. The more neurons perturbed, the bigger
the band of elevated activity.

Fig. 2 showsthe overall activity changes of these local perturbations. The figureillustrates Af
for populations of neurons that share the direction preference and retinotopy with the perturbed
neurons. Activating subsets of E2/3 cells leads to increased activity in co-tuned L5 neurons. This
activity increases with the number of neurons stimulated up to ~50-100 neurons, saturating
subsequently. This number is similar to the observed neuron number required for perception
(Marshel et a. 2019). The stimulation also causes a massive increase in activity of the co-tuned
inhibitory neuronsin L2/3, and a general suppression of activity in L4 and L6. These patterns are
similar to the expectations from the canonical cortical model (Douglas and Martin 1991). Also,
of interest isthe effect of these finely tuned perturbations on the entire cell types population (not
just the co-tuned portion of it), shown in Fig. $4. Across orientations, the effect is mostly
inhibitory and much weaker than the one in Fig. 2. We observe the same effect in Figs. S5 and
S6 when using Optogenetic Modulation Index (OMI) rather than Af. Thisis expected in acircuit
in which the recurrent inhibition stabilizes overall network activity (Ozeki et al. 2009).

Single Neuron Perturbation

To compare results with a recent experiment (Chettih and Harvey 2019) that characterized the
effects of single-neuron perturbations on the activity of nearby layer 2/3 neurons, we likewise
activated individual neurons. Positive currents were injected to atarget E2/3 neuron close to the
center of the V1 model. Fifty sets of perturbation simulations, each done for adifferent target
neuron, were conducted, with 10 trials each. The results are shown in Figs. 3, S7-9.

First, we perturbed an E2/3 neuron with the same preferred direction as the input stimulus (Fig.
3A). Of course, in our simulations we can measure small effects very precisely by fixing the seed
of the random processes to be the same as in the unperturbed s mulations. We analyze the
simulation results using the same metric as in (Chettih and Harvey 2019), i.e., AActivity, defined
asthefiring rate changes divided by the standard deviation of such changes. This measures the
change to the network relative to the trial-by-trial variability (e.g. ameasure of 1 would mean
that perturbing a neuron would create a change equal to the standard deviation of the trial-by-
trial variability). To more directly compare with the experimental data, the values for AActivity
are averaged for al neighboring neurons, no matter whether excitatory or inhibitory. Averaging
over spatial positions and orientation tuning, we observe that, following the stimulation of one
E2/3 neuron, there is a very modest decrease (-5.75x10°%) in the average relative activity of other
L2/3 neurons. This perturbation is on the same order of magnitude as the experimentally
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observed one (-2x10°%). We can observe the trend of activity change with distance: nearby
neurons (<50um) were activated, while neurons further away (50-200um) were suppressed, and
the effect fading away with distance (Fig. 3C), showing similar spatial interaction terms to those
experimentally observed (Chettih and Harvey 2019) also shown in Fig. 3B.

To delve into cdl type specific effects, we analyze the results by separating excitatory and
inhibitory neurons. We also use the firing rate change as ametric asit is easier to develop an
intuitive understanding for the magnitude of the changes. Excitatory neurons follow a similar
gpatial dependency as the average, with nearby neurons being excited and the near surround
inhibited (Fig. 3D). Inhibitory neurons follow a different pattern, lacking the near surround
inhibition. As we averaged the effect over al orientation/direction preferences for excitatory
neurons, distance-dependency is not dependent on the preferred angle of the stimulated neuron
(Fig S7B). Since experimentally there is a potential bias towards recording excitatory neurons,
we performed a more in depth analysis of how potentially different samplings of the different
cell types can affect this result (Fig. S8). We observe that a weighted sum biased for excitatory
neurons (Fig. S8) shows an even better fit to the experimental data than the average metric.

While the average changes in excitatory neuron activity seem small (-1.6x10° Hz), they are
averaged over 3176 neurons. On a per neuron basis, stimulating one E2/3 neuron causes
~120 additional spikes (over 2.5 s), but leads to a decrease of 45 spikes discharged by other
excitatory neurons throughout the column up to 300um horizontally.

Beyond the dependence on relative spatial location (which in our model maps directly to
retinotopy), the interactions are dependent on the relative functional similarity in terms of
orientation/direction preference. When the visual stimulusis similar to the preferred stimulus of
the stimulated cell, inhibition predominantly acts on ssimilarly tuned neurons (Fig. 3E). The
suppression of the similarly tuned neurons is larger than a normalization would predict: the
relative decrease for similarly tuned neuronsis ~3 times larger than the relative decrease for
neurons of opposite direction.

