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Abstract Summary 
Brain extracellular matrix (ECM) structure mediates many aspects of neuronal function. Probing 

changes in ECM structure could provide insights into aging and neurological disease. Herein, 

we demonstrate the ability to characterize changes in brain ECM structure using multiple 

particle tracking (MPT). MPT was carried out in organotypic rat brain slices to detect induced 

and naturally occurring changes in ECM structure. Induced degradation of neural ECM led to a 

significant increase in nanoparticle diffusive ability in the brain extracellular space. For structural 

changes that occur naturally during development, an inverse relationship existed between age 

and nanoparticle diffusion. Using the age-dependent dataset, we applied extreme gradient 

boosting (XGBoost) to generate models capable of classifying nanoparticle trajectories. 

Collectively, this work demonstrates the utility of MPT combined with machine learning for 

measuring changes in brain ECM structure and predicting associated complex features such as 

developmental age. 

 

Keywords: nanoparticle, diffusion, perineuronal net, machine learning, microstructure, boosted 

decision tree   
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Introduction 

The extracellular spaces (ECS) of brain tissue are home to the brain extracellular matrix (ECM), 

a heterogeneous collection of proteoglycans, tenascins, and a hyaluronic acid backbone that 

can either be free floating, tethered to cellular surfaces, or condensed to form specific structures 

(Krishnaswamy et al., 2019; Zimmermann and Dours-Zimmermann, 2008). The ability to 

organize into specific structures allows ECM to perform unique functions that help maintain 

normal brain function. For example, the formation of highly condensed perineuronal nets 

(PNNs), which envelop the soma of certain populations of neurons in the brain, helps regulate 

plasticity and protects neurons from harmful processes like excitotoxicity and oxidative stress 

(Cabungcal et al., 2013; Okamoto et al., 1994). The basement membrane, which consists of 

proteoglycans, laminin, and collagen, is a three-dimensional structure that wraps around brain 

endothelial cells and regulates the blood-brain-barrier (BBB) and the neurovascular unit 

(Thomsen et al., 2017; Xu et al., 2019). Brain ECM is also highly dynamic, and the ability to 

assemble, disband, and reorganize is required for the development of proper neuronal circuitry 

and helps facilitate repair in response to injury (Barritt et al., 2006; Carstens et al., 2016; Carulli 

et al., 2010; Massey et al., 2006; Pizzorusso et al., 2002; Sorg et al., 2016). The structural 

integrity of PNNs is thought to be impacted by many neurological diseases, including epilepsy, 

schizophrenia, and stroke (Dzyubenko et al., 2018; Pantazopoulos and Berretta, 2016; Sorg et 

al., 2016; Wen et al., 2018). However, probing real-time changes in ECM microstructure, 

particularly changes that occur locally at the cellular level in living tissue, remains an ongoing 

challenge. This prevents a complete understanding of the role disease-induced changes in ECM 

structure play in impairing neuronal function. 

 

To address this knowledge gap, we want to characterize changes in ECM structure that occur 

both spatially and temporally. This requires a technique that can probe extracellular dynamics in 

real-time at the microscale. Electron microscopy has been used to quantify ECS-related 

parameters. However, Korogod et al. showed that chemical fixation results in significantly 

smaller estimates of ECS volume fraction compared to cryo-fixation and reduces the volume of 

the cortex by 31% (Korogod et al., 2015). Fluorescent-based staining can be used to label 

specific components of brain ECM, but features commonly quantified from fluorescent images, 

such as fluorescence intensity and stain area, provide no direct insight into physical and 

geometric properties of the local environment like viscosity and ECM pore size (Lipachev et al., 

2019; Rowlands et al., 2018). Atomic force microscopy (AFM) has also been used to quantify 

mechanical properties of brain ECM (Moeendarbary et al., 2017). However, AFM only provides 
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a surface-level analysis, preventing analysis of the microrheological properties in the bulk of the 

tissue.  

 

Multiple particle tracking (MPT) is a technique that leverages fluorescent microscopy to capture 

the motion of nanoparticles in real-time. MPT is unique in that the microscopic behavior of 

hundreds to thousands of individual particles can be tracked simultaneously, while retaining 

single particle resolution. The motions exhibited by particles provide information about the 

environment in which the particles reside, and the ability to track the movement of individual 

particles provides high spatial resolution. This phenomenon has already been leveraged to 

characterize structural features of many biological domains, including the vitreous of the eye (Xu 

et al., 2013), various mucosal membranes (Lai et al., 2007; Macierzanka et al., 2014; Suk et al., 

2009; Wang et al., 2008), and intracellular environments (Suh et al., 2003; Suk et al., 2007; Xiao 

and Samulski, 2012). In the brain specifically, MPT as well as single nanoparticle tracking have 

been used to better estimate the width of ECS (Godin et al., 2017; Nance et al., 2012) and 

evaluate the diffusive ability of many nanoparticle-based drug delivery platforms (Joseph et al., 

2018; Nance et al., 2014; Nance et al., 2012). An additional advantage of MPT is the sheer 

amount of data it generates, with experiments typically producing anywhere between 102 and 

105 total trajectories. Because of this, machine learning methods are becoming incorporated into 

the MPT workflow to explore otherwise hidden trends in data and make predictions. The utility of 

this approach is already well documented. Wagner et al. demonstrated the ability to predict 

motion type (confined, directed, anomalous, normal) using random forest classifiers trained on 

trajectory feature datasets (Wagner et al., 2017), and others have employed artificial neural 

networks to predict agarose gel stiffness and in vitro cell uptake of nanoparticles (Curtis et al., 

2019a). 

 

The findings we present herein are twofold. We first demonstrate the use of MPT to characterize 

changes in brain ECM structure, then implement extreme gradient boosting (XGBoost) to 

generate classifiers capable of predicting chronological age from nanoparticle trajectory 

features. Moving forward, MPT can be applied to probe mechanisms that give rise to structural 

alterations in ECM that cause aberrant neuronal function. MPT will also provide an enhanced 

understanding of ECM rearrangements that occur naturally during development, aging, and 

pathological aging. Lastly, our results show the potential for the combined approach of MPT and 

machine learning to be extended to develop models capable of predicting the presence and 

severity of neurological disease based on nanoparticle diffusion information. 
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Results 

Inducing the breakdown of PNNs in rat brain tissue ex vivo 

We first demonstrate the ability to induce ECM structural changes in rat brain tissue ex vivo. 

This was carried out to provide a test scenario to determine whether MPT could be used to 

detect induced changes in ECM structure. Organotypic hemispheric brain slices taken from 

postnatal (P) day 35 rats were treated with either Chondroitinase ABC (ChABC, 0.4 U/mL) or 

hyaluronidase (HYase, 35 U/mL), two enzymes known to degrade components of brain ECM 

(Carstens et al., 2016; Kul'chitskii et al., 2009; Sun et al., 2018). Brain slices treated with 

enzyme-free slice culture media (SCM) served as the negative control (non-treated, NT). We 

monitored the presence of PNNs following treatment by staining with a fluorescently-labeled 

Wisteria Floribunda Agglutinin Lectin (WFA) at 15, 30, 45, and 120 minutes post-treatment 

(Figure 1A). PNN structure was completely lost in the cortex within 120 min of enzyme 

treatment (Figure 1B). PNN structures in non-treated brain slices were unaffected over the 
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experimental window (Figure 1B). 

