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Abstract 26 

Cells rely on mitogen-activated protein kinases (MAPKs) to survive environmental stress. In 27 

yeast, activation of the MAPK Hog1 is known to mediate the response to high osmotic 28 

conditions. Recent studies of Hog1 revealed that its temporal activity is subject to both negative 29 

and positive feedback regulation, yet the mechanisms of feedback remain unclear. By designing 30 

mathematical models of increasing complexity for the Hog1 MAPK cascade, we identified 31 

pathway circuitry sufficient to capture Hog1 dynamics observed in vivo. We used these models 32 

to optimize experimental designs for distinguishing potential feedback loops.  Performing 33 

experiments based on these models revealed mutual inhibition between Hog1 and its 34 

phosphatases as the likely positive feedback mechanism underlying switch-like, dose-35 

dependent MAPK activation. Importantly, our findings reveal a new signaling function for MAPK 36 

phosphatases. More broadly, they demonstrate the value using mathematical models to infer 37 

targets of feedback regulation in signaling pathways.  38 
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Introduction 51 

All cells rely on intracellular signaling systems to protect themselves from environmental 52 

stress. These pathways execute the appropriate cellular response by relaying the strength, 53 

duration, and other quantitative information about changing environmental conditions (Alon, 54 

2007; Purvis and Lahav, 2013). When the external stimulus is harmful to the cell, the cell’s 55 

response can determine whether it survives. To mitigate the effects of stress, cells use signaling 56 

pathways that often incorporate mitogen-activated protein kinase (MAPK) cascades (Cargnello 57 

and Roux, 2011). In this three-tiered signaling motif, a MAPK kinase kinase (MAP3K) 58 

phosphorylates a MAPK kinase (MAP2K), which in turn phosphorylates a terminal MAPK. 59 

These phosphorylation events occur within the activation loop of the kinase domain, thereby 60 

enabling catalytic activity. The MAPK coordinates all events required for a proper response to 61 

the environmental stress.  62 

The MAPK signaling cascade is conserved in all eukaryotic organisms, from humans to 63 

yeast. In the case of the S. cerevisiae High Osmolarity Glycerol (HOG) pathway, hyperosmotic 64 

stress initiates signaling to activate cytoprotective responses (Brewster and Gustin, 2014; 65 

Miermont et al., 2011; O’Rourke et al., 2002; Saito and Posas, 2012). This signaling occurs 66 

through the Sln1 and Sho1 input branches where the Sln1 branch has two MAP3Ks, Ssk2 and 67 

Ssk22, while the Sho1 branch has a single MAP3K, Ste11 (Figure 1). All three of these MAP3Ks 68 

converge on and activate the MAP2K Pbs2, while Pbs2 alone activates the MAPK Hog1. Hog1 69 

protects the cell by increasing cytosolic osmolyte concentrations to reestablish turgor pressure 70 

over time. Hog1 is known to phosphorylate at least 35 proteins, some of which are transcription 71 

factors in the nucleus leading to the induction or repression of ~300 genes (Capaldi et al., 2008; 72 

Janschitz et al., 2019; O’Rourke and Herskowitz, 2004). Activation of this pathway is transient, 73 

and once cells have fully-adapted, they can resume cell cycle progression and proliferation 74 

(Escoté et al., 2011). 75 
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Many MAPK signaling networks rely on feedback regulation to amplify or diminish a 76 

signal in a time-dependent manner (Albeck et al., 2013; Brandman and Meyer, 2008). While 77 

multiple feedback loops have been identified for the HOG pathway, it is unknown how these 78 

regulatory mechanisms function together or if they are sufficient to capture the dynamics of 79 

Hog1 activity. For example, Hog1 phosphorylates the osmosensor Sho1 and the MAP3K Ssk2, 80 

leading to diminished signal transduction (Hao et al., 2007; Sharifian et al., 2015). Similarly, 81 

Hog1-dependent phosphorylation of Ste50, the adapter protein of Ste11, increases Ste50 82 

dissociation from its signaling complex, thereby downregulating signal transmission (Nagiec and 83 

Dohlman, 2012; Yamamoto et al., 2010). Hog1-dependent activity also attenuates signaling by 84 

initiating the closure of osmolyte channels, inducing the synthesis of amino acid metabolites, 85 

increasing the production of osmolytes like glycerol and trehalose, and inducing the transcription 86 

of osmolyte metabolism-associated genes (Babazadeh et al., 2014; Lee et al., 2013; O’Rourke 87 

and Herskowitz, 2004; Petelenz-Kurdziel et al., 2013; Shellhammer et al., 2017). 88 

Phosphorylation and osmolyte accumulation act on different timescales to suppress Hog1 89 

signaling, and therefore could differentially affect the dynamics of Hog1 activity.  90 

Further studies have shown that Hog1 acts, in part, by regulating its own catalytic 91 

activity. In response to a wide range of external salt concentrations, Hog1 is rapidly and fully 92 

phosphorylated, whereas dephosphorylation occurs at increasingly later times as the dose of 93 

the stimulus increases (English et al., 2015). Because different doses of salt elicit different 94 

transcriptional responses, it is likely that signal duration, rather than amplitude, transmits 95 

information regarding the external salt concentration. This behavior has been referred to as 96 

“dose-to-duration” signaling (Behar et al., 2008). Experiments using a Hog1 variant (Hog1-as) 97 

engineered to respond to a pharmacological inhibitor (Klein et al., 2011; Westfall and Thorner, 98 

2006) revealed that Hog1 kinase activity affects its response to high osmotic stress. In the 99 

absence of MAPK kinase activity, the maximal level of Hog1 phosphorylation is dependent on 100 

the concentration of external osmolytes; peak phosphorylation is delayed and is far more 101 
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sustained than that of the wildtype MAPK (English et al., 2015). These observations indicate 102 

that Hog1 kinase activity is required for full activation by the MAP2K Pbs2 and for timely 103 

inactivation by appropriate phosphatases. Such behaviors are indicative of positive and 104 

negative feedback. However, while the necessity of feedback within the HOG pathway has long 105 

been appreciated, many details of the mechanisms controlling Hog1 phosphorylation dynamics 106 

are still unknown. This is in part due to the complexities of the observed behaviors, which are 107 

both dose- and time-dependent. 108 

One approach to understanding complex biological data is to describe them using 109 

mathematical models. The structures of HOG pathway models have varied substantially, from 110 

having minimal two state systems to representing all of the HOG pathway components (Klipp 111 

and Schaber, 2008; Mitchell et al., 2015; Stojanovski et al., 2017). A subset has focused on 112 

negative feedback while others have investigated the role of the two input branches (Granados 113 

et al., 2017; Hersen et al., 2008; Schaber et al., 2012). Many models investigating feedback 114 

regulation concluded that the pathway needs Hog1-dependent integral negative feedback 115 

control to exhibit perfect adaptation (Klipp et al., 2005; Mettetal et al., 2008; Mitchell et al., 2015; 116 

Muzzey et al., 2009; Zi et al., 2010). Other models further explored different mechanisms of 117 

negative feedback, proposing that the required feedback mechanism entails the slow 118 

accumulation of osmolytes (Petelenz-Kurdziel et al., 2013; Schaber et al., 2012). Subsequently, 119 

our experimental efforts revealed the potential importance of positive feedback for fast Hog1 120 

activation (English et al., 2015). However, there are no reported mechanisms of positive 121 

feedback for the HOG pathway. 122 

Despite substantial progress, a complete systems-level understanding for the role of 123 

counter-acting feedback regulation is still lacking. Therefore, our goal here was to perform a 124 

systematic computational analysis of Hog1 activity that could identify likely targets of feedback 125 

regulation and to then design experiments to test the predicted feedback loops. The starting 126 

point for our investigations was a model of a three-tiered MAPK cascade to which we 127 
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systematically added different potential feedback motifs. In particular, we started with a minimal 128 

model for adaptation involving a single negative feedback loop (Ferrell, 2016), and added 129 

candidate feedback loops until we were able to reproduce Hog1 phosphorylation dynamics. 130 

