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Summary

Genome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety
of complex diseases and other traits. However, for most traits it remains difficult to interpret what
genes and biological processes are impacted by the top hits. Here, as a contrast, we describe
UK Biobank GWAS results for three molecular traits—urate, IGF-1, and testosterone—that are
biologically simpler than most diseases, and for which we know a great deal in advance about the
core genes and pathways. Unlike most GWAS of complex traits, for all three traits we find that
most top hits are readily interpretable. We observe huge enrichment of significant signals near genes
involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data
illuminate the biology of variation in each trait, including insights into differences in testosterone
regulation between females and males. Meanwhile, in other respects the results are reminiscent
of GWAS for more-complex traits. In particular, even these molecular traits are highly polygenic,
with most of the variance coming not from core genes, but from thousands to tens of thousands of
variants spread across most of the genome. Given that diseases are often impacted by many distinct
biological processes, including these three, our results help to illustrate why so many variants can
affect risk for any given disease.
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Introduction

One of the central goals of genetics is to understand how genetic variation (and other sources of
variation) map into phenotypic variation. Understanding the mapping from genotype to phenotype
is at the heart of fields as diverse as medical genetics, evolutionary biology, behavioral genetics, and
plant and animal breeding. During the last fifteen years, genome-wide association studies (GWAS)
have been used to investigate the genetic basis of a wide variety of human complex traits and
diseases [1].

This work has revealed that most traits are highly polygenic: the top hits contribute only a
small fraction of the total heritability, and the bulk of the heritability is due to huge numbers of
variants of small effect spread widely across the genome. In a pair of recent papers, we argued that
there is a need for new conceptual models to make sense of the architecture of complex traits [2, 3].
How should we understand the observation that so many variants, spread widely across the genome,
contribute to any given trait?

As a conceptual framework, we proposed a model in which there is a set of “core” genes, defined
as genes with a direct effect on the trait that is not mediated through regulation of other genes.
Meanwhile, other genes that are expressed in trait-relevant cell types are referred to as “peripheral”
genes, and can matter if they affect the expression of core genes. We proposed that most trait
variance is due to huge numbers of weak trans-regulatory effects from SNPs at peripheral genes. In
what we referred to as the “omnigenic” extreme, potentially any gene expressed in trait-relevant cell
types could affect the trait through small effects on core gene expression (albeit the distribution of
peripheral gene effect sizes would be centered on zero, and in practice not all genes have regulatory
variants).

Thus far it has been difficult to test this model because for most diseases and other traits
we know little in advance about which genes are likely to be directly involved in disease biology.
Furthermore, we still have highly incomplete information about cellular regulatory networks. Here
we study in detail three traits that are unusually tractable to gain insights into the roles of core
genes and the polygenic background.

GWAS of model traits: three vignettes. We investigate the genetic architecture of three
molecular traits: serum urate, IGF-1, and testosterone levels. For each of these traits we know a
great deal in advance about the key organs, biological processes and genes that might control these
traits. This stands in contrast to many of the traits that have been studied extensively with GWAS,
such as schizophrenia [4] (which is poorly understood at the molecular level) or height [5| (where
we understand more of the underlying biology, but for which a large number of different biological
processes contribute variance).

As described in more detail below, we performed GWAS for each of these traits in around
300,000 white British individuals from the UK Biobank [6]. For all three traits many of the top
hits are highly interpretable—a marked difference from GWAS of typical disease traits. While these
three molecular traits highlight different types of lead genes and molecular processes, they also
have strikingly similar overall architectures: the top hits are generally close to genes with known
biological relevance to the trait in question, and all three traits show strong enrichment in relevant
gene sets. Most of the top hits would be considered core genes (or occasionally master regulators)
in the sense of Liu et al (2019) [3].

At the same time however, the lead genes and pathways explain only a modest fraction of the
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heritability. Aside from one major-effect variant for urate, the lead pathways explain ~10% of the
SNP heritability. Instead, most of the heritability is due to a highly polygenic background, which
we conservatively estimate as being due to around 10,000 causal variants per trait.

In summary, these three molecular traits provide points of both contrast and similarity to the
architectures of disease phenotypes. From one point of view they are clearly simpler, successfully
identifying known biological processes to an extent that is highly unusual for disease GWAS. At the
same time, the hits that “make sense” sit on a hugely polygenic background that is reminiscent of
GWAS for more-complex traits. Lastly, many disease traits are themselves affected by molecular
traits such as the three considered here. Given that each of these endophenotypes is already highly
polygenic, we can clearly expect that any disease phenotype that depends on many such traits will
itself be massively polygenic.

Results

Our analyses make use of GWAS results that we reported previously on blood and urine biomarkers
[7], with minor modifications. In the present paper we report four primary GWAS analyses: urate,
IGF-1, and testosterone in females and males separately. Prior to each GWAS, we adjusted the
phenotypes by regressing the measured phenotypes against age, sex (urate and IGF-1 only), self-
reported ethnicity, the top 40 principal components of genotype, assessment center and month of
assessment, sample dilution and processing batch, as well as relevant pairwise interactions of these
variables (Methods).

We then performed GWAS on the phenotype residuals in White British participants. For the
GWAS we used variants imputed using the Haplotype Reference Consortium with MAF > 0.1% and
INFO > 0.3 (Methods), yielding a total of 16M variants. The final sample sizes were 318,526 for
urate, 317,114 for IGF-1, 142,778 for female testosterone, and 146,339 for male testosterone. One
important goal of our paper is to identify the genes and pathways that contribute most to variation in
each trait. For gene set-enrichment analyses, we annotated gene sets using a combination of KEGG
[8] and previous trait-specific reviews, as noted in the text. We considered a gene to be “close”
to a genome-wide significant signal if it was within 100kb of at least one lead SNP with p<5e-8.
The annotations of lead signals on the Manhattan plots were generally guided by identifying nearby
genes within the above-described enriched gene sets, or occasionally other strong nearby candidates.

Genetics of serum urate levels.

Urate is a small molecule (C5H4N4O3) that arises as a metabolic by-product of purine metabolism
and is released into the blood serum. Serum urate levels are regulated by the kidneys, where a set
of transporters shuttle urate between the blood and urine; excess urate is excreted via urine. Urate
is used as a clinical biomarker due to its associations with several diseases. Excessively high levels
of urate can result in the formation of needle-like crystals of urate in the joints, a condition known
as gout. High urate levels are also linked to diabetes, cardiovascular disease and kidney stones.

The genetics of urate have been examined previously by several groups [12, 13, 14, 15, 16, 17| and
recently reviewed by [18]. The three strongest signals for urate lie in solute carrier genes: SLC2A9,
ABCG2, and SLC22A11/SLC22A12. A recent trans-ancestry analysis of 457k individuals identified
183 genome-wide significant loci [17]; their primary analysis did not include UK Biobank. Among
other results, this study highlighted genetic correlations of urate with gout and various metabolic
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A. GWAS for serum urate reveals numerous regulators of urate solute transport as top genes
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Figure 1: Genetic basis of serum urate variation. A. Genome wide associations with serum
urate levels in the UK Biobank. Candidate genes that may drive the top signals are indicated; in
most cases in the paper the indicated genes are within 100kb of the corresponding lead SNPs. B.
Fight out of ten genes that were previously annotated as being involved in urate transport [9, 10] are
within 100kb of a genome-wide significant signal. The signal at MCTY is excluded from figure and
enrichment due to its uncertain position in the pathway [11]. C. Urate heritability is highly enriched
in kidney requlatory regions compared to the genome-wide background (analysis using stratified LD
Score regression). Other tissues show little or no enrichment after removing regions that are active
in kidney. See Figure S1 for the uncorrected analysis.
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traits; tissue enrichment signals in kidney and liver; and genetic signals at the master regulators for
kidney and liver development HNF1A and HNF4A.