 
Figure 1. Timeline of PNN breakdown in rat brain slices ex vivo. (A) Schematic representation 
of PNN breakdown following treatment with HYase or ChABC. (B) Representative 20x 
magnification images taken from the cortex of P35 rat brain slices receiving one of three 
treatments (HYase, ChABC, or SCM). PNNs were stained with WFA (green) and cell nuclei 
stained with DAPI (blue). Rows represent treatment group. Columns represent treatment time. 
Scale bars: 100 µm. 
 

To ensure treatment conditions did not impact brain slice viability, we monitored the release of 

lactate dehydrogenase (LDH) from age-matched P35 hemispheric brain slices for 23 h following 

treatment with identical amounts of ChABC (0.4 U/mL), HYase (35 U/mL), and SCM (non-

treated, NT). LDH, an intracellular enzyme that is only released extracellularly when the cell 

membrane becomes compromised, provides a measure of slice viability (Su et al., 2011). Both 

enzyme treatment groups led to minimal cell death (<33% cytotoxicity) compared to a Triton X-

100 (C14H22O(C2H4O)10)-treated positive control and no significant increase in cell death over 
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the non-treated negative control (Figure S1). Collectively, these results demonstrate our ability 

to induce ECM structural changes in acute hemispheric brain slices while retaining slice viability. 

 
MPT in enzyme-treated rat brain slices ex vivo 

Having identified the time required to cause complete loss of PNN structure in brain slices 

treated with either ChABC (0.4 U/mL) or HYase (35 U/mL), we next investigated whether 

changes in the diffusion of near neutral, poly(ethylene glycol) (PEG)-coated 40nm polystyrene 

nanoparticles (PS-PEG) were sensitive enough to pick up PNN structural breakdown (Table 

S1). We chose 40nm PS-PEG nanoparticles for two reasons. First, their 51nm hydrodynamic 

diameter falls below the most recently reported mean and median values of brain ECS width 

(Godin et al., 2017; Tonnesen et al., 2018). Second, PEG-coated PS nanoparticles have 

demonstrated an ability to evade adhesive interactions with various cellular and ECM-

associated components (Nance et al., 2012) and remain stable in physiologically relevant 

conditions (Curtis et al., 2018). By evading electrostatic and hydrophobic interactions while 

remaining colloidally stable, the motion these particles exhibit is predominantly impacted by 

local fluid properties of the brain ECS and structural properties of the local ECM. 

 

MPT in the cortex of hemispheric brain slices revealed that nanoparticle populations explore a 

greater area, move faster, and have increased diffusivities when diffusing in enzyme-treated 

brain tissue. Representative trajectory maps generated from a single video taken in a NT, 

ChABC-treated, and HYase-treated brain slice are provided in Figure 2A. Despite each map 

containing around the same number of total trajectories (1478, 1593, and 1732 for NT, ChABC-

treated, and HYase-treated, respectively), nanoparticles surveyed a greater fraction of the ECS 

when diffusing in slices treated with ECM-degrading enzymes. In enzyme-treated slices, 

geometrically averaged mean-squared displacements (<MSD>) of nanoparticle trajectories were 

greater in magnitude for all lag times between 0 and 2 s. HYase- and ChABC-treated slices 

were, on average, 0.80- and 0.93-µm2 greater than non-treated slices, respectively (Figure 2B). 

The Einstein-Smoluchowski relation was used to calculate an effective diffusion coefficient, Deff, 

at a 0.33 s lag time (10 frames) for all trajectories in the dataset. The resulting range of Deff 

values were similar for all treatment groups, but the geometric mean Deff value was greater in 

magnitude for both enzyme-treated groups compared to the non-treated control (Figure 2C). 

The geometric mean Deff at a 0.33 s lag time was 0.096 and 0.11 µm2/s for HYase- and ChABC-

treated slices, respectively, compared to 0.049 µm2/s for non-treated slices. 
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Figure 2. Multiple particle tracking in ChABC-, HYase-, and SCM-treated rat brain slices ex 
vivo. (A) Representative trajectory maps generated from MPT experiments carried out in non-
treated (blue), ChABC-treated (gold), and HYase-treated (grey) P35 brain slices ex vivo. (B) 
Geometrically ensemble averaged <MSD> versus lag time quantified from trajectories of 
nanoparticles diffusing in non-treated (blue), ChABC-treated (gold), and HYase-treated (grey) 
P35 brain slices. Faint lines represent individual videos (60 total per group). Bold line represents 
the mean of 60 videos. (C) Distribution of log Deff values at a 0.33 s lag time for each treatment 
group. The dashed lines represent the average log Deff value. The geometric mean Deff value is 
provided in writing for each treatment group. (D) Scatter plots of Deff values generated from all 
videos (n = 5) in all slices (n = 3) in all brains (n = 4), separated by treatment group. Error bars 
show median value (95% CI). (E) Scatter plots of Deff values from all videos (n = 5) in all slices (n 
= 3), separated by brain and treatment group. * denotes significant differences (Kruskal-Wallis 
test) between groups, after adjusting for multiple comparisons (p < 0.05). 
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To account for biological variability slice to slice and animal to animal, MPT experiments were 

performed using four separate rats, all within the same age range (P35-P38). From each 

animal, nine total brain slices were prepared (three for each treatment group), and five videos 

were collected in the cortex of each slice. Significant differences in nanoparticle diffusive ability 

exist independent of data grouping. If the trajectories from all videos taken in all slices and all 

brains are compiled into one dataset, nanoparticles diffusing in both ChABC-treated and HYase-

treated slices have significantly larger Deff values than those diffusing in non-treated slices 

(Figure 2D). If data is instead split by animal, significant differences in Deff remain between 

treated and non-treated groups (Figure 2E). These analyses demonstrate the robustness of our 

findings. 

 

To confirm particle tracking experiments did not interfere with PNN degradation, brain slices 

used in tracking studies were fixed at the end of the MPT window and stained with WFA and 

4’,6-diamidino-2-phenylindole (DAPI) for PNNs and cell nuclei, respectively. No WFA signal was 

present in ChABC- and HYase-treated slices (Figure 3A). PNNs were visible in the cortex of NT 

slices (Figure 3A) and nanoparticles were found in close proximity to or associated with PNN 

structures (Figure 3B). 

 

One potential reason for the increase in nanoparticle diffusive ability following enzymatic 

breakdown of ECM structures is a shift in local extracellular fluid viscosity. Both HYase and, to a 

lesser extent, ChABC, degrade hyaluronic acid. A shift in the distribution of hyaluronic acid 

molecular weights should result in a reduction of solution viscosity and subsequently reduce the 

amount of viscous drag experienced by the particles. To test this, solutions containing 

hyaluronic acid at varying molecular weights were prepared in vitro. The apparent viscosity (± 

SD) of low (33 kDa), medium (180 kDa), and high (1670 kDa) MW hyaluronic acid solutions, all 

at 22 mg/ml in 1xPBS, were determined to be 0.0035, 0.23, and 6.4 Pa·s, respectively (Figure 