Combining both modeling and biological experiments allowed us to identify the necessary 131 

feedback mechanisms by using each method to inform the other in an iterative process. As 132 

detailed below, our investigations determined that fast positive feedback and delayed negative 133 

feedback can account for the time- and dose-dependent behaviors of Hog1. Further analysis 134 

suggests that positive feedback is controlled by Hog1 down regulation of its phosphatase 135 

activity. 136 

 137 

Results  138 

Hog1 and Pbs2 phosphorylation are dependent on Hog1 kinase activity 139 

Our broad objective is to identify pathway circuitry for regulating MAPK signaling 140 

generally, and for the HOG pathway in particular. We first collected the experimental data 141 

depicting pathway dynamics. Our approach was to design time-course experiments that 142 

measure the dynamics of Hog1 and its upstream kinase, Pbs2, under various experimental 143 

conditions. Using this approach, we defined 10 important characteristics of the HOG pathway 144 

that our models need to capture in order to be biologically accurate. These 10 characteristics 145 

are enumerated in the following section and are summarized below. 146 

We first assessed Hog1 phosphorylation upon hyperosmotic stress. We exposed liquid 147 

cultures to a range of KCl concentrations and collected whole-cell lysates over time. To quantify 148 

the proportion of phosphorylated Hog1, we used Phos-tag immunoblotting, which resolves 149 

different states of a protein in proportion to the number of sites phosphorylated (Kinoshita et al., 150 

2006). Because wildtype Hog1 is normally either unphosphorylated or dually phosphorylated, 151 

we can easily distinguish the two forms of the protein after SDS-PAGE with the Phos-tag 152 
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reagent (Figure 2A, left). The stoichiometry of phosphorylation was calculated as the proportion 153 

of dually phosphorylated Hog1 compared to the total amount of Hog1 in each lane (Figure 2A, 154 

right). Consistent with previous results (English et al., 2015), we observed three characteristic 155 

features of Hog1: (1) no basal activation, (2) fast and full activation in response to KCl, and (3) 156 

transient duration of activation that is proportional to the KCl dose. These features give rise to 157 

dose-to-duration signaling.  158 

Hog1 kinase activity can be selectively blocked using an analog-sensitive Hog1 variant 159 

(Hog1 T100A) that is inhibited with the ATP analog, [1-(1,1-dimethylethyl)-3-(1-naphthalenyl)1H-160 

pyrazolo[3,4-d]pyrimidin-4-amine] or 1-NA-PP1 (Kung et al., 2006). Accordingly, we stimulated 161 

cells following Hog1T100A inhibition, and ran Phos-tag SDS-PAGE as previously described 162 

(English et al., 2015). Inhibited Hog1 (Hog1-as) exhibited three characteristics that differ from 163 

wildtype. Consistent with results of English et al. (2015), we observed Hog1 dynamics that were: 164 

(4) slow and (5) sustained (Figure 2B). The slowed rate of activation and lack of full dual 165 

phosphorylation when Hog1 is inhibited indicates the presence of Hog1-dependent positive 166 

feedback. Furthermore, as noted previously, Hog1 exhibits basal dual phosphorylation when its 167 

kinase activity is inhibited (English et al., 2015; Macia et al., 2009; Schaber et al., 2012). Our 168 

quantification revealed that under these conditions dually phosphorylated Hog1 slowly 169 

accumulates, reaching a steady state of approximately 30% of the total (characteristic feature 170 

(6)) (Figure 2C).  The lack of signal attenuation and increase in the basal level of dually 171 

phosphorylated Hog1 in the absence of Hog1 activity demonstrate Hog1-dependent negative 172 

feedback. These results reflect the complexity of HOG signaling and motivate our investigations 173 

to determine where in the pathway feedback regulation acts. 174 

We next measured the dynamics of another upstream signaling component, at multiple 175 

salt concentrations, with and without Hog1 kinase inhibition. Our rationale was that these 176 

experiments would provide important additional data for informing our models and identifying 177 

targets of feedback regulation. We chose the MAP2K Pbs2 because it is more abundant than 178 
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any one of the MAP3Ks, is common to both input branches of the pathway and is 179 

phosphorylated when activated (Tatebayashi et al., 2020). Thus, we used the Phos-tag western 180 

blotting technique described above to measure the dose- and Hog1-kinase dependency of Pbs2 181 

phosphorylation dynamics. As shown in Figure 2D, osmotic stress stimulation caused a mobility 182 

shift of Pbs2 that was (7) fast and partial and also (8) transient. This behavior mirrored two of 183 

the wildtype properties, but unlike Hog1, Pbs2 did not become fully phosphorylated at 150 mM 184 

KCl. When Hog1 was kinase-inhibited, Pbs2 phosphorylation was also (9) fast and partial, but 185 

(10) sustained, as observed for Hog1-as, indicating signal attenuation occurs earlier in the 186 

pathway.  187 

 188 

Delayed negative feedback promotes pathway deactivation 189 

Our next step was to identify potential HOG feedback circuits by fitting models to our 190 

Hog1 and Pbs2 phosphorylation data. We considered a model successful if it could capture the 191 

10 pathway characteristics enumerated above. We took a systematic approach by beginning 192 

with a minimal model for adaptive behavior and adding complexity as needed. In this way, we 193 

hoped to gain insight to the limitations of each model. The minimal model (Model I) for the HOG 194 

MAPK cascade is comprised of a single negative feedback loop initiating from Hog1 and 195 

targeting the MAP3K (Figure 3A). From a biological perspective, this model represents Hog1 196 

suppressing its own activity by diminishing the rate at which the MAPK3K is activated, this might 197 

occur through increasing the intracellular osmolyte concentration, feedback phosphorylation or 198 

both (English et al., 2015; Hao et al., 2007; Sharifian et al., 2015).  The model consists of three 199 

species, representing each of the three kinases in the MAPK cascade. We modeled 200 

phosphorylation and dephosphorylation using Michaelis-Menten kinetics and ignored the 201 

synthesis and degradation of the kinases, as their expression is not known to be induced 202 

following hyperosmotic stress.   203 

Model I (Figure 3A): 204 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3𝐾𝐾
𝑑𝑑𝑑𝑑

=
1

�1 + 𝐻𝐻𝐻𝐻𝐻𝐻1
𝛽𝛽 �

∙ �
𝑘𝑘𝑏𝑏 + 𝑘𝑘1 ∙ 𝐾𝐾𝐾𝐾𝐾𝐾
𝐾𝐾1 + 𝑀𝑀𝑀𝑀𝑀𝑀3𝐾𝐾𝐼𝐼

�𝑀𝑀𝑀𝑀𝑀𝑀3𝐾𝐾𝐼𝐼 −  
𝑘𝑘2 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀3𝐾𝐾
𝐾𝐾2 + 𝑀𝑀𝑀𝑀𝑀𝑀3𝐾𝐾

                                (1) 205 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

=
𝑘𝑘3 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀3𝐾𝐾 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃2𝐼𝐼

𝐾𝐾3 + 𝑃𝑃𝑃𝑃𝑃𝑃2𝐼𝐼
−  

𝑘𝑘4 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃2
𝐾𝐾4 + 𝑃𝑃𝑃𝑃𝑃𝑃2

                                                  (2) 206 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=
𝑘𝑘5 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃2 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1𝐼𝐼
𝐾𝐾5 + 𝐻𝐻𝐻𝐻𝐻𝐻1𝐼𝐼

−  
𝑘𝑘6 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1
𝐾𝐾6 + 𝐻𝐻𝐻𝐻𝐻𝐻1

                                                   (3) 207 

where each Ki represents a Michaelis constant, the ki’s are either the kcat or Vmax of the reaction, 208 

depending on whether the enzyme concentration is explicitly taken into account, and kb is the 209 

basal activation rate (English et al., 2015; Macia et al., 2009). We assumed that salt increases 210 

the Vmax of the reaction for activation of the MAP3K. That is, k1 = k1’ KCl. We used a decreasing 211 

