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Abstract 
Investigating how visual inputs are encoded in visual cortex is important for elucidating the roles 
of cell populations in circuit computations. We here use a recently developed, large-scale model 
of mouse primary visual cortex (V1) and perturb both single neurons as well as functional- and 
cell-type defined population of neurons to mimic equivalent optogenetic perturbations. First, 
perturbations were performed to study the functional roles of layer 2/3 excitatory neurons in 
inter-laminar interactions. We observed activity changes consistent with the canonical cortical 
model (Douglas and Martin 1991). Second, single neuron perturbations in layer 2/3 revealed a 
center-surround inhibition-dominated effect, consistent with recent experiments. Finally, 
perturbations of multiple excitatory layer 2/3 neurons during visual stimuli of varying contrasts 
indicated that the V1 model has both efficient and robust coding features. The circuit transitions 
from predominantly broad like-to-like inhibition at high contrasts to predominantly specific like-
to-like excitation at low contrasts.  These in silico results demonstrate how the circuit can shift 
from redundancy reduction to robust codes as a function of stimulus contrast.  
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Introduction 
The nervous system in general, and mammalian neocortex in particular, exhibit staggering 
complexity. Just in the visual cortex of the mouse, recent studies characterized ~100 
transcriptomic (Tasic et al. 2016) and 46 morpho-electric cell types (Gouwens et al. 2019). 
However, the 6-layered structure is relatively similar across areas and species (Hill and Walsh 
2005). How does this circuit represent the visual stimuli? Is the representation of visual input 
robust to noisy environments? Is the coding of the cortical circuit efficient enough for the 
representation of visual inputs? One approach to characterize cortical function is to consider the 
cortex as a shallow hierarchy of areas (J. A. Harris et al. 2019), with each area preforming a set 
of transformations from their inputs to their outputs that are a subset of possible transfer 
functions.  
 
Since a comprehensive experimental characterization of the input/output transfer functions is out 
of reach, we seek to perform such a characterization using a comprehensive model of one 
cortical area. We have constructed such a model for the mouse primary visual cortex (area V1) at 
two levels of neuronal granularity, generalized leaky integrate-and-fire neurons (GLIF) and 
biophysically-detailed neurons with spatially extended dendritic trees (Billeh et al. 2020). The 
model is thoroughly constrained by experimental data in terms of distribution of cell types 
(Teeter et al. 2018; Gouwens et al. 2018), connectivity and visual inputs (Durand et al. 2016),  
and reproduces a variety of in vitro and in vivo observations of cellular activity under both two-
photon calcium imaging as well as Neuropixels recordings (Siegle et al. 2019; de Vries et al. 
2019). 
 
The construction of the cortical model focused on reproducing in vivo activity. Here, we study 
how our computer model responds to perturbations, and we compare the responses to published 
experimental perturbations at the level of cell types (Olsen et al. 2012), single cells (Chettih and 
Harvey 2019) and functional populations (Marshel et al. 2019).  
 
Experimental perturbations have been used to study functional interactions within populations in 
vivo. One of the questions asked is whether lateral interactions among excitatory neurons are 
dominated by like-to-like excitation or inhibition. Structurally, a salient feature of the observed 
connectivity is like-to-like in both probability (Gilbert and Wiesel 1989; Ko et al. 2011) and 
strength (Cossell et al. 2015) between L2/3 excitatory neurons. This has led to the proposal of a 
functional amplification role for these connections (K. D. Harris and Mrsic-Flogel 2013). 
However in vivo, predominantly a like-to-like inhibition has been observed (Vinje and Gallant 
2000; Chettih and Harvey 2019). 
 
We are interested in relating these perturbations with normative theories of cortical processing. 
One influential theory is that local circuits process the information efficiently (Barlow 1961; 
Attneave 1954). As beautifully reviewed by (Chalk, Marre, and Tkačik 2018), two regimes of 
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efficient coding are described. For low noise, there is a need for redundancy reduction. One 
mechanism to implement it is functional like-to-like inhibition (Olshausen and Field 1996b; King, 
Zylberberg, and DeWeese 2013), which leads to the formation of a sparse code. However, at 
high noise, some redundancy needs to be preserved for optimal coding (Karklin and Simoncelli 
2011; Doi and Lewicki 2014; Brinkman et al. 2016; Iyer and Mihalas 2017) which can be 
implemented with like-to-like excitation. Can the detailed cortical model match the observed 
perturbations, and can it balance redundancy reduction and robustness? 
 
In this study, we used this newly-built V1 model employing the GLIF neuron (Teeter et al. 2018) 
representation to simulate experiments. It requires three orders of magnitude less computing time 
than the biophysically detailed version (Billeh et al. 2020; Gouwens et al. 2018), allowing us to 
more rapidly explore the space of inputs by conducting thousands of simulations, permitting 
exploration of the characteristics and coding mechanisms of V1 in an efficient way. 
 
Starting from the responses to visual inputs, we investigate the effects of three types of 
optogenetic perturbations, simulated by direct de- or hyperpolarizing current injections. First, 
perturbations were performed at the cell type population level, mimicking cell type specific 
optogenetic perturbations to study the functional roles of excitatory layer 2/3 inter-laminar 
interactions. We provide access to comprehensive stimulations of perturbations of all cell types 
in the supplementary material. Second, single neuron perturbation simulations were conducted to 
explore how activity change of one neuron influences nearby neurons and network activity. The 
simulation results are generally consistent multiple features of the experimental observations 
(Chettih and Harvey 2019) however, specific higher order interactions differ. Finally, multiple-
neuron perturbations were performed for co-tuned excitatory neurons of layer 2/3. While the 
neurons with similar tuning properties are affected by the perturbations, populations of excitatory 
neurons across tuning and retinotopic locations are barely affected. These changes are consistent 
with inhibition stabilization of the activity (Ozeki et al. 2009). The simulation results reveal a 
transition between a specific like-to-like excitation to a broad like-to-like inhibition when 
transitioning from low to high contrasts, and as a function of the size of the perturbation. 
 
While it is desirable to have optimal behavior at both high and low noise levels, it is unclear how 
complicated the underlying structure must be to realize such a transition. We here demonstrate 
that our recently published biologically realistic model of mouse V1 (Billeh et al. 2020) precisely 
shows such a transition without requiring any alteration or parameter tuning. This shows the 
power of realistic models to generalize, and link to theoretical aspects outside of those for which 
they were trained.  
 
The models were constructed and simulated using the Brain Modeling ToolKit (BMTK; 
https://alleninstitute.github.io/bmtk/) (Gratiy et al. 2018) interfaced with NEST (Peyser et al. 
2017) and utilized the SONATA modeling format (https://github.com/AllenInstitute/sonata) (Dai 
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et al. 2019). These tools and our simulation results are publicly available as a free resource for 
the community. 
 