Performing GWAS of urate in the UK Biobank data set, we identified 222 independent genome-
wide significant signals, summarized in Figure 1A (further details in Supplemental Data 1). Re-
markably, six of the top ten signals are located within 100kb of a urate solute transport gene. A
recent review identified ten genes that are involved in urate solute transport in the kidneys [9, 10];
in addition to the six transporters with extremely strong signals, two additional transporters have
weaker, yet still genome-wide significant signals (Figure 1B). Hence, GWAS highlights eight out of
ten annotated urate transporters, though some transporters were originally identified using early
GWAS for urate levels. The two genes in the pathway that do not have hits (SMCT1 and SMCT2;
also known as SLC5A8 and SLC5A12) do not directly transport urate, but instead transport mono-
carboxylate substrates for URAT1 to increase reabsorption rate [19] and thus may be less direct
regulators of urate levels.

Among the other top hits, five are close to transcription factors involved in kidney and liver
development (HNF4G, HNF1A, HNF4A, HLF and MAF). These are not part of a globally enriched
gene set, but recent functional work has shown that the associated missense variant in HNF4A results
in differential regulation of the urate solute carrier ABCG2 [17], while the MAF association has been
shown to regulate SLC5A8 [20]. Finally, two other loci show large signals: a missense variant in
INHBC, a TGF-family hormone, and a variant in/near GCKR, a glucose-enzyme regulator. Both
variants have highly pleiotropic effects on many biomarkers, although the mechanisms pertaining
to urate levels are unclear.

While most of the top hits are likely associated with kidney function, we wanted to test whether
other tissues contribute to the overall heritability (Figure 1C). To this end, we used stratified
LD Score regression to estimate the polygenic contribution of regulatory regions in ten previously
defined tissue groupings [21]|. Serum urate heritability was most-highly enriched in kidney regulatory
regions (29-fold compared to the genome-wide average SNP, p = 1.9e-13), while other cell types
were enriched around 8-fold (Figure S1; see also [17]). We hypothesized that the enrichment for
other tissues might be driven by elements shared between kidney and other cell types. Indeed, when
we removed active kidney regions from the regulatory annotations for other tissues, this eliminated
most of the signal found in other cell types (Figure 1C). Thus, our analysis supports the inference
that most serum urate heritability is driven by kidney regulatory variation.

Finally, while these signals emphasize the role of the kidneys in setting urate levels, we wanted
to test specifically for a role of urate synthesis (similar to recent work on glycine [22]). The urate
molecule is the final step of purine breakdown; most purines are present in tri- and monophosphates
of adenosine and guanosine, where they act as signaling molecules, energy sources for cells, and
nucleic acid precursors. The breakdown pathways are well known, including the genes that catalyze
these steps (Figure 2A).

Overall we found that genes in the urate metabolic pathway show a modest enrichment for
GWAS hits relative to all annotated, protein coding genes as a background (2.1-fold, p = 0.017;
Figure 2B). XDH, which catalyzes the last step of urate synthesis has an adjacent GWAS hit, as do
a number of upstream regulators of urate synthesis. Nonetheless, the overall level of signal in the
synthesis pathway is modest compared to that seen for kidney urate transporters, suggesting that
synthesis, while it plays a role in the genetic basis of urate levels, is secondary to the core regulatory
functions provided by the secretion pathway.

In summary, we find that the urate biosynthetic pathway plays a significant, but modest, role in
determining variation in serum urate levels. In contrast, remarkably, nearly all of the kidney urate
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Figure 2: Modest enrichment of signals among genes involved in urate biosynthesis. A.
Urate is a byproduct of the purine biosynthesis pathway. The urate component of each molecule is
highlighted. B. The same pathway indicating genes that catalyze each step. Genes with a genome-
wide significant signal within 100kb are indicated in red; numbers in grey indicate the presence of
additional genes without signals. Pathway adapted from KEGG.

transporter genes are close to genomewide significant signals; there are additional strong signals in
kidney transcription factors, as well as a strong polygenic background in kidney regulatory regions.

Genetics of IGF-1 levels.

Our second vignette considers the genetic basis of IGF-1 (insulin-like growth factor 1) levels. The
IGF-1 protein is a key component of a signaling cascade that connects the release of growth hormone
to anabolic effects on cell growth in peripheral tissues [23]. Growth hormone is produced in the
pituitary gland and circulated around the body; in the liver, growth hormone triggers the JAK-
STAT pathway leading, among other things, to IGF-1 secretion. IGF-1 binding to IGF-1 receptor,
in turn, activates the RAS and AKT signaling cascades in peripheral tissues. IGF-1 is used as a
clinical biomarker of growth hormone levels and pituitary function, as it has substantially more
stable levels and a longer half-life than growth hormone itself. The growth hormone-IGF axis is a
conserved regulator of longevity in diverse invertebrates and possibly mammals [24]. In humans,
both low and high levels of IGF-1 have been associated with increased mortality from cancer and
cardiovascular disease [25]. IGF-1 is a major effect locus for body size in dogs [26], and IGF-1 levels
are positively associated with height in UK Biobank (Supplemental Figure S2).

Previous GWAS for IGF-1, using up to 31,000 individuals, identified around half a dozen genome-
wide significant loci [27, 28]. The significant loci included IGF-1 itself and a signal close to its binding
partner IGFBP3.

In our GWAS of serum IGF-1 levels in 317,000 unrelated White British individuals, we found a
total of 354 distinct association signals at genome-wide significance (Figure 3A, further details in
Supplemental Data 2). Eight of the top-associated hits are key parts of the IGF-1 pathway (Figure
4). The top hit is an intergenic SNP between IGFBP3 and another gene, TNS3 (Supplemental Data
2; p=1e-837). IGFBP3 encodes the main transport protein for IGF-1 and IGF-2 in the bloodstream
[29]. The next strongest hits are at the IGF-1 locus itself and at its paralog IGF-2. Two other
lead hits are associated with the IGF transport complex IGFBP: IGFALS, which is an IGFBP
cofactor that also binds IGF-1 in serum [30], and PAPPA2, a protease which cleaves and negatively
regulates IGFBPs [31]. Three other lead hits lie elsewhere in the growth hormone-IGF axis: GHSR
is a pituitary-expressed receptor for the signaling protein ghrelin which negatively regulates the
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A. GWAS for serum IGF-1 reveals binding proteins as key regulators

IGF-1 pathway
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Figure 3: Genetic basis of IGF-1 variation. A. Manhattan plot showing the locations of
magor genes associated with IGF-1 levels in the IGF-1 pathway (yellow), transcription factor (blue),
pleiotropic gene (red), or unknown function (black) genes sets. B. QQ@Q-plot testing for epistasis
plots all pairs of lead variants with p < le — 20 for IGF-1 levels. Inset is the corresponding plot
for urate levels. C. QQ-plot testing for non-additivity at IGF-1 associated SNPs. All lead variants
with p < 5e — 8 passing quality control were tested for departures from an additive model (Methods).
Inset is the same analysis run on associations with serum urate levels.


https://doi.org/10.1101/2020.04.20.051631
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051631; this version posted April 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

T
A [GWAS hits for IGF1 levels: bold text ‘;%‘,‘;Nis‘u f,,
Genes with no hit (grey text): +N 5 ms_

Genes at same locus: gene'os
GNAI3

CREB3L2 ADCY1
+6 ADCY3
@ -

*
foro { Growth
(Fos) x hormgne
M secretion:
3 ,,\«ﬁ%}}\\\\‘\“ 14/32 genes
;1":

7.3-fold enrichment

IGF-1 secretion:
10/14 genes
23-fold

—

Y Tids TSI PRITINIFILNS

"‘ rt""'f"f‘i?l?‘(??

