

1 **Abortion and various associated risk factors in dairy cow and sheep in Ili, China**

2

3 Xiaoyu Deng^{1#}, Huan Zhang^{1#} ORCID 0000-0001-9366-2385, Zhiran Shao^{1#}, Xiaoli

4 Zhao¹, Qin Yang¹, Shengnan Song¹, Zhen Wang¹, Yong Wang¹, Yuanzhi Wang²,

5 Jinliang Sheng^{1*}, Chuangfu Chen^{1*}

6 1 School of Animal Science and Technology, Shihezi University, 832000-Shihezi City,

7 Xinjiang, China;

8 2 School of Medicine, Shihezi University, 832000-Shihezi City, Xinjiang, China;

9 [#]These authors contributed equally to this work

10

11 Abstract

12 We studied livestock abortion and various associated risk factors in the Ili region of
13 northwest China. Livestock abortion prevalence was estimated and correlated with
14 infections (Brucellosis, Salmonellosis, *Mycoplasma* and *Chlamydia* seropositivity) and
15 management (farming type and contact with other herds/flocks) risk factors. The
16 prevalence of cow and sheep abortion induced by *Brucella* was 76.8% ($P<0.0001$) and
17 84.1% ($P<0.0001$), and *Mycoplasma* caused an estimated 15.5% ($P=0.025$) and 17.6%
18 ($P<0.001$) abortions, respectively. Abortion-related risk factors included mixed
19 farming (cow $P=0.001$, sheep $P<0.001$), contact with other flocks (cow $P=0.007$, sheep
20 $P=0.003$), brucellosis positivity (cow $P<0.001$, sheep $P<0.001$) and *Mycoplasma*
21 positivity (cow $P=0.031$, sheep $P<0.001$). A total of 2996 serum samples (1402 cow,
22 1594 sheep) were identified by RBPT (Rose Bengal Plate Test), and they showed the
23 seroprevalence of brucellosis in X county was cow 7.1%, sheep 9.1%; in H county was
24 cow 11.7%, sheep 10.7%; and in Q county was cow 4.2%, sheep 9.1%. The
25 seroprevalence of *Mycoplasma* in X county was cow 3.4%, sheep 7.9%; in H county
26 was cow 5.3%, sheep 9.9%; and in Q county was cow 2.1%, sheep 4.3%. A total of 54
27 samples, including aborted cow (22), sheep (30) fetuses and milk samples (2), were
28 identified as *Brucella melitensis* (*B. melitensis*) positive. A total of 38 *Brucella* were
29 isolated from 16 aborted cow, 20 sheep fetuses and 2 milk samples. All of these isolates
30 were identified, and confirmed, as *B. melitensis*. A phylogenetic tree showed that the
31 *Brucella* isolates closely matched the *B. melitensis* biovar 3 isolated in Inner Mongolia,
32 China, and *B. melitensis* isolated from Norway and India. These results suggest that *B.*

33 *melitensis* biovar 3 is the main pathogen responsible for cow and sheep abortion and
34 also pose a human health risk. Additionally, livestock reproduction can also be
35 influenced by *Mycoplasma* infection and managerial factors (farming type and contact
36 with other herds/flocks), especially in remote areas.

37

38 **Introduction**

39 Ruminants are a major source of meat production in China and are important for food
40 security. Xinjiang Uygur Autonomous Region (XUAR) is located in northwest China
41 and is a major ruminant production province. In 2017, beef production (0.43 million
42 tons) and mutton production (0.58 million tons) in Xinjiang, respectively, accounted
43 for the 6.8% and 12.4% in the total beef and mutton production in China. Ili is located
44 in the western part of XUAR, where the economy is highly dependent on animal
45 production [1, 2]. The combined number of cattle and sheep is approximately 5.76
46 million in this region. The sheep and cattle are reared under traditional systems, and
47 confined sheep or cattle ranches are the two main feeding systems.

48 Diseases and poor animal health are major risk factors for animal production in Ili.
49 The viability of sheep and cattle production is largely determined by their reproductive
50 ability, which is influenced by both genetic and environmental factors [3, 4]. Abortion
51 is the most serious threat to livestock, and it is also a public health issue. Abortion is
52 often induced by zoonotic microorganisms [5, 6].

53 Most ruminants are maintained by poor farmers as way to increase family income.
54 Abortion in sheep and dairy cows has a great impact on the animal production and the

55 health of rural economies [7, 8]. The farming system and communal grazing are often
56 involved in the spread of infectious organisms. There is a need for an improved
57 diagnostics and specific control strategies for maintaining healthy livestock and public
58 health safety [6]. Risk factors responsible for livestock abortion can be classified into
59 infectious and non-infectious [9].

60 Infectious agents are the main causes of abortion in sheep and cow as compared to
61 non-infectious agents and are generally infectious to humans. The main etiological
62 agents causing sheep and cow abortion are *Brucella*, *Salmonella*, *Mycoplasma*,
63 *Chlamydia abortus* and *Toxoplasma gondii* [9-12].

64 Ili is an endemic area for brucellosis with high incidences in sheep (4.21%) and cow
65 (6.91%) brucellosis in 2015 (Data from the Center for Animal Disease Control and
66 Prevention of Ili). In this region, most farmers practice mixed farming (both sheep and
67 dairy cows) and use a communal grazing system. Grazing in this environment can
68 expose pregnant animals to pathogens [5, 13].

69 Recent years, the livestock abortion occurred in an increasing number according to
70 the local Veterinary Department report. However, the causes of these abortions
71 remained unknown. Hence, to protect and sustain the ruminant industry in the Ili region,
72 we need to understand all of the reasons for animal abortion. Thus, the objectives of
73 this study were to: 1) investigate the prevalence of abortion in Ili ruminant flocks and
74 correlated its association with infectious agents (*Brucella*, *Salmonella*, *Mycoplasma*
75 and *Chlamydia abortus*) and management (farming type and contact with other flocks)

76 risk factors; 2) isolate and analyze genetic characteristics of the abortion-related
77 pathogens.