We found it impressive that amodel which did not have any parameters tuned for this
computation was able to replicate these experimental results. However, no modd is perfect. We
found significant differences between experimental observations and the model results when
looking at the interaction between the recorded and stimulated neurons when the visual stimulus,
stimulated neuron and recorded neurons each had different preferred directions of motion (Figs.
S8 and S9) which is discussed in the supplementary material.
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Figure 3 Using the V1 modd to study effects of single-neuron perturbations on the population
activity. (A) Perturbation of alayer 2/3 excitatory neuron, with the same preferred direction as the input
stimulus. (B) Distance dependent the activity change from the experimental data (Chettih and Harvey
2019). (C) Combining the activity change of inhibitory and excitatory neurons using the metric from
(Chettih and Harvey 2019) depending on the distance (in 10um bins) from the single optogenetically
stimulated neuron. (D) Change in firing rates depending on the distance (in 10pum bins) from the single
optogenetically stimulated neuron. (E) Change in firing rates depending on the difference in preferred
angle (in 90° bins) between the recorded and the single optogenetically stimulated neuron.

Multiple Neuron Perturbation

Further perturbations were done for multiple E2/3 neurons to study their effect on the
surrounding neurons and the preferred angle of motion dependence of surrounding neurons. This
isdifferent from the functional population perturbation where we stimulated all neurons of a
particular type and with a particular tuning. Positive currents were injected into multiple target
E2/3 neurons (from 1 neuron to 100) around the center of the model (within aradius of 200 pm
from the center), preferring approximately the same direction as the stimulus input (270° within
a+/-11.25° range). Ten sets of perturbation simulations, each done for a different number of
target neurons, were conducted, with 10 trials for each set (Fig. 4, S10).

We analyze the effect of these activations on three populations of neighboring cells (Fig. 4A-C).
Neurons which prefer 270°+/-11.25° are very closdly aligned in orientations to the perturbed
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neuron. Neurons preferring 270°+/-45° but excluding 270°+/-11.25° are similar but not closely
aligned, correspond to a functional near surround. Neurons preferring 270°+/-45° are similar in
tuning and represent the sum of these populations. In all these cases E5 neurons were activated
while excitatory neurons in other layers were suppressed. Thisis consistent with the results
shown in the 200 um columnin Fig. 2A, while being smaller in magnitude as fewer E2/3
neurons were perturbed. We also observe a general activation of inhibitory neurons except those
in layer 6 (smilarly to the resultsin Fig. 2). The effect increases as the number of perturbed
Neurons iNCreases.

For E2/3 neurons, we observe a non-monotonic dependence (Fig. 4D). While neurons with
similar tuning are suppressed irrespective of the number of perturbed neurons, closdly aligned
neurons are activated for a small number of perturbed neurons but show suppression if more
than >50 neurons are triggered. Thisis caused by a“ center-surround” organization in functional
space (Fig S10), biased towards suppression. However, the effects of multiple stimulated
neurons are not additive. An additional shift towards suppression is observed, with atransition
towards suppressing everything else in the population when the number of stimulated neurons
exceeds 50.

As a control, we analyzed the dependence of the response to perturbation on the spatial
frequency of the stimulus. As the radius of the analyzed volume for this perturbation is 200 pum,
given the average retinotopic magnification, this corresponds to 6° of visual field. With a0.04
cpd spatial frequency of the stimulus, the maximal phase difference from the center corresponds
to a 90° phase difference. We analyzed the response to a 0.02 cpd spatial frequency, in which the
radius of the analyzed volume corresponds to 45° phase difference (Fig. 4E), and we observed
practically the same response to the perturbations.

The pattern of functional lateral interactions significantly changes with the contrast of the visual
stimulus. Here we used a drifting grating with spatial frequency of 0.02cpd with 5, 10, 20, 40 and
80% contrast (Figs. 4E-41, Fig S10). At high contrasts, inhibitory interactions are prevalent.
Similarly tuned E2/3 neurons (within 45°) monotonically decrease their activity as a function of
neurons stimulated, while closely-aligned (within 11.25°) neurons had a non-monotonic
dependence, with maximal activation for 50 stimulated neurons. At low contrasts, excitatory
interactions are predominant. Closely-aligned neurons monotonically increase their activity asa
function of neurons stimulated while similarly tuned neurons have a non-monotonic dependence
with a maximum activation also for 50 neurons stimulated. The model shows a center-surround
interaction in functional space (Fig S10).

This makes answering the question of whether we observe functional like-to-like excitation or

inhibition in the model complicated. It depends on the contrast of the stimulus, the number of
neurons stimulated and how strict one isin the definition of “like”. In general, at low contrasts
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we mainly observe specific like-to-like excitation and at high contrast a broad like-to-like

inhibition.
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Figure 4 Perturbations of multiple excitatory neurons (from 1 neuron to 100) in layer 2/3 during
drifting grating stimulation. The perturbed neurons were selected such that their preferred
direction closely matched the direction of the drifting grating: 270°+/-11.25° and within 200 um
radius. (A-C) Analysis of neurons within adirectional cone of 270°+/-45°, (B) 270°+/-45° but excluding
270°+/-11.25°, or (C) 270°+/-11.25°. The firing rate changes are shown as heatmaps. Labels along the y
axis indicate the population for which the firing rate change is computed. For E2/3, stimulated neurons
are excluded. E5 neurons were activated while the ones on other layers were suppressed. Inhibitory
neurons were activated except those in layer 6. These effects increase as the number of perturbed neurons
increases. (D) Activity changes of E2/3 neurons within different analyzed ranges. Closely aligned E2/3
neurons (within 11.25°) increase their activity for up to 50 stimulated neurons but decrease their activity
thereafter. Similarly tuned E2/3 neurons (within 45°) show decreasing activities. (E-l) Activity changes
of E2/3 neurons within different analyzed ranges for drifting grating with 0.02 cpd spatial frequency for
five different contrasts (5%, 10%, 20%, 40% and 80%). At lower contrasts, closely-aligned E2/3 neurons
increase their activity while similarly tuned neurons show a non-monotonic dependence on the number of
neurons stimulated, with a maximum around 50 neurons.