$SS BEggontirniqrnastiss

86565558 5538888856015

Peripheral tissues /
K‘MRAS ¥
(m)“ ¥ = GY)—

20
PIK3CA +15
RAB26 / RIN2 +3 ¥
RAB3D

RAB7L1

RAB3IL1 RAB x“”‘ .

RAB5B .m
RABEP2 AKT3 +3
79
. MAP3K4
MAPK3
MAP4K1

MAPKAP1
MAPK8IP3

RAB/MAPK/RAS: 2 Downstream signaling:
9/31 genes; 3.8-fold enriched

Figure 4: GWAS hits in the IGF-1 pathway. Bolded and colored gene names indicate that the
gene is within 100kb of a genome-wide signficant hit. Grey names indicate absence of a genome-wide
signficant hit; grey numbers indicate that multiple genes in the same part of the pathway with no
hit. Superscript numbers indicate that multiple genes are located within the same locus and hence
may not have independent hits. A. Upstream pathway that controls regulation of IGF-1 secretion
into the bloodstream. B. Downstream pathway that controls requlation of IGF-1 response.

7


https://doi.org/10.1101/2020.04.20.051631
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051631; this version posted April 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

growth hormone (GH) signaling pathway upstream of IGF-1 [23]; and FOXO3 and RIN2 lie in
downstream signaling pathways [32].

Additional top hits that are not directly involved in the growth hormone-IGF pathway include
the liver transcription factor HNF1A (also associated with urate [17]); variants near two genes—
GCKR and KLF14—that are involved in many biomarkers, though to our knowledge the mechanism
is unclear; and variants at two additional genes CENPW and ZNF644.

Given the numerous lead signals in the IGF-1 signaling cascade, we sought to comprehensively
annotate all GWAS hits within the cascade and its sub-pathways. We compiled lists of the genes
from KEGG and relevant reviews from five major pathways in the growth hormone-IGF axis (Figure
4, Methods). Four of the five pathways show extremely strong enrichment of GWAS signals. The
first pathway regulates growth hormone secretion, acting in the pituitary to integrate ghrelin and
growth hormone releasing hormone signals and produce growth hormone. This pathway shows
strong enrichment, with 14 out of 32 genes within 100kb of a genome-wide significant signal (7.3-
fold enrichment, Fisher’s exact p = 5.4e-7). The second pathway, IGF-1 secretion, acts in the liver,
where growth hormone triggers JAK-STAT signalling, leading to IGF-1 production and secretion
[33]. This pathway again shows very strong enrichment of GWAS signals (10/14 genes, 23-fold
enrichment, p = 4.9e-8). The third pathway, serum balance of IGF, relates to IGF-1 itself, and its
paralogs, as well as other binding partners and their regulators in the serum. Here 10/18 genes have
GWAS hits (11.7-fold enrichment, p = 1.5¢-6).

We also considered two downstream signaling pathways that transmit the IGF signal into pe-
ripheral tissues. Most notably, many of the genes in the AKT branch of the IGF-1 signaling cascade
were close to a genome-wide significant association including FOXO03 (9/31 genes; 3.8-fold enrich-
ment, p=0.002). In contrast, the RAB/MAPK/RAS pathway was not enriched overall (p=0.59),
although one key signaling molecule (RIN2) in this pathway was located at one of the strongest
hits genome-wide. The observation of strong signals downstream of IGF-1 suggests the presence of
feedback loops contributing to IGF-1 regulation. This is consistent with work proposing negative
feedback from downstream pathways including AKT and MAPK to growth hormone activity [34].

Lastly, given that most of the strongest hits lie in the same pathway, we were curious whether
there might be evidence for epistatic interactions. Experiments in molecular and model organism
biology regularly find interaction effects between genes that are close together in pathways [35, 36,
37, 38, 39]. In contrast, evidence for epistatic interactions between GWAS variants is extraordinarily
rare [40]. This may be because GWAS hits often lie in unrelated pathways, and because the marginal
signals themselves are usually modest, thus reducing power to detect interactions.

We estimated that for hits with p<le-20 we would have power to detect interaction components
that are at least 10% the magnitude of a main effect (see Methods). Thus, we tested all pairwise
interactions among the 77 independent lead SNPs with p<le-20. Overall we found no signal of
epistatic interactions (Figure 3B). Repeating this analysis for urate (38 lead SNPs), we observed a
weak enrichment, suggesting that some large effect variants may harbor weak epistatic interactions
(Figure 3B inset). However, these interaction effects were much smaller than marginal associations,
and were all but absent in the many hundreds of less significant associations. We also performed
paired difference tests genome wide for the SLC2A9 variant, but did not observe any significant
associations (Figure S3).

Similarly, we tested whether individual lead SNPs (p<5e-8) show any evidence for non-additivity:
e.g., dominance or recessivity (Figure 3C). For IGF-1 there was a weak, global inflation of test
statistics, which may indicate small departures from additivity, but these are tiny compared to the
main effects. In contrast, we found strong departures from additivity for the two strongest urate
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hits (SLC2A9 and ABCG2). At these two loci, variants are weakly minor dominant (SLC2A9) and
minor recessive (ABCG2). However, the magnitude of the non-additive effects were substantially
smaller than the additive effects, even for the most significant association at SLC2A9. Three loci
showed substantial recessive effects that were on similar magnitude to the main effects (Figure S4).
Together, these results suggest that non-linear genotype effects, while likely present to some degree,
are substantially weaker than additive components.

In summary for IGF-1, we found 354 distinct associations that surpass genome-wide significance.
The lead variants show strong enrichment across most components of the growth hormone-IGF axis,
including the downstream AKT signaling arm, suggesting regulatory feedback. Among the strongest
hits we also find involvement of one transcription factor (HNF1A) and two other genes of unclear
functions (GCKR and KLF14) that have pleiotropic effects on multiple biomarkers, perhaps due to
overall effects on liver and kidney development.

Testosterone

Our third vignette describes the genetic basis of testosterone levels. Testosterone is a four carbon-
ring molecule (C19 HogO2) that functions as an anabolic steroid and is the primary male sex hormone.
Testosterone is crucial for the development of male reproductive organs and secondary sex char-
acteristics, while also having important functions in muscle mass and bone growth and density in
both females and males [42, 43|. Circulating testosterone levels range from about 0.3-2 nmol/L in
females and 8-33 nmol/L in males (Figure S5).

Testosterone is synthesized from cholesterol as one possible product of the steroid biosynthesis
pathway. Synthesis occurs primarily in the testis in males, and in the ovary and adrenal glands in
females. Testosterone production is stimulated by the hypothalmic-pituitary-gonadal (HPG) axis:
gonadotropin-releasing hormone (GnRH) signals from the hypothalamus to the pituitary to cause
production and secretion of luteinizing hormone (LH); LH in turn signals to the gonads to produce
testosterone. The HPG axis is subject to a negative feedback loop as testosterone inhibits production
of GnRH and LH by the hypothalamus and pituitary to ensure tight control of testosterone levels
[44]. Testosterone acts on target tissues via binding to the androgen receptor (AR) which in turn
regulates downstream genes. Approximately half of the circulating testosterone (~40% in males,
~60% in females [45]) is bound to sex hormone binding globulin (SHBG) and is generally considered
non-bioavailable. Testosterone breakdown occurs primarily in the liver in both females and males.

Previous GWAS for serum testosterone levels studied up to 9,000 males, together finding three
genome-wide significant loci, the most significant of which was at the SHBG gene [41, 46]. While this
paper was in preparation, two studies reported large-scale GWAS of testosterone levels in UKBB
individuals, finding significant sex-specific genetic effects [47, 48].