4A). MPT using 40nm PS-PEG nanoparticles showed an inverse relationship between 

nanoparticle diffusive ability and hyaluronic acid MW. The average Deff at a lag time of 0.33 s 

was 0.12, 0.014, and 0.0023 µm2/s for particles diffusing in low, medium, and high MW 

hyaluronic acid solutions, respectively (Figure 4B). These in vitro results support our hypothesis 

that changes in local viscosity contribute to the observed increase in Deff values following PNN 

degradation ex vivo. 
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Figure 3. PNN imaging following MPT in treated and non-treated ex vivo brain slices. (A) 
Representative 40x magnification images taken from the cortex of P35-P38 rat brain slices post 
MPT. Treatment groups, represented by separate columns, were HYase, ChABC, and NT. PNNs 
were stained with WFA (green) and cell nuclei with DAPI (blue). Nanoparticles were red-
fluorescent. (B) 60x magnification, 3D rendered z-stack images taken from the cortex of P35 rat 
brain slices post multiple particle tracking. All images were taken in NT slices and demonstrate 
the proximity of nanoparticles (red) to PNNs (green). 
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Figure 4. Effect of hyaluronic acid molecular weight on nanoparticle diffusive ability in 
vitro. (A) Apparent viscosity of solutions of varying hyaluronic acid molecular weight in 1x PBS 
(all at 22 mg/mL). Measurements (n=5) were taken at a shear rate of 100 s-1. (B) Distribution of 
log Deff values at a 0.33 s lag time for each hyaluronic acid solution (data compiled from n=5 
separate videos). The dashed lines represent the average log Deff value. The geometric average 
Deff value is provided in writing for each group (blue = high MW, green = medium MW, red = low 
MW). For all data presented, low, medium (med), and high MW correspond to 33, 180, 1670 kDa 
hyaluronic acid samples. 
 

Nanoparticle diffusive ability decreases as the density of PNNs in the cortex increases 
throughout development 
We next show that MPT can detect naturally occurring changes in ECM structure. We leverage 

the brain’s tendency to form organized, function-specific ECM structures, like PNNs, during 

development. We first established the timeline of PNN appearance in the cortex of Sprague-

Dawley (SD) rats through fluorescence-based lectin staining. PNNs stained using WFA did not 

appear qualitatively until 21 days after birth (P21), and preferentially form around parvalbumin-

expressing (PVA+) interneurons (Figure 5A-D). A representative high-resolution image of a PNN 

taken in the cortex of a P35 rat shows the structural “mesh-like” nature of the PNN (Figure 5E). 

The increase in areal PNN density in the cortex between P14 and P21 was not significant, with 

median (95% CI) areal densities of 5.15 (3.68–6.44) and 6.32 (2.17–10.46) x10-5 PNNs/px2, 

respectively (Figure 5F). Significant differences did exist between P14 and P28, P14 and P35, 

and P21 and P35 (p < 0.05) groups; the median (95% CI) aerial density of PNNs in the cortex of 

P28 and P35 SD rats is 16.85 (13.37–22.61) and 32.85 (26.76–42.27) x10-5 PNNs/px2, 

respectively (Figure 5F). 

 

With the timeline of PNN formation established, MPT was performed ex vivo in brain slices 

taken from P14, P21, P28, and P35 SD rats. Tracking revealed an inverse relationship between 

nanoparticle diffusive ability and brain age. Geometrically averaged MSD (<MSD>) profiles 

decrease in magnitude as pup age increases from 14 days to 21, 28 and 35 days after birth 

(Figure 5G). Distributions of Deff values at a 0.33 s lag time shift to lower values as the brain 

develops and correspondingly PNN density increases (Figure 5H). Significant differences in Deff 

values exist between all groups (p = 0.05), with median (95% CI) Deff of values of 0.27 (0.26–

0.28), 0.14 (0.14–0.15), 0.10 (0.10–0.11), and 0.070 (0.069–0.072) µm2/s for P14, P21, P28, 

and P35, respectively (Figure 5I). 
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Figure 5. Relationship between perineuronal net formation and nanoparticle diffusion. (A-
E) Representative 40x magnification images taken in the cortex of P14 (A), P21 (B), P28 (C), and 
P35 (D) rat brains. Brain sections were stained with WFA for PNNs (green) and anti-parvalbumin 
for a subpopulation of interneurons (red). Cell nuclei were stained with DAPI (blue). Scale bar = 
50µm. (E) 240x magnification high resolution image of a PNN taken in the cortex of a P35 rat. 
Scale bar = 5µm. (F) 20x tile scans of the entire cortex were taken and the total number of PNNs 
was quantified. The number of PNNs per unit area increased throughout the critical period (P14-
P35). Displayed are median values with a 95% confidence interval. * denotes significant 
differences (Kruskal-Wallis test) between groups, after adjusting for multiple comparisons. (p < 
0.05). (G) Geometrically ensemble averaged <MSD> versus lag time quantified from NPs 
diffusing in P14 (grey), P21 (gold), P28 (blue), and P35 (purple) brain slices. Faint lines represent 
individual videos (15 total per group). Bold line represents the average of 15 individual videos. 
(H) Distribution of log Deff values at a 0.33 s lag time for each pup age. The dashed lines represent 
the average log Deff value (grey = P14, gold = P21, blue = P28, purple = P35). (I) Scatter plots of 
Deff values generated from all videos (n = 5) in all slices (n = 3), separated by pup age. Error bars 
show median value (95% CI). All groups were significantly different from each other after adjusting 
for multiple comparisons (Kruskal-Wallis test, p < 0.05). 
  
XGBoost classifiers provide predictive models for age-dependent MPT data 
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XGBoost classifiers were trained on the age-dependent MPT data to determine if the 

incorporation of machine learning methods could result in predictive power. Prior to model 

training, the amount of data the algorithm could access was enhanced by calculating additional 

trajectory features to complement the Deff values already available. A total of 39 features were 

computed, some based on trajectory geometry (aspect ratio and straightness, for example) and 

some based on traditional diffusion theory (anomalous diffusion exponent and MSD ratio). The 

list of trajectory features was adopted from previous literature (Curtis et al., 2019a) but scaled 

up by introducing additional, local-averaged features (Table S2). An XGBoost classifier was 

then trained on a subset of the age-dependent feature dataset. The resulting model achieves a 

total predictive accuracy of 51.84% when tested on a separate subset of data, more than 

doubling the accuracy of a random guess (25.00%) (Figure 6). The highest predictive precision 

exists for the P14 and P35 groups (0.6513 and 0.5159, respectively), while the intermediate age 

groups (P21 and P28) are the lowest (0.4399 and 0.4110, respectively) (Figure 6A). Of the 

entire population of P35 trajectories included in the test dataset, only 42 were incorrectly 

classified as P14 (Figure 6B). Similarly, only 71 of the entire P14 population were mislabeled as 

P35. The majority of false predictions are contained within the middle P21 and P28 groups 

(Figure 6B). If we reduce the resolution of our classification by combining the P21 and P28 

populations and rerun the same analysis, the model performance is elevated to an accuracy of 

66.16% (Figure S2). 

 

 
Figure 6. XGBoost analysis for age-dependent data. (A) Evaluation metrics for the XGBoost 
classifier carried out on all age groups. Included are precision, recall, f1-score, and support for 
each age, as well as the total accuracy and support. (B) A confusion matrix displaying how 
predicted outcomes compare to actual classes. 
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A distinct advantage of decision tree-based classifiers like XGBoost is the ability to quantify the 

importance of each feature to the classification being made. To identify features that influence 

the model most significantly, a summary plot of Shapley Additive exPlanation (SHAP) values 

was created for the model including all age groups (Figure 7). The top five feature 

dependencies are mean Deff at 0.33 s (Mean Deff1), mean fractal dimension, mean fitted 

diffusion coefficient (D_fit), mean MSD ratio, and mean kurtosis. The least important features do 

not appear on the SHAP summary plot, but were determined to be trajectory elongation, 

trappedness, and asymmetry. None of these features contributed to model prediction. The five 

most important features went unchanged for the analysis performed with reduced resolution, 

when the P21 and P28 groups were combined (Figure S3). 