Results  
 
The GLIF V1 model,  detailed in (Billeh et al. 2020), is visualized in Fig. 1A-C, and briefly 
outlined below. The model includes neurons in five layers, as layers 2 and 3 are combined as is 
standard for mouse cortex (Wang et al. 2020). Layer 1 has one (inhibitory) cell type, Htr3a, 
while all other layers are each populated by one excitatory and three inhibitory (Pvalb, Sst and 
Htr3a) cell types (Fig. 1A; 17 cell types in total). The network receives simulated visual input 
from the lateral geniculate nucleus (LGN), in addition to simulated background (BKG) from 
other cortical regions and experimentally imposed perturbation (PTB) that mimic the effect of 
optogenetic manipulations (Fig. 1C). The area of visual cortex that the model covers (Fig. 1A) 
contains a “core”, the portion of the model considered in all analyses here, a “periphery” that 
supplies extensive connections into the “core” to prevent boundary artifacts in the latter. The 
distribution of different neuron populations is visualized in Fig. 1B. All parameters are set as in 
(Billeh et al. 2020); single cell parameters were obtained from patch clamp measurements 
(Teeter et al. 2018); connectivity was constrained by literature and fit to reproduce background 
activity and evoked responses to drifting gratings, as described in (Billeh et al. 2020). No 
parameters were tuned to match known perturbation experiments for this study. 
 
The majority of simulations are based on perturbations during visual stimulation by a drifting 
grating (with the following stimulus parameters, TF = 2Hz, SF = 0.04 cpd, contrast = 80%, 
orientation = 270°), from 0.5 s to 3 s, or during the presentation of a grey screen in the first half 
second. The stimulus conditions are varied while studying the effect of contrast on the 
perturbations. 
 

Cell Type Perturbations 
We performed cell type specific optogenetic perturbations by injecting currents (either negative 
or positive) into the neurons of the targeted population (Fig. 1C). We conducted two types of 
perturbations: (i) complete silencing of an entire cell type population, and (ii) titrated activation 
of a subset of cells within a cell type (with E2/3 as an example). The results of the simulations 
are shown in Figs. 1E, 2, S1-S4. 
 

The main analysis metric we are using is firing rate change, Δ��  � �� � ���������  , computed for 
every cell and then averaged over all cells within the analyzed selection of cells, where ��  is the 

firing rate of neuron � during the perturbation, and ���������  is the rate without the perturbation. 
Additional metrics are discussed in the supplementary material. 
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One experimental cell type perturbation study which we can compare simulation results against 
focused on layer 6 (Olsen et al. 2012). Positive current injections into layer 6 excitatory neurons 
(E6; Figs. S2A and S2B) show that these cells play a mildly inhibitory role on the upper layers 
via layer 6 Pvalb cells, which project to supragranular layers; correspondingly, suppressing layer 
6 excitatory cells or layer 6 Pvalb cells results in disinhibition in upper layers, consistent with 
(Olsen et al. 2012).  

Figure 1 Characterization of the GLIF V1 model used. 
(A) Visualization of mouse posterior cortex illustrating the cortical surface area of V1 covered by the 
model (400 µm radius for the “core” within which neurons were analyzed and 845 µm radius with the 
surrounding annulus). (B) Visualization of half of the model to illustrate its composition. (C) Schematic 
diagram of the inputs from the lateral geniculate nucleus (LGN), background (BKG) and perturbation 
(PTB) with layers aligned to (B). Layer 1 contains a single inhibitory class of Htr3a. All other layers have 
an excitatory population and three inhibitory classes: Paravalbumin (Pvalb), Somatostatin (Sst), and Htr3a. 
(C) The input from the LGN  projects to all layers in a cell-type specific manner, as constrained by 
experimental data (Ji et al. 2015). The model receives a 1kHz Poisson spike train background (BKG) 
input to simulate the collective influence from other areas of the brain. The perturbation current is 
injected by the PTB input to target cells. Inhibitory neuron types: Pvalb (blue), Sst (green) and Htr3a 
(cyan); colors are the same in each layer. Excitatory neurons are colored in different hues of red across 
layers 2/3, 4, 5, and 6. (D) Raster plot of a 3 s simulation of the model with LGN input as 0.5 s of grey 
screen, followed by 2.5 s of a drifting grating. Note the neuron numbers for every population are ordered 
based on the preferred their direction of motion. (E) Raster plot from a simulation where a subset of E2/3 
neurons were activated (for the same stimulus as (D)). The perturbations applied to neurons that prefer 
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motion 270°+/-45° and were situated within 100 µm from the center of the model. The injected current 
was 3 times rheobase of the target population. An activity stripe in the perturbed neurons in layer 2/3 is 

visible, with visual tuning being retained. The average Δ� for the entire E2/3 population during the 
grating period increased by 0.49 Hz, leading to a barely perceptible increase of 0.07 Hz in all E5 neurons 
and a tiny decrease of 0.03 Hz and 0.05 Hz respectively in all E4 and E6 populations. While there is a 
large increase in the rate of the stimulated neurons, and excitatory neurons at similar orientations and 
retinotopic locations, this causes an increased activation of inhibitory neurons, and a decrease in the rate 
of excitatory neurons at other retinotopic locations or orientations. These changes translate to a near 
balance at the level of the entire population, known as inhibition stabilization (Ozeki et al. 2009). The 
color code for neuron types in (B, D, E) is the same as in (C). 
 

Functional Population Perturbation 
Perturbation of a whole cell type may not reflect biologically relevant dynamics. With recent 
perturbations (Chettih and Harvey 2019; Packer et al. 2012; Yang et al. 2018; Peron et al. 2020; 
Carrillo-Reid et al. 2019) targeting smaller populations or even individual neurons, we 
investigated how perturbations of sub-populations may affect our V1 circuit. While we are not 
addressing the question of whether a percept emerges from the subjective perspective of an 
animal as a result of such targeted perturbations, we are investigating how the external 
“optogenetic” perturbation limited to neurons that share common response preference affects 
network dynamics. 
 
We applied perturbations to groups of neurons that prefer the same or similar directions of 
motion of drifting grating: 270°+/-45°, 270°+/-22.5°, or 270°+/-11.25°.  Furthermore, the 
perturbation was limited to neurons occupying the central portion of the model within radii of 50, 
100, 150, 200 or 250 µm. Due to retinotopy, this selects for of neurons that share preferences for 
a small region of visual space. With an average cortical magnification of 70°/mm in the azimuth, 
these correspond to simulating 3.5 to 17.5° of visual field (Kalatsky and Stryker 2003; Schuett, 
Bonhoeffer, and Hübener 2002). All these perturbations were applied to a subset of E2/3 neurons. 
Ten trials of the drifting grating stimuli were run for each perturbation simulation, with results 
shown in Figs. 1E, 2, S3-S6.  
 
