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Abstract

Cells rely on mitogen-activated protein kinases (MAPKSs) to survive environmental stress. In
yeast, activation of the MAPK Hog1 is known to mediate the response to high osmotic
conditions. Recent studies of Hog1 revealed that its temporal activity is subject to both negative
and positive feedback regulation, yet the mechanisms of feedback remain unclear. By designing
mathematical models of increasing complexity for the Hog1 MAPK cascade, we identified
pathway circuitry sufficient to capture Hog1 dynamics observed in vivo. We used these models
to optimize experimental designs for distinguishing potential feedback loops. Performing
experiments based on these models revealed mutual inhibition between Hog1 and its
phosphatases as the likely positive feedback mechanism underlying switch-like, dose-
dependent MAPK activation. Importantly, our findings reveal a new signaling function for MAPK
phosphatases. More broadly, they demonstrate the value using mathematical models to infer

targets of feedback regulation in signaling pathways.
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Introduction

All cells rely on intracellular signaling systems to protect themselves from environmental
stress. These pathways execute the appropriate cellular response by relaying the strength,
duration, and other quantitative information about changing environmental conditions (Alon,
2007; Purvis and Lahav, 2013). When the external stimulus is harmful to the cell, the cell’'s
response can determine whether it survives. To mitigate the effects of stress, cells use signaling
pathways that often incorporate mitogen-activated protein kinase (MAPK) cascades (Cargnello
and Roux, 2011). In this three-tiered signaling motif, a MAPK kinase kinase (MAP3K)
phosphorylates a MAPK kinase (MAP2K), which in turn phosphorylates a terminal MAPK.
These phosphorylation events occur within the activation loop of the kinase domain, thereby
enabling catalytic activity. The MAPK coordinates all events required for a proper response to
the environmental stress.

The MAPK signaling cascade is conserved in all eukaryotic organisms, from humans to
yeast. In the case of the S. cerevisiae High Osmolarity Glycerol (HOG) pathway, hyperosmotic
stress initiates signaling to activate cytoprotective responses (Brewster and Gustin, 2014;
Miermont et al., 2011; O’Rourke et al., 2002; Saito and Posas, 2012). This signaling occurs
through the SIn1 and Sho1 input branches where the SIin1 branch has two MAP3Ks, Ssk2 and
Ssk22, while the Sho1 branch has a single MAP3K, Ste11 (Figure 1). All three of these MAP3Ks
converge on and activate the MAP2K Pbs2, while Pbs2 alone activates the MAPK Hog1. Hog1
protects the cell by increasing cytosolic osmolyte concentrations to reestablish turgor pressure
over time. Hog1 is known to phosphorylate at least 35 proteins, some of which are transcription
factors in the nucleus leading to the induction or repression of ~300 genes (Capaldi et al., 2008;
Janschitz et al., 2019; O’'Rourke and Herskowitz, 2004). Activation of this pathway is transient,
and once cells have fully-adapted, they can resume cell cycle progression and proliferation

(Escoté et al., 2011).
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Many MAPK signaling networks rely on feedback regulation to amplify or diminish a
signal in a time-dependent manner (Albeck et al., 2013; Brandman and Meyer, 2008). While
multiple feedback loops have been identified for the HOG pathway, it is unknown how these
regulatory mechanisms function together or if they are sufficient to capture the dynamics of
Hog1 activity. For example, Hog1 phosphorylates the osmosensor Sho1 and the MAP3K Ssk2,
leading to diminished signal transduction (Hao et al., 2007; Sharifian et al., 2015). Similarly,
Hog1-dependent phosphorylation of Ste50, the adapter protein of Ste11, increases Ste50
dissociation from its signaling complex, thereby downregulating signal transmission (Nagiec and
Dohlman, 2012; Yamamoto et al., 2010). Hog1-dependent activity also attenuates signaling by
initiating the closure of osmolyte channels, inducing the synthesis of amino acid metabolites,
increasing the production of osmolytes like glycerol and trehalose, and inducing the transcription
of osmolyte metabolism-associated genes (Babazadeh et al., 2014; Lee et al., 2013; O’'Rourke
and Herskowitz, 2004; Petelenz-Kurdziel et al., 2013; Shellhammer et al., 2017).
Phosphorylation and osmolyte accumulation act on different timescales to suppress Hog1
signaling, and therefore could differentially affect the dynamics of Hog1 activity.

Further studies have shown that Hog1 acts, in part, by regulating its own catalytic
activity. In response to a wide range of external salt concentrations, Hog1 is rapidly and fully
phosphorylated, whereas dephosphorylation occurs at increasingly later times as the dose of
the stimulus increases (English et al., 2015). Because different doses of salt elicit different
transcriptional responses, it is likely that signal duration, rather than amplitude, transmits
information regarding the external salt concentration. This behavior has been referred to as
“dose-to-duration” signaling (Behar et al., 2008). Experiments using a Hog1 variant (Hog1-as)
engineered to respond to a pharmacological inhibitor (Klein et al., 2011; Westfall and Thorner,
2006) revealed that Hog1 kinase activity affects its response to high osmotic stress. In the
absence of MAPK kinase activity, the maximal level of Hog1 phosphorylation is dependent on

the concentration of external osmolytes; peak phosphorylation is delayed and is far more
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102  sustained than that of the wildtype MAPK (English et al., 2015). These observations indicate
103  that Hog1 kinase activity is required for full activation by the MAP2K Pbs2 and for timely

104  inactivation by appropriate phosphatases. Such behaviors are indicative of positive and

105 negative feedback. However, while the necessity of feedback within the HOG pathway has long
106  been appreciated, many details of the mechanisms controlling Hog1 phosphorylation dynamics
107  are still unknown. This is in part due to the complexities of the observed behaviors, which are
108  both dose- and time-dependent.

109 One approach to understanding complex biological data is to describe them using

110  mathematical models. The structures of HOG pathway models have varied substantially, from
111 having minimal two state systems to representing all of the HOG pathway components (Klipp
112 and Schaber, 2008; Mitchell et al., 2015; Stojanovski et al., 2017). A subset has focused on
113  negative feedback while others have investigated the role of the two input branches (Granados
114  etal., 2017; Hersen et al., 2008; Schaber et al., 2012). Many models investigating feedback
115  regulation concluded that the pathway needs Hog1-dependent integral negative feedback

116 control to exhibit perfect adaptation (Klipp et al., 2005; Mettetal et al., 2008; Mitchell et al., 2015;
117 Muzzey et al., 2009; Zi et al., 2010). Other models further explored different mechanisms of
118  negative feedback, proposing that the required feedback mechanism entails the slow

119  accumulation of osmolytes (Petelenz-Kurdziel et al., 2013; Schaber et al., 2012). Subsequently,
120  our experimental efforts revealed the potential importance of positive feedback for fast Hog1
121 activation (English et al., 2015). However, there are no reported mechanisms of positive

122 feedback for the HOG pathway.