Hill function to include negative feedback, with β representing the concentration of active Hog1 212 

needed to reduce the MAP3K activation rate by half.  213 

Having defined a model, we then sought to fit it to our experimental data. To perform 214 

parameter estimation, we created a hybrid method, combining a global and local search method 215 

that minimized the distance between simulated fits and the data based on mean squared error 216 

(MSE). Recent benchmark efforts have shown that similar combination strategies are 217 

particularly efficient and best performing when compared to stand alone methods (Villaverde et 218 

al., 2019). Here, we used an evolutionary algorithm (EA) (Fortin et al., 2012) that performs a 219 

global search method within a large search space to find best-fitting parameter sets. We then 220 

used an approximate Bayesian computation sequential Monte Carlo (ABC SMC) method (Toni 221 

et al., 2009) to fine-tune the EA-determined parameter sets to further realize distributions of 222 

model parameter values that produced results consistent with the data (Figure 3B-C). This 223 

process resulted in 1000 parameter sets that could meet the model-specific MSE thresholds. 224 

Details of our parameter optimization method are provided in the Methods section.   225 

We fit Model I to our data presented in Figure 2. We simulated wildtype behavior with the 226 

full system and simulated kinase-inhibited behavior by removing the Hog1-dependent negative 227 
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feedback loop. As shown in Figure 3C (top right panel), Model I could neither capture full Hog1 228 

activation nor full deactivation. We inferred that Model I was unsuccessful at capturing our data 229 

because in the model Hog1 activity immediately suppresses activation of the MAP3K, and 230 

consequentially the model cannot simultaneously satisfy the constraints of full activation in 231 

wildtype cells and the amplitude dependence of Hog1-as strain. This reasoning is in agreement 232 

with work in Schaber et al. 2012 in which they found a delayed negative feedback is necessary 233 

for full signal attenuation while negative feedback originating from Hog1 serves to fine-tune the 234 

response. Hence, we expanded Model I to include an additional step between Hog1 activation 235 

and pathway inhibition to produce a time delay in the negative feedback loop (Figure 3D). This 236 

circuitry is consistent with prior models (Ma et al., 2009) and experimental studies, which 237 

demonstrate that full HOG pathway adaptation requires an increase in cytosolic osmolytes 238 

(Babazadeh et al., 2014; Hohmann, 2002; Siderius et al., 2000), though this model species 239 

could represent any upregulated signaling processes downstream of Hog1. Therefore, we 240 

updated the model to include this process.  241 

Model II (Figure 3D): 242 

Model I equations 2, and 3 remain the same in Model II. The osmolyte concentration was 243 

modeled using the following equation: 244 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑠𝑠1 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1 − 𝑑𝑑1 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂                                                               (4) 245 

where s1 is the rate of osmolyte synthesis, which requires active Hog1, and d1 is rate of 246 

osmolyte degradation. Model I equation 1 was updated to replace active Hog1 in the negative 247 

feedback term with the osmolyte concentration. Overall, adding a delay in the negative feedback 248 

loop significantly improved the performance of the model and allowed it to capture full Hog1 249 

deactivation (Figure 3 – figure supplement 1). However, Model II still could not capture full Hog1 250 

phosphorylation.  251 
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Investigating the behavior of the osmolyte concentration, we found that Model II 252 

predicted a 2-fold increase of the putative osmolyte species over the course of 15 minutes after 253 

350 mM KCl stimulus (Figure 3E). To test the model, we exposed cells, with and without Hog1 254 

activity, with 350 mM KCl and measured glycerol accumulation over time (Figure 3E). While 255 

glycerol exhibited a higher-than predicted increase (four-fold vs two-fold), the dynamics were 256 

similar to the model prediction (Figure 3F). The discrepancy in abundance is likely due to Hog1-257 

independent glycerol production. We observed 1- to 2- fold increase of glycerol accumulation in 258 

the hog1∆ and Hog1-as cells treated with 1-NA-PP1 (Figure 3E, and Figure 3 – figure 259 

supplement 2), as reported previously for glycerol and other osmolytes (Babazadeh et al., 2014; 260 

Petelenz-Kurdziel et al., 2013; Shellhammer et al., 2017). We then perturbed the behavior of 261 

Model II’s osmolyte species to understand how the osmolyte concentration controlled Hog1 262 

dynamics. Increasing the osmolyte synthesis rate caused the osmolytes to accumulate faster 263 

than the fitted simulations which limited Hog1 activation to 5 minutes (Figure 3 – figure 264 

supplement 3, left compared to center). Decreasing the osmolyte synthesis rate caused it to 265 

accumulate more slowly thereby extending the duration of Hog1 activation to over an hour 266 

(Figure 3 – figure supplement 3, left compared to right). This delayed negative feedback does 267 

not only control the timing of Hog1 phosphorylation, but also the ability of Hog1 to fully adapt, as 268 

seen when decreasing the osmolyte synthesis rate (Figure 3 – figure supplement 3, bottom 269 

right). Altogether, these data suggest that a necessary negative feedback originates from a 270 

downstream species for full signal attenuation, and that species could likely be the accumulation 271 

of intracellular osmolytes.  272 

Thus, compared to Model I, Model II was better able to capture Hog1 dose-to duration 273 

dynamics and Pbs2 dynamics. However, the revised model still failed to capture full Hog1 274 

activation and poorly replicated other features of the data, such as the basal phosphorylation 275 

dynamics in the Hog1-as strain. While at this point, we do not rule out Model II from further 276 
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consideration, its inability to replicate several pathway features motivated us to investigate if 277 

other potential feedback loops.  278 

 279 

Fast positive feedback promotes pathway activation 280 

Model II captured many of the characteristics of Hog1 activation and deactivation. 281 

However, Model II did not reach full activation of Hog1, even at the highest concentrations of 282 

stimulus. This failure of the model suggests that it lacks an important positive feedback loop. 283 

Since Hog1 activation occurs within two minutes, positive feedback would need to act rapidly. 284 

Thus, we hypothesized that it originates from Hog1 directly phosphorylating a pathway 285 

component. To test this possibility, we expanded Model II into three new models (Models IIa-c) 286 

that include Hog1-driven positive feedback loops targeting one of the three kinases in the MAPK 287 

kinase cascade: ‘a’ targets the MAP3K, ‘b’ targets Pbs2, and ‘c’ targets Hog1 itself.  These 288 

loops were modeled by including a term in the relevant activation rate that was proportional to 289 

the level of active Hog1.  290 

For example, Model IIc includes Model II equations 1, 2, 3, and 4 with the following modification 291 

to the equation for Hog1:   292 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

=
(𝑘𝑘5 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃2 +  𝛼𝛼 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1) ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1𝐼𝐼

𝐾𝐾5 + 𝐻𝐻𝐻𝐻𝐻𝐻1𝐼𝐼
−  

𝑘𝑘6 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1
𝐾𝐾6 + 𝐻𝐻𝐻𝐻𝐻𝐻1

                               (3)  293 

where Hog1-mediated positive feedback (𝛼𝛼 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1) increases its own activation. 294 

We used the same procedure as described above to train the models. A summary of each 295 

model’s fit to the data is provided in Figure 4A. Model IIa produced results very similar to Model 296 

II (Figure 4 – figure supplement 1), while Models IIb-c with positive feedback targeting Pbs2 and 297 