It should be noted that while the effects of the perturbation on the firing rate of stimulated cells 
as well as the cells of the same orientation and same retinotopic location in other populations can 
be big (Fig. 2), due to inhibition of cells at different retinotopic locations or of dissimilar 
orientation, the effects at the level of the population are very small (Fig. 1E, Figs. S3-S5). The 
quantitative analysis of the inhibition of cells at different retinotopic locations and at different 
orientations for one stimulated cell is described in Fig. 3, and their dependence on the number of 
neurons activated and the contrast of the visual stimulus are described in Fig 4.  
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Figure 2 Functional population perturbations of excitatory neurons of layer 2/3 with the 
presentation of a drifting grating (TF = 2Hz, SF = 0.04 cpd, contrast = 80%, orientation = 270°). 
The injected current is three times each neuron’s rheobase. Perturbations were applied to neurons 
that prefer motion in the direction of (A) 270°+/-11.25°, (B) 270°+/-22.5°, (C) 270°+/-45°, 
within different radii (i.e., 50, 100, 150, 200 and 250 µm) from the center, as illustrated in the pie 
plot at the top. The activity changes (i.e., Δ�) are shown as heatmaps. The labels along the top x-
axis of these heatmaps correspond to the radii of the relevant populations that are being 
perturbed with the number of neurons being perturbed at the bottom. The y-axis indicates the 
population for which Δ� is evaluated. Δ� is computed using only the neurons that have the same 
direction preference and radial positions as the perturbed population. The figure indicates 
successful imprinting by exciting the layer 2/3 population, leading to distinct patterns of 
activation. As expected, the effect of the perturbation becomes stronger as the number of 
perturbed neurons increases.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.051268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 8 
 

 
As an illustrative example, the raster plot of one of the perturbations applied to E2/3 neurons that 
prefer motion in three directions (270°+/-11.25°, 270°+/-22.5° and 270°+/-45° within 100µm 
from the center of the model) is shown in Fig. S3. We can see stronger activity for the neurons 
being perturbed in Figs. 1E and S3 for E2/3 population. The more neurons perturbed, the bigger 
the band of elevated activity. 
 
Fig. 2 shows the overall activity changes of these local perturbations. The figure illustrates Δ� 
for populations of neurons that share the direction preference and retinotopy with the perturbed 
neurons. Activating subsets of E2/3 cells leads to increased activity in co-tuned L5 neurons. This 
activity increases with the number of neurons stimulated up to ~50-100 neurons, saturating 
subsequently. This number is similar to the observed neuron number required for perception 
(Marshel et al. 2019). The stimulation also causes a massive increase in activity of the co-tuned 
inhibitory neurons in L2/3, and a general suppression of activity in L4 and L6. These patterns are 
similar to the expectations from the canonical cortical model (Douglas and Martin 1991). Also, 
of interest is the effect of these finely tuned perturbations on the entire cell types population (not 
just the co-tuned portion of it), shown in Fig. S4. Across orientations, the effect is mostly 
inhibitory and much weaker than the one in Fig. 2. We observe the same effect in Figs. S5 and 
S6 when using Optogenetic Modulation Index (OMI) rather than Δ�. This is expected in a circuit 
in which the recurrent inhibition stabilizes overall network activity (Ozeki et al. 2009). 

 
Single Neuron Perturbation 
To compare results with a recent experiment (Chettih and Harvey 2019) that characterized the 
effects of single-neuron perturbations on the activity of nearby layer 2/3 neurons, we likewise 
activated individual neurons. Positive currents were injected to a target E2/3 neuron close to the 
center of the V1 model. Fifty sets of perturbation simulations, each done for a different target 
neuron, were conducted, with 10 trials each. The results are shown in Figs. 3, S7-9.  
 
First, we perturbed an E2/3 neuron with the same preferred direction as the input stimulus (Fig. 
3A). Of course, in our simulations we can measure small effects very precisely by fixing the seed 
of the random processes to be the same as in the unperturbed simulations. We analyze the 
simulation results using the same metric as in (Chettih and Harvey 2019), i.e., ΔActivity, defined 
as the firing rate changes divided by the standard deviation of such changes.  This measures the 
change to the network relative to the trial-by-trial variability (e.g. a measure of 1 would mean 
that perturbing a neuron would create a change equal to the standard deviation of the trial-by-
trial variability). To more directly compare with the experimental data, the values for ΔActivity 
are averaged for all neighboring neurons, no matter whether excitatory or inhibitory. Averaging 
over spatial positions and orientation tuning, we observe that, following the stimulation of one 
E2/3 neuron, there is a very modest decrease (-5.75�10-3) in the average relative activity of other 
L2/3 neurons. This perturbation is on the same order of magnitude as the experimentally 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.051268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 9 
 

observed one (-2�10-3). We can observe the trend of activity change with distance: nearby 

neurons (<50μm) were activated, while neurons further away (50-200μm) were suppressed, and 
the effect fading away with distance (Fig. 3C), showing similar spatial interaction terms to those 
experimentally observed (Chettih and Harvey 2019) also shown in Fig. 3B.   
 
To delve into cell type specific effects, we analyze the results by separating excitatory and 
inhibitory neurons. We also use the firing rate change as a metric as it is easier to develop an 
intuitive understanding for the magnitude of the changes. Excitatory neurons follow a similar 
spatial dependency as the average, with nearby neurons being excited and the near surround 
inhibited (Fig. 3D). Inhibitory neurons follow a different pattern, lacking the near surround 
inhibition. As we averaged the effect over all orientation/direction preferences for excitatory 
neurons, distance-dependency is not dependent on the preferred angle of the stimulated neuron 
(Fig S7B). Since experimentally there is a potential bias towards recording excitatory neurons, 
we performed a more in depth analysis of how potentially different samplings of the different 
cell types can affect this result (Fig. S8). We observe that a weighted sum biased for excitatory 
neurons (Fig. S8) shows an even better fit to the experimental data than the average metric. 
 
While the average changes in excitatory neuron activity seem small (-1.6�10-3 Hz), they are 
averaged over 3176 neurons. On a per neuron basis, stimulating one E2/3 neuron causes  
~120 additional spikes (over 2.5 s), but leads to a decrease of 45 spikes discharged by other 
excitatory neurons throughout the column up to 300μm horizontally. 
 
Beyond the dependence on relative spatial location (which in our model maps directly to 
retinotopy), the interactions are dependent on the relative functional similarity in terms of 
orientation/direction preference. When the visual stimulus is similar to the preferred stimulus of 
the stimulated cell, inhibition predominantly acts on similarly tuned neurons (Fig. 3E). The 
suppression of the similarly tuned neurons is larger than a normalization would predict: the 
relative decrease for similarly tuned neurons is ~3 times larger than the relative decrease for 
neurons of opposite direction.  
 
We found it impressive that a model which did not have any parameters tuned for this 
computation was able to replicate these experimental results. However, no model is perfect. We 
found significant differences between experimental observations and the model results when 
looking at the interaction between the recorded and stimulated neurons when the visual stimulus, 
stimulated neuron and recorded neurons each had different preferred directions of motion (Figs. 
S8 and S9) which is discussed in the supplementary material.   
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Figure 3 Using the V1 model to study effects of single-neuron perturbations on the population 
activity. (A) Perturbation of a layer 2/3 excitatory neuron, with the same preferred direction as the input 
stimulus. (B) Distance dependent the activity change from the experimental data (Chettih and Harvey 
2019). (C) Combining the activity change of inhibitory and excitatory neurons using the metric from 
(Chettih and Harvey 2019) depending on the distance (in 10µm bins) from the single optogenetically 
stimulated neuron. (D) Change in firing rates depending on the distance (in 10µm bins) from the single 
optogenetically stimulated neuron. (E) Change in firing rates depending on the difference in preferred 

angle (in 90° bins) between the recorded and the single optogenetically stimulated neuron.  