123 Despite substantial progress, a complete systems-level understanding for the role of
124  counter-acting feedback regulation is still lacking. Therefore, our goal here was to perform a
125  systematic computational analysis of Hog1 activity that could identify likely targets of feedback
126 regulation and to then design experiments to test the predicted feedback loops. The starting

127  point for our investigations was a model of a three-tiered MAPK cascade to which we


https://doi.org/10.1101/2020.04.20.051599
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051599; this version posted April 21, 2020. The copyright holder for this preprint (which

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

systematically added different potential feedback motifs. In particular, we started with a minimal
model for adaptation involving a single negative feedback loop (Ferrell, 2016), and added
candidate feedback loops until we were able to reproduce Hog1 phosphorylation dynamics.
Combining both modeling and biological experiments allowed us to identify the necessary
feedback mechanisms by using each method to inform the other in an iterative process. As
detailed below, our investigations determined that fast positive feedback and delayed negative
feedback can account for the time- and dose-dependent behaviors of Hog1. Further analysis
suggests that positive feedback is controlled by Hog1 down regulation of its phosphatase

activity.

Results

Hog1 and Pbs2 phosphorylation are dependent on Hog1 kinase activity

Our broad objective is to identify pathway circuitry for regulating MAPK signaling
generally, and for the HOG pathway in particular. We first collected the experimental data
depicting pathway dynamics. Our approach was to design time-course experiments that
measure the dynamics of Hog1 and its upstream kinase, Pbs2, under various experimental
conditions. Using this approach, we defined 10 important characteristics of the HOG pathway
that our models need to capture in order to be biologically accurate. These 10 characteristics
are enumerated in the following section and are summarized below.

We first assessed Hog1 phosphorylation upon hyperosmotic stress. We exposed liquid
cultures to a range of KCI concentrations and collected whole-cell lysates over time. To quantify
the proportion of phosphorylated Hog1, we used Phos-tag immunoblotting, which resolves
different states of a protein in proportion to the number of sites phosphorylated (Kinoshita et al.,
2006). Because wildtype Hog1 is normally either unphosphorylated or dually phosphorylated,

we can easily distinguish the two forms of the protein after SDS-PAGE with the Phos-tag
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153  reagent (Figure 2A, left). The stoichiometry of phosphorylation was calculated as the proportion
154  of dually phosphorylated Hog1 compared to the total amount of Hog1 in each lane (Figure 2A,
155  right). Consistent with previous results (English et al., 2015), we observed three characteristic
156  features of Hog1: (1) no basal activation, (2) fast and full activation in response to KCI, and (3)
157  transient duration of activation that is proportional to the KCI dose. These features give rise to
158  dose-to-duration signaling.

159 Hog1 kinase activity can be selectively blocked using an analog-sensitive Hog1 variant
160  (Hog1 T'%%4) that is inhibited with the ATP analog, [1-(1,1-dimethylethyl)-3-(1-naphthalenyl)1H-
161  pyrazolo[3,4-d]pyrimidin-4-amine] or 1-NA-PP1 (Kung et al., 2006). Accordingly, we stimulated
162  cells following Hog17'%4 inhibition, and ran Phos-tag SDS-PAGE as previously described

163  (English et al., 2015). Inhibited Hog1 (Hog1-as) exhibited three characteristics that differ from
164  wildtype. Consistent with results of English et al. (2015), we observed Hog1 dynamics that were:
165  (4) slow and (5) sustained (Figure 2B). The slowed rate of activation and lack of full dual

166  phosphorylation when Hog1 is inhibited indicates the presence of Hog1-dependent positive

167  feedback. Furthermore, as noted previously, Hog1 exhibits basal dual phosphorylation when its
168  kinase activity is inhibited (English et al., 2015; Macia et al., 2009; Schaber et al., 2012). Our
169  quantification revealed that under these conditions dually phosphorylated Hog1 slowly

170  accumulates, reaching a steady state of approximately 30% of the total (characteristic feature
171 (6)) (Figure 2C). The lack of signal attenuation and increase in the basal level of dually

172  phosphorylated Hog1 in the absence of Hog1 activity demonstrate Hog1-dependent negative
173  feedback. These results reflect the complexity of HOG signaling and motivate our investigations
174  to determine where in the pathway feedback regulation acts.

175 We next measured the dynamics of another upstream signaling component, at multiple
176 salt concentrations, with and without Hog1 kinase inhibition. Our rationale was that these

177  experiments would provide important additional data for informing our models and identifying

178  targets of feedback regulation. We chose the MAP2K Pbs2 because it is more abundant than
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any one of the MAP3Ks, is common to both input branches of the pathway and is
phosphorylated when activated (Tatebayashi et al., 2020). Thus, we used the Phos-tag western
blotting technique described above to measure the dose- and Hog1-kinase dependency of Pbs2
phosphorylation dynamics. As shown in Figure 2D, osmotic stress stimulation caused a mobility
shift of Pbs2 that was (7) fast and partial and also (8) transient. This behavior mirrored two of
the wildtype properties, but unlike Hog1, Pbs2 did not become fully phosphorylated at 150 mM
KCI. When Hog1 was kinase-inhibited, Pbs2 phosphorylation was also (9) fast and partial, but
(10) sustained, as observed for Hog1-as, indicating signal attenuation occurs earlier in the

pathway.

Delayed negative feedback promotes pathway deactivation

Our next step was to identify potential HOG feedback circuits by fitting models to our
Hog1 and Pbs2 phosphorylation data. We considered a model successful if it could capture the
10 pathway characteristics enumerated above. We took a systematic approach by beginning
with a minimal model for adaptive behavior and adding complexity as needed. In this way, we
hoped to gain insight to the limitations of each model. The minimal model (Model I) for the HOG
MAPK cascade is comprised of a single negative feedback loop initiating from Hog1 and
targeting the MAP3K (Figure 3A). From a biological perspective, this model represents Hog1
suppressing its own activity by diminishing the rate at which the MAPK3K is activated, this might
occur through increasing the intracellular osmolyte concentration, feedback phosphorylation or
both (English et al., 2015; Hao et al., 2007; Sharifian et al., 2015). The model consists of three
species, representing each of the three kinases in the MAPK cascade. We modeled
phosphorylation and dephosphorylation using Michaelis-Menten kinetics and ignored the
synthesis and degradation of the kinases, as their expression is not known to be induced
following hyperosmotic stress.

Model | (Figure 3A):
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dMAP3K 1 (kb +ky -KCZ)MAP3K k, - MAP3K )
ac (1 +Hogl> K, + MAP3K, " K, + MAP3K @
B
dPbs2 _ k3 MAP3K - Pbs2; k- Pbs2 )
dt K3+ Pbs2, K, + Pbs2 @
dHogl ks-Pbs2-Hogl, ks Hogl 3)

dt ~  Ks+Hogl, K¢ + Hog1
where each K| represents a Michaelis constant, the ki’s are either the kcat or Vimax Of the reaction,
depending on whether the enzyme concentration is explicitly taken into account, and k;, is the
basal activation rate (English et al., 2015; Macia et al., 2009). We assumed that salt increases
the Vmax Of the reaction for activation of the MAP3K. That is, k1 = ki’ KCI. We used a decreasing
Hill function to include negative feedback, with B representing the concentration of active Hog1
needed to reduce the MAP3K activation rate by half.

Having defined a model, we then sought to fit it to our experimental data. To perform
parameter estimation, we created a hybrid method, combining a global and local search method
that minimized the distance between simulated fits and the data based on mean squared error
(MSE). Recent benchmark efforts have shown that similar combination strategies are
particularly efficient and best performing when compared to stand alone methods (Villaverde et
al., 2019). Here, we used an evolutionary algorithm (EA) (Fortin et al., 2012) that performs a
global search method within a large search space to find best-fitting parameter sets. We then
used an approximate Bayesian computation sequential Monte Carlo (ABC SMC) method (Toni
et al., 2009) to fine-tune the EA-determined parameter sets to further realize distributions of
model parameter values that produced results consistent with the data (Figure 3B-C). This
process resulted in 1000 parameter sets that could meet the model-specific MSE thresholds.
Details of our parameter optimization method are provided in the Methods section.