Hog1, respectively, produced better fits to the data and were able to capture all 10 pathway 298 

characteristics (Model IIb: Figure 4 – figure supplement 2, Model IIc: Figure 4B-D). We also 299 

found that these two models could predict wildtype Hog1 behavior in response to intermediate 300 

single-step KCl concentrations: 250, 350, and 450 mM KCl from in English et al., 2015 (Model 301 
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IIb: Figure 4 – figure supplement 2, Model IIc: Figure 4E (left)). These models also followed 302 

similar Hog1-as dynamics as the previously published though the previously published data is 303 

slightly higher than that seen in our data (Figure 4E, right compared to Figure 4D, center). Even 304 

with this small discrepancy, these data suggest Hog1 phosphorylates a pathway component at 305 

or below that of the MAP2K Pbs2, forming a positive feedback loop.  306 

To complete our systematic screen of potential circuitries, we also added positive 307 

feedback loops to our Model I to determine whether a positive feedback and direct negative 308 

feedback was sufficient to capture our signaling dynamics. Nevertheless, in Models Ia-c, Hog1 309 

did not remain fully phosphorylated, diminishing within the first few minutes (Figure 4 – figure 310 

supplement 3). Together, these results support the existence of a delayed negative feedback 311 

loop as well as a fast positive feedback loop targeting a component within close proximity of 312 

Hog1. 313 

 314 

Experimental validation of computational models reveals positive feedback targeting 315 

Hog1 316 

A successful model must not only fit relevant data but also predict new behavior. One 317 

particularly informative approach is to use such models to predict the response to dynamic input 318 

and determine whether they are able to capture dynamics more complex than those used to 319 

train the model. With two pathway circuitries (Models IIb and IIc) that sufficiently captured our 320 

data (Figure 5A), we aimed to differentiate them by predicting Hog1 behavior in response to 321 

increasing step stimuli. To identify the best model, we sought an input that produced different 322 

outputs for each model, and to then test those conditions experimentally (Mélykúti et al., 2010). 323 

Following this strategy, we computationally generated 1000 random input profiles of 324 

increasing salt concentrations and predicted Hog1 response to each input profile using Models 325 

IIb and IIc. These step profiles were designed so that they could be experimentally tested in 326 

vivo. We ranked the resulting input profiles based on which generated the largest differences in 327 
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the Hog1 response (Figure 5B). For example, Figure 5C shows three selected inputs ("Step”) 328 

that correspond to the Hog1 dynamics predicted by the two models in Figure 5D. Step #100 329 

generated similar predictions among the models while Step #990 resulted in distinct Hog1 330 

behaviors. Step #550 also predicted model-dependent dynamics, but the differences were too 331 

small to be experimentally decipherable. Generally, the input profiles that produced the greatest 332 

difference between the Hog1 behaviors were those that allowed Hog1 to adapt to an initial step 333 

of KCl before introducing a second step (shaded area in Figure 5B). For Step #990, Model IIb 334 

predicted that Hog1 would show a diminished response to the second step of stimulus, but 335 

Model IIc predicted full Hog1 phosphorylation in response to this second step (Figure 5D right 336 

column). These results indicated that Step #990 would discriminate between the two models.  337 

We then measured the biological Hog1 response to Step #990. We exposed cells to the 338 

stimulus profile used in our simulations: beginning with an initial salt stimulus of 250 mM KCl 339 

and then raising the salt concentration to 550 mM KCl after 20 minutes. Hog1 activity was again 340 

measured by Phos-tag immunoblotting (Figure 5E, left). Quantitation of the blots shows that 341 

Hog1 responded normally to the first step of stimulus – becoming completely phosphorylated by 342 

two minutes and then fully adapting within 15 minutes (Figure 5E, right). Upon the second 343 

stimulus step, Hog1 was again fully activated and then fully adapted. This result was similar to 344 

previously published measures of Hog1 translocation and phosphorylation (by phospho-p38 345 

immunoblotting) in response to steps of equal magnitude (Behar et al., 2007; Hao et al., 2007; 346 

Zi et al., 2010). In further support of Model IIc, we then predicted Hog1 dual phosphorylation if 347 

its kinase activity was inhibited directly before the second stimulus step of Step #990.  To 348 

conduct this experiment, we utilized the Hog1-as strain. Again, results most closely aligned with 349 

Model IIc (Figure 5 – figure supplement 1). Thus, our experimental results to Step #990, both 350 

with and without kinase activity, most closely aligned to the predicted Hog1 dynamics of Model 351 

IIc, indicating that positive feedback likely acts at the level of Hog1 rather than elsewhere in the 352 

MAPK cascade.  353 
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 354 

Positive feedback is independent of feedback phosphorylation 355 

Our modeling results suggested that positive feedback amplifies the signal at the level of 356 

Hog1. There are two ways in which feedback phosphorylation could activate the MAPK: 357 

increase its phosphorylation rate (Figure 6) or decrease its dephosphorylation rate (Figure 7). 358 

Since positive feedback must happen quickly, it seemed likely that the target of feedback 359 

regulation is a direct substrate of Hog1. Hog1, like all MAPKs, phosphorylates proteins at a 360 

serine or threonine followed by a proline. Phosphorylation at these sites typically invokes 361 

conformational changes or alters binding affinities, resulting in rapid changes in substrate 362 

function (Humphrey et al., 2015; Ubersax and Ferrell, 2007). If positive feedback is due to 363 

phosphorylation by Hog1, then mutating the MAPK consensus sites in potential feedback 364 

targets should dampen Hog1 activity.  365 

We then used Model IIc to investigate how feedback phosphorylation could amplify Hog1 366 

phosphorylation. By assigning the activation rate α to 0, thereby eliminating positive feedback, 367 

the model predicted a reduction in Hog1 phosphorylation, particularly at low salt concentrations 368 

(Figure 6B). Based on these predictions, we anticipated that 350 mM KCl would be particularly 369 

informative since it was low enough to cause at least a 25% decrease in Hog1 phosphorylation 370 

over several timepoints (Figure 6B). To disrupt the putative positive feedback loop, we mutated 371 

the two MAPK consensus sites on Hog1 (Hog12A mutant) and monitored its phosphorylation in 372 

response to 350 mM KCl. Immunoblotting after Phos-tag SDS-PAGE showed that these 373 

mutations did not alter Hog1 dynamics (Figure 6C), in contrast to predictions of Model IIc. We 374 

then considered Pbs2 as a potential substrate since it is responsible for Hog1 activation. We 375 

mutated its 6 MAPK consensus sites (Pbs26A mutant), and found that these alterations also 376 

produced minimal changes in Hog1 activation (Figure 6D). Taken together, these results 377 

suggest that phosphorylation of Pbs2 or Hog1 is not the source of positive feedback in the 378 

system. 379 
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 380 

Positive feedback results from mutual inhibition of Hog1 and its phosphatases 381 

We then considered an alternative scenario where Hog1 acts by decreasing its own rate 382 

of deactivation. In practice, this could be achieved by Hog1 inhibition of its phosphatases. We 383 

constructed a new model, Model III, that incorporated another model species representing Hog1 384 

phosphatases and included mutual inhibition between the phosphatases and Hog1. 385 

Model III: 386 

consisted of Model II’s equations 1, 2, 3, and 4 with the following modifications:   387 

𝑑𝑑𝑑𝑑𝑜𝑜𝑔𝑔1
𝑑𝑑𝑑𝑑

=
𝑘𝑘5 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃2 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1𝐼𝐼
𝐾𝐾5 + 𝐻𝐻𝐻𝐻𝐻𝐻1𝐼𝐼

−  
(𝑘𝑘6  +  𝛼𝛼1 ∙ 𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1

𝐾𝐾6 + 𝐻𝐻𝐻𝐻𝐻𝐻1
                         (3) 388 

𝑑𝑑𝑑𝑑ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑

=
𝑘𝑘7 ∙ 𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼
𝐾𝐾7 + 𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼

−  
(𝑘𝑘8  +  𝛼𝛼2 ∙ 𝐻𝐻𝐻𝐻𝐻𝐻1) ∙ 𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐾𝐾8 + 𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
                    (5) 389 

where 𝛼𝛼1 is phosphatase-driven Hog1 suppression and 𝛼𝛼2 is Hog1-driven phosphatase 390 

suppression. Here, the total phosphatase concentration is conserved. 391 

We determined whether Model III could perform equal to or outperform Model IIc. We 392 

trained Model III on the same phosphorylation data for both Pbs2 and Hog1, as previously done 393 

for Model IIc (Figure 3). Resulting fits to Model III captured our 10 pathway characteristics as 394 

well as Model IIc (Figure 7 – figure supplement 1). Based on these results, we conclude that 395 

mutual inhibition is a candidate for positive feedback in HOG signaling pathway.  396 