 
Multiple Neuron Perturbation 
Further perturbations were done for multiple E2/3 neurons to study their effect on the 
surrounding neurons and the preferred angle of motion dependence of surrounding neurons. This 
is different from the functional population perturbation where we stimulated all neurons of a 
particular type and with a particular tuning. Positive currents were injected into multiple target 
E2/3 neurons (from 1 neuron to 100) around the center of the model (within a radius of 200 µm 
from the center), preferring approximately the same direction as the stimulus input (270° within 

a +/-11.25° range). Ten sets of perturbation simulations, each done for a different number of 
target neurons, were conducted, with 10 trials for each set (Fig. 4, S10).  
 
We analyze the effect of these activations on three populations of neighboring cells (Fig. 4A-C). 
Neurons which prefer 270°+/-11.25° are very closely aligned in orientations to the perturbed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.051268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 11 
 

neuron. Neurons preferring 270°+/-45° but excluding 270°+/-11.25° are similar but not closely 
aligned, correspond to a functional near surround. Neurons preferring 270°+/-45° are similar in 
tuning and represent the sum of these populations. In all these cases E5 neurons were activated 
while excitatory neurons in other layers were suppressed. This is consistent with the results 
shown in the 200 µm column in Fig. 2A, while being smaller in magnitude as fewer E2/3 
neurons were perturbed. We also observe a general activation of inhibitory neurons except those 
in layer 6 (similarly to the results in Fig. 2). The effect increases as the number of perturbed 
neurons increases.  
 
For E2/3 neurons, we observe a non-monotonic dependence (Fig. 4D). While neurons with 
similar tuning are suppressed irrespective of the number of perturbed neurons, closely aligned 
neurons are activated for a small number of perturbed neurons but show suppression if more 
than >50 neurons are triggered. This is caused by a “center-surround” organization in functional 
space (Fig S10), biased towards suppression. However, the effects of multiple stimulated 
neurons are not additive. An additional shift towards suppression is observed, with a transition 
towards suppressing everything else in the population when the number of stimulated neurons 
exceeds 50.  
 
As a control, we analyzed the dependence of the response to perturbation on the spatial 
frequency of the stimulus. As the radius of the analyzed volume for this perturbation is 200 µm, 
given the average retinotopic magnification, this corresponds to 6° of visual field. With a 0.04 
cpd spatial frequency of the stimulus, the maximal phase difference from the center corresponds 
to a 90° phase difference. We analyzed the response to a 0.02 cpd spatial frequency, in which the 
radius of the analyzed volume corresponds to 45° phase difference (Fig. 4E), and we observed 
practically the same response to the perturbations.  
 
The pattern of functional lateral interactions significantly changes with the contrast of the visual 
stimulus. Here we used a drifting grating with spatial frequency of 0.02cpd with 5, 10, 20, 40 and 
80% contrast (Figs. 4E-4I, Fig S10). At high contrasts, inhibitory interactions are prevalent. 
Similarly tuned E2/3 neurons (within 45°) monotonically decrease their activity as a function of 
neurons stimulated, while closely-aligned (within 11.25°) neurons had a non-monotonic 
dependence, with maximal activation for 50 stimulated neurons. At low contrasts, excitatory 
interactions are predominant. Closely-aligned neurons monotonically increase their activity as a 
function of neurons stimulated while similarly tuned neurons have a non-monotonic dependence 
with a maximum activation also for 50 neurons stimulated. The model shows a center-surround 
interaction in functional space (Fig S10).  
 
This makes answering the question of whether we observe functional like-to-like excitation or 
inhibition in the model complicated. It depends on the contrast of the stimulus, the number of 
neurons stimulated and how strict one is in the definition of “like”. In general, at low contrasts 
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we mainly observe specific like-to-like excitation and at high contrast a broad like-to-like 
inhibition.  
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Figure 4 Perturbations of multiple excitatory neurons (from 1 neuron to 100) in layer 2/3 during 
drifting grating stimulation. The perturbed neurons were selected such that their preferred 
direction closely matched the direction of the drifting grating: 270°+/-11.25° and within 200 µm 
radius. (A-C) Analysis of neurons within a directional cone of 270°+/-45°, (B) 270°+/-45° but excluding 

270°+/-11.25°, or (C) 270°+/-11.25°. The firing rate changes are shown as heatmaps. Labels along the y 
axis indicate the population for which the firing rate change is computed. For E2/3, stimulated neurons 
are excluded. E5 neurons were activated while the ones on other layers were suppressed. Inhibitory 
neurons were activated except those in layer 6. These effects increase as the number of perturbed neurons 
increases. (D) Activity changes of E2/3 neurons within different analyzed ranges. Closely aligned E2/3 

neurons (within 11.25°) increase their activity for up to 50 stimulated neurons but decrease their activity 

thereafter. Similarly tuned E2/3 neurons (within 45°) show decreasing activities. (E-I) Activity changes 
of E2/3 neurons within different analyzed ranges for drifting grating with 0.02 cpd spatial frequency for 
five different contrasts (5%, 10%, 20%, 40% and 80%).  At lower contrasts, closely-aligned E2/3 neurons 
increase their activity while similarly tuned neurons show a non-monotonic dependence on the number of 
neurons stimulated, with a maximum around 50 neurons. 

 

Discussion 

In this study, we simulated optogenetic experiments using a previously constructed (Billeh et al 
2020), anatomically and biophysically constrained model of mouse primary visual cortex to 
understand cortical processing. All parameters in the model, consisting of about 250,000 GLIF 
model neurons of 17 different cell types distributed from L1 to L6 (Fig. 1), were fixed as in 
Billeh et al (2020). We then activated small number of neurons, ranging from one to hundreds, 
and entire cell-type populations, to mimic optogenetic excitatory perturbations. The model is 
useful as a tool to quickly test outputs of potential experiments and thus help with experimental 
design.  
 