78 **Materials and methods**

79 **Study design**

80 A cross-sectional study was carried out in three counties of the Ili region (X county, H
81 county and Q county) between March and July in both 2017 and 2018. Samples from
82 cows and sheep were collected from smallholder farms. The selection strategies
83 including regions, villages and farms were described in Arif et al [14]. These three
84 counties were selected mostly based on operational convenience, but they also represent
85 a range of agro-ecological zones. Villages within each county were selected randomly
86 by an electronic calculation.

87

88 **Herd selection**

89 A total of 325 farms were selected from 25 villages in the three counties, and, given
90 their availability, a maximum of five cows or sheep were randomly sampled in each
91 farm. All of the livestock owners involved were informed about the purpose of this
92 study and provided information about previous vaccinations. The study sampled non-
93 vaccinated animals over two years of age. When there were more than five animals of
94 the required age, five animals were selected randomly from the animals available.

95

96 **Sample size**

97 The study population included all the farms in selected villages, but the target
98 population was all of the cows and sheep within the selected villages and all of the
99 villages in selected counties. Several studies reported that *Brucella* is a main pathogen
100 responsible for animal abortion in XUAR [15-17]. Therefore, the sample size was
101 calculated according to the estimated prevalence of brucellosis in these three counties,
102 and the assumed prevalence is listed in Table 1. The minimum samples number of sheep
103 and cows required assumed a closed population, as described previously [18]. The
104 sample size of cows and sheep was estimated to detect a reduction of at least 4% for
105 cows and 6% for sheep brucellosis prevalence with a confidence of 95% and a power
106 of 80% according the following equation [18]:

$$107 n = \frac{[Z\alpha\sqrt{2pq} - Z\beta\sqrt{p_1q_1 + p_2q_2}]^2}{(p_1 - p_2)^2}$$

108 In this equation, n is the minimum number of samples required, $Z\alpha$ represents the value
109 obtained from standard normal distribution for 95% confidence (1.96), $Z\beta$ represents
110 the value obtained from standard normal distribution for a power of 80% (-0.84), p_1
111 represents the estimated prevalence, an expected prevalence for cow and sheep
112 brucellosis in these three counties (listed in Table 1), p_2 represents the desired
113 brucellosis prevalence for cows and sheep (listed in Table 1), q_1 is $(1-p_1)$, q_2 is $(1-p_2)$,
114 p is $(p_1+p_2)/2$, and q is $1-p$. The minimum number of cows and sheep required in these
115 three counties is shown in Table 1.

116

117 **Table 1. The estimation of minimum livestock number required in this study.**

118

County	Expect prevalence		Desire prevalence		Minimum require number	
	Cow	Sheep	Cow	Sheep	Cow	Sheep
X	9.5%	8.3%	2%	3%	150	296
H	8.1%	6.7%	2%	3%	201	316
Q	5.5%	8.8%	1.5%	3%	330	261

119

120 **Sample collection**

121 A total of 2996 blood samples (1402 dairy cows and 1594 sheep) were collected from
122 jugular veins using venoject needles (Venoject, China) and stored in 5 mL sterile
123 vacutainer tubes. Additionally, 141 aborted fetuses (66 cow fetuses and 75 sheep
124 fetuses) and 65 milk samples (42 cow milk and 23 ewe milk) were collected. Blood
125 samples were centrifuged at 3000 rpm for 10 min, and the serum was separated into a
126 new sterile tube and stored at -20°C until tested. The milk samples were transported to
127 the laboratory and stored in 4°C. The aborted fetuses were stored at -20°C until
128 processing.

129

130 **Laboratory testing**

131 All of the serum samples were screened for antibodies by RBPT, and the positive serum
132 samples were reconfirmed by c-ELISA. Briefly, 30 µL of antigen was mixed with 30
133 µL of serum on a clean plate. After 3 min, any visible agglutination was considered as
134 positive, and no agglutination was considered as negative. Positive or doubtful samples
135 identified by RBPT were further tested with c-ELISA using the Svanovir *Brucella*-Ab-
136 c-ELISA kits (Svanova Biotech, Uppsala, Sweden) according to the manufacturer's
137 instructions. The optical density (OD) of each samples were tested twice to obtain the

138 average OD. The cutoff OD of 0.3 was used to identify positive reactions [19]. The
139 sensitivity and specificity of these two methods have been validated as useful tools for
140 brucellosis screening [20, 21]. Additionally, all of the serum samples were screened
141 using the ELISA method to evaluate the changes of *Chlamydia abortus*-specific
142 antibody titer. The mean value of OD was used to identify infected or non-infected
143 livestock [22] and the *Mycoplasma bovis*-specific antibody concentration was
144 determined by *Mycoplasma bovis* MilA IgG ELISA as described previously [23]. The
145 antibodies against *Salmonella spp* were identified using an indirect ELISA kit as
146 described previously [24].

147

148 **Risk factors questionnaire**

149 A questionnaire was filled out by participating farm owners. The questionnaire
150 contained information about abortion history in the livestock during previous two years,
151 livestock management risk factors including history of contact with other animals (yes
152 or no) and type of farming; sheep flocks (containing only sheep), cow herds (containing
153 only cows) or mixed groups (containing both sheep and cows).