Next, we sought to gain experimental evidence in support of our mutual inhibition 397 

hypothesis. We examined three potential targets of mutual inhibition: the Hog1-directed 398 

phosphatases Ptc1, Ptp2, and Ptp3 (Jacoby et al., 1997; Mattison and Ota, 2000; Warmka et 399 

al., 2001; Wurgler-Murphy et al., 1997). Ptc1 dephosphorylates Hog1 at its activation loop 400 

threonine site while Ptp2 and Ptp3 dephosphorylate the remaining tyrosine site. Among these 401 

three phosphatases there are 22 putative MAPK consensus sites. Hog1 could phosphorylate a 402 

combination of these sites to suppress phosphatase activity. Since mutating every site was 403 
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infeasible, we instead deleted the PTC1, PTP2, PTP3 genes and monitored Hog1 404 

phosphorylation. Each deletion caused mild changes to the timing of Hog1 dephosphorylation, 405 

but did not result in the partial Hog1 activation that the model predicted (Figure 7 – figure 406 

supplement 2). This result suggests that a single phosphatase is unlikely to be responsible for 407 

feedback regulation.  408 

Existing evidence indicates that the three phosphatases work together to regulate Hog1, 409 

making it likely that Hog1, in turn, inhibits multiple phosphatases. In particular, dual deletions of 410 

PTC1 and PTP2 are lethal, most likely due to Hog1 hyperactivation (Maeda et al., 1993). Our 411 

previously published data showed that Hog1 was basally phosphorylated in a ptp2Δptp3Δ 412 

background (English et al., 2015). Additional investigation revealed that deletion of both PTP2 413 

and PTP3 results in high (70%) basal phosphorylation of Hog1 (Figure 7A); in response to 350 414 

mM KCl, Hog1 is fully phosphorylated and then returns back to 70% basal activation. Though 415 

this experimental result alone is insufficient to suggest that positive feedback acts through 416 

mutual inhibition, we could nevertheless use this data to retrain our models to determine if 417 

positive feedback was needed in the system. 418 

To distinguish between the mutual inhibition and positive feedback loop mechanisms, we 419 

compared how well Model III and IIc fit our ptp2Δptp3Δ data. If this mutual inhibition applied, 420 

Model III should be able to capture all of the phosphorylation data, indicating that positive 421 

feedback is not present within a ptp2Δptp3Δ background. In contrast, should Model IIc capture 422 

this data, this would imply positive feedback is still present within a ptp2Δptp3Δ background, 423 

since we are only eliminating phosphatase suppression of Hog1 activity but not the positive 424 

feedback loop. Thus, we retrained Model IIc and III to the basal phosphorylation of the 425 

ptp2Δptp3Δ data and compared their performance. For Model IIc, we simulated ptp2Δptp3Δ by 426 

fitting a separate Hog1 deactivation rate. For Model III, we simulated phosphatase deletion by 427 

setting their concentration to 0 (Figure 7B). Fitting to these additional data, we found that Model 428 

III was able to capture the experimental data (Figure 7C, top) whereas Model IIc could not, 429 
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particularly in the wildtype strain (Figure 7C, bottom). Model III could also correctly predict the 430 

Hog1 response to Step #990 (Figure 7D, top right) and nearly predicted the behavior of the 431 

ptp2Δptp3Δ strain to a single step of 350 mM KCl (Figure 7D, top left). The only discrepancy 432 

between Model III and the experimental result was that the experimental measurements for the 433 

ptp2Δptp3Δ strain showed faster adaptation than predicted in our simulations. However, this 434 

faster dephosphorylation is likely driven by other yeast phosphatases not present in the model. 435 

Meanwhile, the retrained Model IIc poorly predicted the Hog1 dynamics in response to 350 mM 436 

KCl (Figure 7D, bottom left) and the full Hog1 phosphorylation in response to Step #990 (Figure 437 

7D, bottom right). The performance of Model III, in both its fits to the data and its prediction of 438 

the increasing step stimulus behavior, provides strong evidence for mutual inhibition between 439 

Hog1 and its phosphatases. We conclude that mutual inhibition is responsible for positive 440 

feedback in the HOG MAPK cascade.  441 

 442 

Discussion 443 

Feedback regulation often controls the timing of signaling events, allowing for an 444 

appropriate cellular response. For the HOG pathway, we and others have previously shown that 445 

a progressively stronger input leads to a progressively longer output (Aymoz et al., 2016; Behar 446 

et al., 2008; English et al., 2015). What has been lacking is a comprehensive understanding of 447 

the feedback mechanisms responsible for the encoding of this distinctive “dose-to-duration” 448 

signaling profile. To elucidate these mechanisms, we systematically tested 8 network 449 

architectures and found two that could fit our experimental data. By changing the input profile 450 

and predicting Hog1 response, we found conditions that could differentiate between the two 451 

models. Experimental validation identified slow negative feedback and fast positive feedback as 452 

the most likely circuitry. We then tested potential mechanisms of positive feedback, with our 453 

data suggesting positive feedback acts through mutual inhibition between Hog1 and the tyrosine 454 
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phosphatases, Ptp2 and Ptp3. Thus, our iterative approach allowed us to identify new 455 

mechanisms of regulation in the canonical HOG pathway.  456 

Our findings build on other investigations of feedback within the HOG pathway. Our own 457 

previous models incorporated positive feedback, but did not explore how positive feedback acts 458 

in conjunction with negative feedback to control Hog1 activation dynamics (English et al., 2015). 459 

The present work highlights the importance of tyrosine phosphatases together with osmolyte 460 

accumulation. However, other feedback mechanisms are likely to be important for controlling 461 

Hog1 dynamics. These could include known mechanisms, such as Hog1 phosphorylation of 462 

upstream components and other Hog1-directed phosphatases. Other mechanisms of feedback 463 

have been suggested, particularly between the two input branches which seem to suppress one 464 

another’s activity (Granados et al., 2017). Thus, feedback likely acts on a variety of components 465 

to continuously fine-tune the cell’s response to a given stimulus. Looking forward, investigating 466 

the response of Hog1 to even more complex inputs, including different ramps (Thiemicke et al., 467 

2019) or pulses, will further clarify the roles of individual feedbacks within the system. 468 

More generally, the results provided here suggest that the counter-acting mechanisms of 469 

positive and negative feedback determine the prioritization of intracellular events following 470 

hyperosmotic stress. These events are likely to occur on various timescales. For example, 471 

shortly after the stimulus, Hog1 phosphorylates a regulator of Fps1, a glycerol export channel, 472 

resulting in rapid channel closure and the accumulation of glycerol in the cell (Lee et al., 2013). 473 

On a longer timescale, Hog1 phosphorylates transcription factors resulting in new gene 474 

expression (Alepuz et al., 2001; Capaldi et al., 2008). With prolonged stimulation, Hog1 475 

activates multiple transcription factors and in so doing employs additional regulatory 476 

mechanisms such as feedforward loops (AkhavanAghdam et al., 2016). The timing of these 477 

actions suggests a prioritized order of intracellular events, presumably to enhance a cell’s 478 

chance of surviving hyperosmotic stresses.  479 
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Collectively, these efforts illustrate how computational modeling allows us to probe 480 

behaviors that are difficult to predict or explain through experimentation alone. When models 481 

are based on quantitative data and describe well-defined molecular networks, it is possible to 482 

extract information about the system and make predictions of how that system behaves under 483 

complex situations. Here we found step stimuli that could differentiate the predicted behaviors of 484 

models that captured our experimental data. This model-driven experimental design not only 485 

provided insights into circuit-specific behaviors, but it also revealed putative mechanisms of 486 

positive feedback.  487 

Likewise, insights developed from the yeast system could reveal regulatory roles of other 488 