As a direct effect of the perturbations of single neurons, we found that exciting single E2/3 
neurons gives rise, on average, to a reduction in activity (Fig. 3). Such an effect increases with 
the size of the perturbation (Fig. S10). An inhibitory first-order effect with perturbation size is 
needed for inhibition stabilization of the global activity (Ozeki et al. 2009). Spatially, a center 
surround effect is observed. Regarding the dependence on the orientation, for single neuron 
perturbations we observed a broad inhibition which more strongly affects the more strongly 
responsive neurons. These findings are consistent with experimental data (Chettih and Harvey 
2019). However, higher order interactions, in which the visual input, stimulated neuron and 
recorded neuron have different properties, are different in the model from experiments. One 
potential explanation for the difference is the complexity of the tuning of the neurons. Both in 
the experiment and the model, there is a “Mexican hat” interaction in functional space. I.e. when 
stimulating one neuron there is an excitation to closely-aligned neurons, and inhibition for 
similar neurons. However, in the experiments the number of closely aligned neurons is much 
smaller than in simulation, such that even when stimulating one neuron generally like-to-like 
inhibition is observed, even at lower contrasts. In simulations, to observe like-to-like inhibition 
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we need to stimulate more neurons and provide a higher contrast stimulus than needed in the 
experiments. 
 
We focused our analysis on the observed functional like-to-like inhibition when perturbing single 
neurons, as it is considered to be a hallmark of redundancy reduction (Olshausen and Field 
1996b; King, Zylberberg, and DeWeese 2013). However, in the simulations it is not universal. It 
should be noted that no two neurons in the simulation have exactly the same tuning: they are 
randomly drawn from continuum distributions in retinotopic and orientation tuning. 
Anatomically, neurons have both like-to-like excitatory connections as well as like-to-like 
inhibition. Which of these anatomical connections ends up being dominant depends on the 
particular difference in tuning and is dependent on the contrast of the visual input. Generally, we 
observed more like-to-like excitation at low contrasts (Fig 4), congruent with models of recurrent 
amplification (K. D. Harris and Mrsic-Flogel 2013) and more like-to-like inhibition at high 
contrasts (Olshausen and Field 1996b; King, Zylberberg, and DeWeese 2013). These 
observations are consistent with a robust and efficient code with an emphasis on efficiency at 
high contrasts and robustness at low contrasts (Karklin and Simoncelli 2011; Doi and Lewicki 
2014; Brinkman et al. 2016).  
 
Beyond the general transition from more excitation at low contrast to inhibition at high contrast, 
the functional interactions are also dependent on how strict we are in the definition of similarity 
in tuning and the number of neurons stimulated. For closely-aligned neurons (<12.5 degrees 
difference) at high contrast (80%), and for similar neurons (<45 degrees difference) at low 
contrast (<20%) we observed a non-monotonic dependence of the perturbation effect on the 
number of neurons stimulated. In both cases the largest perturbation is observed when ~50 
neurons are stimulated. This might form a critical mass of neurons needed to change the network 
state.  
 
While the model incorporates a large amount of diverse neurobiological data, the model also has 
a large number of unconstrained parameters. We have not systematically explored the parameter 
space, but we provide a series of perturbations to all the cell types in the model as a battery of 
tests (Fig. S1). These tests, when/if the experiments become available, can be used by the 
community to further evaluate the predictive power of this model.  
 
We are fully cognizant that no model is perfect. We view this work as a further refinement of a 
long line of existing models stretching back more than a century, combining models of cellular 
excitability (Lapicque 1907; Hodgkin and Huxley 1952) with models of sensory system 
processing (Fukushima 1980). 
 
As a general conclusion of the study, as we have not tuned any new parameters for this circuit 
which we built with careful attention to local circuit properties and different single cell 
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nonlinearities (Billeh et al 2020), the fact that we observed a transition from a broadly tuned like-
to-like inhibition dominated circuit at high contrast to specific like-to-like excitation dominated 
interactions at low contrast, enables us posit that the local circuit transitions from redundancy 
reduction when signal-to-noise of the input is high, to robust code in the low signal-to-noise 
regime, as predicted to be needed by theories of efficient coding (Karklin and Simoncelli 2011; 
Doi and Lewicki 2014; Brinkman et al. 2016).  
 

Methods 
The methodology of the V1 model building and perturbation simulation design is discussed in 
this section.  
 

Model Structure and Building 
We briefly summarize here the V1 model structure (Billeh et al. 2020). The full V1 model 
described a cylinder of cortical tissue with a radius of 845 µm. The model was built with 230,924 
neurons with 51,978 core neurons within the 400µm radius from the center of the V1 which are 
the main subject of analysis. The model spans all layers of V1 and has 17 different cell types 
(shown in Table 1). The diagram of the network is shown in Fig. 1C, together with structure 
illustrations shown in Figs. 1A and 1B. We used the Generalized Leaky Integrate and Fire (GLIF) 
version of the model as it is significantly faster to simulate. 
 
The model receives input from an LGN network of 17,400 nodes and a background source. 
There are totally 3,506,880 connections from LGN to the model, in which there are 786,405 
connections to the core nodes at the center from LGN. The neurons in the V1 model are also 
recurrently connected with each other. The total number of recurrent connections within the V1 
model is 70,139,111, and the background node has 230,924 connections to all the nodes in the 
V1 model. Note that, each edge has a different number of synapses.  
 
Table 1 Cell Type Populations Included in the GLIF V1 model 
E2/3 E4 E5 E6 I1Htr3a I2/3Htr3a I2/3Pvalb I2/3Sst  
I4Htr3a I4Pvalb I4Sst I5Htr3a I5Pvalb I5Sst I6Htr3a I6Pvalb I6Sst 
 
GLIF Node Model 
A class of point neuron models, i.e., GLIF (Generalized Leaky Integrate-and-Fire) models, were 
recently used to fit the responses of a large number of neurons of different cells types in the 
mouse visual cortex (Teeter et al. 2018). In this study, we used Level 3 GLIF (GLIF3, or termed 
LIF-ASC, i.e., leaky integrate-and-fire with after-spike currents) model, which was formulated as 

��	
� � 	



�
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� � � 
�	
�

�

� 	


���
	�	
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where �	
� is the membrane potential and 
� is the external injection current. When �	
� � �� 
(with �� as the instantaneous threshold), �	
� is reset by the rule of  �	
�� � �� 
with the resetting potential �� � ��. The GLIF3 model considers the ion currents 
�	
� activated 

by a spike, which is formulated as 
��	
� � ���
�	
�; � � 1, � , � 

The update rule, which applies if �	
� � ��, is given by  
�	
�� � �� � 
�	
�� � �
�  
where multiplicative constant �� � ������. In this study, we use two sets of after spike current 

parameters in the GLIF3 model (i.e., � � 2). For detailed description of GLIF3 models and 
other four GLIF models, please refer to (Teeter et al. 2018).  
 
The parameters for the GLIF models were trained based on the intracellular electrophysiological 
data. The V1 model was built based on 111 cell models for the 17 populations shown in Table 1, 
with parameters for each of these 111 cell models available through Allen Cell Types Database 
(ACTD) (Allen Institute for Brain Science 2017).  
 
Synapse Mechanism 
In this study, the NEST Simulator (Peyser et al. 2017) implementation of GLIF3 model was used 
through BMTK (Gratiy et al. 2018). Linear exact solution and interpolated spike time were set in 
the GLIF3 model for the V1 model simulation. Postsynaptic current-based synaptic ports were 
used for all the GLIF3 models to take inputs from LGN, background, recurrent connections 
within the V1 model. An alpha shape function was defined for the postsynaptic current (PSC) as 
���	
� � ��

����

��

	

��� 

where ���� is the synaptic port time constant. This function was normalized such that a post-

synaptic current with synapse weight one has an amplitude of 1.0 pA.  
 