 

 
Figure 7. SHAP summary plot of nanoparticle trajectory features used in XGBoost 
classifier for age-dependent data. Provided are the 20 most influential trajectory features. 
Feature importance bars are color coded to provide an indication of their importance in predicting 
specific age groups (grey = P14, gold = P21, blue = P28, purple = P35). 
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Individual SHAP summary plots were created for the five most important features at each age to 

provide insight into how the relative importance of each feature fluctuates as both feature values 

and age change (Figure 8). For example, large mean Deff1 and mean D_fit values are of high 

importance when positively identifying the P14 group (Figure 8A). As the pups age, however, 

large diffusion coefficients have an inverse impact on positive prediction (Figure 8B-D). 

Additionally, as pups progress from 14 to 35 days old, diffusion coefficients become less 

important identifiers, as made evident by the reduced SHAP value and reduction in importance 

compared to alternative features like fractal dimension. Individual SHAP summary plots also 

show how the model becomes more indecisive when predicting P21 and P28 age groups. The 

P21 and P28 age groups contain more values that are intermediate (as indicated by purple 

datapoints) and closer to a SHAP value of 0.0. This provides one algorithmic-based explanation 

for the reduced precision of P21 and P28 groups compared to P14 and P35. 

 

 
Figure 8. Individual SHAP summary plots for trajectory feature data. Summary plot of top 
five features for (A) P14, (B) P21, (C) P28, and (D) P35. Positive SHAP values further from 0.00 
represent a higher impact toward positive classification in the given age category while negative 
SHAP values further from 0.00 represent a higher impact toward negative classification. 
 

Discussion 

Both enzymatically induced changes in ECM structure ex vivo (Figure 2) and structural changes 

that occur naturally during development (Figure 5) brought about significant changes in the 

diffusive ability of 40nm PS-PEG nanoparticles. Collectively, this shows MPT can be used to 

capture changes in brain ECM structure. While diffusion-based techniques for characterizing the 

brain microenvironment already exist, researchers have been limited to either taking 
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macroscopic approaches to quantifying diffusion related parameters (Hrabetova and Nicholson, 

2007; Nicholson et al., 1979; Nicholson and Tao, 1993; Patlak and Fenstermacher, 1975; 

Sykova and Nicholson, 2008) or only being able to track individual particles, separately (Godin 

et al., 2017; Sokoll et al., 2015). Macroscopic approaches fall short in their ability to provide 

microscopic spatial resolution, the resolution needed to make inferences on the cellular and 

local extracellular level. Single particle tracking techniques provide high spatial resolution, but 

typically generate a single trajectory from each video collected, which in turn requires a longer 

time to generate datasets large enough for statistical analyses and incorporation of machine 

learning techniques. MPT bridges this gap. It provides a large enough sample of individual 

nanoparticle trajectories to make ensemble-level conclusions while also retaining high spatial 

resolution. This technique represents an improvement over current methods and should 

enhance our ability to probe structural aspects of the brain that have functional meaning, such 

as in the case of PNNs. 

 

An additional advantage of MPT is that it can be readily applied to biological samples taken from 

other tissues and species, and even translated to in vivo environments, if access to proper 

instrumentation exists (Nance et al., 2012; Verkman, 2013). Dysregulation of ECM structure is 

not specific to neurological diseases. Abnormal ECM remodeling has been linked to a number 

of other classes of disease, including chronic pulmonary diseases (Kranenburg et al., 2006; 

Saetta et al., 2001), cancers (Insua-Rodriguez and Oskarsson, 2016; Sawai et al., 2008; 

Shields et al., 2012), and cardiovascular diseases (Fan et al., 2012; Ju and Dixon, 1996). For 

any and all these ailments, particularly if ex vivo culturing techniques exist, MPT should be 

considered to provide an enhanced characterization of the role ECM structural changes play in 

the pathological process. One relevant brain-related application would be in tissue following a 

traumatic brain injury (TBI). In response to TBI, glial cells near the site of injury proliferate and 

begin modifying the local extracellular environment to mitigate the propagation of damage and 

facilitate repair (Karve et al., 2016; Pekny and Pekna, 2014). Activated microglia and astrocytes 

release ECM degrading proteases and deposit ECM components around the injury core 

(George and Geller, 2018; Wang et al., 2018). The entire process of glial cell accumulation and 

ECM component deposition is known as glial scarring. Changes in the expression of brain ECM-

specific proteoglycans in glial scars has been investigated previously, but the impact TBI has on 

ECM structure in both the injury core and surrounding regions remains unknown (George and 

Geller, 2018). MPT has the potential to better elucidate how the extracellular environment is 

altered in response to TBI. If targeting the injury core with a therapeutic is desired, MPT can 
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help refine the design space of potential drug delivery vehicles, particularly with respect to 

vehicle size and surface functionalization. This represents one potential application of 

microstructural information generated by the MPT technique. Additional extensions of this work 

have potential to enhance disease diagnosis, and give insights into disease severity and 

disease progression. 

 

Furthermore, we expanded the utility of biological MPT datasets by integrating a machine 

learning algorithm for more predictive assessments. Incorporating an XGBoost classifier into the 

age dependent MPT study resulted in a model capable of predicting age with 51.84% accuracy 

(Figure 6). Here, we limited our focus to rats grouped 7 days apart spanning a 21-day window in 

early postnatal development. While the model was able to predict the extreme ages, P14 and 

P35, with high precision, it struggled to resolve the P21 and P28 populations (Figure 6A). 

Recent work by Sigal et al. used a stochastic optical reconstruction microscopy technique to 

show that earlier in development, PNNs have greater structural heterogeneity (Sigal et al., 

2019). This structural heterogeneity could necessitate larger data sets at the ages where PNNs 

are in the process of forming. In fact, by combining the P21 and P28 groups in one aggregate 

data set and retraining the model, we achieved a 66.16% accuracy (Figure S2).  Despite neither 

classifier reaching 70% accuracy, both far exceeded the performance of a random guess, the 

baseline standard. Being able to accurately predict biological age to within a 1-2 day window 

would carry significant weight, especially if aiming to distinguish biological age from 

chronological age or identify the deviation from normal aging as a sign of pathological aging.  

 

A distinct advantage of decision tree-based classifiers like XGBoost is the ability to quantify 

individual feature importance. Through the use of SHAP summary plots, the five most important 

trajectory features in accurately predicting chronological age were determined to be mean Deff at 

0.33 s (Mean Deff1), mean fractal dimension, mean fitted diffusion coefficient (D_fit), mean 

MSD ratio, and mean kurtosis (Figure 7). While the reasons why these features were most 

influential in predicting age falls outside the scope of this study, there is potential that certain 

features provide insight into specific interactions the nanoparticle is experiencing in the 

biological environment. For example, a shift in trajectory boundedness could represent cellular 

uptake, or an increase in efficiency could be indicative of particles being actively transported 

across a membrane (Hofling and Franosch, 2013; Wagner et al., 2017). Further work is needed 

to address these questions and requires the use of more controlled environments like in vitro 

cell culture. Additionally, there exist different algorithms that can be used for multiclass 
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classification. Artificial neural networks represent a promising alternative, as they have already 

displayed an ability to accurately predict both nanoparticle properties like size and surface 

functionality, and environmental properties like gel stiffness and in vitro cell uptake status, when 

trained on trajectory feature datasets (Curtis et al., 2019a). Random forests, a form of ensemble 

decision trees, are another promising algorithm for classifications that exist along a continuum, 

having recently been applied to classifying neuroimaging data from Alzheimer’s Disease 

patients (Sarica et al., 2017). Therefore, the combined approach of MPT and machine learning 

taken herein would benefit from additional studies to determine the most optimal algorithm for 

this specific application. Any improvements in analytical performance and interpretability of an 

algorithm would accelerate progression towards predicting biological phenomena with higher 

granularity.  