Discussion

In this study, we simulated optogenetic experiments using a previously constructed (Billeh et al
2020), anatomically and biophysically constrained model of mouse primary visual cortex to
understand cortical processing. All parameters in the model, consisting of about 250,000 GLIF
model neurons of 17 different cell types distributed from L1 to L6 (Fig. 1), werefixed asin
Billeh et a (2020). We then activated small number of neurons, ranging from one to hundreds,
and entire cell-type populations, to mimic optogenetic excitatory perturbations. The model is
useful asatool to quickly test outputs of potential experiments and thus help with experimental
design.

As adirect effect of the perturbations of single neurons, we found that exciting single E2/3
neurons gives rise, on average, to areduction in activity (Fig. 3). Such an effect increases with
the size of the perturbation (Fig. S10). An inhibitory first-order effect with perturbation sizeis
needed for inhibition stabilization of the global activity (Ozeki et a. 2009). Spatially, a center
surround effect is observed. Regarding the dependence on the orientation, for single neuron
perturbations we observed a broad inhibition which more strongly affects the more strongly
responsive neurons. These findings are consistent with experimental data (Chettih and Harvey
2019). However, higher order interactions, in which the visual input, stimulated neuron and
recorded neuron have different properties, are different in the model from experiments. One
potential explanation for the difference is the complexity of the tuning of the neurons. Bothin
the experiment and the model, thereisa“Mexican hat” interaction in functional space. I.e. when
stimulating one neuron there is an excitation to closaly-aligned neurons, and inhibition for
similar neurons. However, in the experiments the number of closely aligned neuronsis much
smaller than in smulation, such that even when stimulating one neuron generally like-to-like
inhibition is observed, even at lower contrasts. In simulations, to observe like-to-like inhibition
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we need to stimulate more neurons and provide a higher contrast stimulus than needed in the
experiments.

We focused our analysis on the observed functional like-to-like inhibition when perturbing single
neurons, asit is considered to be a hallmark of redundancy reduction (Olshausen and Field
1996b; King, Zylberberg, and DeWeese 2013). However, in the smulationsit is not universal. It
should be noted that no two neurons in the simulation have exactly the same tuning: they are
randomly drawn from continuum distributions in retinotopic and orientation tuning.
Anatomically, neurons have both like-to-like excitatory connections as well as like-to-like
inhibition. Which of these anatomical connections ends up being dominant depends on the
particular difference in tuning and is dependent on the contrast of the visual input. Generally, we
observed more like-to-like excitation at low contrasts (Fig 4), congruent with models of recurrent
amplification (K. D. Harris and Mrsic-Flogel 2013) and more like-to-like inhibition at high
contrasts (Olshausen and Field 1996b; King, Zylberberg, and DeWeese 2013). These
observations are consistent with arobust and efficient code with an emphasis on efficiency at
high contrasts and robustness at low contrasts (Karklin and Simoncelli 2011; Doi and Lewicki
2014, Brinkman et a. 2016).

Beyond the general transition from more excitation at low contrast to inhibition at high contrast,
the functional interactions are also dependent on how strict we are in the definition of similarity
in tuning and the number of neurons stimulated. For closely-aligned neurons (<12.5 degrees
difference) at high contrast (80%), and for similar neurons (<45 degrees difference) at low
contrast (<20%) we observed a hon-monotonic dependence of the perturbation effect on the
number of neurons stimulated. In both cases the largest perturbation is observed when ~50
neurons are stimulated. This might form a critical mass of neurons needed to change the network
state.

While the model incorporates alarge amount of diverse neurobiological data, the model also has
alarge number of unconstrained parameters. We have not systematically explored the parameter
space, but we provide a series of perturbationsto all the cell typesin the model as a battery of
tests (Fig. S1). These tests, when/if the experiments become available, can be used by the
community to further evaluate the predictive power of this moddl.

We are fully cognizant that no model is perfect. We view this work as a further refinement of a
long line of existing models stretching back more than a century, combining models of cellular
excitability (Lapicque 1907; Hodgkin and Huxley 1952) with models of sensory system
processing (Fukushima 1980).