The synaptic port time constants ���� for different types of connections are defined list as 

follows. These time constant values were estimated based on time to peaks shown in Fig. S1B in 
(Arkhipov et al. 2018) for the PSC features for connections between different populations. 

Excitatory to Excitatory: 5.5 ms 
Inhibitory to Excitatory: 8.5 ms 
Excitatory to Inhibitory: 2.8 ms 
Inhibitory to Inhibitory: 5.8 ms 

 
LGN Input 
The weights for the 3,506,880 connections from LGN to V1 were tuned based on the target post-
synaptic currents from literature (Lien and Scanziani 2013; Ji et al. 2015). The average post-
synaptic currents of each population were tuned to match the literature target currents. The small 
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tuning network was created for each population with 100 nodes for each GLIF3 model in the 
population. As the average rheobase of the GLIF3 models is bigger than the ones from 
experimental data, we scaled the weights from LGN to V1 by the factor of 1.36, which is average 
ratio between average rheobases of GLIF3 models and experiment data over all the populations.  
 
In this study, the LGN inputs were generated from stimuli presenting a half second of grey 
screen and a following 2.5-second drifting grating. The drifting grating is with temporal 
frequency TF = 2Hz, spatial frequency SF = 0.04 cpd, contrast = 80%, and orientation = 270°. 
Additional drifting grating stimuli (with a different SF = 0.02 cpd and different contrasts as 5%, 
10%, 20%, 40% and 80%) were also used for the multiple neuron perturbations. 
 
Background Input 
This background (BKG) input represents long range inputs from areas other than LGN. It is to 
simulate the effect of other parts of the brain on V1, which was in the form of Poisson spike train 
with firing rate being set as 1,000 Hz. The weights for 230,924 connections from BKG to V1 
were initially estimated based on rheobases of the target V1 nodes and then tuned to match the 
spontaneous firing rate of each population measured from experiments (Durand et al. 2016; Niell 
and Stryker 2008). Also, the number of synapses of each of such edges were estimated based on 
the dendritic length of the cell. The tuning of background to V1 weight is to match the 
spontaneous firing rates from experiments. During the tuning, in views of the too strong 
background responses from E2/3 and E5 neurons, as well as Pvalb neurons in layers 4, 5 and 6, 
the weights for the two populations of excitatory neurons, and Pvalb neurons in the three 
aforementioned layers were scaled by the factors of 0.8 and 0.5. With automated tuning and 
scaling, the V1 model was tuned to match spontaneous activity during grey screen stimulus from 
experiment data.  
 

Cell Type Perturbation 
We first performed perturbation simulation experiments at the cell type population level to study 
the functional roles of different types of inter-laminar interactions. The experiments included 
population silencing, population activation and local functional population perturbation with 
current injections to different subsets of population groups. Details of each of these simulation 
experiments are described as follows.  
 
Whole Cell Type Population Perturbation 
In the initial perturbations, with negative currents injected to the whole population, one of the 17 
populations in the V1 model was silenced. We also examined injecting positive currents to the 
whole population, with L6 excitatory neurons and L6 Pvalb neurons as a demonstrative example. 
The strengths of the injection for L6 populations are 0.5 times of the rheobase of the population 
i.e., E6 or I6Pvalb.  
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An additional analysis metric we are using for the population silencing is the Optogenetic 
Modulation Index (OMI). It is computed for every cell and then averaged over the analyzed cells. 
The OMI of a neuron is defined as: OMI�  �  �� � ���������  �� � ��������   
where ��  is the firing rate of neuron � in perturbation simulation, and ���������  is the one in no-
perturbation simulation. Negative OMI indicates suppression of activity due to perturbation 
(OMI � �1 means that the cell is fully suppressed), OMI � 0 means no change of activity, and 
positive values indicate elevated activity due to perturbation.  
 
Functional Population Perturbation 
In the second set of perturbation, subpopulations of excitatory populations in layers 2/3 were 
perturbed by injecting positive currents three times the rheobase of the population. The perturbed 
neurons in each simulation were selected with tuning angles in the ranges 270°±45°, 270°±22.5° 
and 270°±11.25°, and within different radii (i.e., 50µm, 100µm, 150µm, 200µm and 250µm) 
from the center of the V1 model. The same ten trials of the LGN drifting grating stimuli were run 
for the simulations. 
 
Firing rate change (Δ�) is used to analyze the perturbation results. The response changes were 
computed for the 17 populations in the model with Δ� only computed for those neurons of the 
same preferring tuning angles and the same radius as the perturbed neurons. The results are 
shown as heatmaps indicating the relations between Δ� and radius (Fig. 2), which are separated 
by the ranges of tuning angle and perturbed populations (i.e., E2/3). The firing rate changes for 
all neurons (including the perturbed E2/3 neurons) in the core of the V1 model of each 
population are shown in Fig. S4. Additional analysis using OMI is shown in Figs. S5 and S6.  
 

Single Neuron Perturbation 
 
Target Neurons 
In the single neuron perturbation, positive current was injected to one target Cux2 excitatory 
neuron in layer 2/3 for each simulation. The target neuron was selected within 50µm radius from 
the center of the V1 model and as close as the desired preferred angle within 5°. Two desired 
preferred angles, i.e., 270° and 180°, were used. For each desired preferred angle, 50 different 
simulations were run, each with a different perturbed neuron. For perturbed target neuron, 10 
trials of stimuli were run. The visual stimulus is a drifting grating with TF = 2Hz, SF = 0.04 cpd, 
contrast = 80%, orientation = 270°. One set of stimulated neurons are aligned to the visual 
stimulus, while the other is orthogonal. Additional desired preferred tuning angles were also 
simulated to compare with the observations reported in (Chettih and Harvey 2019), with results 
shown in Fig. S8. The injecting currents to the target neuron were set as three times of the 
rheobase of the target neuron models.  
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Neighboring Neurons 
To measure the effect of the injection to the target neuron, the activity of neighboring neurons 
within depth (Y axis) ranges [-50.0 µm, 50.0 µm] around the target neuron were analyzed. The 
analyzed neighboring neurons were within the 300 µm radius on the horizontal plane. Layer 1 
neighboring neurons within this range were not included in the analysis. 
 
Grouping Neighbor Neurons 
To analyze the effect of single neuron perturbation in different aspects including distance and 
angle, the neighbor neurons were grouped by the following two criteria: 

• Angle_diff (in degree): difference of tuning angles between target neuron ������� and 

neighbor neurons ���������. 

• 2D Distance (in µm): distance from the neighbor neuron to target neuron projected on 
the horizontal plane.  