 

The in vitro work performed in solutions of varying hyaluronic acid MW elucidated one possible 

contributing factor to the observed changes in nanoparticle diffusive ability following a  

restructuring of brain ECM. In vivo, hyaluronic acid is produced at the cell surface and extruded 

through the cellular membrane into the ECS, where it acts as the main scaffolding for brain-

specific ECM structures (Spicer and Nguyen, 1999; Weigel et al., 1997). Hyaluronic acid is a 

large, anionic, unbranched glycosaminoglycan that can reach molecular weights up to 107 Da in 

native brain tissue (Bignami et al., 1993; Sherman et al., 2015). Given the highly anionic nature 

and large molecular weight of hyaluronic acid, the effect its presence can have on the 

movement of extracellular substances is clear. In addition to acting as a steric barrier to 

diffusion, diffusing substances are also subject to electrostatic interactions and local viscosity 

changes brought about by hyaluronic acid presence. The application of either HYase or ChABC, 

enzymes which degrade hyaluronic acid, to a hyaluronic acid-containing tissue sample will 

decrease the average MW of hyaluronic acid, reduce the local viscosity, and in turn increase the 

diffusive ability of extracellular substances. This phenomenon was demonstrated successfully in 

our in vitro MPT experiments, where an inverse relationship existed between hyaluronic acid 

MW and geometric mean Deff.  

 

While a reduction in interstitial viscosity provides one possible explanation for the changes 

observed in ex vivo brain slice studies, there could be additional factors that contribute to 

changes in local diffusivity. Nanoparticles are subject to steric and adhesive interactions with 

ECM constituents and cellular surfaces, as well as hydrodynamic interactions brought about by 

the narrow confines of the ECS. The physical properties of the ECM are strongly dictated by the 
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density of the biopolymers that make up the ECM, which influence the effective ECM mesh size 

(Engin et al., 2017). In the brain, the effect of steric constraints brought about by the ECS and 

ECM has been demonstrated previously. Nance et al. found Deff of non-adhesive nanoparticles 

ranging from 40 – 200 nm decreased dramatically when nanoparticle size exceeds a certain 

threshold, in vivo in mice, and ex vivo in human and rat tissue (Nance et al., 2012). In 

reconstituted ECM systems, nanoparticles with a diameter larger than the average size of the 

ECM mesh are unable to penetrate, while particles smaller than the cutoff pass through (Lieleg 

et al., 2009). Therefore, when ECM structure condenses, as is the case for PNN formation with 

aging (Hensch, 2005; Testa et al., 2019), particles that were previously diffusive could 

experience reduced or restricted movement. This phenomenon has been demonstrated in vitro 

for biomolecular diffusion around cells embedded in a collagen gel. Kihara et al. show collagen 

condensation around cells results in a decrease in diffusion coefficient compared to diffusion in 

cell-free collagen regions, and this effect was more significant for large molecules (Kihara et al., 

2013).  

 

By reducing the size of the nanoparticle probe further than 40 nm, the size used in this study, 

the behavior of the nanoparticle becomes even more dependent on local ECM structure, 

composition, and charge distribution, and less influenced by the spatial confines of the ECS. 

The enhanced sensitivity to changes in ECM could give rise to more notable differences in 

trajectory features across different age groups, leading to more accurate predictors. However, 

nanoparticles with diameters smaller than the ECM mesh size can be influenced by adhesive 

interactions brought on by charge-charge, hydrophobic, or hydrogen bonding. The ECM network 

serves as a charge-selective filter, with localized charge patches (Lieleg et al., 2009). Both 

Nance et al. and Curtis et al. found significant differences in extracellular diffusion depending on 

whether PS nanoparticles had a PEG or carboxylate surface coating (Curtis et al., 2018; Nance 

et al., 2012). Additional studies in non-brain ECM have demonstrated the interaction between 

amine-modified particles with ECM protein fibrils. Researchers such as Lieleg et al. have shown 

that liposomal and polymer particles that are strongly charged either negatively or positively are 

equally unlikely to diffuse, independent of size (Lieleg et al., 2009). They further demonstrate 

the recovery of smaller particle diffusion when the particle charges are shielded. While this 

study was performed in reconstituted mouse basement membrane ECM, it’s an important 

insight into the impact charge-charge interactions can have on nanoparticle diffusion in the 

ECM. Although our study utilized densely PEG-coated particles that do not interact with the 
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ECM (Nance, 2017), the use of charged particles to direct nanoparticle-ECM interaction could 

further elucidate mechanisms of ECM influence on nanoparticle diffusion in the brain ECS.   

 

Conclusion 
The ECM plays many critical roles to maintain homeostasis in the brain. Altered ECM structure 

is thought to be involved in the pathophysiology of many neurological diseases, and the 

implications of altered PNN integrity on neuronal plasticity and activity have garnered significant 

attention in recent decades. In this study, we demonstrated that MPT is sensitive enough to 

detect changes in brain ECM structure. In addition to leveraging the brain’s natural tendency to 

restructure during the critical period of development, we also applied MPT to ex vivo 

hemispheric brain slices undergoing an enzymatically-induced breakdown of ECM. By 

incorporating XGBoost classifiers into our analysis workflow, we demonstrated the ability to use 

MPT data to predict chronological age. The further application of MPT in studying ECM 

structure could more explicitly define mechanisms involved in neurological disease progression 

and open new avenues of therapeutic intervention. Additionally, MPT can enhance our baseline 

understanding of the structure-function relationships of the brain under normal physiological 

conditions and has the potential to become used as one marker of neurological disease 

severity. 

 
Materials and Methods 

Organotypic hemispheric brain slice preparation 
Brain slices were prepared from male SD rat pups at varying ages, depending on the specific 

study. This study was performed in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the National Institutes of Health (NIH). All of the 

animals were handled according to approved institutional animal care and use committee 

(IACUC) protocols (#4383-02) of the University of Washington. The University of Washington 

has an approved Animal Welfare Assurance (#A3464-01) on file with the NIH Office of 

Laboratory Animal Welfare (OLAW), is registered with the United States Department of 

Agriculture (USDA, certificate #91-R-0001), and is accredited by AAALAC International. Every 

effort was made to minimize suffering. Following euthanasia, brains were extracted, immersed 

in room temperature (22°C) dissection media, and cut into hemispheres with a razor blade. 300 

µm-thick coronal slices were prepared from each hemisphere using a Mcllwain tissue chopper 

(Ted Pella, Redding, CA) (Curtis et al., 2019a). Briefly, individual slices were plated on 30 mm 

cell culture inserts in non-treated 6-well plates. Prior to plating, 6-well plates were filled with 1 
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mL SCM. Slices were incubated in sterile conditions at 37°C and 5% CO2. For a more detailed, 

step-by-step procedure of slice preparation, and buffer recipes, refer to SI Appendix, SI 

Experimental Procedures. 