Here, we performed testosterone GWAS in UKBB females (N=142,778) and males (N=146,339)
separately. We discovered 79 and 127 independent genome-wide significant signals in females and
males, respectively (Figure 5, further details in Supplemental Data 3,4).

In females, six of the top signals genome-wide are close to genes involved in testosterone biosythe-
sis (Figure 5A); together these results suggest that the steroid biosynthesis pathway is the primary
controller of female testosterone levels. Among these, the top hit is at a locus containing three genes
involved in hydroxylation of testosterone and estrone, CYP3A4, CYP3A5, and CYP3AT [49, 50, 51].
Two other lead hits (MCM9 and FGF9) are involved in gonad development |52, 53, 54].

Strikingly, the top hits in males are largely non-overlapping with the top hits in females. Overall,
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Figure 5: Manhattan plots for testosterone. A. Females. B. Males. Notice the low overlap
of lead signals between females and males. FAMIA and FAMIB have been previously proposed as
the genes underlying the KAL1 locus [{1].
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the male hits affect a larger number of distinct processes. Three of the top signals affect the steroid
biosynthesis pathway (SRD5A2; UGT2B15, and AKRI1C); three are involved in either upstream
activation (NROB2) [55] or downstream signaling (the androgen receptor, AR, and its co-chaperone
FKBP4), respectively; and two have been implicated in the development of the GnRH-releasing
function of the hypothalamus (KAL1) [56] or the gonads (NR2F2) [57]. However, the largest
category, including the top hit overall, is for a group of 8 distinct variants previously shown to affect
sex hormone binding globulin (SHBG) levels [58]. SHBG is one of the main binding partuners for
testosterone-we will discuss the significance of SHBG below.
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Figure 6: Pathway diagram for steroid hormone biosynthesis showing GWAS hits for
females and males. The text color indicates genes within 100kb of a genome-wide significant hit
for females (orange), males (blue), or both females and males (black). Grey gene names or numbers
indicates genes with no hits. Colored superscripts indicate multiple genes from the same locus (and
hence may reflect a single signal). "S*" indicates that an additional, sulfonated metabolite, along
with the catalytic step and enzymes leading to it, is not shown. Pathway from KEGG; simplified
based on a similar diagram in [59].

Steroid biosynthesis. Given our observation of numerous lead hits near steroid hormone biosyn-
thesis genes, we curated the male and female hits in the KEGG pathway (Figure 6). We observed
that nearly all major steps of the pathway contained a gene near a genome-wide significant SNP in
either females or males: 31 out of 61 genes are within 100kb of a genome-wide significant signal in
males, females or both. Indeed, the KEGG steroid hormone pathway shows strong enrichment for
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signals in both females and males (26-fold enrichment, p = 2.5e-8 in females; 11-fold enrichment,
p = 1.2e-4 in males; Figure S6). While this pathway shows clear enrichment in both females and
males, the major hits do not overlap. At two loci, AKR1C and PDE2A, male and female hits
co-occur at the same locus, but are localized to different SNPs (Figure S7). More broadly, male
hits and female hits tend to occur in different parts of the steroid hormone biosynthesis pathway:
catalytic steps involved in progestagen and corticosteroid synthesis and metabolism only showed
hits in females, while most male hits were concentrated within androgen synthesis, either upstream
or downstream of testosterone itself (Figure 6).

Genetics of testosterone regulation in males versus females. One remarkable feature of
the testosterone data is the lack of sharing of signals between females and males. This is true for
genome-wide significant hits, for which there is no correlation in the effect sizes among lead SNPs
(Figure 7A), as well as genome-wide, as the global genetic correlation between females and males
is approximately zero (Figure S8).

As we show below, two aspects of testosterone biology can explain these extreme sex differences in
genetic architecture. First, the hypothalmic-pituitary-gonadal (HPG) axis plays a more significant
role in regulating testosterone production in males than in females. This is due to sex differences
in both endocrine signaling within the HPG axis and the tissue sources of testosterone production.
Second, SHBG plays an important role in mediating the negative feedback portion of the HPG axis
in males but not in females.

To assess the role of HPG signaling, we searched for testosterone GWAS hits involved in the
transmission of feedback signals through the hypothalamus and pituitary (Figure 7B, genes reviewed
in [60]). We also considered hits from GWAS of calculated bioavailable testosterone (CBAT), which
refers to the non-SHBG-bound fraction of total teststerone that is free or albumin-bound, and can be
inferred given levels of SHBG, testosterone, and albumin and assuming experimentally determined
rate constants for binding [61]. CBAT GWAS thus controls for genetic effects on total testosterone
that are mediated by SHBG production.

We found hits for both male testosterone and male CBAT throughout the HPG signaling cascade
(Figure 7B). These include genes involved in the direct response of the hypothalamus to testosterone
(AR, FKBP4) [62]; modulation of the signal by either autoregulation (TAC3, TACR3) [60] or
additional extrinsic endocrine signals (LEPR) [63, 64]; downstream propagation (KISS1) [65] and
the development of GnRH-releasing neurons in the hypothalamus (KAL1, CHD7) [66, 67|; and
LH-releasing gonadotropes in the pituitary (GREB1) [68]. All of these hits showed more significant
effects on CBAT as compared to total testosterone (Figure S10), suggesting that their primary role
is in regulating bioavailable testosterone.

Importantly, these HPG signaling hits do not show signals in females. To further investigate
the different roles of the HPG axis in males versus females, we performed GWAS of LH levels
using UKBB primary care data (N=10,255 individuals). (Recall that LH produced by the pituitary
signals to the gonads to promote sex hormone production.) We reasoned that if HPG signaling is
important for testosterone production in males but not females, variants affecting LH levels should
also affect testosterone levels in males but not females. Consistent with this, we found significant
positive genetic correlation between LH and male but not female testosterone (male ry = 0.27,
p = 0.026; female r, = 0.084, p = 0.49; Figure 7C). These results were similar when considering
measured testosterone and LH levels rather than genetic components thereof (Table S1).

Two features of the HPG axis can explain the lack of association in females. First, the adrenal
gland, which is not subject to control by HPG signaling, produces ~50% of serum testosterone in
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A. Uncorrelated effect sizes of lead testosterone SNPs B. Male GWAS hits affect HPG axis function
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Figure 7: Sex differences in genetic variation in testosterone. A. When comparing lead
SNPs (p < 5e-8 ascertained in either females or males), the effects are nearly non-overlapping
between females and males. Other traits show high correlations for the same analysis (see urate
and SHBG in inset). B. Schematic of HPG axis signaling within the hypothalamus and pituitary,
with male GWAS' hits highlighted. These variants are not significant in females. C. Global ge-
netic correlations, between indicated traits (estimated by LD Score regression). Thickness of line
indicates strength of correlation, and significant (p < 0.05) correlations are in bold. Note that LH
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hormone binding globulin; CBAT, calculated bioavailable testosterone; LH, luteinizing hormone.
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females. Indeed, GWAS hits for female testosterone cluster in steroid hormone pathways involving
progestagen and corticosteroid synthesis (Figure 6), processes known to occur largely in the adrenal.
Female testosterone hits are also specifically enriched for high expression in the adrenal gland relative
to male testosterone hits (Figure S11).

Second, for the ovaries, which produce the remaining ~50% of serum testosterone in females, the
net effect of increased LH secretion on testosterone production is expected to be diminished. This is
because the pituitary also secretes follicle stimulating hormone (FSH), which in females stimulates
aromatization of androgens (including testosterone) into estrogens [69]. In males, FSH does not
stimulate androgen aromatization but is instead required for sperm production. Consistent with
differential roles of FSH, a previously described GWAS hit for menstrual cycle length at FSHB [70]
shows suggestive association with testosterone in females but not males (Table S2).