 
Effect Measurements 
To measure the effect of the perturbation on the target neuron, two metrics were used: 

• Firing Rate Change (Δ� in Hz): firing rate change of a neighboring neuron with current 
injection to the target neuron and without current injection to the target neuron, i.e., Δ�� �  �� � �������  for the same LGN stimulus and BKG input  

• ΔActivity: the activity change metric (Chettih and Harvey 2019) for neuron � in the trial � 
of the simulation is: 

ΔActivity�� �  *��� � ������,�� +STD���
� *��� � ������,�� + ,  � � 0,  1, � ,9 

where the firing change ��� � ������,��  of the �th trial is divided by the standard deviation STD���
�  of such firing rate changes over the 10-trial simulations for the same LGN 

stimulus. Note that, different from the metric in (Chettih and Harvey 2019) using average 
activity of control sites as the control, the fully-control simulated V1 enable us to get the 
exact activity of each neighbor neuron for each trial without perturbation and get the 
exact difference between the perturbed activity and no-perturbed activity.  
 

Effect Summation 
The evaluation metrics introduced above were averaged across 10 trials for each neighbor neuron. 
The averaged metric values of all the neighbor neurons were binned into different groups. The 
number of the bins for distance-based analysis is 30, while the angle-based one is 4. The average 
metric value for each group of the neighboring neurons (i.e., average value of each bin) is used 
for evaluation the effect of the perturbation on the target neuron to the neighbor neurons of the 
same group. Also, for firing rate change metric, excitatory and inhibitory neighbor neurons were 
separated in the analysis, with results demonstrated in Figs. 3D, 3E, S7C and S7D. To compare 
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with results reported in (Chettih and Harvey 2019), excitatory and inhibitory neighbor neurons 
were combined together and analyzed using the metric ΔActivity, with results shown in Figs. 3C 
and S7B. The target neuron in each simulation was excluded in the activity change analysis. 
 

Multiple Neuron Perturbation 
Multiple neuron perturbation simulations were conducted to explore how activity change of one 
or more cortical neurons could influence nearby cortical neurons and network activity. We 
targeted excitatory neurons in layer 2/3 and analyzed the activity change of the surrounding 
neighboring neurons with close and similar prefer tuning angles under perturbation on the target 
neurons. 
 
Target Neurons 
Positive current with strength as 3 times of the rheobase was injected to one or more target Cux2 
excitatory neurons in layer 2/3. The target neurons were selected within 200 µm radius around 
the center of the V1 model and the desired preferred angles within 11.25° around 270° which is 
the input stimulus direction. The numbers of perturbed neurons are 1, 2, 3, 5, 10, 20, 30, 50 and 
100. For each number of perturbed neurons, ten different sets of the target Cux2 neurons were 
randomly selected. For each set of target neurons, 10 trials with different instantiations of the 
random inputs were run. The visual stimulus is a drifting grating with TF = 2Hz, SF = 0.04 cpd, 
contrast = 80%, orientation = 270°. Additional simulations were also conducted with SF = 0.02 
cpd and five different contrasts as 5%, 10%, 20%, 40% and 80%. Note that the radius and angle 
range for the selection of target neurons were chosen to ensure enough neurons for perturbation 
simulations. 
 
Neighbor Neurons 
To measure the effect of the perturbation, the activities of neighboring neurons of each cell type 
population were analyzed. The analyzed neighboring neurons were with the 200 µm radius on 
the horizontal plane. The neighboring neurons within the following three different ranges of 
preferred tuning angles were analyzed and compared.  

• 270°±45° 
• 270°±11.25°  
• 270°±45°, excluding 270°±11.25°  

We also analyzed neighboring neurons within 16 different ranges of preferred tuning angles 
around the whole circle with range bins being 22.5° and center being at 0°, 22.5°, 45° etc (Fig. 
S10). 
 
Effect Measurements and Summation 
Firing Rate Change (Δ� in Hz) was used and it was averaged across 10 trials. The averaged 
values of all the selected neighbor neurons of a cell type were averaged again to get the average Δ� for that cell type population. The average population Δ� was then averaged across the 10 
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randomized selections of target neurons. The overall Δ� was compared across different numbers 
of target neuron simulations as shown in Fig. 4 in the forms of heatmaps for all 17 populations in 
the V1 model and curve plots for the E2/3 population of different ranges of preferred angles. The 
stimulated target neurons were excluded from population averages. 
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Supplemental Information 
 
Supplemental discussion on the similarities and differences between 
simulated and observed single neuron perturbations 
 
An additional analysis (Figs. S7-S9) was conducted for the single E2/3 neuron perturbation 
simulations, to further compare the simulation results with experiment results reported in 
(Chettih and Harvey 2019). The comparative analysis shows consistency between simulations 
and experiments in term of general suppression, higher order terms in distance dependence (Fig. 
S8) and the dependence of interactions on the orientation difference between recorded neuron’s 
preferred tuning and visual stimulus (Fig. 3E) when the stimulated neuron aligns with the visual 
stimulus. That is, neurons preferentially responding to the visual stimulus are most suppressed as 
shown in Figs. 3E and discussed in the Results section. There are differences in higher order 
effect between stimulated and recorded neurons when the stimulated and recorded neurons and 
visual stimuli are at different angles.  
 
However, when it comes to higher-order observation regarding the interaction between the 
direction of recorded neuron and the preferred direction of the stimulated neuron, our V1 model 
illustrated distinct result with the experiment in (Chettih and Harvey 2019). The experiment 
results showed the decrease in gain described in the 1st-order suppressive effect was greatest 
when the tuning preference of stimulated neuron matched the presented visual stimulus, while 
our model simulation results did not show such higher-order effect, but the opposite is shown in 
Fig. S9. A potential reason for the difference of the higher-order effect between the simulation 
and experiment is the complexity of the neuron preferences. Sparse coding  (Olshausen and Field 
1996a, 1997) predicts a like-to-like inhibition in absence of noise and spikes. If the visual code 
representing a feature does not map directly to the activity of one neuron, but an average over a 
subpopulation of neurons with identical codes, one would expect a stimulation of one neuron to 
not have an inhibitory effect on identically tuned neurons. Such an effect is observed both in 
simulations (Fig. S10 A) and in experiments and can be described as a “Mexican hat” for the 
interactions in functional space. In our model, the tuning properties of individual neurons are 
probably not as varied as the ones in real mouse V1. Our V1 model has been thoroughly tested to 
match the biological observations of representation of different directions of movements. It is 
possible that on other features, for which we did not have a diversity of stimuli presented, the 
preferences of cells are too similar for them to engage in meaningful competition. As such, if the 
functional space for biology has higher dimensionality than the functional space in the 
simulations, the number of neurons with similar but not closely-aligned tuning will be much 
higher in experiments, and will be most often seen.  
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Supplemental figures 

Figure S1. Summary of silencing simulations during presentation of 0.5 s of grey screen and 2.5 s of a 

drifting grating (TF = 2Hz, SF = 0.04 cpd, contrast = 80%, orientation = 270°). Labels along the 
horizontal axis indicate the silenced populations. Labels along the vertical axis indicate the populations 
for which OMI is computed. The entries on the bottom right (i.e., “allHtr3a” “allPvalb” and “allSst”) refer 
to perturbations where multiple populations were silenced together (e.g., “allSst” means silencing Sst 
neurons in all layers). The OMIs showing in the heatmap are the average values across stimulus trials and 
neurons in a population. Silencing E4 neurons leads to suppression of activity throughout the layers, 
whereas silencing other excitatory neurons disinhibits excitatory neurons in other layers. Furthermore, 
silencing inhibitory populations leads to elevated activity across the column in most cases. 