We fit Model | to our data presented in Figure 2. We simulated wildtype behavior with the

full system and simulated kinase-inhibited behavior by removing the Hog1-dependent negative


https://doi.org/10.1101/2020.04.20.051599
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051599; this version posted April 21, 2020. The copyright holder for this preprint (which

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

feedback loop. As shown in Figure 3C (top right panel), Model | could neither capture full Hog1
activation nor full deactivation. We inferred that Model | was unsuccessful at capturing our data
because in the model Hog1 activity immediately suppresses activation of the MAP3K, and
consequentially the model cannot simultaneously satisfy the constraints of full activation in
wildtype cells and the amplitude dependence of Hog1-as strain. This reasoning is in agreement
with work in Schaber et al. 2012 in which they found a delayed negative feedback is necessary
for full signal attenuation while negative feedback originating from Hog1 serves to fine-tune the
response. Hence, we expanded Model | to include an additional step between Hog1 activation
and pathway inhibition to produce a time delay in the negative feedback loop (Figure 3D). This
circuitry is consistent with prior models (Ma et al., 2009) and experimental studies, which
demonstrate that full HOG pathway adaptation requires an increase in cytosolic osmolytes
(Babazadeh et al., 2014; Hohmann, 2002; Siderius et al., 2000), though this model species
could represent any upregulated signaling processes downstream of Hog1. Therefore, we
updated the model to include this process.

Model Il (Figure 3D):

Model | equations 2, and 3 remain the same in Model Il. The osmolyte concentration was
modeled using the following equation:

dOsmolytes
dt

= s, -Hogl — d, - Osmolytes €))
where s1 is the rate of osmolyte synthesis, which requires active Hog1, and d; is rate of
osmolyte degradation. Model | equation 1 was updated to replace active Hog1 in the negative
feedback term with the osmolyte concentration. Overall, adding a delay in the negative feedback
loop significantly improved the performance of the model and allowed it to capture full Hog1

deactivation (Figure 3 — figure supplement 1). However, Model |l still could not capture full Hog1

phosphorylation.

10
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252 Investigating the behavior of the osmolyte concentration, we found that Model I

253  predicted a 2-fold increase of the putative osmolyte species over the course of 15 minutes after
254 350 mM KCI stimulus (Figure 3E). To test the model, we exposed cells, with and without Hog1
255  activity, with 350 mM KCI and measured glycerol accumulation over time (Figure 3E). While
256  glycerol exhibited a higher-than predicted increase (four-fold vs two-fold), the dynamics were
257  similar to the model prediction (Figure 3F). The discrepancy in abundance is likely due to Hog1-
258 independent glycerol production. We observed 1- to 2- fold increase of glycerol accumulation in
259  the hog1A and Hog1-as cells treated with 1-NA-PP1 (Figure 3E, and Figure 3 — figure

260 supplement 2), as reported previously for glycerol and other osmolytes (Babazadeh et al., 2014;
261 Petelenz-Kurdziel et al., 2013; Shellhammer et al., 2017). We then perturbed the behavior of
262  Model II's osmolyte species to understand how the osmolyte concentration controlled Hog1

263  dynamics. Increasing the osmolyte synthesis rate caused the osmolytes to accumulate faster
264  than the fitted simulations which limited Hog1 activation to 5 minutes (Figure 3 — figure

265 supplement 3, left compared to center). Decreasing the osmolyte synthesis rate caused it to
266  accumulate more slowly thereby extending the duration of Hog1 activation to over an hour

267  (Figure 3 — figure supplement 3, left compared to right). This delayed negative feedback does
268  not only control the timing of Hog1 phosphorylation, but also the ability of Hog1 to fully adapt, as
269 seen when decreasing the osmolyte synthesis rate (Figure 3 — figure supplement 3, bottom

270  right). Altogether, these data suggest that a necessary negative feedback originates from a

271 downstream species for full signal attenuation, and that species could likely be the accumulation
272  of intracellular osmolytes.

273 Thus, compared to Model |, Model Il was better able to capture Hog1 dose-to duration
274  dynamics and Pbs2 dynamics. However, the revised model still failed to capture full Hog1

275  activation and poorly replicated other features of the data, such as the basal phosphorylation

276  dynamics in the Hog1-as strain. While at this point, we do not rule out Model Il from further

11
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277  consideration, its inability to replicate several pathway features motivated us to investigate if
278  other potential feedback loops.

279

280 Fast positive feedback promotes pathway activation

281 Model Il captured many of the characteristics of Hog1 activation and deactivation.

282  However, Model Il did not reach full activation of Hog1, even at the highest concentrations of
283  stimulus. This failure of the model suggests that it lacks an important positive feedback loop.
284  Since Hog1 activation occurs within two minutes, positive feedback would need to act rapidly.
285  Thus, we hypothesized that it originates from Hog1 directly phosphorylating a pathway

286  component. To test this possibility, we expanded Model Il into three new models (Models lla-c)
287  that include Hog1-driven positive feedback loops targeting one of the three kinases in the MAPK
288  kinase cascade: ‘a’ targets the MAP3K, ‘b’ targets Pbs2, and ‘c’ targets Hog1 itself. These

289  loops were modeled by including a term in the relevant activation rate that was proportional to
290 the level of active Hog1.

291 For example, Model Iic includes Model Il equations 1, 2, 3, and 4 with the following modification
292  to the equation for Hog1:

dHogl (ks-Pbs2+ a-Hogl)-Hogl; ke Hogl
dt K< + Hog1, K¢ + Hog1

293 3)

294  where Hog1-mediated positive feedback (a - Hog1) increases its own activation.

295  We used the same procedure as described above to train the models. A summary of each

296  model’s fit to the data is provided in Figure 4A. Model lla produced results very similar to Model
297 |l (Figure 4 — figure supplement 1), while Models IIb-c with positive feedback targeting Pbs2 and
298 Hog1, respectively, produced better fits to the data and were able to capture all 10 pathway

299  characteristics (Model llb: Figure 4 — figure supplement 2, Model lic: Figure 4B-D). We also

300 found that these two models could predict wildtype Hog1 behavior in response to intermediate

301  single-step KCI concentrations: 250, 350, and 450 mM KCI from in English et al., 2015 (Model

12
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302 llb: Figure 4 — figure supplement 2, Model lic: Figure 4E (left)). These models also followed
303 similar Hog1-as dynamics as the previously published though the previously published data is
304  slightly higher than that seen in our data (Figure 4E, right compared to Figure 4D, center). Even
305  with this small discrepancy, these data suggest Hog1 phosphorylates a pathway component at
306  or below that of the MAP2K Pbs2, forming a positive feedback loop.

307 To complete our systematic screen of potential circuitries, we also added positive

308 feedback loops to our Model | to determine whether a positive feedback and direct negative
309 feedback was sufficient to capture our signaling dynamics. Nevertheless, in Models la-c, Hog1
310 did not remain fully phosphorylated, diminishing within the first few minutes (Figure 4 — figure
311 supplement 3). Together, these results support the existence of a delayed negative feedback
312  loop as well as a fast positive feedback loop targeting a component within close proximity of
313  Hog1.