MAPKs in more complex systems. In a broader context, understanding how pathways control 489 

MAPK regulation is critical for pharmaceutical development. Protein kinases are the second 490 

largest group of drug targets, and are particularly important in the treatment of cancers. 491 

Moreover, one of the main challenges of drug development is overcoming kinase inhibitor 492 

resistance within complex pathway systems (Bhullar et al., 2018). Understanding the 493 

mechanisms of spatiotemporal pathway regulation will ultimately lead to the development of 494 

novel techniques to control kinase activity.  495 

 496 

Materials and Methods 497 

Strain construction and plasmids 498 

Strains (Table 1) were derived from BY4741 (“wildtype”) and transformed by the lithium acetate 499 

method (Gietz and Woods, 2002). Pbs2-9xMyc-tagged strains were generated by homologous 500 

recombination of a PCR-amplified 9xMyc cassette at the C-terminus of the PBS2 open reading 501 

frame. This cassette contained a resistance gene to hygromycin from plasmid pYM20 (pYM20-502 

9xMyc-hphNT1) (Janke et al., 2004).  503 
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Mutagenesis for Hog1 (S91A and S235A) and Pbs2 (S83A, T164A, T212, S248A, 504 

T297A, and S415A) were introduced using the delitto perfetto method (Stuckey et al., 2011) 505 

using the PCR-amplified pCORE cassette (RRID:Addgene_72231) to integrate selective 506 

markers at the endogenous gene loci. These markers were selected against after the integration 507 

of synthesized gBlocks (Integrated DNA Technologies). All strains were validated with PCR, and 508 

mutated genes were PCR-amplified and sequenced.  509 

Table 1 510 

Strain Genotype Background Reference 

BY4741 MATa, his3Δ1, 

leu2Δ, met15Δ, 

ura3Δ 

BY4743 (Brachmann et al., 

1998)  

SKS001 HOG1T100A BY4741 (English et al., 2015) 

SKS002 Pbs2-9xMyc::hphNT1 BY4741 This study 

SKS003 HOG1T100A  

Pbs2-9xMyc::hphNT1 

SKS001 This study 

SKS004 PBS26A BY4741 This study 

SKS005 HOG12A BY4741 This study 

SKS006 ptp2Δ::URA3  BY4741 (English et al., 2015) 

SKS007 ptp3Δ::KanMX4 BY4741 (English et al., 2015) 

SKS008 ptc1Δ::KanMX4  BY4741 (English et al., 2015) 

SKS009 ptp2Δ::URA3  

ptp3Δ::KanMX4 

SKS006 This study 

 511 

 512 

Cell culture 513 
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Strains were cultured using standard methods and media. Strains were struck out on YPD 514 

(yeast extract, peptone, and 2% dextrose) plates and cultured at 30°C. Individual colonies were 515 

picked and grown overnight in 3 mLs SCD (synthetic complete and 2% dextrose) medium to 516 

saturation. Cells were diluted 1:100, grown for 8 hours, and diluted to OD600 = 0.001 for 517 

overnight growth. The following day, experiments were conducted once the cell culture reached 518 

an OD600 ~1. 519 

 520 

Phos-tag sample collection, gel electrophoresis, and immunoblotting 521 

Kinase activation was quantified using Phos-tag immunoblotting technique as previously 522 

described (English et al., 2015). Briefly, cells were cultured with a final volume of 80 mLs in 523 

SCD. For Hog1-as (Hog1T100A + 1-NA-PP1) kinase inhibition, 1-NA-PP1 ATP analog (Cayman 524 

Chemical, #10954) was added to cultures to a final concentration of 12 µM and incubated for 2 525 

min before sampling. At the selected timepoints after the addition of KCl in SCD, samples were 526 

quenched in 5% (v/v) trichloroacetic acid (TCA) on ice, washed with 5% sodium azide, and 527 

stored at -80°C. Sample concentrations were normalized to 1.5µg/µL using the DC Protein 528 

Assay (Bio-Rad) and stored at -80°C. 529 

Samples were resolved using 8% acrylamide 20uM Phos-tag Bis-Tris SDS-PAGE gels 530 

and transferred on to PVDF membrane. Hog1 was detected using an anti-Hog1 primary-531 

antibody (Santa Cruz, Hog1 antibody (D-3) sc-165978; 1:5,000) and a donkey-anti mouse HRP-532 

conjugated secondary antibody (Jackson ImmunoResearch, 715-035-150; 1:10,000). Pbs2-533 

9xMyc was detected using an anti-Myc primary antibody (Cell Signaling, 9B11 #2276, 1:5,000) 534 

and a donkey anti-rabbit HRP-conjugated secondary antibody (Jackson ImmunoResearch, 711-535 

035-152; 1:10,000). Secondary antibodies were visualized using Clarity Western ECL Substrate 536 

(Bio-Rad, #1705061) and a BioRad Chemidoc Touch Imaging System. Band intensities were 537 

normalized and quantified using the ImageLab (Bio-Rad) software. We found that additional 538 

bands were occasionally observed, that would vary between technical replicates, indicating that 539 
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their existence was due to gel and immunoblotting inconsistencies rather than being other 540 

phospho-states of Hog1. Also, band migration depended on the number of gels run 541 

simultaneously. Standard error of the mean was plotted since models were fit to mean values. 542 

 543 

Glycerol measurements 544 

Samples of 1 mL were collected at the selected timepoints after the addition of KCl in SCD and 545 

kinase inhibition, when applicable, as above. 500 µL was used to measure OD600 and the 546 

remaining 500 µL was pelleted and frozen in liquid nitrogen. After collection, samples were 547 

boiled for 10 min in sterile water and cleared by centrifugation. The concentration of glycerol 548 

was measured using a Free Glycerol Assay Kit (abcam, ab65337) following the manufacturing 549 

instructions. Conversion between OD600 and cell number was calculated by counting the cells 550 

growing in liquid culture with a hemocytometer and measuring the OD600 simultaneously (n = 3). 551 

These measurements were fit using logarithmic function, which served as a standard curve for 552 

our sample measurements to calculate cell number.  553 

 554 

ODE modeling and parameter optimization 555 

Modeling was performed in Python 3.7 using the scipy package to solve ODE systems and their 556 

steady states. All kinases and phosphatases observed mass conservation with the total protein 557 

amounts reflecting biologically observed concentrations (Ho et al., 2018). These models rely on 558 

different assumptions. First, we do not include synthesis or degradation of the kinases because 559 

hyperosmotic stress does not induce their transcription (O’Rourke and Herskowitz, 2004) and 560 

quantification of Hog1 and Pbs2 time course immunoblots indicates that protein concentration 561 

does not change appreciably throughout our experiments (data not shown). Furthermore, we 562 

group the three HOG pathway MAP3Ks into one species, assuming that they share the same 563 

kinetic behavior. We reason that we are studying the overall behavior of Pbs2 and Hog1, which 564 

are downstream of the two input branches.  565 
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For parameter optimization, we combined two approaches that have been used to 566 

parameterize ODE models to experimental data: an evolutionary algorithm (EA) (Fortin et al., 567 

2012) and an approximate Bayesian Computation and sequential Monte Carlo (ABC SMC) 568 

(Toni et al., 2009). All values for kcat, KM, synthesis, degradation, and feedback terms needed to 569 

be estimated to fit each model to our experimental data.  570 

First, the EA seeded each simulation with starting values that were randomly selected 571 

from a user specified range. Then, the EA would evaluate the fits of each parameter set to the 572 

experimental data using MSE and select the best fitting parameter sets to continue to the next 573 

generation. To avoid local optima, each parameter set has a 10% probability to crossover with 574 

another set, and each parameter has a 20% probability to mutate to a different value. For each 575 

model, we calculated the fit of 500 parameter sets over 1000 generations for 2000 independent 576 

runs. For each run, we saved the top fitting parameter set. We noticed that it was difficult to 577 

programmatically separate out the top fitting parameter sets: when we ranked the MSEs, there 578 

was a sharp increase in MSEs, then a gradual increase, followed by another sharp increase. 579 