 
Characterizing the timeline of enzyme-induced perineuronal net breakdown in 
organotypic rat brain slices ex vivo 
All experiments were carried out within 24 h of slice preparation and used litter-matched male 

rats to reduce biological variability. Slices were treated with either ChABC (0.4 U/mL), HYase 

(35 U/mL), or SCM (NT). At the initial timepoint, 200 µL of a given treatment was applied to 

each brain slice and returned to the incubator. One brain slice from each treatment group was 

removed and fixed at 15, 30, 45, and 120 min post treatment, resulting in a total of 4 slices per 

treatment condition. Slices were stained with 500 µL of 1x PBS containing 10 µg/mL 

Fluorescein-labeled WFA Lectin for 12 h at 4°C. Cell nuclei were stained with 1 µg/mL DAPI for 

30 min. All imaging was performed using a confocal microscope (Nikon Instruments, Melville, 

NY). Three representative images were taken at 20x magnification from the cortex of each brain 

slice at each time point. For specific details on ChABC, HYase, and NT working solution 

preparation and staining buffers, and LDH assay to measure slice viability, see SI Appendix, SI 

Experimental Procedures.  

 
Nanoparticle preparation and characterization 
40nm fluorescent carboxylate (COOH)-modified polystyrene latex (PS) nanoparticles (PS-

COOH) (Fisher Scientific, Hampton, NH) were covalently modified with methoxy (MeO)-

poly(ethylene glycol) (PEG)-amine (NH2) (5kDa MW, Creative PEG Works, Winston-Salem, NC) 

by carboxyl amine reaction (Nance, 2017). The hydrodynamic diameter and polydispersity index 

(PDI) of the resulting PEG-conjugated fluorescent nanoparticles were measured via dynamic 

light scattering (DLS) and the ζ-potential was measured by laser Doppler anemometry. Refer to 

SI Appendix, SI Experimental Procedures for more detailed reaction conditions and 

characterization. 

 
Multiple particle tracking in organotypic brain slices ex vivo 
All MPT studies were performed within 24 h of slice preparation. Slices were imaged in a 

temperature-controlled incubation chamber maintained at 37°C, 5% CO2, and 80% humidity. 30 

min prior to video acquisition, injections of 40nm PS-PEG nanoparticles diluted in 1x PBS were 

carried out in each slice using a 10 µL glass syringe (model 701, cemented needle, 26 gauge, 
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Hamilton Company, Reno, NV). A total of five 0.5 µL injections were made in the cortex of each 

slice. For the study involving the degradation of PNNs ex vivo, particle injections were made 90 

min after treatment was applied, and videos were collected following a 30 min incubation. In 

total, MPT was performed 120 min after treatment with either HYase, ChABC, or SCM. 

 

A total of five videos were collected from the cortex of each slice. Videos were collected at 33 

frames-per-second and 100x magnification for 651 frames via fluorescent microscopy using a 

cMOS camera (Hamamatsu Photonics, Bridgewater, NJ) mounted on a confocal microscope. 

Nanoparticle trajectories, trajectory MSDs, and Deff were calculated via diff_classifier 

(https://github.com/ccurtis7/diff_classifier), a Python package developed within our group (Curtis 

et al., 2019b). 

 

For enzyme induced PNN breakdown experiments, three brain slices for each treatment group 

(ChABC, HYase, and NT) were taken from each of the four animals used. Collecting five videos 

from each slice resulted in a total of 60 videos and >60,000 total trajectories per treatment 

group. For age-dependent MPT, a total of 15 videos were taken from three slices at each age. 

This resulted in >4,900 total trajectories per group. 

 
Rheological characterization of hyaluronic acid solutions 
Low (33 kDa), medium (180 kDa), and high (1670 kDa) MW hyaluronic acid samples (R&D 

Systems, Boston, MA) were added to separate solutions of 1x PBS to achieve a final 

concentration of 22 mg/mL (2.2 wt%). A rheometer (Physica MCR 301, Anton Paar, Graz, 

Austria) operating in rotational mode was used to measure the apparent viscosity of each 

solution at a shear rate of 100 s-1. A 25 mm parallel plate attachment (Anton Paar) was operated 

at a 0.5 mm gap for all experiments. The base plate was set to 22°C 30 min prior to the 

experiment and held constant throughout the duration of the experimental window. 

 
Multiple particle tracking in hyaluronic acid solutions 

MPT experiments carried out in hyaluronic acid solutions in vitro were performed similarly to 

MPT experiments in brain tissue ex vivo. Briefly, 40nm PS-PEG nanoparticles were added to 

hyaluronic acid solutions and a total of five videos were collected from each solution. Videos 

were collected at 33 frames-per-second and 100x magnification for 651 frames via fluorescent 

microscopy using a cMOS camera mounted on a confocal microscope. Nanoparticle 

trajectories, trajectory MSDs, and Deff were calculated via diff_classifier (Curtis et al., 2019b). 
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Immunohistochemistry and lectin staining on fixed rat brain slices 
Following euthanasia, SD rats were perfused with sterile 1x PBS. Brains were immediately 

extracted and placed in 10% formalin phosphate buffer for 24 h at 4°C. Brains went through a 

30% sucrose gradient to be frozen and sectioned into 30 µm-thick coronal sections using a 

Leica CM1950 cryostat (Leica Biosystems, Buffalo Grove, IL). Sections were first incubated with 

rabbit anti-Parvalbumin (anti-PVA, Abcam ab11427, Cambridge, UK) at a 1:100 dilution in 1x 

PBS containing 1% Triton X-100 (MilliporeSigma), 3% donkey serum (MilliporeSigma), and 10 

µg/mL WFA for 6 h at room temperature (22°C). Following a wash step, a 1:500 dilution of 

Alexa Fluor 568-labeled donkey anti-rabbit IgG (ThermoFisher) in 1x PBS containing 1% Triton 

X-100 and 10 µg/mL WFA was applied to sections for 2 h. Cellular nuclei were stained with a 1 

µg/mL solution of DAPI in 1x PBS for 15 min. Following a final wash, microscope slides were 

mounted with a glass coverslip using Wako antifade media (Vector Laboratories) and stored at -

20°C until imaged. Sections were imaged using a confocal microscope. Z-stack scans of the 

entire coronal section were taken at 20x magnification. For a more detailed methodology, image 

processing and PNN quantification, see SI Appendix, SI Experimental Procedures. 

 
XGBoost predictive model for age related data classification 
XGBoost is a type of boosted decision tree in which the algorithm builds itself sequentially using 

multiple weak learners until a strong learner can be produced. Every tree produced in the series 

is fit to a modified weighted version of the original dataset. This sequential method continues 

until a set number of learners has been created or until the model converges within the 

exponential loss function. Prediction is then made by calculating the weighted average of all 

produced learners (Trevor Hastie, 2009). XGBoost specifically incorporates regularization into 

its algorithm to control overfitting the data during training. It incorporates a unique objective 

function that encourages simple models and decreases variance (Patryk Orzechowski, 2018).  