314

315 Experimental validation of computational models reveals positive feedback targeting
316 Hog1

317 A successful model must not only fit relevant data but also predict new behavior. One
318  particularly informative approach is to use such models to predict the response to dynamic input
319  and determine whether they are able to capture dynamics more complex than those used to
320 train the model. With two pathway circuitries (Models Ilb and lic) that sufficiently captured our
321 data (Figure 5A), we aimed to differentiate them by predicting Hog1 behavior in response to
322  increasing step stimuli. To identify the best model, we sought an input that produced different
323  outputs for each model, and to then test those conditions experimentally (Mélykuti et al., 2010).
324 Following this strategy, we computationally generated 1000 random input profiles of
325 increasing salt concentrations and predicted Hog1 response to each input profile using Models
326  llb and llc. These step profiles were designed so that they could be experimentally tested in
327  vivo. We ranked the resulting input profiles based on which generated the largest differences in
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the Hog1 response (Figure 5B). For example, Figure 5C shows three selected inputs ("Step”)
that correspond to the Hog1 dynamics predicted by the two models in Figure 5D. Step #100
generated similar predictions among the models while Step #990 resulted in distinct Hog1
behaviors. Step #550 also predicted model-dependent dynamics, but the differences were too
small to be experimentally decipherable. Generally, the input profiles that produced the greatest
difference between the Hog1 behaviors were those that allowed Hog1 to adapt to an initial step
of KCI before introducing a second step (shaded area in Figure 5B). For Step #990, Model llb
predicted that Hog1 would show a diminished response to the second step of stimulus, but
Model llc predicted full Hog1 phosphorylation in response to this second step (Figure 5D right
column). These results indicated that Step #990 would discriminate between the two models.

We then measured the biological Hog1 response to Step #990. We exposed cells to the
stimulus profile used in our simulations: beginning with an initial salt stimulus of 250 mM KCI
and then raising the salt concentration to 550 mM KCI after 20 minutes. Hog1 activity was again
measured by Phos-tag immunoblotting (Figure 5E, left). Quantitation of the blots shows that
Hog1 responded normally to the first step of stimulus — becoming completely phosphorylated by
two minutes and then fully adapting within 15 minutes (Figure 5E, right). Upon the second
stimulus step, Hog1 was again fully activated and then fully adapted. This result was similar to
previously published measures of Hog1 translocation and phosphorylation (by phospho-p38
immunoblotting) in response to steps of equal magnitude (Behar et al., 2007; Hao et al., 2007;
Zi et al., 2010). In further support of Model lic, we then predicted Hog1 dual phosphorylation if
its kinase activity was inhibited directly before the second stimulus step of Step #990. To
conduct this experiment, we utilized the Hog1-as strain. Again, results most closely aligned with
Model llc (Figure 5 — figure supplement 1). Thus, our experimental results to Step #990, both
with and without kinase activity, most closely aligned to the predicted Hog1 dynamics of Model
lic, indicating that positive feedback likely acts at the level of Hog1 rather than elsewhere in the
MAPK cascade.

14


https://doi.org/10.1101/2020.04.20.051599
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051599; this version posted April 21, 2020. The copyright holder for this preprint (which

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Positive feedback is independent of feedback phosphorylation

Our modeling results suggested that positive feedback amplifies the signal at the level of
Hog1. There are two ways in which feedback phosphorylation could activate the MAPK:
increase its phosphorylation rate (Figure 6) or decrease its dephosphorylation rate (Figure 7).
Since positive feedback must happen quickly, it seemed likely that the target of feedback
regulation is a direct substrate of Hog1. Hog1, like all MAPKSs, phosphorylates proteins at a
serine or threonine followed by a proline. Phosphorylation at these sites typically invokes
conformational changes or alters binding affinities, resulting in rapid changes in substrate
function (Humphrey et al., 2015; Ubersax and Ferrell, 2007). If positive feedback is due to
phosphorylation by Hog1, then mutating the MAPK consensus sites in potential feedback
targets should dampen Hog1 activity.

We then used Model llc to investigate how feedback phosphorylation could amplify Hog1
phosphorylation. By assigning the activation rate a to 0, thereby eliminating positive feedback,
the model predicted a reduction in Hog1 phosphorylation, particularly at low salt concentrations
(Figure 6B). Based on these predictions, we anticipated that 350 mM KCI would be particularly
informative since it was low enough to cause at least a 25% decrease in Hog1 phosphorylation
over several timepoints (Figure 6B). To disrupt the putative positive feedback loop, we mutated
the two MAPK consensus sites on Hog1 (Hog1?* mutant) and monitored its phosphorylation in
response to 350 mM KCI. Immunoblotting after Phos-tag SDS-PAGE showed that these
mutations did not alter Hog1 dynamics (Figure 6C), in contrast to predictions of Model llc. We
then considered Pbs2 as a potential substrate since it is responsible for Hog1 activation. We
mutated its 6 MAPK consensus sites (Pbs2%* mutant), and found that these alterations also
produced minimal changes in Hog1 activation (Figure 6D). Taken together, these results
suggest that phosphorylation of Pbs2 or Hog1 is not the source of positive feedback in the
system.
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380

381  Positive feedback results from mutual inhibition of Hog1 and its phosphatases

382 We then considered an alternative scenario where Hog1 acts by decreasing its own rate
383  of deactivation. In practice, this could be achieved by Hog1 inhibition of its phosphatases. We
384  constructed a new model, Model lll, that incorporated another model species representing Hog1
385 phosphatases and included mutual inhibition between the phosphatases and Hog1.

386  Model Il

387  consisted of Model II's equations 1, 2, 3, and 4 with the following modifications:

dHogl ks:Pbs2-Hogl; (ke + a,-Phosphatase)-Hogl

388 dt Ks+Hogl, K¢ + Hog1 3)

389 dPhosphatase _ k, - Phosphatase; B (kg + a,-Hog1l) - Phosphatase )
dt K, + Phosphatase, Kg + Phosphatase

390 where a, is phosphatase-driven Hog1 suppression and a, is Hog1-driven phosphatase

391 suppression. Here, the total phosphatase concentration is conserved.

392 We determined whether Model Il could perform equal to or outperform Model llc. We

393  trained Model Il on the same phosphorylation data for both Pbs2 and Hog1, as previously done
394  for Model llc (Figure 3). Resulting fits to Model Il captured our 10 pathway characteristics as
395 well as Model llc (Figure 7 — figure supplement 1). Based on these results, we conclude that
396 mutual inhibition is a candidate for positive feedback in HOG signaling pathway.

397 Next, we sought to gain experimental evidence in support of our mutual inhibition

398 hypothesis. We examined three potential targets of mutual inhibition: the Hog1-directed

399 phosphatases Ptc1, Ptp2, and Ptp3 (Jacoby et al., 1997; Mattison and Ota, 2000; Warmka et
400 al.,, 2001; Wurgler-Murphy et al., 1997). Ptc1 dephosphorylates Hog1 at its activation loop

401  threonine site while Ptp2 and Ptp3 dephosphorylate the remaining tyrosine site. Among these
402  three phosphatases there are 22 putative MAPK consensus sites. Hog1 could phosphorylate a

403  combination of these sites to suppress phosphatase activity. Since mutating every site was
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infeasible, we instead deleted the PTC1, PTP2, PTP3 genes and monitored Hog1
phosphorylation. Each deletion caused mild changes to the timing of Hog1 dephosphorylation,
but did not result in the partial Hog1 activation that the model predicted (Figure 7 — figure
supplement 2). This result suggests that a single phosphatase is unlikely to be responsible for
feedback regulation.