In addition to the role of HPG signaling, the presence of many SHBG-associated variants among
the top hits in male testosterone suggests that SHBG also underlies many of the sex-specific genetic
effects (Figure 5B). We found high positive genetic correlation between male and female SHBG, as
well as between SHBG and total testosterone in males but not females (Figure 7C). Additionally,
we found a significant negative genetic correlation between SHBG and CBAT in both females and
males, but of a far larger magnitude in females than males (Figure 7C). Together, these observations
suggest that while SHBG regulates the bioavailable fraction of testosterone in the expected manner
in both females and males, there is subsequent feedback in males only, where decreased CBAT leads
to increased total testosterone.

We propose that increased SHBG leads to decreased bioavailable testosterone in both females and
males, and in males this relieves the negative feedback from testosterone on the hypothalamus and
pituitary gland, ultimately allowing LH production and increased testosterone production (Figure
7D). The lack of SHBG-mediated negative feedback in females is likely due in part to the overall
weaker action of the HPG axis, as well as the fact that female testosterone levels are too low
to effectively inhibit the HPG axis. This idea is supported experimental manipulations of female
testosterone, which result in significant reductions of LH only when increasing testosterone levels
to within the range typically found in males |71].

In summary, we find that many of the top signals for female testosterone are in the steroid
biosynthesis pathway, and a smaller number relate to gonadal development. In contrast, the lead
hits for male testosterone reflect a larger number of processes, including especially SHBG levels and
signaling components of the HPG axis, in addition to biosynthesis and gonadal development. These
differences in the genetic architecture of male and female testosterone are so extreme that these can
be considered unrelated traits.

on by the HPG axis in males but not females.

Polygenic architecture of the three traits

We have shown that the lead signals for all three traits are highly concentrated near core genes
and core pathways. Given this observation we wondered whether these traits might be genetically
simpler than typical complex diseases—most of which are highly polygenic, and for which the lead
pathways contribute relatively little heritability [2, 72].

To address this, we first estimated how much of the SNP heritability is explained by variation
at genes in enriched pathways (see Supplemental Data 5-7 for pathways and genes used). We
used HESS to estimate the SNP heritability in each of 1701 approximately-independent LD blocks
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Figure 8: Despite clear enrichment of core genes and pathways, most heritability for
these traits is due to the polygenic background. (A) Cumulative distribution of SNP heri-
tability for each trait across the genome (estimated by HESS). The locations of the most significant
genes are indicated. Insets show the fractions of SNP heritability explained by the most important
genes or pathways for each trait. (B) Estimated fractions of SNPs with non-null associations, in
bins of LD Score (estimated by ashR). Each point shows the ashR estimate in a bin representing xx %
of all SNPs. The inset text indicates the estimated fraction of variants with a non-null marginal
effect, i.e. the fraction of variants that are in LD with a causal variant. (C) Simulated fits to the
data from (B). X-azis truncated for visualization as higher LD Score bins are noisier. Simulations
assume that w1 of SNPs have causal effects drawn from a normal distribution centered at zero (see
Methods). The simulations include a degree of spurious inflation of the test statistic based on the LD
Score intercept. Other plausible assumptions, including clumpiness of causal variants, or a fatter-
tailed effect distribution would increase the estimated fractions of causal sites above the numbers
shown here.
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spanning the genome [72, 73]. Plotting the cumulative distribution of SNP heritability across
the genome revealed that, across all four traits, most of the genetic variance is distributed nearly
uniformly across the genome (Figure 8A).

In aggregate, core genes contribute modest fractions of SNP heritability, with the exception of
the SLC2A9 locus, which HESS estimates is responsible for 20% of the SNP heritability for urate.
Aside from this outlier gene, the major core pathways contribute between 7-11 percent of the SNP
heritability, and “secondary” core pathways are between 0.4% — 1.2%.

Numbers of causal variants. We next sought to estimate how many causal variants are likely to
contribute to each trait. This is fundamentally a challenging problem, as most causal loci have effect
sizes too small to be confidently detected. As a starting point we used ashR, which is an empirical
Bayes method that estimates the fraction of non-null test statistics in large-scale experiments [74].
As described previously, we stratified SNPs from across the genome into bins of similar LD Score;
we then used ashR to estimate the fraction of non-null associations within each bin [2]. (For this
analysis we used the 2.8M SNPs with MAF>5%.) We interpret this procedure as estimating the
fraction of all SNPs in a bin that are in LD with a causal variant.

For each trait, the fraction of non-null tests increases from low levels in the lowest LD Score
bins to above 50% in the highest LD Score bins. Overall we estimate that around 45-50% of SNPs
are linked to a non-zero effect variant for urate, IGF-1 and male testosterone, and 30% for female
testosterone (Figure 8B). These estimates were robust to halving the sample size of the input GWAS,
and were substantially higher than the mean of ~10% for randomized (phenotype value shuffled)
traits (Figure S12).

We next conducted simulations to understand how these observations relate to the numbers of
causal variants (Figure 8C). To do this, we simulated phenotypes for the UK Biobank individuals,
assuming a range of fractions of causal variants (Methods). Causal variants were chosen uniformly
at random from among the 4.4M SNPs with MAF>1%; effect sizes were simulated from a normal
distribution with mean zero, and variances set to produce the observed SNP heritabilities (0.3 for
urate, IGF-1, and male testosterone, and 0.2 for female testosterone). We also allowed for a degree
of over-inflation of the test statistics (i.e., allowing for an inflation factor as in Genomic Control
[75])—this was important for fitting the positive ashR estimates at low LD Scores. We then matched
the simulations to the observed ashR results to approximate the numbers of causal variants.

Overall, our estimates range from 0.1% of all 4.4M variants with MAF >1% in female testos-
terone (~4,000 causal sites) to 0.3% of variants for IGF-1 (~12,000 causal sites). These results
imply that all four traits are highly polygenic, though considerably less so than height (for which
we estimate 2%, or 80,000 causal sites in UK Biobank; Figure S13 and S15).

Furthermore, there are three reasons to suspect that these numbers may be underestimates.
First, causal variants are likely to be clumped in the genome instead of being uniformly distributed;
simulations with clumping require a larger number of causal variants to match the data (Figure
S16). Second, if the distribution of effect sizes has more weight near zero and fatter tails than a
normal distribution, this would imply a larger number of causal variants (see analysis assuming a T-
distribution, Figure S17). Third, stratified LD Score analysis of the data suggests that some of the
apparent evidence for overinflation of the test statistics (Table S3) may in fact be due to a higher
proportion of causal variants occurring in lower LD Score bins 76|, as the annotation-adjusted
intercepts for all traits but height are consistent with 1.

We note that the proportion of causal variants estimated by ashR is substantially lower in low-
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MAF bins, even in infinitesimal models, presumably due to lower power (Figure S18 and S19). We
overcame this by using a parametric fit, which is robust to inflation of test statistics (Figures S20
and S21); the resulting estimates were relatively similar, albeit slightly higher, than when using
the simulation-matching method (Figure S15). We note that it is still critical to match samples by
heritability and sample size, as in the simulation method (Figure S22), and to use correct covariates
in the GWAS (Figure S23).

In summary this analysis indicates that for these molecular traits, around 10-15% of the SNP
heritability is due to variants in core pathways (and in the case of urate, SLC2A9 is a major outlier,
contributing 20% on its own). However, most of the heritability is due to a much larger number of
SNPs spread widely across the genome, conservatively estimated at 4,000-12,000 common variants
for the biomarkers and 80,000 for height.