154

155 **PCR examination**

156 Samples of spleen, liver and stomach contents were collected aseptically from aborted
157 fetuses of sheep or cows. The DNA extractions from tissue samples were performed
158 using the TIANamp Genomic DNA Kit (TIANGEN BIOTECH CO., LTD, China)
159 according to the manufacturer's instructions. Nucleic acid extraction from raw milk

160 was performed as previously described [25]. All of the samples were examined by PCR
161 and the PCR primers used in this study are listed in Table S1 of the Supplementary
162 Material.

163

164 **Pathogen isolation**

165 The *Brucella* was isolated from raw milk as previously described [26, 27]. Spleen, liver
166 and stomach contents were crushed and cultured on *Brucella* serum dextrose agar
167 composed of *Brucella* medium base (supplemented with *Brucella* selective antibiotic,
168 OXOID, England) and 5%-10% heat-inactivated horse serum (GIBCO, New Zealand).
169 Plates were incubated with, and without, 5%-10% carbon dioxide at 37°C after
170 inoculation with sample materials. The plates were examined after 3-5 d for bacterial
171 growth. A single clone was chosen for identification. The *Salmonella* spp., *Mycoplasma*
172 *bovis* and *Chlamydia abortus* were isolated from aborted fetuses or milk samples as
173 described previously [28-30].

174

175 **Identification of isolates**

176 The obtained single bacterial clones were identified using PCR targeting the 16S rRNA
177 gene [31]. The PCR primers for examination of *Salmonella* spp., *Mycoplasma bovis*
178 and *Chlamydia abortus* are listed in Table S1 of the Supplementary Material. The IS711
179 PCR primers were used to identify the species of *Brucella*. PCR products purification
180 and sequencing was conducted as described above. Phylogenetic analysis of isolates
181 was done according to the IS711 sequence. The sequence distance was determined by

182 the neighbor-joining (NJ) method, and maximum-likelihood algorithms were analyzed
183 using the Molecular Evolutionary Genetics Analysis (MEGA) 7 software [32]. The
184 *Brucella* isolates were characterized by biochemical testing according to the standard
185 strain identification method [33]. The carbon dioxide (CO₂) requirement was tested on
186 *Brucella* serum dextrose agar with and without CO₂ during the first isolation.
187 Agglutination by A, M and R monospecific antisera was detected by mixing the antisera
188 with the isolate after dilution of the colony. This process was completed at the Center
189 for Disease Prevention and control (CDC) of China in Beijing.

190

191 **Statistical analysis**

192 To analyze the risk factors, a preliminary analysis of the data (univariate) was
193 conducted to select the variables with $P \leq 0.05$ by Chi-square test or Fisher's exact test.
194 Subsequently, the $P \leq 0.05$ of variables was analyzed by multivariable logistic
195 regression [34]. The collinearity was verified between each of the independent variables
196 by correlation analysis, and a correlation coefficient >0.9 indicated the variables with
197 strong collinearity. Because of the problem of multicollinearity, one or two variables
198 were excluded from the multiple analysis based on the biological plausibility [35].
199 Confounding data were evaluated by adding new variables and then monitoring the
200 changes in the model parameters. Large changes ($>20\%$) in the regression coefficients
201 were considered indicative of confounding. The calculations were made using SPSS
202 software 17.0.

203

204 **Results**

205 **Distribution of seroprevalence of four abortion-related**
206 **pathogens in three counties**

207 A total of 2,996 serum samples (1402 dairy cows and 1594 sheep) were collected from
208 X county (cow 352, sheep 353), H county (cow 340, sheep 363) and Q county (cow
209 710, sheep 878) and then identified by RBPT, c-ELISA and ELISA. The brucellosis
210 positivity for cows and sheep in X county was cow 7.1%, sheep 9.1%; in H county was
211 cow 11.7%, sheep 10.7%; and in Q county was cow 4.2%, sheep 9.1%, which is much
212 higher than the seroprevalence of other pathogens in these three counties (Table 2).
213 However, our results suggest that the *Mycoplasma* infection is an additional threat to
214 livestock reproduction. The *Mycoplasma* positivity for cows and sheep in X county was
215 cow 3.4%, sheep 7.9%; in H county was cow 5.3%, sheep 9.9%; and in Q county was
216 cow 2.1%, sheep 4.3% (Table 2), and its abortion rate for cows and sheep was 15.5%
217 (7/45, $P=0.025$) and 17.6% (18/102, $P<0.001$) (Table 3). The salmonellosis and
218 *Chlamydia abortus* seroprevalence for cows and sheep in these three counties are
219 shown in Table 2.

220 **Table 2. Seroprevalence of brucellosis, salmonellosis, *Mycoplasma* and *Chlamydia***
221 ***abortus* in three counties.**

Variables	X County	H County	Q County
Brucellosis positivity			
Cow	25/352 (7.1%)	40/340 (11.7%)	30/710 (4.2%)
Sheep	32/353 (9.1%)	39/363 (10.7%)	80/878 (9.1%)
Salmonellosis positivity			
Cow	3/352 (0.85%)	4/340 (1.2%)	3/710 (0.42%)
Sheep	6/353 (1.7%)	6/363 (1.7%)	4/878 (0.45%)
<i>Mycoplasma</i> positivity			

Cow	12/352 (3.4%)	18/340 (5.3%)	15/710 (2.1%)
Sheep	28/353 (7.9%)	36/363 (9.9%)	38/878 (4.3%)
<i>Chlamydia abortus</i> positivity			
Cow	1/352 (0.28%)	1/340 (0.29%)	3/710 (0.42%)
Sheep	2/353 (0.57%)	1/363 (0.28%)	4/878 (0.46%)

222

223 **Other livestock management factors involved in abortion.**

224 Univariable analysis of abortion-related risk factors (Table 3) found no significant
225 differences among the studied counties ($P=0.054$); the abortion rate in the three regions

226 ranged from 3.9% to 6.1%. However, the management factors were significantly
227 correlated with sheep or cow abortion including the type of farming (cow $P =0.001$,

228 sheep $P<0.0001$) and contact with other herds or flocks (cow $P =0.006$, sheep $P=0.003$).