As ageneral conclusion of the study, as we have not tuned any new parameters for this circuit
which we built with careful attention to local circuit properties and different single cell
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nonlinearities (Billeh et al 2020), the fact that we observed a transition from a broadly tuned like-
to-like inhibition dominated circuit at high contrast to specific like-to-like excitation dominated
interactions at low contrast, enables us posit that the local circuit transitions from redundancy
reduction when signal-to-noise of theinput is high, to robust code in the low signal-to-noise
regime, as predicted to be needed by theories of efficient coding (Karklin and Simoncelli 2011,
Doi and Lewicki 2014; Brinkman et a. 2016).

M ethods

The methodology of the V1 model building and perturbation simulation design is discussed in
this section.

Model Structure and Building

We briefly summarize here the V1 mode structure (Billeh et al. 2020). The full V1 model
described acylinder of cortical tissue with aradius of 845 um. The model was built with 230,924
neurons with 51,978 core neurons within the 400pum radius from the center of the V1 which are
the main subject of analysis. The model spansall layers of V1 and has 17 different cell types
(shown in Table 1). The diagram of the network is shown in Fig. 1C, together with structure
illustrations shown in Figs. 1A and 1B. We used the Generalized Leaky Integrate and Fire (GLIF)
version of the moded asit issignificantly faster to simulate.

The model receives input from an LGN network of 17,400 nodes and a background source.
There are totally 3,506,880 connections from LGN to the model, in which there are 786,405
connections to the core nodes at the center from LGN. The neuronsin the V1 model are also
recurrently connected with each other. The total number of recurrent connections within the V1
mode is 70,139,111, and the background node has 230,924 connectionsto all the nodesin the
V1 model. Note that, each edge has a different number of synapses.

Table 1 Cdl Type Populations Included in the GLIF V1 model
E2/3 E4 E5 |E6 12/3Pvalb | 12/3Sst
[4Pvalb | [4Sst I5Pvalb | [5Sst I6Pvalb | 16Sst

GLIF Node M odel

A class of point neuron models, i.e., GLIF (Generalized Leaky Integrate-and-Fire) models, were
recently used to fit the responses of alarge number of neurons of different cellstypesin the
mouse visual cortex (Teeter et a. 2018). In this study, we used Level 3 GLIF (GLIF3, or termed
LIF-ASC, i.e., leaky integrate-and-fire with after-spike currents) model, which was formulated as

Vo = LO+ ) [0 - ©-E)
j

15


https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.051268; this version posted April 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

where V(t) isthe membrane potential and I, isthe external injection current. When V(t) > 0,
(with 6,, asthe instantaneous threshold), V(t) isreset by the rule of
V(ty) <V,
with the resetting potential V. = E;. The GLIF3 model considers theion currents I; (¢) activated
by a spike, which isformulated as
L) = —klj(6);j =1, ,N
The update rule, which appliesif V(t) > 6,,, isgiven by
L(ty) « f; x L;(t2) + 61
where multiplicative constant f; = e~%i%  In this study, we use two sets of after spike current
parametersin the GLIF3 model (i.e., N = 2). For detailed description of GLIF3 models and
other four GLIF models, please refer to (Teeter et al. 2018).

The parameters for the GLIF models were trained based on the intracellular el ectrophysiological
data. The V1 model was built based on 111 cell models for the 17 populations shown in Table 1,
with parameters for each of these 111 cell models available through Allen Cell Types Database
(ACTD) (Allen Institute for Brain Science 2017).

Synapse M echanism

In this study, the NEST Simulator (Peyser et a. 2017) implementation of GLIF3 model was used
through BMTK (Gratiy et al. 2018). Linear exact solution and interpolated spike time were set in
the GLIF3 model for the V1 model simulation. Postsynaptic current-based synaptic ports were
used for all the GLIF3 models to take inputs from LGN, background, recurrent connections
within the V1 model. An alpha shape function was defined for the postsynaptic current (PSC) as

t

1 __t
Isyn(t) = ri,nte Tsyn

where 7, isthe synaptic port time constant. This function was normalized such that a post-
synaptic current with synapse weight one has an amplitude of 1.0 pA.

The synaptic port time constants z,,,,, for different types of connections are defined list as
follows. These time constant values were estimated based on time to peaks shown in Fig. S1B in
(Arkhipov et al. 2018) for the PSC features for connections between different populations.

Excitatory to Excitatory: 5.5 ms

Inhibitory to Excitatory: 8.5 ms

Excitatory to Inhibitory: 2.8 ms

Inhibitory to Inhibitory: 5.8 ms

LGN Input

The weights for the 3,506,880 connections from LGN to V1 were tuned based on the target post-
synaptic currents from literature (Lien and Scanziani 2013; Ji et al. 2015). The average post-
synaptic currents of each population were tuned to match the literature target currents. The small
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tuning network was created for each population with 100 nodes for each GLIF3 modé in the
population. As the average rheobase of the GLIF3 modelsis bigger than the ones from
experimental data, we scaled the weights from LGN to V1 by the factor of 1.36, which is average
ratio between average rheobases of GLIF3 models and experiment data over all the populations.