Discussion

In this study, we examined the genetic basis of three molecular traits measured in blood serum: a
metabolic byproduct (urate), a signaling protein (IGF-1), and a steroid hormone (testosterone). We
showed that unlike most disease traits, these three biomolecules have clear enrichment of genome-
wide significant signals in core genes and pathways. At the same time, other aspects of the data are
reminiscent of patterns for complex common diseases, including high polygenicity, little indication of
allelic dominance or epistasis, and clear enrichment of signals in tissue-specific regulatory elements.

Our main results are as follows.

e Urate: The largest hits for urate are in solute carrier genes in the kidneys that shuttle urate
in and out of the blood and urine. Remarkably, eight out of ten annotated urate transporters
have genomewide significant signals. A single locus, surrounding SLC2A9, is responsible for
20% of the SNP heritability. The purine biosynthetic pathway, from which urate is produced
as a byproduct, is modestly enriched for signals (2.1-fold). Several master regulators for kidney
and liver development are among the most significant hits. Aside from SLC2A9, the overall
SNP heritability is primarily driven by variants in kidney regulatory regions, both shared
across cell types and not.

e IGF-1: IGF-1 is a key component of a signaling cascade that links growth hormone released
from the pituitary to stimulation of cell growth in peripheral tissues. We identified 354 in-
dependent genome-wide significant signals. The strongest signals lie in genes that interact
directly with IGF-1, including IGFBP3, as well as in the IGF1 gene itself. More generally, we
see striking enrichment of hits throughout the growth hormone-IGF cascade—this includes es-
pecially the upper parts of the cascade, which regulate IGF-1 release, but also in downstream
components of the cascade as well, suggesting a feedback mechanism on IGF-1 levels.

e Testosterone: In contrast to urate, testosterone shows clear enrichment of signals within
the steroid biosynthesis pathway (26-fold in females, 11-fold in males). Remarkably, the
genetic basis of testosterone is completely independent between females and males. In fe-
males, the lead hits are mostly involved in synthesis. In males, we see signals throughout the
hypothalamic-pituitary-gonadal (HPG) axis which regulates testosterone production in the
gonads, as well as in variants that regulate SHBG. Furthermore, in males increased SHBG
reduces negative feedback between testosterone levels and the HPG axis, thereby increasing
total serum testosterone.
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e Polygenic background. For each of these traits, the core genes and pathways contribute
only a modest fraction of the total SNP heritability. Aside from SLC2A9 for urate, the
most important core pathways contribute up to about 10% of the total SNP heritability. We
estimated the numbers of causal variants under a model where causal variants have a normal
effect-size distribution. We estimate that there are around 4,000-12,000 common variants with
non-zero effects on these traits. Using the same method we estimated about 80,000 causal
sites for height. These estimates are likely conservative as several of our assumptions may
lead us to underestimate the true values.

The architecture of complex traits and the omnigenic model. One of our primary mo-
tivations in this study was to use these three traits as models to extend our understanding of the
architecture of complex traits.

Many of the advances of 20th century genetics came from reductionist approaches that focused
on understanding the functions of major-effect mutations; this principle has been extended in the
GWAS era into interpreting the impact of lead signals. And yet, at the same time, most heritability
is driven by the polygenic background of small effects at genes that are not directly involved in the
trait. The overwhelming importance of the polygenic background is a striking discovery of modern
GWAS, and demands explanation as it does not fit neatly into the standard conceptual models of
the relationship between genotype and phenotype.

Our group has recently proposed a simplified conceptual model to understand this [2, 3|]. We
proposed that for any given trait there is a set of core genes that are directly involved in the biology
of the phenotype. We proposed that (1) core genes are only responsible for a small fraction of
phenotypic variance, and that (2) most phenotypic variance is controlled by a sum of weak trans-
regulatory perturbations from other expressed genes (“peripheral” genes) that affect expression of
the core genes. In support of this model, we noted that even for a trait as relatively simple as gene
expression, most of the phenotypic variance comes from large numbers of small trans effects. We
proposed that in the “omnigenic” limit, one may expect that essentially every gene expressed in
relevant cell types has the potential to exert a nonzero effect on a given phenotype—though of course
most of these effects will be exceedingly small, and not every gene has cis-regulatory variation and
thus in practice many do not contribute.

However, for most disease traits it is currently difficult to evaluate this model. We generally do
not know core genes or pathways with any accuracy, and it is difficult to determine why most hits
are linked to disease. Thus, the three molecular traits considered here provide valuable examples
to better understand complex trait architecture. For all three traits we find huge enrichment of top
signals at core genes within the primary pathways that regulate these traits. At the same time, these
core pathways only explain modest fractions of the heritability, and most heritability is due to a
polygenic background of ~ 10% variants. Consequently, these traits provide compelling illustrations
of our model.

Moreover, we can expect that disease endpoints—which are usually products of many highly
polygenic biological traits such those studied here—will even be far more polygenic than the molecular
traits studied here. Most diseases and other traits depend on the combinations of inputs from many
other phenotypes including the phenotypes considered here [77].

Examples for some of the factors that affect diabetes and heart attack are shown in Figure
9. Mendelian randomization shows contributions from all three of our biomarkers to diabetes or
cardiovascular disease risk |7, 48]. As a more extreme example, behavioral traits such as educational
attainment are notoriously polygenic [78], and these are affected by complicated networks of other
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aspects of health and behavior [79]. The point here is that when multiple risk factors—each of which
is polygenic—contribute to any given disease, the disease endpoint absorbs the polygenic basis for
all of the risk factors together.

Model of cardiometabolic risk factor polygenicity
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Figure 9: Disease endpoints are often affected by contributions from multiple other
inputs, each of which are themselves polygenic. Here we show a few of the risk factors that
contribute to diabetes and heart attack. The genetic basis of the disease endpoint can be modeled as a
weighted sum of the genetic effects for all the input traits, which will further increase its polygenicity.

In summary, we have shown that for these three molecular traits, the lead hits illuminate core
genes and pathways to a degree that is highly unusual in GWAS. By doing so they illustrate which
processes may be most important for trait regulation. For example, for urate, kidney transport is
more important than biosynthesis, while for testosterone, biosynthesis is important in both sexes
but especially in females. However, in other respects the GWAS data here are reminiscent of more-
complex traits: in particular most trait variance comes from a huge number of small effects at
peripheral loci. Lastly, these vignettes help to illustrate why many diseases are extraordinarily
polygenic, as they are usually impacted by multiple biological processes that, like those considered
here, are themselves highly polygenic.
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Methods

Population definition

We defined our GWAS population as a subset of the UK Biobank [6]. We use ~337,000 unrelated
White British individuals as our cohort, filtering based on sample QC characteristics as previously
described [7]:

1. Used to compute principal components (used_in_pca_calculation column)
2. Not marked as outliers for heterozygosity and missing rates (het_missing_outliers column)

3. Do not show putative sex chromosome aneuploidy (putative_sex_chromosome_aneuploidy
column)

4. Have at most 10 putative third-degree relatives (excess_relatives column).

5. Finally, we used the in_white_British_ancestry_subset column in the sample QC file to
define the subset of individuals in the White British cohort.

Trait definition

We perform trait normalization and quality control similarly to previous work [7]. Trait measure-
ments are first log-transformed, then adjusted for genotype principal components, age indicator vari-
ables, sex, 5-year age (‘approximate age’) by sex interactions, self-identified ethnicity, self-identified
ethnicity by sex interactions, fasting time, estimated sample dilution factor, assessment center,
genotyping batch, 20-tile of time of sampling, month of assessment, and day of assay.