229 Among the four pathogens, *Brucella* was the main reason for cow or sheep abortion,
230 and the abortion rate of cow or sheep brucellosis was 76.8% and 84.1% ($P<0.0001$)

231 (Table 3). *Mycoplasma* infection also posed a threat to cow and sheep reproduction,
232 and the abortion rates were, respectively 15.5% ($P=0.025$) and 17.6% ($P<0.001$) (Table

233 3).

234

235 **Table 3. Univariable analysis of abortion-related factors of livestock in the Ili**
236 **region.**

Variables	No. of livestock sampled	No. of livestock with abortion	Rate of abortion	P-value
County				
X	705	43	6.10%	0.054
H	703	36	5.10%	
Q	1588	62	3.90%	
Type of farming				
Cow	626	16	2.50%	0.001
Mixed (Cow)	780	51	6.50%	

Sheep	554	23	4.20%	< 0.0001*
Mixed (Sheep)	1036	101	9.70%	
Contact with other flock				
No (Cow)	314	13	4.10%	0.006*
Yes (Cow)	1092	98	8.90%	
No (Sheep)	432	23	5.30%	0.003*
Yes (Sheep)	1158	117	10.10%	
Brucellosis positivity				
No (Cow)	1311	98	7.50%	< 0.0001*
Yes (Cow)	95	73	76.80%	
No (Sheep)	1439	102	7.10%	< 0.0001*
Yes (Sheep)	151	127	84.10%	
Salmonellosis positivity				
No (Cow)	1396	87	6.20%	0.415
Yes (Cow)	10	0	0%	
No (Sheep)	1574	103	6.50%	0.290
Yes (Sheep)	16	0	0%	
<i>Mycoplasma</i> positivity				
No (Cow)	1361	93	6.80%	0.025*
Yes (Cow)	45	7	15.50%	
No (Sheep)	1488	112	7.50%	< 0.001*
Yes (Sheep)	102	18	17.60%	
<i>Chlamydia abortus</i> positivity				
No (Cow)	1401	113	8.10%	0.508
Yes (Cow)	5	0	0%	
No (Sheep)	1583	126	8%	0.437
Yes (Sheep)	7	0	0%	

237 * Variables selected and subjected to the multiple analysis ($P<0.05$)

238

239 **Brucellosis is the main factor responsible for cow and sheep**
240 **abortion.**

241 The abortion-related risk factors analyzed through multivariable logistic regression
242 showed that brucellosis was the biggest risk factor for livestock abortion (Table 4). Our
243 results also showed the brucellosis positivity was significantly associated with cow
244 ($P<0.0001$) and sheep ($P<0.0001$) abortion in the Ili region, and its abortion rates for
245 cow and sheep, respectively, were 76.8% (73/95) and 84.1% (127/151) (Table 3). The
246 Exp (B) values of brucellosis for cow and sheep, respectively, were 41.003 [95% CI
247 24.396-68.916, $P<0.001$] and 69.362 [95% CI 42.900-112.146, $P<0.001$] times higher
248 than other abortion-related factors including mixed farming, contact with other flocks
249 and *Mycoplasma* infection (Table 4).

250 **Table 4. Abortion-related risk factors of livestock in the Ili region.**

Risk factors	Logistic regression coefficient	Standard error	Wald	Exp(B)	95% CI	P-value
Mixed farming						
Cow	0.978	0.292	11.230	2.658	1.501-4.709	0.001
Sheep	0.912	0.237	14.825	2.494	1.566-3.971	<0.001
Contact with other flock						
Cow	0.817	0.302	7.328	2.268	1.253-4.102	0.007
Sheep	0.691	0.235	8.650	1.999	1.260-3.171	0.003
Brucellosis positivity						
Cow	3.71	0.265	196.503	41.003	24.396-68.916	<0.001
Sheep	4.237	0.245	299.073	69.362	42.900-112.146	<0.001
<i>Mycoplasma</i> positivity						
Cow	0.919	0.425	4.677	2.508	1.090-5.769	0.031
Sheep	0.969	0.278	12.151	2.633	1.528-4.537	<0.001

251 Exp(B) represent the Odds ratio.

252

253 **Molecular detection**

254 In the present study, all of the 75 aborted sheep fetuses, 66 aborted cow fetuses, 42 milk
255 and 23 ewe milk samples were screened by PCR targeting the 16s *rRNA* gene. A total
256 of 54 samples (22 aborted cow fetuses, 30 aborted sheep fetuses, 1 milk and 1 ewe's
257 milk) were positive and were further identified as *B. melitensis* by targeting the IS711
258 gene (data not shown). However, all of these samples were negative for *Salmonella spp.*,
259 *Mycoplasma bovis* and *Chlamydia abortus* identified by PCR (data not shown). The
260 nucleotide sequences from this study have been deposited in the GeneBank database
261 (IS711: MK913893-MK913898).

262

263 **Identification of isolates**

264 A total of 38 (70.37%) *Brucella* isolates were isolated from 54 positive samples,
265 including 20 aborted sheep fetuses, 16 aborted cow fetuses and 1 milk sample and 1
266 ewe's milk sample (Table 5). All of the isolates were positive for 16S *rRNA*. The
267 *Brucella* differentiation was performed by PCR utilizing primers specific to the IS711
268 gene of *B. melitensis*. *B. melitensis*-specific DNA fragments with 731 bp were amplified
269 from all isolates, and no DNA was observed in negative control samples. Only part of
270 results is presented in Fig S1 in Supplementary Material. Furthermore. All of the
271 isolates were identified as *B. melitensis* biovar 3 by biochemical testing. The growth of
272 all the 6 isolates on a medium with thionin at 40 µg/mL (1:25000) concentration and
273 basic fuchsin at all concentrations suggested that these isolates were *B. melitensis*

274 biovar 3. Only part of results is presented in Table 6. No *Salmonella spp.*, *Mycoplasma*
275 *bovis* and *Chlamydia abortus* were isolated from aborted fetuses and milk samples.