In this study, the LGN inputs were generated from stimuli presenting a half second of grey
screen and a following 2.5-second drifting grating. The drifting grating iswith temporal
frequency TF = 2Hz, spatial frequency SF = 0.04 cpd, contrast = 80%, and orientation = 270°.
Additional drifting grating stimuli (with a different SF = 0.02 cpd and different contrasts as 5%,
10%, 20%, 40% and 80%) were also used for the multiple neuron perturbations.

Background Input

This background (BKG) input represents long range inputs from areas other than LGN. It isto
simulate the effect of other parts of the brain on V1, which wasin the form of Poisson spiketrain
with firing rate being set as 1,000 Hz. The weights for 230,924 connections from BKG to V1
were initially estimated based on rheobases of the target V1 nodes and then tuned to match the
spontaneous firing rate of each population measured from experiments (Durand et al. 2016; Nidll
and Stryker 2008). Also, the number of synapses of each of such edges were estimated based on
the dendritic length of the cell. The tuning of background to V1 weight isto match the
spontaneous firing rates from experiments. During the tuning, in views of the too strong
background responses from E2/3 and E5 neurons, aswell as Pvalb neuronsin layers 4, 5 and 6,
the weights for the two populations of excitatory neurons, and Pvalb neurons in the three
aforementioned layers were scaled by the factors of 0.8 and 0.5. With automated tuning and
scaling, the V1 model was tuned to match spontaneous activity during grey screen stimulus from
experiment data.

Céll Type Perturbation

We first performed perturbation ssmulation experiments at the cell type population level to study
the functional roles of different types of inter-laminar interactions. The experiments included
population silencing, population activation and local functional population perturbation with
current injections to different subsets of population groups. Details of each of these simulation
experiments are described as follows.

Whole Cdl Type Population Perturbation

In the initial perturbations, with negative currents injected to the whole population, one of the 17
populationsin the V1 modd was silenced. We also examined injecting positive currentsto the
whole population, with L6 excitatory neurons and L6 Pvalb neurons as a demonstrative example.
The strengths of the injection for L6 populations are 0.5 times of the rheobase of the population
i.e, E6 or I6Pvalb.
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An additional analysis metric we are using for the population silencing is the Optogenetic
Modulation Index (OMI). It is computed for every cell and then averaged over the analyzed cells.
The OMI of aneuron isdefined as:

fl - fclontrol

fi + fciontol

where f* isthefiring rate of neuron i in perturbation simulation, and £, ,.,.,; isthe onein no-
perturbation simulation. Negative OMI indicates suppression of activity due to perturbation

(OMI = —1 meansthat the cell is fully suppressed), OMI = 0 means no change of activity, and
positive values indicate elevated activity due to perturbation.

OMIl =

Functional Population Perturbation

In the second set of perturbation, subpopulations of excitatory populationsin layers 2/3 were
perturbed by injecting positive currents three times the rheobase of the population. The perturbed
neurons in each simulation were selected with tuning angles in the ranges 270°+45°, 270°+22.5°
and 270°+£11.25°, and within different radii (i.e., 50um, 100um, 150um, 200pum and 250um)
from the center of the V1 model. The same ten trials of the LGN drifting grating stimuli were run
for the simulations.

Firing rate change (Af) is used to analyze the perturbation results. The response changes were
computed for the 17 populations in the model with Af only computed for those neurons of the
same preferring tuning angles and the same radius as the perturbed neurons. The results are
shown as heatmaps indicating the relations between Af and radius (Fig. 2), which are separated
by the ranges of tuning angle and perturbed populations (i.e., E2/3). The firing rate changes for
all neurons (including the perturbed E2/3 neurons) in the core of the V1 model of each
population are shown in Fig. $4. Additional analysis using OM1 is shown in Figs. S5 and S6.

Single Neuron Perturbation

Target Neurons

In the single neuron perturbation, positive current was injected to one target Cux2 excitatory
neuron in layer 2/3 for each ssimulation. The target neuron was selected within 50um radius from
the center of the V1 model and as close as the desired preferred angle within 5°. Two desired
preferred angles, i.e., 270° and 180°, were used. For each desired preferred angle, 50 different
simulations were run, each with a different perturbed neuron. For perturbed target neuron, 10
trials of stimuli were run. The visual stimulusisadrifting grating with TF = 2Hz, SF = 0.04 cpd,
contrast = 80%, orientation = 270°. One set of stimulated neurons are aligned to the visual
stimulus, while the other is orthogonal. Additional desired preferred tuning angles were also
simulated to compare with the observations reported in (Chettih and Harvey 2019), with results
shown in Fig. S8. The injecting currentsto the target neuron were set as three times of the
rheobase of the target neuron models.
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Neighboring Neurons

To measure the effect of the injection to the target neuron, the activity of neighboring neurons
within depth (Y axis) ranges [-50.0 um, 50.0 um] around the target neuron were analyzed. The
analyzed neighboring neurons were within the 300 pum radius on the horizontal plane. Layer 1
neighboring neurons within this range were not included in the analysis.

Grouping Neighbor Neurons
To analyze the effect of single neuron perturbation in different aspects including distance and
angle, the neighbor neurons were grouped by the following two criteria:
* Angle_diff (in degree): difference of tuning angles between target neuron 6,4, and
neighbor neurons 6,,.;4np0r-
» 2D Distance (in um): distance from the neighbor neuron to target neuron projected on
the horizontal plane.