Existing evidence indicates that the three phosphatases work together to regulate Hog1,
making it likely that Hog1, in turn, inhibits multiple phosphatases. In particular, dual deletions of
PTC1 and PTP2 are lethal, most likely due to Hog1 hyperactivation (Maeda et al., 1993). Our
previously published data showed that Hog1 was basally phosphorylated in a ptp2Aptp3A
background (English et al., 2015). Additional investigation revealed that deletion of both PTP2
and PTP3 results in high (70%) basal phosphorylation of Hog1 (Figure 7A); in response to 350
mM KCI, Hog1 is fully phosphorylated and then returns back to 70% basal activation. Though
this experimental result alone is insufficient to suggest that positive feedback acts through
mutual inhibition, we could nevertheless use this data to retrain our models to determine if
positive feedback was needed in the system.

To distinguish between the mutual inhibition and positive feedback loop mechanisms, we
compared how well Model Il and llc fit our ptp2Aptp3A data. If this mutual inhibition applied,
Model Ill should be able to capture all of the phosphorylation data, indicating that positive
feedback is not present within a ptp2Aptp3A background. In contrast, should Model lic capture
this data, this would imply positive feedback is still present within a ptp2Aptp3A background,
since we are only eliminating phosphatase suppression of Hog1 activity but not the positive
feedback loop. Thus, we retrained Model llc and Il to the basal phosphorylation of the
ptp2Aptp3A data and compared their performance. For Model lic, we simulated ptp2Aptp3A by
fitting a separate Hog1 deactivation rate. For Model Ill, we simulated phosphatase deletion by
setting their concentration to 0 (Figure 7B). Fitting to these additional data, we found that Model
Il was able to capture the experimental data (Figure 7C, top) whereas Model llc could not,
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particularly in the wildtype strain (Figure 7C, bottom). Model Ill could also correctly predict the
Hog1 response to Step #990 (Figure 7D, top right) and nearly predicted the behavior of the
ptp2Aptp3A strain to a single step of 350 mM KCI (Figure 7D, top left). The only discrepancy
between Model Il and the experimental result was that the experimental measurements for the
ptp2Aptp3A strain showed faster adaptation than predicted in our simulations. However, this
faster dephosphorylation is likely driven by other yeast phosphatases not present in the model.
Meanwhile, the retrained Model llc poorly predicted the Hog1 dynamics in response to 350 mM
KCI (Figure 7D, bottom left) and the full Hog1 phosphorylation in response to Step #990 (Figure
7D, bottom right). The performance of Model Ill, in both its fits to the data and its prediction of
the increasing step stimulus behavior, provides strong evidence for mutual inhibition between
Hog1 and its phosphatases. We conclude that mutual inhibition is responsible for positive

feedback in the HOG MAPK cascade.

Discussion

Feedback regulation often controls the timing of signaling events, allowing for an
appropriate cellular response. For the HOG pathway, we and others have previously shown that
a progressively stronger input leads to a progressively longer output (Aymoz et al., 2016; Behar
et al., 2008; English et al., 2015). What has been lacking is a comprehensive understanding of
the feedback mechanisms responsible for the encoding of this distinctive “dose-to-duration”
signaling profile. To elucidate these mechanisms, we systematically tested 8 network
architectures and found two that could fit our experimental data. By changing the input profile
and predicting Hog1 response, we found conditions that could differentiate between the two
models. Experimental validation identified slow negative feedback and fast positive feedback as
the most likely circuitry. We then tested potential mechanisms of positive feedback, with our

data suggesting positive feedback acts through mutual inhibition between Hog1 and the tyrosine
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phosphatases, Ptp2 and Ptp3. Thus, our iterative approach allowed us to identify new
mechanisms of regulation in the canonical HOG pathway.

Our findings build on other investigations of feedback within the HOG pathway. Our own
previous models incorporated positive feedback, but did not explore how positive feedback acts
in conjunction with negative feedback to control Hog1 activation dynamics (English et al., 2015).
The present work highlights the importance of tyrosine phosphatases together with osmolyte
accumulation. However, other feedback mechanisms are likely to be important for controlling
Hog1 dynamics. These could include known mechanisms, such as Hog1 phosphorylation of
upstream components and other Hog1-directed phosphatases. Other mechanisms of feedback
have been suggested, particularly between the two input branches which seem to suppress one
another’s activity (Granados et al., 2017). Thus, feedback likely acts on a variety of components
to continuously fine-tune the cell’s response to a given stimulus. Looking forward, investigating
the response of Hog1 to even more complex inputs, including different ramps (Thiemicke et al.,
2019) or pulses, will further clarify the roles of individual feedbacks within the system.

More generally, the results provided here suggest that the counter-acting mechanisms of
positive and negative feedback determine the prioritization of intracellular events following
hyperosmotic stress. These events are likely to occur on various timescales. For example,
shortly after the stimulus, Hog1 phosphorylates a regulator of Fps1, a glycerol export channel,
resulting in rapid channel closure and the accumulation of glycerol in the cell (Lee et al., 2013).
On a longer timescale, Hog1 phosphorylates transcription factors resulting in new gene
expression (Alepuz et al., 2001; Capaldi et al., 2008). With prolonged stimulation, Hog1
activates multiple transcription factors and in so doing employs additional regulatory
mechanisms such as feedforward loops (AkhavanAghdam et al., 2016). The timing of these
actions suggests a prioritized order of intracellular events, presumably to enhance a cell’s

chance of surviving hyperosmotic stresses.
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Collectively, these efforts illustrate how computational modeling allows us to probe
behaviors that are difficult to predict or explain through experimentation alone. When models
are based on quantitative data and describe well-defined molecular networks, it is possible to
extract information about the system and make predictions of how that system behaves under
complex situations. Here we found step stimuli that could differentiate the predicted behaviors of
models that captured our experimental data. This model-driven experimental design not only
provided insights into circuit-specific behaviors, but it also revealed putative mechanisms of
positive feedback.

Likewise, insights developed from the yeast system could reveal regulatory roles of other
MAPKSs in more complex systems. In a broader context, understanding how pathways control
MAPK regulation is critical for pharmaceutical development. Protein kinases are the second
largest group of drug targets, and are particularly important in the treatment of cancers.
Moreover, one of the main challenges of drug development is overcoming kinase inhibitor
resistance within complex pathway systems (Bhullar et al., 2018). Understanding the
mechanisms of spatiotemporal pathway regulation will ultimately lead to the development of

novel techniques to control kinase activity.

Materials and Methods

Strain construction and plasmids

Strains (Table 1) were derived from BY4741 (“wildtype”) and transformed by the lithium acetate
method (Gietz and Woods, 2002). Pbs2-9xMyc-tagged strains were generated by homologous
recombination of a PCR-amplified 9xMyc cassette at the C-terminus of the PBS2 open reading
frame. This cassette contained a resistance gene to hygromycin from plasmid pYM20 (pYM20-

9xMyc-hphNT1) (Janke et al., 2004).
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504 Mutagenesis for Hog1 (S91A and S235A) and Pbs2 (S83A, T164A, T212, S248A,

505 T297A, and S415A) were introduced using the delitto perfetto method (Stuckey et al., 2011)

506  using the PCR-amplified pCORE cassette (RRID:Addgene_72231) to integrate selective

507  markers at the endogenous gene loci. These markers were selected against after the integration
508  of synthesized gBlocks (Integrated DNA Technologies). All strains were validated with PCR, and

509 mutated genes were PCR-amplified and sequenced.