276 **Table 5. Comparison of PCR and culture results from aborted cow, sheep fetuses**
277 **and milk samples.**

No. of samples	Host	PCR results	Culture results
1-16 fetuses	cow	+	+
17-22 fetuses	cow	+	-
1 milk	cow	+	+
1-20 fetuses	sheep	+	+
21-30 fetuses	sheep	+	-
1 milk	sheep	+	+

278

279 **Table 6. Species and biovar differentiation of the *Brucella* isolates.**

Brucella isolates	Source	Growth characteristics					Monospecific sera		Phage typing						Interpretation
		Urea	H ₂ S	CO ₂	BF	TH	A	M	Tb	Wb	BK ₂	Fi	Iz	R/C	
DXY1	Fetal spleen	++	-	-	+	+	+	+	NL	NL	CL	NL	PL	NL	<i>B. melitensis</i> biovar 3
DXY3	Fetal liver	++	-	-	+	+	+	+	NL	NL	CL	NL	PL	NL	<i>B. melitensis</i> biovar 3
DXY6	Milk	++	-	-	+	+	+	+	NL	NL	CL	NL	PL	NL	<i>B. melitensis</i> biovar 3
DXY8	Ewe's milk	++	-	-	+	+	+	+	NL	NL	CL	NL	PL	NL	<i>B. melitensis</i> biovar 3
DXY5794	Stomach content	++	-	-	+	+	+	+	NL	NL	CL	NL	PL	NL	<i>B. melitensis</i> biovar 3
DXY1954	Stomach content	++	-	-	+	+	+	+	NL	NL	CL	NL	PL	NL	<i>B. melitensis</i> biovar 3

280 BF: basic fuchsin at 20 µL/mL (1/50,000 w/v), TH: thionin at 20 µL/mL (1/50,000 w/v), CL: confluent lysis, PL: partial lysis, NL:

281 no lysis.

282

283 Phylogenetic analysis

284 A phylogenetic tree was constructed based on the 731 bp sequence of the IS711
285 repetitive element for all isolates. After sequencing, we found that IS711 gene
286 sequences from all of these isolates showed 100% similarity (731/731bp). Phylogenetic

287 analysis showed that the *Brucella* isolates closely matched those of *B. melitensis* biovar
288 3 isolated from cattle in Inner Mongolia, China. Isolates from Norway and India also
289 showed 100% similarity to the isolates of the present study in clade 1 (Fig 1). The
290 isolates of *B. melitensis* from other countries were placed into different clads based on
291 low similarity to the *Brucella* isolates from this study (Fig 1).

292

293 **Fig 1. Phylogenetic tree of the IS711 concatenated sequence of *Brucella melitensis***

294 **(•) isolated from aborted cow or sheep fetuses in this study and reference**
295 **sequences from *Brucella melitensis* retrieved from the GenBank database.** The tree
296 was constructed according to the neighbor-joining (NJ; 500 bootstrap replicates) and
297 maximum-likelihood (ML, 1000 bootstrap replicates) analyses using MEGA7. The
298 scale bar represents the inferred substitutions per nucleotide site.

299

300 **Discussion**

301 The livestock industry of the XUAR is a major source of its economic growth especially
302 in some remote areas like Ili. However, there are few studies on the prevalence of
303 brucellosis in this region. It has been reported that the brucellosis seroprevalence for
304 cows and sheep in Ili region was cow 1.72%, sheep 1.95% in 2014 [36]. According to
305 the data released from the Center for Animal Disease Control and Prevention of Ili in
306 2015, the brucellosis seroprevalence for cows and sheep were 6.91% and 4.21%. In the
307 present study, we investigated the seroprevalence of abortion-related pathogens
308 (*Brucella*, *Salmonella*, *Mycoplasma* and *Chlamydia abortus*) in three counties (X, H

309 and Q). A total of 2996 cow and sheep serum samples were screened by RBPT, c-
310 ELISA and ELISA. The resulting data showed that the brucellosis was widely prevalent
311 in livestock in all of the studied counties. The seroprevalence for cows and sheep in X
312 county was cow 7.1%, sheep 9.1%; in H county was cow 11.7%, sheep 10.7%; and in
313 Q county was cow 4.2%, sheep 9.1% (Table 2). These data suggest that the disease is
314 distributed within all of the Ili region and can potentially infect all of the susceptible
315 livestock in this region. The results showed that *Mycoplasma* infection was also can
316 influence the livestock reproduction, although its seroprevalence was not as high as
317 brucellosis. The seroprevalence for *Mycoplasma* infection in X county was cow 3.4%,
318 sheep 7.9%; in H county was cow 5.3%, sheep 9.9%; and in Q county was cow 2.1%,
319 sheep 4.3% (Table 2). The abortion rates of *Mycoplasma* positivity for cow and sheep
320 were, respectively, 15.5% (7/45) and 17.6 (18/102) (Table 3). However, Wenhao Ni et
321 al., [37] found that in 2018, the seroprevalence rates of *Mycoplasma* for Hazake sheep
322 and Suffolk sheep were 22.2% and 8.3% in the Ili region. These data are similar to our
323 results except that the higher seroprevalence in Hazake sheep may a breed-related
324 difference.