Effect Measurements
To measure the effect of the perturbation on the target neuron, two metrics were used:
» Firing Rate Change (Af in Hz): firing rate change of a neighboring neuron with current
injection to the target neuron and without current injection to the target neuron, i.e.,
Af; = [ = froin; for the same LGN stimulus and BKG input
» AActivity: the activity change metric (Chettih and Harvey 2019) for neuron i in thetrial j
of thesimulationis:

(f}'i - f‘r:'oinj,j)
STD]?:O(I? - nloinj,j)
wherethefiring change | — f,n; ; Of the jthtrial is divided by the standard deviation
STD;_, of such firing rate changes over the 10-trial simulations for the same LGN

stimulus. Note that, different from the metric in (Chettih and Harvey 2019) using average
activity of control sites asthe control, the fully-control simulated V1 enable usto get the
exact activity of each neighbor neuron for each trial without perturbation and get the
exact difference between the perturbed activity and no-perturbed activity.

AActivity} = ,j=0,1,-9

Effect Summation

The evaluation metrics introduced above were averaged across 10 trials for each neighbor neuron.
The averaged metric values of all the neighbor neurons were binned into different groups. The
number of the binsfor distance-based analysisis 30, while the angle-based one is 4. The average
metric value for each group of the neighboring neurons (i.e., average value of each bin) is used
for evaluation the effect of the perturbation on the target neuron to the neighbor neurons of the
same group. Also, for firing rate change metric, excitatory and inhibitory neighbor neurons were
separated in the analysis, with results demonstrated in Figs. 3D, 3E, S7C and S7D. To compare
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with results reported in (Chettih and Harvey 2019), excitatory and inhibitory neighbor neurons
were combined together and analyzed using the metric AActivity, with results shown in Figs. 3C
and S7B. The target neuron in each simulation was excluded in the activity change analysis.

Multiple Neuron Perturbation

Multiple neuron perturbation simulations were conducted to explore how activity change of one
or more cortical neurons could influence nearby cortical neurons and network activity. We
targeted excitatory neuronsin layer 2/3 and analyzed the activity change of the surrounding
neighboring neurons with close and similar prefer tuning angles under perturbation on the target
neurons.

Target Neurons

Positive current with strength as 3 times of the rheobase was injected to one or more target Cux2
excitatory neuronsin layer 2/3. The target neurons were selected within 200 pm radius around
the center of the V1 model and the desired preferred angles within 11.25° around 270° which is
the input stimulus direction. The numbers of perturbed neuronsare 1, 2, 3, 5, 10, 20, 30, 50 and
100. For each number of perturbed neurons, ten different sets of the target Cux2 neurons were
randomly selected. For each set of target neurons, 10 trials with different instantiations of the
random inputs were run. The visual stimulusisadrifting grating with TF = 2Hz, SF = 0.04 cpd,
contrast = 80%, orientation = 270°. Additional simulations were also conducted with SF = 0.02
cpd and five different contrasts as 5%, 10%, 20%, 40% and 80%. Note that the radius and angle
range for the selection of target neurons were chosen to ensure enough neurons for perturbation
simulations.

Neighbor Neurons
To measure the effect of the perturbation, the activities of neighboring neurons of each cell type
population were analyzed. The analyzed neighboring neurons were with the 200 um radius on
the horizontal plane. The neighboring neurons within the following three different ranges of
preferred tuning angles were analyzed and compared.

o 270°445°

o 270°4£11.25°

o 270°%45°, excluding 270°+11.25°
We also analyzed neighboring neurons within 16 different ranges of preferred tuning angles
around the whole circle with range bins being 22.5° and center being at 0°, 22.5°, 45° etc (Fig.
S10).

Effect Measurements and Summation

Firing Rate Change (Af in Hz) was used and it was averaged across 10 trials. The averaged
values of all the selected neighbor neurons of a cell type were averaged again to get the average
Af for that cell type population. The average population Af was then averaged across the 10
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randomi zed selections of target neurons. The overall Af was compared across different numbers
of target neuron simulations as shown in Fig. 4 in the forms of heatmaps for all 17 populationsin
the V1 model and curve plots for the E2/3 population of different ranges of preferred angles. The
stimulated target neurons were excluded from population averages.
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Supplemental I nfor mation

Supplemental discussion on the similarities and differ ences between
simulated and observed single neuron perturbations

An additional analysis (Figs. S7-S9) was conducted for the single E2/3 neuron perturbation
simulations, to further compare the simulation results with experiment results reported in
(Chettih and Harvey 2019). The comparative analysis shows consistency between simulations
and experimentsin term of general suppression, higher order terms in distance dependence (Fig.
S8) and the dependence of interactions on the orientation difference between recorded neuron’s
preferred tuning and visual stimulus (Fig. 3E) when the stimulated neuron aligns with the visual
stimulus. That is, neurons preferentially responding to the visual stimulus are most suppressed as
shown in Figs. 3E and discussed in the Results section. There are differences in higher order
effect between stimulated and recorded neurons when the stimulated and recorded neurons and
visual stimuli are at different angles.