Then, individuals were subset to the GWAS population (defined above), separated by sex for
testosterone measurements. The final sample sizes were 318,526 for urate, 317,114 for IGF-1, 142,778
for female testosterone, and 146,339 for male testosterone.
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GWAS

We performed GWAS in plink2 alpha using the following command (data loading arguments removed
for brevity):

plink2 --glm cols=chrom,pos,ref,alt,altl,ax,alcount,totallele,alfreq,
machr2,firth,test,nobs,beta,se,ci,tz,p omit-ref
--covar-variance-standardize
--remove [non-White-British, related White British or excluded]
--keep [male, female, or all]
--geno 0.2 --hwe le-50 midp --threads 16

GWAS were then filtered to observed allele frequency greater than 0.001 and INFO score greater
than 0.3 for further analyses.

GWAS for paired difference epistasis

A GWAS was performed in two subsets of individuals — those with two C alleles at rs16890979 (N
= 295209) and those with two T alleles at rs16890979 (N = 30184). The following command was
used:

plink2 --glm cols=chrom,pos,ref,alt,alfreq,firth,test,
nobs,beta,se,ci,tz,p hide-covar
--hwe 1e-50 midp --keep [rs16890979 CC or TT individuals]
--remove [non-White British] --geno 0.1 --maf 0.001

With covariates including adjusting for age, age squared, genotyping array, and 20 principal
components. The residual urate levels, already adjusted for age, sex, global principal components,
and technical covariates (Methods) were used as input.

After GWAS completed, SNPs valid in both CC and TT individuals were compared for betas
using a paired difference Z test. The test statistic was then converted to a P-value using a standard
normal distribution.

LH trait definition

LH levels were extracted from UK Biobank primary care data using code XMOlv. Separately, LH
levels extracted using code XE251 were also included for phenotypic correlation analyses. The me-
dian level across observations and log number of observations were recorded for covariate correction
below. Individuals with median observations more than 10 times the interquartile range away from
the median of medians were discarded. Once these individuals were removed, individuals with
observations more than four standard deviations from the resulting mean were also discarded.

For the primary LH code XMOlv, the distribution of raw, cleaned, and covariate-adjusted phe-
notype values were respectively:
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For the secondary LH code XE25I, the distribution of raw, cleaned, and covariate-adjusted

phenotype values were respectively:
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For GWAS, the cleaned phenotypes were log-transformed and adjustments were used as covari-

ates.

LH GWAS

Age, sex, genotyping array, 10 PCs, log number of observations in primary care, and which primary
care code produced a given observation were used as covariates.

We performed GWAS in plink2 alpha using the following command (data loading arguments

removed for brevity):

plink2 --glm cols=chrom,pos,ref,alt,altl,ax,alcount,totallele,alfreq,
machr2,firth,test,nobs,beta,se,ci,tz,p hide-covar omit-ref

--covar-variance-standardize
--remove [non-White-British, related White British or excluded]

--keep [all White British]
--geno 0.2 --hwe le-50 midp --maf 0.005 --vif 999

We also performed GWAS of LH code XE25I in a sex stratified fashion using the following
command:
plink2 --glm cols=chrom,pos,ref,alt,altl,ax,alcount,totallele,

alfreq,machr2,firth,test,nobs,beta,se,ci,tz,p
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hide-covar omit-ref --covar-variance-standardize --remove <non-White-British>
--geno 0.2 --hwe 1e-50 midp --threads {threads} --maf 0.001 --vif 999;

On genotyped SNPs and imputed variants with a minor allele frequency greater than 1% in the
White British as a whole.

GWAS were then filtered to MAF > 1% and INFO > 0.7. These higher threshold were chosen
to reflect the much smaller sample size in the GWAS.

GWAS hit processing

To evaluate GWAS hits, we took the list of SNPs in the GWAS and ran the following command
using plink1.9:

plink --bfile [] --clump [GWAS input file] --clump-pl le-4 --clump-p2 le-4
--clump-r2 0.01 --clump-kb 10000 --clump-field P --clump-snp-field ID

We then took the resulting independent GWAS hits and examined them for overlap with genes.
In addition, for defining the set of SNPs to use for enrichment analyses, we greedily merged SNPs
located within 0.1 cM of each other and took the SNP with the minimum p-value across all merged
lead SNPs. In this way, we avoided potential overlapping variants that were driven by the same,
extremely large, gene effects.

Gene proximity

We annotated all genes in any Biocarta, GO, KEGG, or Reactome MSigDB pathway as our full
list of putative genes (in order to avoid pseudogenes and genes of unknown function), and included
the genes within each corresponding pathway as our target set. This resulted in 17847 genes. We
extended genes by 100kb (truncating at the chromosome ends) and used the corresponding regions,
overlapped with SNP positions, to define SNPs within range of a given gene. Gene positions were
defined based on Ensembl 87 gene annotations on the GRCh37 genome build.

Pathway enrichment of GWAS hits

GWAS hit pathway enrichment was evaluated using Fisher’s exact test. For each pathway for a
given trait (Supplemental Data 5-7), genes were divided into those within the pathway and those
outside; and separately into genes within 100kb of a GWAS hit and not. A 2x2 Fisher’s exact test
was used to estimate the total enrichment for GWAS hits around genes of interest.

For male and female testosterone, we noticed a number of GWAS loci with multiple paralogous
enzymes within the synthesis pathway (e.g. AKRI1C, UGT2B, CYPS3A). To avoid double counting
GWAS hits when testing enrichment at such loci, we instead considered the number of GWAS hits
(within 100 kb of any pathway gene as above) normalized to the total genomic distance covered by
all genes (+/- 100kb) in the pathway. A Poisson test was used to compare the rate parameter for
this GWAS hit/Mb statistic between genes in a given pathway and all genes not in the pathway.
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Partitioned heritability

Partitioned heritability estimates were generated using LD Score regression [21]. The BaselineLD
version 2.2 was used as a covariate, and the 10 tissue type LD Score annotations were used as
previously described [21] in a multiple regression setup with all cell type annotations and the baseline
annotations.

Pathway heritability estimation

We evaluated heritability in pathways using two distinct strategies. Initially, we used partitioned
LD Score regression [21] but found that the estimates were somewhat noisy, likely because most
pathways contain few genes. As such, we used alternative fixed-effect models for which there is
increased power.

Next, we calculated the heritability in a set of 1701 approximately independent genomic blocks
spanning the genome |73] using HESS [72]. Next, we overlapped blocks with genes in each pathway.
The heritability estimates for all blocks containing at least one SNP within 100kb of a pathway gene
were summed to estimate the heritability in a given pathway. Pathway definitions were assembled
based on a combination of KEGG pathways, Gene Ontology categories, and manual curation based
on relevant reviews.

Causal SNP simulations

All imputed variants with MAF > 1% in the White British (4.1M) were used as a starting set of
putative causal SNPs. Individual causal variants were chosen at random, with a fraction P of them
marked as causal. Each causal variant was assigned an effect size:

For our simulations, we used P € {0.0001,0.001,0.003,0.01,0.03}.

Next, GCTA was used to simulate phenotypes based on the marked causal variants, using the
following command:

gcta64d --simu-qt --simu-causal-loci CausalVariantEffects
--simu-hsq 0.3 --bfile UKBBGenotypes"

Producing predicted phenotypes with heritability h? = 0.3. GWAS were run within both the
full set of 337,000 unrelated White British individuals and a randomly downsampled 50%, to ap-
proximate the sex-specific GWAS used for Testosterone, across the set of putative causal SNPs.
GWAS for the traits, as well as a random permuting across individuals of urate and IGF-1 to act as
negative controls, were repeated on this subset of variants as well. In this way, we have a directly
comparable set of simulated traits to use, along with the corresponding true traits and negative
controls, to ascertain causal sites in the genome.