Where these transitions occurred varied with each model, and their resulting fits to the data also 580 

depended on the model.  581 

Thus, we chose to use the best (lowest-scoring) 500 EA parameters vectors from the EA 582 

as priors for the ABC SMC to further sample for the optimal parameters of each model. This 583 

loose inclusion of the best 25% parameter sets allowed the ABC SMC to further search the 584 

parameter space in case the EA missed any optima. We then followed the same algorithm as in 585 

Toni 2009 in which sampled parameter vectors must pass a series of tolerance levels (ϵ) 586 

determined by their fit to the experimental data, where the first tolerance was the worst MSE of 587 

the top 25% EA parameter sets and all subsequent tolerances were the average of the previous 588 

tolerance and the best MSE from the top 25% EA parameter sets. For each model, we ran four 589 

series, or “schedules,” in which each schedule included 1000 parameter vectors that passed its 590 

tolerance. During a schedule, a parameter vector was selected based on its importance weight 591 
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and perturbed. This weight is calculated by the prior and the perturbation of each parameter. 592 

We used a perturbation kernel of U(-1,1) around log10 transformed parameter values so that 593 

sampling was scaled to the magnitude of the value. Since all priors and perturbation kernels for 594 

these simulations were uniform, each parameter set had an equal probability of being selected. 595 

After each schedule, we calculated new weights for the selected parameter values. In the end, 596 

we had 1000 parameter vectors that passed the highest tolerance threshold.  597 

 598 

All simulations and analysis were performed using custom scripts which are available at 599 

https://github.com/sksuzuki/HOG_encoding_feedbacks.  600 

 601 

Model differentiation 602 

Once we found two models that could capture our experimental data, we needed to identify the 603 

most likely circuitry of the two. We generated increasing step stimuli and simulated Hog1 604 

response with each model. Each stimulus was randomly generated, but we limited them to three 605 

rules. First, the stimulus must always increase because decreasing osmolarity would activate a 606 

hypoosmotic response. While the Sln1 branch contributes to the hypoosmotic response, there 607 

are other mechanisms outside of the HOG pathway that control yeast response to hypoosmotic 608 

stress (Brown et al., 1994). Second, we limited the increasing steps to a maximal stimulus of 609 

550 mM KCl due to increased cell death above this concentration. Third, we limited the intervals 610 

of each step to at least 2 minutes since faster intervals are not experimentally feasible. 611 

Generated inputs were then ranked based on maximizing the distance between model 612 

predictions. Thus, the larger distance reflected the greatest difference between the simulated 613 

Hog1 dynamics. 614 

 615 
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 857 

Figure 1: Hog1-dependent feedbacks within the HOG Pathway. Two input branches activate a MAPK cascade to 858 
initiate adaptation to hyperosmotic stress. Hog1 controls its own phosphorylation dynamics through negative (red 859 
arrows) and positive (green arrow) feedback mechanisms. Hog1 phosphorylates upstream HOG pathway 860 
components, including Ste11, Ssk2, and Sho1, which downregulates signaling. Hog1 increases osmolyte 861 
concentrations by cytosolic and nuclear events, such as the closing of glycerol export channels and the transcription 862 
of genes with Stress Response Elements (SREs). The increase of intracellular osmolarity also suppresses HOG 863 
signaling, putatively at the level of receptors. Finally, Hog1 likely initiates a positive feedback loop, but the target is 864 
still unknown. 865 
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 866 

Figure 2: HOG pathway dynamics. (A) Left: Hog1 dual phosphorylation (pp Hog1) over time in response to a single 867 
step stimulus (top) of 550 mM KCl (center) or 150 mM KCl (bottom), resolved using the Phos-tag method. Right: 868 
Quantification of blots. (B) Same as (A) but using an analog sensitive Hog1 + ATP analog (Hog1-as). (C) Same as 869 
(B) but taken for longer time points and in the absence of KCl. (D) Left: Pbs2 phosphorylation over time in response 870 
to 550 mM KCl (top) and 150 mM KCl (bottom), resolved using the Phos-tag method. (E) Same as (D) but using 871 
Hog1-as. Error bars represent SD of each point. All experimental data are n = 3. 872 
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 873 

Figure 3: Model building and parameter estimation of potential feedback circuits. (A) Schematic of Model I, a 874 
single negative feedback from Hog1, targeting the input with associated parameters to be estimated. (B) The 875 
parameter optimization method. First, parameter values are randomly assigned, then the Evolutionary Algorithm (EA) 876 
finds candidate parameter sets, and finally, the Approximate Bayesian Computation Sequential Monte Carlo (ABC 877 
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SMC) searches the local parameter space surrounding the EA parameter sets. Gray bars indicate the range of 878 
potential values selected uniformly during the EA. Colored points specify parameter values and black points highlight 879 
the best (lowest MSE between experimental data and simulations) parameter values after each step. (C) Simulated 880 
fits at each estimation step are overlaid with wildtype Hog1 (top row, filled symbols) and Hog1-as (bottom row, open 881 
symbols) data at each parameter optimization step. Average simulated behaviors are plotted using dashed lines. All 882 
simulations are n = 1000 and all shaded regions are a SD of 1. (D) Schematic of Model II that features a delayed 883 
negative feedback, presumably from osmolyte accumulation. (E) Model II simulated prediction of downstream 884 
component behavior. (F) Glycerol accumulation over time in response to 350 mM KCl with and without Hog1 activity. 885 
hog1∆ cells served as a negative control. All experiments are n = 3 and error bars represent SD of each point. 886 

 887 

 888 

 889 

Figure 3 – figure supplement 1: Model II (delayed negative feedback) fits to experimental data. (A) Schematic 890 
of Model II with negative feedback driven by a species downstream of Hog1, such as Hog1-dependent accumulation 891 
of osmolytes. (B) Model II simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations 892 
for wildtype Hog1 in response to 550 mM and 150 mM KCl. Right: Data and simulations for Hog1-as. (C) Model II 893 
simulated Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype Hog1 in 894 
response to 550 mM and 150 mM KCl. Center: Data and simulations for Hog1-as. Right: Data and simulations for 895 
Hog1-as with no salt stimulus. All simulations in (B) and (C) are n = 1000 and shaded regions are SD of 1. 896 

 897 

 898 

 899 
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 900 

Figure 3 – figure supplement 2: Inhibitor- and Hog1 analog sensitive variant-dependent glycerol 901 
accumulation in response to hyperosmotic stress. Glycerol accumulation over time in response to 350 mM KCl 902 
with and without 1-NA-PP1 drug in both wildtype Hog1 and Hog1T100A backgrounds. All experiments are n = 3 and 903 
error bars represent SD of each point.  904 

 905 

 906 

 907 

 908 

Figure 3 – figure supplement 3: Delayed feedback investigation. Comparing Model II simulations with the fitted 909 
(left) osmolyte synthesis rate to 5x increased (center) or 5x decreased (right) osmolyte synthesis rate in response to 910 
350 mM KCl.  Each solid line is one simulation corresponding to one fitted parameter set and each dashed line is the 911 
mean response of the plotted simulations. Top row is osmolyte simulations (purple) and bottom row is the 912 
corresponding Hog1 simulations (green). The best 100 simulations are plotted for clear visualization. 913 
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 914 