However, when it comes to higher-order observation regarding the interaction between the
direction of recorded neuron and the preferred direction of the stimulated neuron, our V1 model
illustrated distinct result with the experiment in (Chettih and Harvey 2019). The experiment
results showed the decrease in gain described in the 1st-order suppressive effect was greatest
when the tuning preference of stimulated neuron matched the presented visual stimulus, while
our model simulation results did not show such higher-order effect, but the oppositeis shown in
Fig. S9. A potential reason for the difference of the higher-order effect between the simulation
and experiment is the complexity of the neuron preferences. Sparse coding (Olshausen and Field
1996a, 1997) predicts alike-to-like inhibition in absence of noise and spikes. If the visual code
representing a feature does not map directly to the activity of one neuron, but an average over a
subpopulation of neuronswith identical codes, one would expect a stimulation of one neuron to
not have an inhibitory effect on identically tuned neurons. Such an effect is observed both in
simulations (Fig. S10 A) and in experiments and can be described as a“Mexican hat” for the
interactionsin functional space. In our model, the tuning properties of individual neurons are
probably not as varied as the onesin real mouse V1. Our V1 model has been thoroughly tested to
match the biological observations of representation of different directions of movements. It is
possible that on other features, for which we did not have a diversity of stimuli presented, the
preferences of cells are too similar for them to engage in meaningful competition. As such, if the
functional space for biology has higher dimensionality than the functional spacein the
simulations, the number of neurons with similar but not closely-aligned tuning will be much
higher in experiments, and will be most often seen.
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Supplemental figures
Silencing Simulations for Drifting Gratin
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Figure S1. Summary of silencing simulations during presentation of 0.5 s of grey screen and 2.5 sof a
drifting grating (TF = 2Hz, SF = 0.04 cpd, contrast = 80%, orientation = 270°). Labels along the
horizontal axis indicate the silenced populations. Labels along the vertical axisindicate the populations
for which OM1 is computed. The entries on the bottom right (i.e., “alHtr3a’ “alPvalb” and “allSst”) refer
to perturbations where multiple populations were silenced together (e.g., “alSst” means silencing Sst
neuronsin al layers). The OMIs showing in the heatmap are the average values across stimulus trials and
neurons in a population. Silencing E4 neurons leads to suppression of activity throughout the layers,
whereas silencing other excitatory neurons disinhibits excitatory neurons in other layers. Furthermore,
silencing inhibitory populations leads to elevated activity across the column in most cases.
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Figure S2 Raster plot of whole population perturbations of neurons on layer 6 following
presentation of adrifting grating.

(A) Raster plot of activation of E6 with half of the rheobase of the target population, resulting in
excitation of layer 6 Pvalb and suppression of other upper layer excitatory cells.

(B) Raster plot of activation of 16Pvalb neurons with half of the rheobase of the target population,
suppresses all excitatory cells across the column.
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Figure S3 Raster plot of population perturbations of E2/3 during presentation of a drifting
grating, with the injected current being 3 times of the rheobase of the target population. (A)
Basdline. (B) The perturbations applied to neurons that prefer motion in three directions —
270°+4/-11.25° (C), 270°+/-22.5° or (D), 270°+/-45° — and situated within 100 um of the center.
As more neurons are perturbed, the stripe of activated increases becomes wider.

25


https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.051268; this version posted April 23, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B C

270°+/-11.25° 270°+/-22.5° 270°+/-45°
Radius (um) Radius (um) Radius (um)
cooo co0o0oO co0OoOo

O owmnolun Cownouwn O owmnolin

Uit o SO e 5 T U e ™
I L -|1Htr3y
I L -E2/3

- - - 12/3Htr3a

] ll. ‘ 12/3Pvalb
12/3Sst

L L - E4

- - - l14Htr3a

- - - 14Pvalb

- - - 14Sst

- - - ES

- - - ISHtr3a

- - - 15Pvalb

- - - I5Sst

- - - E6 0

- - - l6Htr3a

- - - l6Pvalb -5

- - - 16Sst

N N w
o 9y o

=
o

=
(9]
Firing Rate Change (Hz) (Drifting Grating)