325 Many reasons could induce abortion in pregnant animals include infectious factors
326 and non-infectious factors, in which infectious factors include *Brucella*, *Salmonella*
327 spp., *Mycoplasma bovis*, *Chlamydia abortus* and *Listeria monocytogenes* [10-12] and
328 non-infectious factors involve heat stress, production stress, seasonal effect,
329 chromosomal and single gene disorders [38-41]. We previously have found that the *B.*
330 *melitensis* biovar 3 was the main cause of cow and sheep abortion in Nilka county

331 (neighboring X county) in 2016 [42]. However, we could not rule out aborted fetuses
332 caused by non-infectious factors in this study, because part of the fetuses was negative
333 both for those abortion-related pathogens identified by PCR and culture results. In
334 addition to the effects of pathogens on livestock abortion, we found that livestock
335 abortion can also be influenced by livestock management systems including herd and
336 flock size, mixed farming, grazing system and contact with other animals [43, 44]. We
337 used univariable to study management risk factors related to livestock abortion in the
338 Ili region and found statistically significant links with the type of farming (cow $P=0.001$,
339 sheep $P<0.0001$) and contact with other herds/flocks (cow $P=0.006$, sheep $P=0.003$)
340 (Table 3). This may be because these two management factors are easily overlooked by
341 livestock owners.

342 Bacteria isolation is the gold standard for the diagnosis of brucellosis. We isolated a
343 total of 38 *B. melitensis* biovar 3 isolates from 16 aborted cow fetuses, 20 aborted sheep
344 fetuses and 1 milk and 1 ewe's milk sample (Table 5). However, there are 16 aborted
345 fetuses that were positive for PCR but negative for culture probably occurred because
346 contamination decreased the rate of *Brucella* isolation. We also identified the
347 *Salmonella spp.*, *Mycoplasma* and *Chlamydia abortus* through PCR. But, no aborted
348 fetuses were positive for these pathogens. These results show that *B. melitensis* biovar
349 3 is the dominant pathogen responsible for sheep and cow abortion.

350 RBPT and c-ELSA were combined to screen and diagnose brucellosis in China
351 especially in some remote areas. The sensitivity and specificity of these two methods
352 has been described previously [21, 45]. However, these two methods are not good tools

353 for diagnosing brucellosis in the laboratory. We consider that the best way is bacteria
354 isolation and identification. Molecular approaches appeared to be faster and more
355 sensitive than traditional bacteriological tests [46, 47]. The 16S *rRNA* component of the
356 30S small subunit of prokaryotic ribosomes contains hyper-variable regions that
357 provide species-specific signature sequences useful for bacterial identification.
358 Therefore, the 16S *rRNA* gene can be used as the diagnostic target in the PCR for
359 confirmatory identification of *B. melitensis* [48]. Several studies have demonstrated that
360 the 16S *rRNA* can be used as a rapid tool for *Brucella* identification [48, 49]. In this
361 study, we identified 38 *Brucella* isolates with PCR by targeting the 16S *rRNA* gene in
362 the first round of screening and further identified as *B. melitensis* by the presence of the
363 IS711 gene. The advantage of this method is that results can be obtained within one d
364 as compared to seven d using traditional microbiological testing.

365 Brucellosis is principally an animal disease, but >500,000 human cases are reported
366 each year globally [50]. Transmission to humans occurs primarily through contact with
367 infected animals and consumption of contaminated food such as raw milk and its
368 byproducts [51]. This study discovered *B. melitensis* biovar 3 isolates in raw milk and
369 ewe's milk. This result suggests that *B. melitensis* infection in cows and ewes is a public
370 health issue in China. Infected cows and ewes, as disease reservoirs, can spread
371 contaminated milk to the local human population. We recommend: i) increasing the
372 regular quarantine of brucellosis and timely elimination of infected ewes or cows and
373 their products and ii) implementing a vaccination program for livestock and iii)

374 reducing mixed farming and avoiding contact with other herds/flocks and encouraging
375 livestock owners to learn and adopt new management skills.

376

377 **Conclusions**

378 *B. melitensis* biovar 3 was identified as the main pathogen responsible for cow and
379 sheep abortion. *Mycoplasma* infection, mixed farming and contact with other herds and
380 flocks are strongly correlated with livestock abortion. An effective vaccination and
381 control program is advocated for livestock owners in the Ili region to prevent the spread
382 of brucellosis and *Mycoplasma* infection.

383 **Conflict of interest statement**

384 None of the authors of this paper have a financial or personal relationship with other
385 people or organizations that could inappropriately influence or bias the content of the
386 paper.

387 **Acknowledgments**

388 We would like to thank LetPub (www.letpub.com) for providing linguistic assistance
389 during the preparation of this manuscript and Shengnan Song for helping construct the
390 phylogenetic tree.

391 **References**

- 392 1. Li Y-J, Li X-L, Liang S, Fang L-Q, Cao W-C. Epidemiological features and risk factors associated
393 with the spatial and temporal distribution of human brucellosis in China. *BMC infectious diseases*.
394 2013;13(1):547.
- 395 2. Zhang J, Yin F, Zhang T, Yang C, Zhang X, Feng Z, et al. Spatial analysis on human brucellosis
396 incidence in mainland China: 2004–2010. *BMJ open*. 2014;4(4):e004470.
- 397 3. Flora HNB, Niba AT, Pougueu B, Dieudonné H, Nyuysemo IL, Joseph T. Factors affecting
398 reproductive performance of crossbred dairy cattle at the Bambui regional centre of the institute of
399 agricultural research for development Cameroon. 2019.

444 commercially available ELISA based on a recombinant antigen for diagnosing *Chlamydophila abortus* (445 *Chlamydia psittaci* serotype 1) infection. *Veterinary Microbiology*. 2001;78(3):229-39.