 
  

 

fer 

d 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.051268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 24 
 

 
Figure S2 Raster plot of whole population perturbations of neurons on layer 6 following 
presentation of a drifting grating. 
(A) Raster plot of activation of E6 with half of the rheobase of the target population, resulting in 
excitation of layer 6 Pvalb and suppression of other upper layer excitatory cells.  

(B) Raster plot of activation of I6Pvalb neurons with half of the rheobase of the target population, 
suppresses all excitatory cells across the column.          
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Figure S3 Raster plot of population perturbations of E2/3 during presentation of a drifting 
grating, with the injected current being 3 times of the rheobase of the target population. (A) 
Baseline. (B) The perturbations applied to neurons that prefer motion in three directions – 
270°+/-11.25° (C), 270°+/-22.5° or (D), 270°+/-45° – and situated within 100 µm of the center. 
As more neurons are perturbed, the stripe of activated increases becomes wider.  
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Figure S4 The exact same perturbation as in Fig. 2 with the sole difference that Δ� is averaged 
over all orientations within the radii indicated rather than for the different functionally defined 
populations. The activation of a functionally co-tuned subpopulation of E2/3 neurons lead to a 
robust activation of inhibitory neurons in the same layer. They produce an inhibition of 
dissimilaryly tuned excitatory neurons, such that at the population level, the overall effects are 
small.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.051268doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.051268
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 27 
 

 
Figure S5 The same perturbation as in Fig. 2, S2 and S4 but using OMI as the analysis 
measurement rather than Δ�. The OMI for the different genetically defined populations is 
evaluated over the neurons that have the same direction preference and radial positions as the 
perturbed populations. The figure indicates successful imprinting by exciting E2/3, leading to 
remarkably distinct patterns of activation. The perturbation effect on the whole column becomes 
stronger as the number of perturbed neurons increases 
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Figure S6 The same perturbation as in Fig. 2, S2-S4, but using OMI evaluated for all neurons 
within the core (unlike Fig. S5 in which the computation is restricted to functionally defined sub-
populations).  
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Figure S7 Using the V1 model to study effects of single-neuron perturbations on the population 
activity by stimulating an excitatory neuron with preferred direction orthogonal to the direction 
of the input stimulus (instead of same preferred direction in Fig. 3). This leads to similar patterns 
of distance dependence (B, C) to Figs. 3C and 3D, but substantial differences in orientation 
dependence: excitatory neurons tuned for the stimulus (but not the preferred angle of the target 
neuron, i.e., angle_diff = 90°) were suppressed more than those dissimilarly tuned (D). 
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Figure S8 Distance dependent activity change of single neuron perturbation using the V1 model. 
The activity change measure is defined as firing rate changes normalized by standard deviation 
of firing rate changes of the 10 trials of each of the drifting grating stimuli simulations, which is 
similar to ΔActivity used in (Chettih and Harvey 2019). The measure plot is depending on 
distance from stimulated neuron. 
(A) Activity change of excitatory neurons in layer 2/3 with standard error shown as red dashed lines. We 
observe the center-surround effect similar to the ones shown in Figs. 3D and S7C, and is consistent with 
the findings in the experiment (Chettih and Harvey 2019). 
(B) Activity change of inhibitory neurons with Pvalb neurons in layer 2/3 shown as an illustrative 
example. We again observe the center-surround effect similar to the ones shown in Figs. 3D and S73C, 
and is consistent with the findings in the experiment (Chettih and Harvey 2019) as well. 
(C) Activity change of all excitatory and inhibitory neurons in layer 2/3. We observe the center-surround 
effect similar to the ones shown in Figs. 3C and S7B and is consistent with the findings in the experiment 
(Chettih and Harvey 2019). From the figure, we can see the E-I crossover is at 70µm which is consistent 
with the one reported in the experiment (Chettih and Harvey 2019). Note that measurements from 
inhibitory neurons were scaled down by a factor of 0.25 to match the experiment setting as some fraction 
of inhibitory neurons were included in the experiment data collected based calcium signals from 
excitatory neurons. 
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Figure S9 Tuning angle dependency analysis for single neuron perturbations using the V1 model 
for simulations of 5 sets of stimulated neurons with preferred orientations as 180°, 202.5°, 225°, 247.5° 

and 270°. 
(A) Spike counts of responding neurons with preferred tuning angle near 270° (i.e., the orientation of the 
visual stimulus) with respect to preferred orientation of every stimulated neuron. We can observe 
variability between neurons with nearby preferences, but on top of this variability it is very clear that 

there are more spikes in these neurons when a 270° preferring neuron was stimulated. This suggests that 
the stimulus gain is greatest when stimulated neuron preference and presented visual stimulus coincide. 
This is counter to the strongest suppression observation in the experiments as shown in Fig. 4e in (Chettih 
and Harvey 2019). This relation is summarized into one number, the correlation between the spike count 

of the neurons preferring 270° and the stimulated neuron preferred direction. 
(B) Correlations of the spike counts of neurons as a particular preferred direction with the preferred 
direction of the stimulated neuron (the correlation for the plot in A is represented as the point in B at 

270°). The figure shows that neurons around 90° and 270° (i.e. those with orientation preference 

matching the visual stimulus) have greater responses as the stimulated neuron’s presence goes from 180° 

to 270°, and the opposite is true for neurons at 0° and 180°. This again shows the opposite 3rd-order effect 
reported in (Chettih and Harvey 2019). 
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Figure S10 Perturbations of multiple excitatory neurons (from 1 neuron to 100) in layer 2/3 
during drifting grating stimulation. The perturbed neurons were selected such that their preferred 
direction closely matched the direction of the drifting grating: 270°+/-11.25° and within 200 µm 
radius. The plots show activity changes of E2/3 neurons dependent on the angle difference 
between the analysis of neurons and the stimulus direction (i.e., 270°). Each of these plots is for 
simulation of a particular number of perturbed neurons. In the plot, labels along x axis indicate 
such angle differences in 22.5° bins, and labels along the y axis indicate the firing rate changes 
of the analyzed neurons. The curves were color coded for five different contrasts (5%, 10%, 20%
40% and 80%) for drifting grating with 0.02 cpd spatial frequency. We can see Mexican hat 
shape curve for activity changes of E2/3 neurons centering around the visual stimulus direction. 
Closely aligned E2/3 neurons (within 11.25°) were the ones most activated, while the ones 
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similarly tuned (within 45°) show mostly-decreasing activities. Such an effect was decreased as 
the contrast increased and also as the number of perturbed neurons decreased. 
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