Responding Population
wun

(20 r~ —
<t ()] m

190 -
414 -
766 -
1187 1

o
o
o™~

197 -
314 -

o~
Q
—

Perturbed ertur
E2/3 Neurons E2/3 Neurons

5396 -
2 608 -

Perturbed
E2/3 Neurons
Figure $4 The exact same perturbation asin Fig. 2 with the sole difference that Af is averaged
over all orientations within the radii indicated rather than for the different functionally defined
populations. The activation of afunctionally co-tuned subpopulation of E2/3 neurons lead to a
robust activation of inhibitory neurons in the same layer. They produce an inhibition of
dissmilaryly tuned excitatory neurons, such that at the population level, the overall effects are
small.
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Figure S5 The same perturbation asin Fig. 2, S2 and $4 but using OMI asthe analysis
measurement rather than Af. The OMI for the different genetically defined populationsis
evaluated over the neurons that have the same direction preference and radial positions asthe
perturbed populations. The figure indicates successful imprinting by exciting E2/3, leading to
remarkably distinct patterns of activation. The perturbation effect on the whole column becomes
stronger as the number of perturbed neurons increases
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Figure S6 The same perturbation asin Fig. 2, S2-$4, but using OMI evaluated for all neurons
within the core (unlike Fig. S5 in which the computation is restricted to functionally defined sub-
populations).
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Figure S7 Using the V1 model to study effects of single-neuron perturbations on the popul ation
activity by stimulating an excitatory neuron with preferred direction orthogonal to the direction
of theinput stimulus (instead of same preferred direction in Fig. 3). Thisleadsto similar patterns
of distance dependence (B, C) to Figs. 3C and 3D, but substantial differencesin orientation
dependence: excitatory neurons tuned for the stimulus (but not the preferred angle of the target
neuron, i.e., angle_diff = 90°) were suppressed more than those dissimilarly tuned (D).
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Figure S8 Distance dependent activity change of single neuron perturbation using the V1 mode.
The activity change measure is defined as firing rate changes normalized by standard deviation
of firing rate changes of the 10 trials of each of the drifting grating stimuli smulations, whichis
similar to AActivity used in (Chettih and Harvey 2019). The measure plot is depending on
distance from stimulated neuron.

(A) Activity change of excitatory neurons in layer 2/3 with standard error shown as red dashed lines. We
observe the center-surround effect similar to the ones shown in Figs. 3D and S7C, and is consistent with
the findings in the experiment (Chettih and Harvey 2019).

(B) Activity change of inhibitory neurons with Pvalb neuronsin layer 2/3 shown as an illustrative
example. We again observe the center-surround effect similar to the ones shown in Figs. 3D and S73C,
and is consistent with the findings in the experiment (Chettih and Harvey 2019) as well.

(C) Activity change of al excitatory and inhibitory neuronsin layer 2/3. We observe the center-surround
effect similar to the ones shown in Figs. 3C and S7B and is consistent with the findings in the experiment
(Chettih and Harvey 2019). From the figure, we can see the E-l crossover is at 70pm which is consistent
with the one reported in the experiment (Chettih and Harvey 2019). Note that measurements from
inhibitory neurons were scaled down by a factor of 0.25 to match the experiment setting as some fraction
of inhibitory neurons were included in the experiment data collected based calcium signals from
excitatory neurons.
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Figure S9 Tuning angle dependency analysis for single neuron perturbations using the V1 model
for simulations of 5 sets of stimulated neurons with preferred orientations as 180°, 202.5°, 225°, 247.5°
and 270°.

(A) Spike counts of responding neurons with preferred tuning angle near 270° (i.e., the orientation of the
visual stimulus) with respect to preferred orientation of every stimulated neuron. We can observe
variability between neurons with nearby preferences, but on top of thisvariability it is very clear that
there are more spikes in these neurons when a 270° preferring neuron was stimulated. This suggests that
the stimulus gain is greatest when stimulated neuron preference and presented visual stimulus coincide.
Thisis counter to the strongest suppression observation in the experiments as shown in Fig. 4ein (Chettih
and Harvey 2019). Thisrelation is summarized into one number, the correlation between the spike count
of the neurons preferring 270° and the stimulated neuron preferred direction.

(B) Correlations of the spike counts of neurons as a particular preferred direction with the preferred
direction of the stimulated neuron (the correlation for the plot in A is represented as the point in B at
270°). The figure shows that neurons around 90° and 270° (i.e. those with orientation preference
matching the visual stimulus) have greater responses as the stimulated neuron’ s presence goes from 180°
to 270°, and the opposite is true for neurons at 0° and 180°. This again shows the opposite 3% order effect
reported in (Chettih and Harvey 2019).
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Figure S10 Perturbations of multiple excitatory neurons (from 1 neuron to 100) in layer 2/3
during drifting grating stimulation. The perturbed neurons were selected such that their preferred
direction closely matched the direction of the drifting grating: 270°+/-11.25° and within 200 um
radius. The plots show activity changes of E2/3 neurons dependent on the angle difference
between the analysis of neurons and the stimulus direction (i.e., 270°). Each of these plotsisfor
simulation of a particular number of perturbed neurons. In the plot, labels along x axis indicate
such angle differencesin 22.5° bins, and labels along the y axis indicate the firing rate changes
of the analyzed neurons. The curves were color coded for five different contrasts (5%, 10%, 20%,
40% and 80%) for drifting grating with 0.02 cpd spatial frequency. We can see Mexican hat
shape curve for activity changes of E2/3 neurons centering around the visual stimulus direction.
Closealy aligned E2/3 neurons (within 11.25°) were the ones most activated, while the ones
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similarly tuned (within 45°) show mostly-decreasing activities. Such an effect was decreased as
the contrast increased and also as the number of perturbed neurons decreased.
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