446 23. Wawegama NK, Browning GF, Kanci A, Marend MS, Markham PF. Development of a447 recombinant protein-based enzyme-linked immunosorbent assay for diagnosis of *Mycoplasma bovis*448 infection in cattle. *Clinical & Vaccine Immunology* Cvi. 2014;21(2):196.

449 24. Gharpure SJ, Prasath V. Development of an indirect ELISA for the detection of serum IgG450 antibodies against region IV of phase 1 flagellin of *Salmonella enterica* serovar Brandenburg in sheep.451 *Journal of Medical Microbiology*. 2009;58(12):1576-81.

452 25. Cremonesi P, Castiglioni B, Malferrari G, Biunno I, Vimercati C, Moroni P, et al. Improved method453 for rapid DNA extraction of mastitis pathogens directly from milk. *Journal of Dairy Science*.454 2006;89(1):163-9.

455 26. Langoni H, Chihara SM, Ilva AVD, Ardo RB, Onin FB, Endonça LJP, et al. Isolation of *brucella*456 spp from milk of brucellosis positive cows in São Paulo and Minas Gerais states. *Brazilian Journal of*457 *Veterinary Research & Animal Science*. 2000;37(6):0-.

458 27. Naseri Z, Alikhani MY, Hashemi SH, Kamarehei F, Arabestani MR. Prevalence of the most459 common virulence-associated genes among *Brucella Melitensis* isolates from human blood cultures in460 Hamadan Province, West of Iran. *Iranian journal of medical sciences*. 2016;41(5):422.

461 28. Li Z, Cao X, Fu B, Chao Y, Cai J, Zhou J, editors. Identification and Characterization of
<i>Chlamydia abortus</i> Isolates from Yaks in Qinghai, China2015.

462 29. Sudda MM, Mtenga AB, Kusiluka LJ, Kassim N. Prevalence and Antibiotic Susceptibility of463 *Escherichia coli* and *Salmonella* spp. isolated from milk of zero grazed cows in Arusha City. *African*464 *Journal of Microbiology Research*. 2016;10(46):2-.

465 30. Gioia G, Werner B, Nydam DV, Moroni P. Validation of a mycoplasma molecular diagnostic test466 and distribution of mycoplasma species in bovine milk among New York State dairy farms. *Journal of*467 *Dairy Science*. 2016;99(6):4668-77.

468 31. Gee JE, De BK, Levett PN, Whitney AM, Novak RT, Popovic T. Use of 16S rRNA gene sequencing469 for rapid confirmatory identification of *Brucella* isolates. *Journal of clinical microbiology*.470 2004;42(8):3649-54.

471 32. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0472 for Bigger Datasets. *Molecular Biology & Evolution*. 2016;33(7):1870.

473 33. Al SD, Tomaso H, Nöckler K, Neubauer H, Frangoulidis D. Laboratory-based diagnosis of474 brucellosis--a review of the literature. Part I: Techniques for direct detection and identification of475 *Brucella* spp. *Clinical laboratory*. 2003;49(9-10):487-505.

476 34. Kardjadj M, Kouidri B, Metref D, Luka PD, Ben-Mahdi MH. Abortion and various associated risk477 factors in small ruminants in Algeria. *Preventive Veterinary Medicine*. 2016;123:97-101.

478 35. Dohoo IR, Ducrot C, Fourichon C, Donald A, Hurnik D. An overview of techniques for dealing479 with large numbers of independent variables in epidemiologic studies. *Preventive Veterinary Medicine*.480 1997;29(3):221-39.

481 36. Ma X J JK, Shu Z, et al. Epidemiological investigation of animal Brucellosis in Xinjiang from 2012482 to 2014. *Animal Husbandry & Veterinary Medicine*. 2016;48(5):111-4.

483 37. Wen-Hao NI, Ya-Nan Z, Yi-Yong L, Yan C, Lei C, Wen-Rong LI. Serological Investigation of484 *Mycoplasma Pneumonia* in Different Sheep Breeds in Xinjiang. *Grass-Feeding Livestock*. 2019.

485 38. Geoffrey HA, Noakes, D.E., Pearson, H., Parkinson, T.J.,. *Veterinary Reproduction & Obstetrics*,486 sixth ed.: Saunders Publishing; 1992.

488 39. J., Labèrnia, and, F., López-Gatius, and, et al. Influence of management factors on pregnancy
489 attrition in dairy cattle. 1996.

490 40. López-Gatius F, Santolaria P, Yániz J, Rutllant J, López-Béjar M. Factors affecting pregnancy loss
491 from gestation Day 38 to 90 in lactating dairy cows from a single herd. Theriogenology. 2002;57(4):0-
492 1261.

493 41. Markusfeld-Nir O. Epidemiology of bovine abortions in Israeli dairy herds. Preventive Veterinary
494 Medicine. 1997;31(3-4):245-55.

495 42. Zhang H, Shengnan S, Benben W, Jiang Y, Wenxing W, Fei G, et al. *Brucella melitensis* Isolated
496 from Aborted Cow and Sheep Fetuses in Northwest of China. Kafkas Üniversitesi Veteriner Fakültesi
497 Dergisi. 2018;24(2).

498 43. Endrias Zewdu G, Abebe A, Tesfaye Sisay T, Getachew T, Girmay M, Maria V, et al. Some risk
499 factors for reproductive failures and contribution of *Toxoplasma gondii* infection in sheep and goats of
500 Central Ethiopia: A cross-sectional study. Research in Veterinary Science. 2013;95(3):894-900.

501 44. Mellado M, Valdés R, García JE, López R, Rodríguez A. Factors affecting the reproductive
502 performance of goats under intensive conditions in a hot arid environment. Small Ruminant Research.
503 2006;63(1-2):110-8.