 

50,444 samples were rebalanced using under-sampling into four even sets of 6000 data points 

for each age classification. Training and testing datasets were randomly sampled from the age 

data with a training/testing split percentage of 80% to 20%. Features were chosen and 

calculated based on the geometry of the trajectory using feature calculation algorithms on 

diff_classifier (https://github.com/ccurtis7/diff_classifier). This includes asymmetry, anomalous 

exponent, aspect ratio, elongation, boundedness, fractal dimension, efficiency, straightness, 

kurtosis, and MSD ratio. Extra features were created based on the immediate surrounding data. 
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Mean values of each calculated feature were calculated and used in prediction. In total, 39 

different features were used. A comprehensive list and description of every feature used can be 

found in the supplemental text (Table S2). The XGBoost model was trained using a max depth 

of 7, an eta of 0.005, a gamma of 5, a subsample of 0.15, and a colsample_bytree of 0.8.  

Following initial training, feature selection was implemented to remove features that were 

unimportant to prediction and to improve model performance.  

 

To better understand the individual contribution to overall prediction, shapely additive 

explanations (SHAP) were calculated for every feature. SHAP is based on the theoretically 

optimal use of Shapley Values (Lundberg, 2017), which are a feature’s contribution to the 

prediction, 𝑓𝑓(𝑥𝑥):  

𝜙𝜙𝑗𝑗�𝑓𝑓� =  𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗 − 𝐸𝐸�𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗� 

in which 𝐸𝐸�𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗� is the mean effect estimate for feature j. The contribution is the difference in 

the feature effect and the average effect (Molnar, 2019). SHAP were used to create summary 

and dependency plots of the top features in prediction of each age category. The summary plot 

shows the average impact of each feature on prediction output calculated by the mean absolute 

SHAP values:  

𝐼𝐼𝑗𝑗 =  � |𝜙𝜙𝑗𝑗
(𝑖𝑖)|

𝑛𝑛

𝑖𝑖=1

  

This importance value differs from other importance calculations due to its basis on magnitude 

of feature attributions (Molnar, 2019). Analysis for age-related data can be found on the ECM-

MPT-Predictive_Age_Data repository (https://github.com/dash2927/ECM-MPT-

Predictive_Age_Data). 

 
Statistical Analysis 

All statistical analyses were carried out in GraphPad Prism (GraphPad Software Inc, Version 

8.2.0). For all tests run, differences were defined as statistically significant at p < 0.05. The 

D’Agostino-Pearson omnibus K2 test was used to test for normality. If we were unable to reject 

the null hypothesis that data were sampled from a population that follows a Gaussian 

distribution, we ran Brown-Forsythe and Welch ANOVA tests. We used Dunnett T3 to correct for 

multiple comparisons. If we were able to reject the null hypothesis that the data were taken from 

a normally distributed population, we used the Kruskal-Wallis test for significance. In these 

instances, we applied Dunn’s method to correct for multiple comparisons. 
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Data and Code Availability 
All data presented herein can be provided upon request. All code is available on github, with 

links included in the methods.  
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Supplemental Information 
 
SI Experimental Procedures 
Organotypic hemispheric brain slice preparation 
Animals were administered an intraperitoneal injection of pentobarbital (150 mg/kg). After 

euthanasia, brains were rapidly removed and immersed in room temperature (22°C) dissection 

media consisting of 500 mL HBSS (no Mg2+, no Ca2+, ThermoFisher, Waltham, MA), 1% 

Penicillin-Streptomycin (MilliporeSigma), and 3.2 g glucose (MilliporeSigma). Whole brains were 

cut into hemispheres with a razor blade, and 300 µm-thick coronal slices were prepared from 

each hemisphere using a Mcllwain tissue chopper. Slices were transferred to a Petri dish filled 

with room temperature dissection media and separated under a surgical dissection microscope 

using fine tip paint brushes. Individual slices containing corpus callosum were taken from the 

prefrontal cortex and placed on 30 mm cell culture inserts (Fisher Scientific) in non-treated 6-

well plates (USA Scientific). Prior to plating, 6-well plates were filled with 1 mL slice culture 

media (SCM) containing 250 mL MEM (ThermoFisher, no glutamine, no phenol red), 125 mL 

HBSS (with Mg2+, with Ca2+, ThermoFisher), 125 mL horse serum (ThermoFisher), 5 mL 

GlutaMAX Supplement (Fisher Scientific), and 1% Penicillin-Streptomycin. Slices were 

incubated in sterile conditions at 37°C and 5% CO2. 

 
Characterizing the timeline of enzyme-induced perineuronal net breakdown in 
organotypic rat brain slices ex vivo 
Slices were treated with either ChABC (MilliporeSigma), HYase (Fisher Scientific), or SCM 

(non-treated, NT) working solution. ChABC working solution was prepared by reconstituting 

Chondroitinase ABC to 0.4 U/mL in an aqueous buffer containing 50mM Tris HCl, pH 8.0 

(ThermoFisher Scientific), and 50mM sodium acetate (MilliporeSigma). For the HYase working 

solution, HYase from Streptomyces hyalurolyticus (Fisher Scientific) was reconstituted to 35 

U/mL in 4°C 1x Dulbecco’s Phosphate-Buffered Saline (1x PBS, no Mg2+, no Ca2+, Corning). 

Following reconstitution, both ChABC and HYase working solutions were aliquoted and stored 

at -20°C until use. The NT working solution consisted of SCM.  

 

All working solutions were brought to room temperature (22°C) prior to use. At the initial 

timepoint, 200 µL of a given treatment solution was applied to the top of each brain slice in a 

dropwise fashion and returned to the incubator, where slices were maintained at 37°C and 5% 

CO2. At subsequent timepoints, a brain slice was removed and placed in 10% formalin 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.20.050112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.050112
http://creativecommons.org/licenses/by/4.0/


 33 

phosphate buffer (Fisher Scientific) for fixation. One brain slice from each treatment group was 

removed at 15, 30, 60, and 120 min post treatment, resulting in a total of 4 slices per treatment 

condition. Slices were incubated in formalin for 1 h at room temperature (22°C), washed 2 times 

with 500 µL 1x PBS for 5 minutes each, and stored at 4°C until staining commenced. Slices 

were stained within 1 week of fixation with 500 µL of 1x PBS containing 10 µg/mL WFA Lectin 

(Vector Laboratories Inc, Burlingame, CA) for 12 h at 4°C. Following WFA incubation, slices 

were washed 2 times with 500 µL 1x PBS for 5 minutes, and cell nuclei were stained with 500 

µL of 1x PBS containing 1 µg/mL DAPI (ThermoFisher) for 30 min. Slices were subject to a final 

washing step and stored in 1x PBS at 4°C until imaged. 

 

All imaging was performed within two weeks of staining using a confocal microscope (Nikon 

Instruments, Melville, NY). At a 20x magnification, 3 representative images were taken from the 

cortex of each brain slice. 

 
Lactate dehydrogenase assay for assessment of brain slice viability 
Whole hemisphere brain slice viability was evaluated using LDH assay (Cayman Chemical, Ann 

Arbor, MI), which measures the LDH released into the culture medium from degenerating cells 

in brain slices (Su et al., 2011). All experiments were carried out within 24 h of slice preparation, 

and all working solutions were brought to room temperature (22°C) prior to use. Two hours prior 

to the 0 h timepoint (-2 h), the SCM present below the membrane insert was exchanged for 1 

mL of serum-free SCM consisting of 250 mL MEM (no glutamine, no phenol red), 250 mL HBSS 

(with Mg2+, with Ca2+), 5 mL GlutaMAX Supplement, and 1% Penicillin-Streptomycin. 