510 Table 1
Strain Genotype Background Reference
BY4741 MATa, his3A1, BY4743 (Brachmann et al.,
leu2h, met15A, 1998)
ura3A
SKS001 HOG 171004 BY4741 (English et al., 2015)
SKS002 Pbs2-9xMyc::hphNT1 | BY4741 This study
SKS003 HOG 171004 SKS001 This study
Pbs2-9xMyc::hphNT1
SKS004 PBS254 BY4741 This study
SKS005 HOG 1A BY4741 This study
SKS006 ptp2A::URA3 BY4741 (English et al., 2015)
SKS007 ptp3A::KanMX4 BY4741 (English et al., 2015)
SKS008 ptc1A::KanMX4 BY4741 (English et al., 2015)
SKS009 ptp2A::URA3 SKS006 This study
ptp3A::KanMX4
511
512

513 Cell culture
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514  Strains were cultured using standard methods and media. Strains were struck out on YPD

515  (yeast extract, peptone, and 2% dextrose) plates and cultured at 30°C. Individual colonies were
516  picked and grown overnight in 3 mLs SCD (synthetic complete and 2% dextrose) medium to
517  saturation. Cells were diluted 1:100, grown for 8 hours, and diluted to ODggo = 0.001 for

518  overnight growth. The following day, experiments were conducted once the cell culture reached
519  an ODgpo~1.

520

521 Phos-tag sample collection, gel electrophoresis, and immunoblotting

522  Kinase activation was quantified using Phos-tag immunoblotting technique as previously

523  described (English et al., 2015). Briefly, cells were cultured with a final volume of 80 mLs in

524  SCD. For Hog1-as (Hog17'%% + 1-NA-PP1) kinase inhibition, 1-NA-PP1 ATP analog (Cayman
525  Chemical, #10954) was added to cultures to a final concentration of 12 yM and incubated for 2
526  min before sampling. At the selected timepoints after the addition of KCI in SCD, samples were
527  quenched in 5% (v/v) trichloroacetic acid (TCA) on ice, washed with 5% sodium azide, and

528  stored at -80°C. Sample concentrations were normalized to 1.5ug/uL using the DC Protein

529  Assay (Bio-Rad) and stored at -80°C.

530 Samples were resolved using 8% acrylamide 20uM Phos-tag Bis-Tris SDS-PAGE gels
531 and transferred on to PVDF membrane. Hog1 was detected using an anti-Hog1 primary-

532  antibody (Santa Cruz, Hog1 antibody (D-3) sc-165978; 1:5,000) and a donkey-anti mouse HRP-
533  conjugated secondary antibody (Jackson ImmunoResearch, 715-035-150; 1:10,000). Pbs2-
534  9xMyc was detected using an anti-Myc primary antibody (Cell Signaling, 9B11 #2276, 1:5,000)
535 and a donkey anti-rabbit HRP-conjugated secondary antibody (Jackson ImmunoResearch, 711-
536  035-152; 1:10,000). Secondary antibodies were visualized using Clarity Western ECL Substrate
537  (Bio-Rad, #1705061) and a BioRad Chemidoc Touch Imaging System. Band intensities were
538 normalized and quantified using the ImagelLab (Bio-Rad) software. We found that additional

539  bands were occasionally observed, that would vary between technical replicates, indicating that
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their existence was due to gel and immunoblotting inconsistencies rather than being other
phospho-states of Hog1. Also, band migration depended on the number of gels run

simultaneously. Standard error of the mean was plotted since models were fit to mean values.

Glycerol measurements

Samples of 1 mL were collected at the selected timepoints after the addition of KCl in SCD and
kinase inhibition, when applicable, as above. 500 L was used to measure ODggo and the
remaining 500 uL was pelleted and frozen in liquid nitrogen. After collection, samples were
boiled for 10 min in sterile water and cleared by centrifugation. The concentration of glycerol
was measured using a Free Glycerol Assay Kit (abcam, ab65337) following the manufacturing
instructions. Conversion between ODgoo and cell number was calculated by counting the cells
growing in liquid culture with a hemocytometer and measuring the ODeggo simultaneously (n = 3).
These measurements were fit using logarithmic function, which served as a standard curve for

our sample measurements to calculate cell number.

ODE modeling and parameter optimization

Modeling was performed in Python 3.7 using the scipy package to solve ODE systems and their
steady states. All kinases and phosphatases observed mass conservation with the total protein
amounts reflecting biologically observed concentrations (Ho et al., 2018). These models rely on
different assumptions. First, we do not include synthesis or degradation of the kinases because
hyperosmotic stress does not induce their transcription (O’Rourke and Herskowitz, 2004) and
quantification of Hog1 and Pbs2 time course immunoblots indicates that protein concentration
does not change appreciably throughout our experiments (data not shown). Furthermore, we
group the three HOG pathway MAP3Ks into one species, assuming that they share the same
kinetic behavior. We reason that we are studying the overall behavior of Pbs2 and Hog1, which
are downstream of the two input branches.
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For parameter optimization, we combined two approaches that have been used to
parameterize ODE models to experimental data: an evolutionary algorithm (EA) (Fortin et al.,
2012) and an approximate Bayesian Computation and sequential Monte Carlo (ABC SMC)
(Toni et al., 2009). All values for kcat, K, synthesis, degradation, and feedback terms needed to
be estimated to fit each model to our experimental data.

First, the EA seeded each simulation with starting values that were randomly selected
from a user specified range. Then, the EA would evaluate the fits of each parameter set to the
experimental data using MSE and select the best fitting parameter sets to continue to the next
generation. To avoid local optima, each parameter set has a 10% probability to crossover with
another set, and each parameter has a 20% probability to mutate to a different value. For each
model, we calculated the fit of 500 parameter sets over 1000 generations for 2000 independent
runs. For each run, we saved the top fitting parameter set. We noticed that it was difficult to
programmatically separate out the top fitting parameter sets: when we ranked the MSEs, there
was a sharp increase in MSEs, then a gradual increase, followed by another sharp increase.
Where these transitions occurred varied with each model, and their resulting fits to the data also
depended on the model.

Thus, we chose to use the best (lowest-scoring) 500 EA parameters vectors from the EA
as priors for the ABC SMC to further sample for the optimal parameters of each model. This
loose inclusion of the best 25% parameter sets allowed the ABC SMC to further search the
parameter space in case the EA missed any optima. We then followed the same algorithm as in
Toni 2009 in which sampled parameter vectors must pass a series of tolerance levels (€)
determined by their fit to the experimental data, where the first tolerance was the worst MSE of
the top 25% EA parameter sets and all subsequent tolerances were the average of the previous
tolerance and the best MSE from the top 25% EA parameter sets. For each model, we ran four
series, or “schedules,” in which each schedule included 1000 parameter vectors that passed its
tolerance. During a schedule, a parameter vector was selected based on its importance weight
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and perturbed. This weight is calculated by the prior and the perturbation of each parameter.
We used a perturbation kernel of U(-1,1) around logo transformed parameter values so that
sampling was scaled to the magnitude of the value. Since all priors and perturbation kernels for
these simulations were uniform, each parameter set had an equal probability of being selected.
After each schedule, we calculated new weights for the selected parameter values. In the end,

we had 1000 parameter vectors that passed the highest tolerance threshold.