Figure 4: Model fits and predictions to single step stimuli. (A) Table showing model fits to each of the HOG 915 
pathway characteristics. Dots indicate that the model captures the behavior, where filled circles fit the experimental 916 
data well and hollow circles do not. (B) Schematic of one of the two models that fits all of the phosphorylation 917 
characteristics. (C) Model IIc simulated Pbs2 fits (dashed lines) overlaid with experimental data (symbols). Left: Data 918 
and simulations for wildtype Hog1 in response to 550 mM and 150 mM KCl. Right: Data and simulations for Hog1-as. 919 
(D) Model IIc simulated Hog1 fits (dashed lines) overlaid with experimental data (symbols). Left: Data and simulations 920 
for wildtype Hog1 in response to 550 mM and 150 mM KCl. Center: Data and simulations for Hog1-as. Right: Data 921 
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and simulations for Hog1-as with no salt stimulus. All simulations are n = 1000 and shaded regions are SD = 1. (E) 922 
Model IIc predictions to previously published data (*English et al., 2015). Left: Data and simulations for wildtype Hog1 923 
in response to 450, 350, 250 mM KCl. Right: Data and simulations for wildtype Hog1-as. 924 

 925 

 926 

 927 

Figure 4 – figure supplement 1: Model IIa with positive and negative feedback poorly fits experimental data. 928 
(A) Schematic of Model IIa with a delayed negative feedback and a positive feedback increasing MAP3K activation. 929 
(B) Model IIa simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype 930 
Hog1 in response to 550 mM and 150 mM KCl. Right: Data and simulations for Hog1-as. (C) Model IIa simulated 931 
Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype Hog1 in response to 550 932 
mM and 150 mM KCl. Center: Data and simulations for Hog1-as. Right: Data and simulations for Hog1-as with no salt 933 
stimulus.  934 

 935 
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 936 
Figure 4 – figure supplement 2: Model IIb with positive and negative feedback that captures experimental 937 
data. (A) Schematic of Model IIb with a delayed negative feedback and a positive feedback increasing MAP2K 938 
activation. (B) Model IIa simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations 939 
for wildtype Hog1 in response to 550 mM and 150 mM KCl. Right: Data and simulations for Hog1-as. (C) Model IIa 940 
simulated Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype Hog1 in 941 
response to 550 mM and 150 mM KCl. Center: Data and simulations for Hog1-as. Right: Data and simulations for 942 
Hog1-as with no salt stimulus. (D) Model IIb predictions to *previously published data (English et al., 2015). Left: Data 943 
and simulations for wildtype Hog1 in response to 450, 350, 250 mM KCl. Right: Data and simulations for wildtype 944 
Hog1-as. All simulations are n = 1000 and shaded regions represent a SD of 1. 945 
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 946 

Figure 4 – figure supplement 3: Models with direct negative feedback and positive feedback cannot capture 947 
experimental data. (A) Schematic of Model Ia with a negative feedback directly from Hog1 and a positive feedback 948 
increasing MAP3K activation. (B) Model Ia simulated Hog1 fits overlaid with data. Data and simulations for wildtype 949 
Hog1 in response to 550 mM and 150 mM KCl. Right: Data and simulations for Hog1-as. (C) Schematic of Model Ib 950 
with a negative feedback directly from Hog1 and a positive feedback increasing MAP2K activation. (D) Same as (B) 951 
but for Model Ib. (E) Schematic of Model Ic with a negative feedback directly from Hog1 and a positive feedback 952 
increasing MAPK activation. (F) Same as (B) but for Model Ic. All simulations are n = 1000 and shaded regions 953 
represent a SD of 1. 954 
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955 
Figure 5: Differentiating models by predicting Hog1 behaviors to dynamic inputs. (A) Schematics of the two 956 
models that fit our data. (B) Mean squared errors (MSEs) for the predicted Hog1 behaviors of Models IIb and IIc for 957 
1000 randomly generated increasing steps. Pink shaded area indicates where step inputs follow a trend similar to 958 
that of Steps #990 (pink circle). (C) Selected steps depicting a low (left), mid (center), and high (right) scoring step 959 
input. (D) Predicted Hog1 behaviors to the three step inputs for Models IIb (mid), and IIc (bottom) (C). (E) 960 
Experimental Hog1 behavior to step stimulus. Left: Hog1 behavior in response to Step #990 resolved using Phos-tag 961 
SDS-PAGE (n=3). Right: Quantification of blots. Error bar represent SD of each point. 962 
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 963 

Figure 5 – figure supplement 1: Model and experimental Hog1 behavior in response to step stimulus and 964 
inhibition. (A) Step stimulus #990 with inhibition before the second step of inhibition (t=18 min). (B) Model 965 
predictions to step stimulus with the inhibition. Top: Model IIb prediction. Bottom: Model IIc prediction. (C) 966 
Experimental Hog1 behavior to the stimulus. Top: Hog1 behavior in response to Step #990 resolved using Phos-tag 967 
SDS-PAGE (n=3). Bottom: Quantification of blots. Error bar represent SD of each point. 968 
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  969 

Figure 6: Evaluating increasing Hog1 phosphorylation as the positive feedback mechanism. (A) Schematic of 970 
Model IIc with positive feedback removed. (B) Model IIc prediction of Hog1 in response to 550, 350, and 150 mM KCl 971 
without positive feedback. (C) Left: Hog1 behavior in response to 350 mM KCl with putative MAPK consensus sites 972 
mutated in Pbs2. Right: Quantification of blots. (D) Left: Hog1 behavior in response to 350 mM KCl with putative 973 
MAPK consensus sites mutated in Hog1. Right: Quantification of blots. n = 2 for mutants, points are replicates and 974 
line is mean; n = 3 for wildtype Hog1, points and line are mean with SD.  975 
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Figure 7: Evaluating decreasing Hog1 dephosphorylation as the positive feedback mechanism. (A) Left: Hog1 977 
behavior in response to 350 mM KCl and no KCl in a ptp2Δptp3Δ background. Right: Quantification of blots. n=2, 978 
points are replicates and line is mean. (B) Schematic of models incorporating phosphatases. Left: Model III, with 979 
positive feedback acts through mutual inhibition between Hog1 and its phosphatases. Right: Model IIc, with an 980 
additional dephosphorylation rate to simulate the removal of the phosphatases. (C) Model fits to experimental data 981 
(selective representatives shown). Top: Model III. Left: Simulated Hog1 fits to ptp2Δptp3Δ without KCl stimulus. 982 
Center: Fits to wildtype Hog1 dynamics for 550 and 150 mM KCl. Right: Fits to Hog1-as data. Bottom: Same as Top 983 
but for Model IIc. (D) Model predictions compared to experimental data. Top: Model III. Left: Prediction of Hog1 984 
dynamics in response to 350 mM KCl in a ptp2Δptp3Δ background. Right: Prediction in response to Steps #990. 985 
Bottom: Same as Top but for Model IIc.  986 

 987 

 988 

Figure 7 – figure supplement 1: Model III with positive feedback acting through mutual inhibition captures 989 
experimental data. (A) Schematic of Model III with a delayed negative feedback and a positive feedback decreasing 990 
its phosphatases’ activity. (B) Model III simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and 991 
simulations for wildtype Hog1 in response to 550 mM and 150 mM KCl. Right: Data and simulations for Hog1-as. (C) 992 
Model IIa simulated Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype 993 
Hog1 in response to 550 mM and 150 mM KCl. Center: Data and simulations for Hog1-as. Right: Data and 994 
simulations for Hog1-as with no salt stimulus. All simulations are n = 1000 and shaded regions represent a SD of 1. 995 
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 1000 

Figure 7 – figure supplement 2: Single deletions of the primary Hog1 phosphatases slightly decrease 1001 
duration of Hog1 activation. (A) Schematic of Model III with mutual inhibition acting as positive feedback, here 1002 
depicted as the phosphatases removed. (B) Model III Hog1 prediction in response to 350 mM KCl if the 1003 
phosphatases were removed. Simulations are n = 1000 and shaded regions represent a SD of 1. (C) Left: Hog1 1004 
behavior in response to 350 mM KCl in ptc1Δ background. Right: Quantification of blots. (D) Same as (A) for ptp2Δ 1005 
background. (E) Same as (A) for ptp3Δ background. 1006 
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