Immediately following media exchange (still at the -2 h timepoint), 200 µL of a given treatment 

solution was applied in dropwise fashion to the top of each slice. Brain slices were returned to 

the incubator for a 2 h treatment period, where they were maintained at 37°C and 5% CO2. At 0, 

1, 2, 4, and 23 h after the initial 2 h treatment period, the serum-free SCM supernatant resting 

below the membrane insert was collected, frozen at -80°C, and replaced with 1 mL of fresh 

serum-free SCM that had been preheated to 37°C. For the Triton-X 100-treated positive control, 

no treatments were applied to the top of the slice (at the -2 h timepoint). Instead, the serum-free 

SCM was doped with 1% Triton-X 100 at every media exchange. The percentage of LDH 

released in each whole hemisphere brain slice was quantified according to manufacturer’s 

recommendations (Cayman Chemical). Briefly, the fluorescence intensity of the supernatant 

samples was measured, the background of a negative control (serum-free SCM) was 

subtracted, and all values were normalized to the intensity of the Triton-X 100-treated positive 
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control (the supernatant collected at the final time point), which represented max cell death 

(100% cytotoxicity). 

 
Nanoparticle preparation and characterization 
The covalent attachment of MeO-PEG- NH2 (5kDa MW, Creative PEG Works) to the surface of 

40nm fluorescent PS-COOH nanoparticle (Fisher Scientific) was carried out using a carboxyl 

amine reaction (Nance, 2017). Briefly, 50 µL of stock PS-COOH particle suspension was 

washed and resuspended to six-fold dilution in ultrapure water. A four-fold molar excess of 

MeO-PEG-NH2 was added to the particle suspension and mixed to dissolve the PEG. N-

Hydroxysulfosuccinimide (NHS, MilliporeSigma, Burlington, MA) was added to a final 

concentration of 60 mM and 200 mM borate buffer (pH 8.2) was added to dilute the 300 µL 

sample volume five-fold. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, Invitrogen, 

Carlsbad, CA) was added to stoichiometrically complement the MeO-PEG-NH2. Tubes 

containing particle suspensions were wrapped in aluminum foil and placed on a rotary incubator 

for 6 h at 22°C and then washed via centrifugation (Amicon Ultra 0.5 mL 100k MWCO; 

MilliporeSigma) at conditions specified previously (Nance, 2017). Particles were resuspended in 

ultrapure water to the initial stock particle volume and stored at 4°C until use. 

 

For nanoparticle characterization, both DLS and laser Doppler anemometry were performed 

using the Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). Particles were diluted to 

~0.002% solids in filtered (0.45 um, Whatman, Maidstone, UK) 10 mM NaCl, pH 7.0, prior to 

measurement. 

 
Immunohistochemistry and lectin staining on fixed rat brain slices 
Male SD rats were first administered an intraperitoneal injection of pentobarbital (150 mg/kg). 

After euthanasia, rats were perfused with sterile 1x PBS. Brains were removed and immediately 

placed in 10% formalin phosphate buffer for 24 h at 4°C. Brains were then subjected to a 

sucrose gradient: 10% formalin phosphate was first exchanged for 15 weight % sucrose 

(MilliporeSigma) in 1x PBS and allowed to incubate for 24 h; the 15% sucrose was then 

exchanged for 30% sucrose in 1x PBS. Following a 24 h incubation in 30% sucrose, brains 

were removed from solution and frozen at -80°C until ready for use. Frozen brains were 

sectioned into 30 µm-thick coronal sections using a Leica CM1950 cryostat (Leica Biosystems, 

Buffalo Grove, IL). 
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Sections were first incubated in the dark with rabbit anti-PVA (Abcam ab11427, Cambridge, UK) 

at a 1:100 dilution in 1x PBS containing 1% Triton X-100 (MilliporeSigma), 3% donkey serum 

(MilliporeSigma), and 10 µg/mL WFA for 6 h at room temperature (22°C). Following primary 

antibody incubation, slices were washed two times for 2 min each with 1x PBS. A 1:500 dilution 

of Alexa Fluor 568-labeled donkey anti-rabbit IgG (ThermoFisher) in 1x PBS containing 1% 

Triton X-100 and 10 µg/mL WFA was then applied to the sections for 4 h at room temperature in 

the dark. Again, sections were washed two times with 1x PBS for 2 min. Cellular nuclei were 

stained with a 1 µg/mL solution of DAPI in 1x PBS for 15 min. Following a final wash step, 

microscope slides were mounted with a glass coverslip using Wako antifade media (Vector 

Laboratories) and stored at -20°C until they were imaged. Sections were imaged using a 

confocal microscope. Z-stack scans of the entire coronal section were taken at 20x 

magnification. 

 
Image processing for quantifying the density of perineuronal nets in the cortex 
Image processing was performed in ImageJ (Schindelin et al., 2012). First, the maximum 

intensity projection of the full section z-stack scan was generated and a region of interest (ROI) 

drawn around the entire cortex. All signal that fell outside the ROI was eliminated. The 

background was subtracted from the resulting image using a rolling ball radius of 5 pixels. A 

threshold was then applied, with the lower threshold being set to 0 and the upper threshold set 

by the user. The image was then subjected to a dilation, holes were filled, and a watershed 

applied. The total number of PNNs was quantified using the Analyze Particles plugin, with the 

minimum particle size set to 50 px2. The total number of PNNs was normalized to the area of 

the ROI. Experimental groups were separated based on brain age. 
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Supplemental Figures and Tables 
 

 
Figure S1. Quantifying brain slice viability following treatment with either HYase, ChABC, 
or SCM. (A) The LDH assay was used to quantify the % cytotoxicity versus time for brain slices 

treated with either Triton X-100 (black), SCM (NT, blue), Hyase (gold), or ChABC (grey). All 

values were normalized to the final Triton X-100 measurement. (B) Y-axis range was adjusted 

to better visualize the NT (blue), Hyase (gold), and ChABC (grey) groups. In all instances, scale 

bars represent the standard deviation of n=3 brain slices. Neither treatment (ChABC, HYase) 

led to a significant difference in % cytotoxicity compared to the NT control (Brown-Forsythe and 

Welch ANOVA test with Dunnett T3 correction). 

 
 
Table S1. Physicochemical properties of the 40nm PS-PEG NPs. Nanoparticle 

hydrodynamic diameter and PDI as determined by DLS. Laser Doppler anemometry was used 

to determine nanoparticle ζ-potential. All experiments were performed at 25°C in 10mM NaCl, 

pH 7.0. Values represent the average ± standard deviation of n=3 measurements. 

 

Sample Hydrodynamic 
Size (nm) 

PDI 𝜁𝜁-Potential (mV) 

40nm PS-PEG 51 ± 2 0.027 ± 0.018 -0.59 ± 0.10 
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Table S2. A complete list of all 39 trajectory features calculated by the diff-classifier Python 
package. Included for each feature is a brief description and how it is determined. Additional documentation 

can be found in the TraJ GitHub repository (https://github.com/thorstenwagner/TraJ.git). 
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Figure S2. Results of XGBoost analysis for reduced resolution age-dependent data. (A) 
Evaluation metrics for the XGBoost classifier carried out on P14, P21/P28 combined, and P35 
groups. Included are precision, recall, f1-score, and support for each age, as well as the total 
accuracy and support. (B) A confusion matrix displaying how predicted outcomes compare to 
actual classes. 
 

 
Figure S3. SHAP summary plot of features used in reduced resolution XGBoost classifier. 
Provided are the 20 most influential features. Feature importance bars are color coded to provide 
an indication of their importance in predicting specific age groups (grey = P14, turquoise = 
P21/P28 combined, purple = P35). 
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