All simulations and analysis were performed using custom scripts which are available at

https://github.com/sksuzuki’/HOG_encoding_feedbacks.

Model differentiation

Once we found two models that could capture our experimental data, we needed to identify the
most likely circuitry of the two. We generated increasing step stimuli and simulated Hog1
response with each model. Each stimulus was randomly generated, but we limited them to three
rules. First, the stimulus must always increase because decreasing osmolarity would activate a
hypoosmotic response. While the SIin1 branch contributes to the hypoosmotic response, there
are other mechanisms outside of the HOG pathway that control yeast response to hypoosmotic
stress (Brown et al., 1994). Second, we limited the increasing steps to a maximal stimulus of
550 mM KCI due to increased cell death above this concentration. Third, we limited the intervals
of each step to at least 2 minutes since faster intervals are not experimentally feasible.
Generated inputs were then ranked based on maximizing the distance between model
predictions. Thus, the larger distance reflected the greatest difference between the simulated

Hog1 dynamics.
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858 Figure 1: Hog1-dependent feedbacks within the HOG Pathway. Two input branches activate a MAPK cascade to
859 initiate adaptation to hyperosmotic stress. Hog1 controls its own phosphorylation dynamics through negative (red
860 arrows) and positive (green arrow) feedback mechanisms. Hog1 phosphorylates upstream HOG pathway

861 components, including Ste11, Ssk2, and Sho1, which downregulates signaling. Hog1 increases osmolyte

862 concentrations by cytosolic and nuclear events, such as the closing of glycerol export channels and the transcription
863 of genes with Stress Response Elements (SREs). The increase of intracellular osmolarity also suppresses HOG
864 signaling, putatively at the level of receptors. Finally, Hog1 likely initiates a positive feedback loop, but the target is
865 still unknown.
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Figure 2: HOG pathway dynamics. (A) Left: Hog1 dual phosphorylation (pp Hog1) over time in response to a single
step stimulus (top) of 550 mM KCI (center) or 150 mM KCI (bottom), resolved using the Phos-tag method. Right:
Quantification of blots. (B) Same as (A) but using an analog sensitive Hog1 + ATP analog (Hog1-as). (C) Same as
(B) but taken for longer time points and in the absence of KCI. (D) Left: Pbs2 phosphorylation over time in response
to 550 mM KClI (top) and 150 mM KCI (bottom), resolved using the Phos-tag method. (E) Same as (D) but using
Hog1-as. Error bars represent SD of each point. All experimental data are n = 3.
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874 Figure 3: Model building and parameter estimation of potential feedback circuits. (A) Schematic of Model |, a
875 single negative feedback from Hog1, targeting the input with associated parameters to be estimated. (B) The

876 parameter optimization method. First, parameter values are randomly assigned, then the Evolutionary Algorithm (EA)
877 finds candidate parameter sets, and finally, the Approximate Bayesian Computation Sequential Monte Carlo (ABC
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SMC) searches the local parameter space surrounding the EA parameter sets. Gray bars indicate the range of
potential values selected uniformly during the EA. Colored points specify parameter values and black points highlight
the best (lowest MSE between experimental data and simulations) parameter values after each step. (C) Simulated
fits at each estimation step are overlaid with wildtype Hog1 (top row, filled symbols) and Hog1-as (bottom row, open
symbols) data at each parameter optimization step. Average simulated behaviors are plotted using dashed lines. All
simulations are n = 1000 and all shaded regions are a SD of 1. (D) Schematic of Model |l that features a delayed
negative feedback, presumably from osmolyte accumulation. (E) Model Il simulated prediction of downstream
component behavior. (F) Glycerol accumulation over time in response to 350 mM KCI with and without Hog1 activity.
hog1A cells served as a negative control. All experiments are n = 3 and error bars represent SD of each point.
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Figure 3 — figure supplement 1: Model Il (delayed negative feedback) fits to experimental data. (A) Schematic
of Model Il with negative feedback driven by a species downstream of Hog1, such as Hog1-dependent accumulation
of osmolytes. (B) Model Il simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations
for wildtype Hog1 in response to 550 mM and 150 mM KCI. Right: Data and simulations for Hog1-as. (C) Model Il
simulated Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype Hog1 in
response to 550 mM and 150 mM KCI. Center: Data and simulations for Hog1-as. Right: Data and simulations for
Hog1-as with no salt stimulus. All simulations in (B) and (C) are n = 1000 and shaded regions are SD of 1.
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Figure 3 - figure supplement 2: Inhibitor- and Hog1 analog sensitive variant-dependent glycerol
accumulation in response to hyperosmotic stress. Glycerol accumulation over time in response to 350 mM KCI
with and without 1-NA-PP1 drug in both wildtype Hog1 and Hog17'%A backgrounds. All experiments are n = 3 and
error bars represent SD of each point.
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Figure 3 - figure supplement 3: Delayed feedback investigation. Comparing Model |l simulations with the fitted
(left) osmolyte synthesis rate to 5x increased (center) or 5x decreased (right) osmolyte synthesis rate in response to
350 mM KCI. Each solid line is one simulation corresponding to one fitted parameter set and each dashed line is the
mean response of the plotted simulations. Top row is osmolyte simulations (purple) and bottom row is the
corresponding Hog1 simulations (green). The best 100 simulations are plotted for clear visualization.
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915 Figure 4: Model fits and predictions to single step stimuli. (A) Table showing model fits to each of the HOG

916 pathway characteristics. Dots indicate that the model captures the behavior, where filled circles fit the experimental
917 data well and hollow circles do not. (B) Schematic of one of the two models that fits all of the phosphorylation

918 characteristics. (C) Model llc simulated Pbs2 fits (dashed lines) overlaid with experimental data (symbols). Left: Data
919 and simulations for wildtype Hog1 in response to 550 mM and 150 mM KCI. Right: Data and simulations for Hog1-as.
920 (D) Model lic simulated Hog1 fits (dashed lines) overlaid with experimental data (symbols). Left: Data and simulations
921 for wildtype Hog1 in response to 550 mM and 150 mM KCI. Center: Data and simulations for Hog1-as. Right: Data
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922 and simulations for Hog1-as with no salt stimulus. All simulations are n = 1000 and shaded regions are SD = 1. (E)
923 Model llc predictions to previously published data (*English et al., 2015). Left: Data and simulations for wildtype Hog1
924 in response to 450, 350, 250 mM KCI. Right: Data and simulations for wildtype Hog1-as.
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928 Figure 4 - figure supplement 1: Model lla with positive and negative feedback poorly fits experimental data.
929 (A) Schematic of Model Ila with a delayed negative feedback and a positive feedback increasing MAP3K activation.
930 (B) Model lla simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype
931 Hog1 in response to 550 mM and 150 mM KCI. Right: Data and simulations for Hog1-as. (C) Model lla simulated
932

Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype Hog1 in response to 550
933 mM and 150 mM KCI. Center: Data and simulations for Hog1-as. Right: Data and simulations for Hog1-as with no salt
934 stimulus.
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Figure 4 - figure supplement 2: Model lIb with positive and negative feedback that captures experimental
data. (A) Schematic of Model IIb with a delayed negative feedback and a positive feedback increasing MAP2K
activation. (B) Model lla simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations
for wildtype Hog1 in response to 550 mM and 150 mM KCI. Right: Data and simulations for Hog1-as. (C) Model lla
simulated Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype Hog1 in
response to 550 mM and 150 mM KCI. Center: Data and simulations for Hog1-as. Right: Data and simulations for
Hog1-as with no salt stimulus. (D) Model IIb predictions to *previously published data (English et al., 2015). Left: Data
and simulations for wildtype Hog1 in response to 450, 350, 250 mM KCI. Right: Data and simulations for wildtype
Hog1-as. All simulations are n = 1000 and shaded regions represent a SD of 1.
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Figure 4 - figure supplement 3: Models with direct negative feedback and positive feedback cannot capture
experimental data. (A) Schematic of Model la with a negative feedback directly from Hog1 and a positive feedback
increasing MAP3K activation. (B) Model la simulated Hog1 fits overlaid with data. Data and simulations for wildtype
Hog1 in response to 550 mM and 150 mM KCI. Right: Data and simulations for Hog1-as. (C) Schematic of Model Ib
with a negative feedback directly from Hog1 and a positive feedback increasing MAP2K activation. (D) Same as (B)
but for Model Ib. (E) Schematic of Model Ic with a negative feedback directly from Hog1 and a positive feedback
increasing MAPK activation. (F) Same as (B) but for Model Ic. All simulations are n = 1000 and shaded regions
represent a SD of 1.
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Figure 5: Differentiating models by predicting Hog1 behaviors to dynamic inputs. (A) Schematics of the two
models that fit our data. (B) Mean squared errors (MSEs) for the predicted Hog1 behaviors of Models IIb and lic for
1000 randomly generated increasing steps. Pink shaded area indicates where step inputs follow a trend similar to
that of Steps #990 (pink circle). (C) Selected steps depicting a low (left), mid (center), and high (right) scoring step
input. (D) Predicted Hog1 behaviors to the three step inputs for Models Ilb (mid), and lic (bottom) (C). (E)
Experimental Hog1 behavior to step stimulus. Left: Hog1 behavior in response to Step #990 resolved using Phos-tag
SDS-PAGE (n=3). Right: Quantification of blots. Error bar represent SD of each point.
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Figure 5 — figure supplement 1: Model and experimental Hog1 behavior in response to step stimulus and
inhibition. (A) Step stimulus #990 with inhibition before the second step of inhibition (t=18 min). (B) Model
predictions to step stimulus with the inhibition. Top: Model lIb prediction. Bottom: Model lic prediction. (C)
Experimental Hog1 behavior to the stimulus. Top: Hog1 behavior in response to Step #990 resolved using Phos-tag
SDS-PAGE (n=3). Bottom: Quantification of blots. Error bar represent SD of each point.
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Figure 6: Evaluating increasing Hog1 phosphorylation as the positive feedback mechanism. (A) Schematic of
Model llc with positive feedback removed. (B) Model lic prediction of Hog1 in response to 550, 350, and 150 mM KCI
without positive feedback. (C) Left: Hog1 behavior in response to 350 mM KCI with putative MAPK consensus sites
mutated in Pbs2. Right: Quantification of blots. (D) Left: Hog1 behavior in response to 350 mM KCI with putative
MAPK consensus sites mutated in Hog1. Right: Quantification of blots. n = 2 for mutants, points are replicates and
line is mean; n = 3 for wildtype Hog1, points and line are mean with SD.
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Figure 7: Evaluating decreasing Hog1 dephosphorylation as the positive feedback mechanism. (A) Left: Hog1
behavior in response to 350 mM KCI and no KCl in a ptp2Aptp3A background. Right: Quantification of blots. n=2,
points are replicates and line is mean. (B) Schematic of models incorporating phosphatases. Left: Model lll, with
positive feedback acts through mutual inhibition between Hog1 and its phosphatases. Right: Model lic, with an
additional dephosphorylation rate to simulate the removal of the phosphatases. (C) Model fits to experimental data
(selective representatives shown). Top: Model Ill. Left: Simulated Hog1 fits to ptp2Aptp3A without KCI stimulus.
Center: Fits to wildtype Hog1 dynamics for 550 and 150 mM KCI. Right: Fits to Hog1-as data. Bottom: Same as Top
but for Model llc. (D) Model predictions compared to experimental data. Top: Model Ill. Left: Prediction of Hog1

dynamics in response to 350 mM KCl in a ptp2Aptp3A background. Right: Prediction in response to Steps #990.
Bottom: Same as Top but for Model llc.
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Figure 7 — figure supplement 1: Model lll with positive feedback acting through mutual inhibition captures
experimental data. (A) Schematic of Model Ill with a delayed negative feedback and a positive feedback decreasing
its phosphatases’ activity. (B) Model Ill simulated Pbs2 fits (dashed lines) overlaid with data (symbols). Left: Data and
simulations for wildtype Hog1 in response to 550 mM and 150 mM KCI. Right: Data and simulations for Hog1-as. (C)
Model lla simulated Hog1 fits (dashed lines) overlaid with data (symbols). Left: Data and simulations for wildtype
Hog1 in response to 550 mM and 150 mM KCI. Center: Data and simulations for Hog1-as. Right: Data and
simulations for Hog1-as with no salt stimulus. All simulations are n = 1000 and shaded regions represent a SD of 1.

46


https://doi.org/10.1101/2020.04.20.051599
http://creativecommons.org/licenses/by/4.0/

1000

1001
1002
1003
1004
1005
1006

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051599; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A B
100 4
KCI (mM)
— 754 Prediction
=2 phosphatases
% 50 4 R | removed
Q.
Q.
/' R 25
Model Il 04
0
C
Hog1 Strain
= - WT
| mmmw - pp Hog1 "
=
E
g - _-.--‘ - Hog1
R |
0 2 5 7° 10 15 20 25 30 60 min [ § :
AT VEE— /S
0 5 10 15 20 25 30 60
Time (min)
D
100 Strai
rain
o Hogt B o 75 - WT
g -
= MmN PREGSL 8 o ptp2A
€ g 50
=L L0 e s amw® | - Hog1 A
) R 25
0 2 5 7510 15 20 25 30 60 min
0
Time (min)
E
100 :
Hog1 Strain
o = 75 - WT
Z[ emmem s = = = | -pp Hogt ;O? £ ptp3A
z o 50
2 (- o - | - Hog1 2
™ o= 28

0 2 5 7510 15 20 25 30 60 min

0 5 10 15 20 25 30 60
Time (min)

Figure 7 — figure supplement 2: Single deletions of the primary Hog1 phosphatases slightly decrease
duration of Hog1 activation. (A) Schematic of Model Il with mutual inhibition acting as positive feedback, here
depicted as the phosphatases removed. (B) Model 11l Hog1 prediction in response to 350 mM KClI if the
phosphatases were removed. Simulations are n = 1000 and shaded regions represent a SD of 1. (C) Left: Hog1
behavior in response to 350 mM KCI in ptc1A background. Right: Quantification of blots. (D) Same as (A) for ptp2A
background. (E) Same as (A) for ptp3A background.
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