504 45. Alton GG, Jones LM, Angus RD, Verger JM. Techniques for the brucellosis laboratory.
505 1988;13(6):420.

506 46. Casañas MC, Queipo-Ortuño MI, Rodriguez-Torres A, Orduña A, Colmenero JD, Morata P.
507 Specificity of a Polymerase Chain Reaction Assay of a Target Sequence on the 31-Kilodalton *Brucella*
508 Antigen DNA Used to Diagnose Human Brucellosis. European Journal of Clinical Microbiology &
509 Infectious Diseases. 2001;20(2):127-31.

510 47. Costa MD, Guillou JP, Garin-Bastuji B, Thiébaud M, Dubray G. Specificity of six gene sequences
511 for the detection of the genus *Brucella* by DNA amplification. Journal of Applied Bacteriology.
512 1996;81(3):267-75.

513 48. Singh A, Gupta VK, Kumar A, Singh VK, Nayakwadi S. 16S rRNA and Omp31 Gene Based
514 Molecular Characterization of Field Strains of *B. melitensis* from Aborted Foetus of Goats in India. The
515 Scientific World Journal. 2013;2013(1):1-7.

516 49. Barua A, Kumar A, Thavaselvam D, Mangalgi S, Prakash A, Tiwari S, et al. Isolation &
517 characterization of *Brucella melitensis* isolated from patients suspected for human brucellosis in India.
518 Indian Journal of Medical Research. 2016;143(5):652-8.

519 50. Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: A re-emerging zoonosis. Veterinary
520 Microbiology. 2010;140(3):392-8.

521 51. Voelker CfDCaPSER. *Brucella* in Raw Milk Prompts Health Warning in Texas. Jama. 2017. doi:
522 10.1001/jama.2017.15338.

523

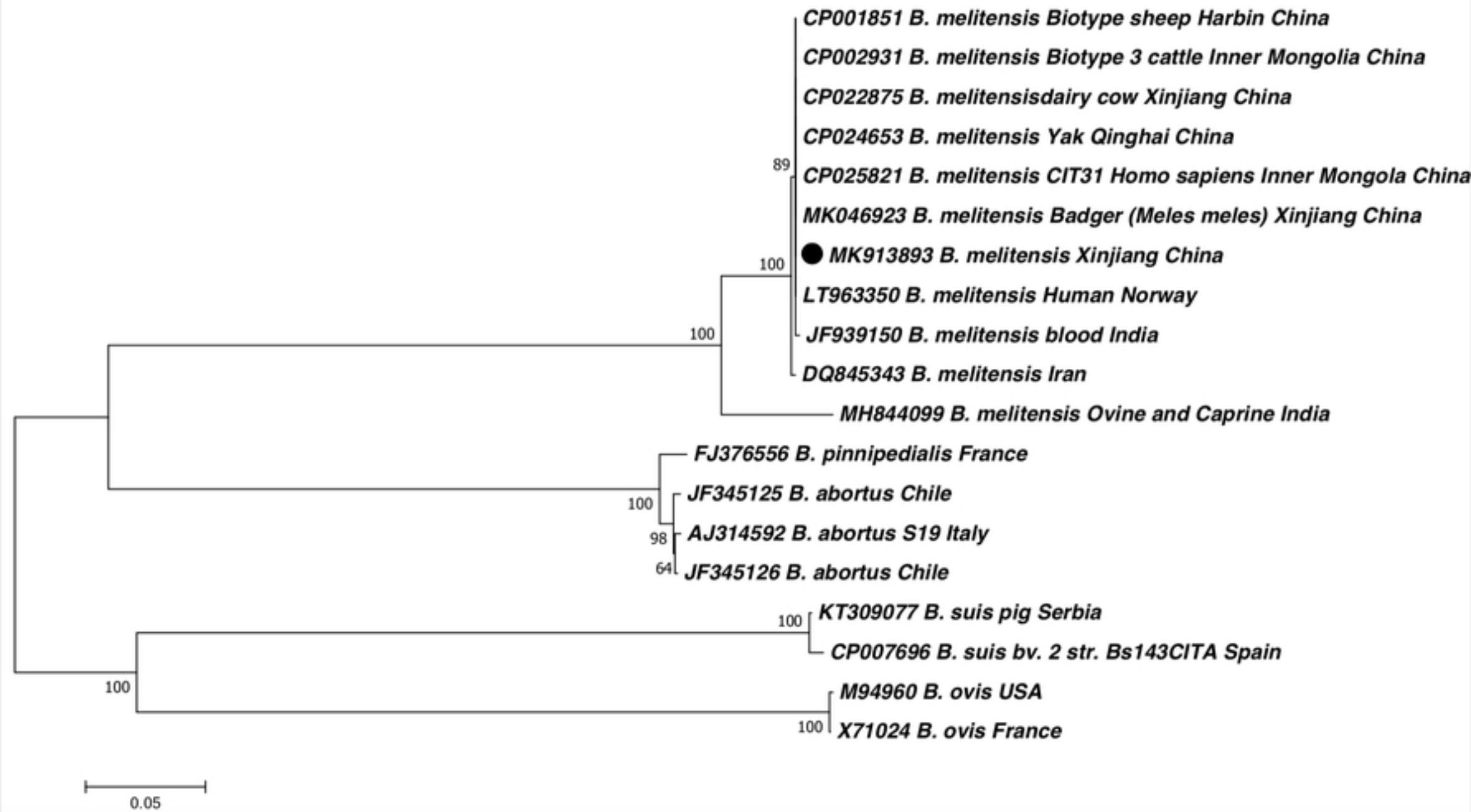
524 **Supporting information**

525 **Table S1 Primers used in this study**

526 **Fig S1 PCR product of IS711 gene amplification.**

527

528


529

530

531

532

533

Figure