For the infinitesimal simulations, instead plink was used to generate polygenic scores on the basis
of the random assignment of effect sizes to SNPs, and these were then normalized with N (0, 02)
environmental noise such that h? was the given target heritability.
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Causal SNP count fitting procedure using ashr

LD Scores for the 489 unrelated European-ancestry individuals in 1000 Genomes Phase III [80] were
merged with the GWAS results along with LD Scores derived from unrelated European ancestry
participants with whole genome sequencing in TwinsUK. TwinsUK LD Scores are used for all anal-
yses. Then variants were filtered by minor allele frequency to either greater than 1%, greater than
5%, or between 1% and 5%. Remaining variants were divided into 1000 equal sized bins, along with
5000 and 200 bin sensitivity tests. Within each bin, the ashR estimates of causal variants, as well
as the mean x? statistics, were calculated using the following line of R:

data %>% filter(pmin(MAF, 1-MAF) > min.af, pmin(MAF, 1-MAF) < max.af) %>%
mutate(1ldBin = ntile(ldscore, bins)) %>% group_by(1dBin) %>%
summarize (mean.ld = mean(ldscore), se.ld=sd(ldscore)/sqrt(n()),
mean.chisq = mean(T_STAT**2, na.rm=T),
se.chisq=sd(T_STAT**2, na.rm=T)/sqrt(sum(!is.na(T_STAT))),
mean.maf=mean (MAF) ,
prop.null = ash(BETA, SE)$fitted_g$pil1], n=n())

Thus, the within-bin x? and proportion of null associations mg were each ascertained. Next, these
fits were plotted as a function of mean.1d to estimate the slope with respect to LD Score, and true
traits were compared to simulated traits, described below.

We use two fixed simulated heritabilities, h? = 0.3 and h? = 0.2, to approximately capture the
set, of heritabilites observed among our biomarker traits. Traits with true SNP heritability among
variants with MAF > 1% different than their closest simulation might have causal site count over-
estimated (for h?.,. > h%, ) or under-estimated (for h?.,. < h2, ). In addition, most traits in

reality have more than zero SNPs with MAF < 1% contributing to the heritability. Thus, we take
these estimates as approximate and conservative.

Effect of population structure on causal SNP estimation

We expect that population structure might lead to test statistic inflation for causal variant and ge-
netic correlation estimates [81]. To evaluate this, we performed GWAS for height using no principal
components, and evaluated the causal variant count (Figure S23).

This suggests that the test statistic inflation is an important parameter in the estimation of
causal variants, as is intuitive. As such, we generated estimated SNP counts for five different
inflation values (0.9, 1, 1.05, 1.1, and 1.2) and plotted all of them, under the assumption that the
best fitting intercept would have the most calibrated estimates. Plots are replicated across these
intercepts in the sensitivity analyses shown, as in Figure S20.

Evaluating the calibration of causal SNP proportion estimation

To evaluate calibration of causal SNP estimates, in addition to using simulated traits as the controls,
we also generated a randomized control by shuffling the SHBG phenotype values across individuals
(Figure S14). We performed this analysis using urate and IGF-1 to similar effect (data not shown).

This suggests that the causal variant counts are well calibrated for the randomized traits, even
though they lack structure with respect to covariates.
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Effect of sample size on causal SNP estimation

It is important to note that these estimates are still likely power limited even in a study as large
as UK Biobank. We make this note on the basis of observed my for M AF > 5% variants being
uniformly higher than 1% < M AF < 5% variants in both simulations and observed data for high
causal variant counts (Figure S19).

As such, we anticipate that future studies with larger samples will yield increased, but asymp-
totic, estimates of causal SNP percentages among common variants, and treat our estimates as
conservative bounds.

Particularly for height (Figure S13), while the uncalibrated estimates with the full sample are
substantially higher than the half sample, the calibrated estimates are nearly identical. This suggests
that trait polygenicity might be an important factor in determining the power of this method at
different sample sizes, as height is known to be highly polygenic |72].

Effect of binned variant count on causal SNP estimation

It is possible that the ashR algorithm itself, and not the GWAS, are the power limited step of the
analysis. To evaluate this, we ran ashR on 200, 1000, and 5000 equally sized bins along the LD
Score axis. We found that increasing bin counts both decrease the standard errors and the intercepts
(Figure S24) and recommend as many bins as is practical.

Effect of minor allele frequency on causal SNP estimation

Because we only simulated causal effects among SNPs with MAF > 1%, we were concerned that
variant effect bins might be biased by the minor allele frequency cutoff. We previously ran with
higher MAF cutoffs (25% and 40%) as calibrations on an earlier version of the model, and observed
uniformly larger causal SNP percentages. We saw relative robustness to lower thresholds, but overall
the fraction of causal variants was lower in the lower MAF bins (Figure S18).

Effect of concentrated SNPs on causal SNP estimation

For each variant, the megabase bin it is contained within was used as a proxy for SNPs in local LD.
A within-megabase causal SNP percentage parameter:

P ~ Beta(a,a/p)

was chosen such that p was the overall expected percentage of causal sites in the genome across a con-
centration parameter . For our simulations, we used p € {0.0001,0.0003,0.001,0.003,0.01,0.03,0.05}
and « € {10,3,0.3} to represent different degrees of “clumpiness” along the genome.

Genetic correlation between sex-stratified testosterone-related traits

LD Score regression [?| was used to generate genetic correlation estimates. The following command
was used:

ldsc.py --rg <traits> --ref-1ld-chr eur_ref_1d_chr
--w-1ld-chr eur_w_ld_chr
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where eur_*_1d_chr were downloaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Residual height comparison with IGF-1

Height (adjusted for age and sex) and residualized log IGF-1 levels for unrelated White British
individuals were plotted against each other, and visualized using geom_smooth.

Pathway diagrams

Diagrams were drawn using Adobe Illustrator and a Wacom graphics tablet.

PheWAS analysis

PheWAS were performed using the Oxford Brain Imaging Genetics (BIG) Server [82].

Non-additivity tests

Residualized trait values were used as the outcome in all models. An ANOVA was performed
between a model measuring the effect of genotype dosages versus a model with both genotype
dosage effects and indicators for each rounded genotype. In this way, a large number of possible
non-additive models are approximated with a single model. Analyses were performed in R 3.4 using
1m.

Epistasis tests

Residualized trait values were used as the outcome in all models. An ANOVA was performed
between a model measuring the effect of indicators for each rounded genotype (4 degrees of freedom)
versus the interaction between the two sets of indicators (8 degrees of freedom). In this way, a
large number of possible non-additive models are approximated with a test. Alternative models
with dominant-only effect interactions with fewer degrees of freedom were also tested with similar
results. Analyses were performed in R 3.4 using 1m.

LD Score regression for partitioning heritability

We used partitioned LD Score regression [21] to estimate the enrichment of individual tissues. We
used the 1dsc package and the updated BaselineLLD v2.2 annotations with the following command:

ldsc.py --h2 <munged urate summary statistics> \
--ref-1d-chr baselinelD.,<cell type annotations> \
--overlap-annot --frqfile-chr 1000G_frq/1000G.macbeur. \
--w-1ld-chr weights_hm3_no_hla/weights.

Where <cell type annotations> were alternative either the default annotations for each of
the ten cell type groups [21] or modified versions which were filtered of any regulatory regions
overlapping with the kidney cell type, using the following command:
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1s 1000G_Phase3_cell_type_groups/*.bed | while read bed; do
intersectBed -a $bed -b 1000G_Phase3_cell_type_groups/7.bed -v >
1000G_Phase3_cell_type_groups_exclude_kidney/‘basename $bed‘;
done

In this way, the cell type exclusive, non-kidney regulatory elements are used.
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