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Abstract Summary

Brain extracellular matrix (ECM) structure mediates many aspects of neuronal function. Probing
changes in ECM structure could provide insights into aging and neurological disease. Herein,
we demonstrate the ability to characterize changes in brain ECM structure using multiple
particle tracking (MPT). MPT was carried out in organotypic rat brain slices to detect induced
and naturally occurring changes in ECM structure. Induced degradation of neural ECM led to a
significant increase in nanoparticle diffusive ability in the brain extracellular space. For structural
changes that occur naturally during development, an inverse relationship existed between age
and nanoparticle diffusion. Using the age-dependent dataset, we applied extreme gradient
boosting (XGBoost) to generate models capable of classifying nanoparticle trajectories.
Collectively, this work demonstrates the utility of MPT combined with machine learning for
measuring changes in brain ECM structure and predicting associated complex features such as

developmental age.
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Introduction

The extracellular spaces (ECS) of brain tissue are home to the brain extracellular matrix (ECM),
a heterogeneous collection of proteoglycans, tenascins, and a hyaluronic acid backbone that
can either be free floating, tethered to cellular surfaces, or condensed to form specific structures
(Krishnaswamy et al., 2019; Zimmermann and Dours-Zimmermann, 2008). The ability to
organize into specific structures allows ECM to perform unique functions that help maintain
normal brain function. For example, the formation of highly condensed perineuronal nets
(PNNs), which envelop the soma of certain populations of neurons in the brain, helps regulate
plasticity and protects neurons from harmful processes like excitotoxicity and oxidative stress
(Cabungcal et al., 2013; Okamoto et al., 1994). The basement membrane, which consists of
proteoglycans, laminin, and collagen, is a three-dimensional structure that wraps around brain
endothelial cells and regulates the blood-brain-barrier (BBB) and the neurovascular unit
(Thomsen et al., 2017; Xu et al., 2019). Brain ECM is also highly dynamic, and the ability to
assemble, disband, and reorganize is required for the development of proper neuronal circuitry
and helps facilitate repair in response to injury (Barritt et al., 2006; Carstens et al., 2016; Carulli
et al., 2010; Massey et al., 2006; Pizzorusso et al., 2002; Sorg et al., 2016). The structural
integrity of PNNs is thought to be impacted by many neurological diseases, including epilepsy,
schizophrenia, and stroke (Dzyubenko et al., 2018; Pantazopoulos and Berretta, 2016; Sorg et
al., 2016; Wen et al., 2018). However, probing real-time changes in ECM microstructure,
particularly changes that occur locally at the cellular level in living tissue, remains an ongoing
challenge. This prevents a complete understanding of the role disease-induced changes in ECM

structure play in impairing neuronal function.

To address this knowledge gap, we want to characterize changes in ECM structure that occur
both spatially and temporally. This requires a technique that can probe extracellular dynamics in
real-time at the microscale. Electron microscopy has been used to quantify ECS-related
parameters. However, Korogod et al. showed that chemical fixation results in significantly
smaller estimates of ECS volume fraction compared to cryo-fixation and reduces the volume of
the cortex by 31% (Korogod et al., 2015). Fluorescent-based staining can be used to label
specific components of brain ECM, but features commonly quantified from fluorescent images,
such as fluorescence intensity and stain area, provide no direct insight into physical and
geometric properties of the local environment like viscosity and ECM pore size (Lipachev et al.,
2019; Rowlands et al., 2018). Atomic force microscopy (AFM) has also been used to quantify

mechanical properties of brain ECM (Moeendarbary et al., 2017). However, AFM only provides
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a surface-level analysis, preventing analysis of the microrheological properties in the bulk of the

tissue.

Multiple particle tracking (MPT) is a technique that leverages fluorescent microscopy to capture
the motion of nanoparticles in real-time. MPT is unique in that the microscopic behavior of
hundreds to thousands of individual particles can be tracked simultaneously, while retaining
single particle resolution. The motions exhibited by particles provide information about the
environment in which the particles reside, and the ability to track the movement of individual
particles provides high spatial resolution. This phenomenon has already been leveraged to
characterize structural features of many biological domains, including the vitreous of the eye (Xu
et al., 2013), various mucosal membranes (Lai et al., 2007; Macierzanka et al., 2014; Suk et al.,
2009; Wang et al., 2008), and intracellular environments (Suh et al., 2003; Suk et al., 2007; Xiao
and Samulski, 2012). In the brain specifically, MPT as well as single nanoparticle tracking have
been used to better estimate the width of ECS (Godin et al., 2017; Nance et al., 2012) and
evaluate the diffusive ability of many nanoparticle-based drug delivery platforms (Joseph et al.,
2018; Nance et al., 2014; Nance et al., 2012). An additional advantage of MPT is the sheer
amount of data it generates, with experiments typically producing anywhere between 102 and
10° total trajectories. Because of this, machine learning methods are becoming incorporated into
the MPT workflow to explore otherwise hidden trends in data and make predictions. The utility of
this approach is already well documented. Wagner et al. demonstrated the ability to predict
motion type (confined, directed, anomalous, normal) using random forest classifiers trained on
trajectory feature datasets (Wagner et al., 2017), and others have employed artificial neural
networks to predict agarose gel stiffness and in vitro cell uptake of nanoparticles (Curtis et al.,
2019a).

The findings we present herein are twofold. We first demonstrate the use of MPT to characterize
changes in brain ECM structure, then implement extreme gradient boosting (XGBoost) to
generate classifiers capable of predicting chronological age from nanoparticle trajectory
features. Moving forward, MPT can be applied to probe mechanisms that give rise to structural
alterations in ECM that cause aberrant neuronal function. MPT will also provide an enhanced
understanding of ECM rearrangements that occur naturally during development, aging, and
pathological aging. Lastly, our results show the potential for the combined approach of MPT and
machine learning to be extended to develop models capable of predicting the presence and

severity of neurological disease based on nanoparticle diffusion information.
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Results

Inducing the breakdown of PNNs in rat brain tissue ex vivo

We first demonstrate the ability to induce ECM structural changes in rat brain tissue ex vivo.
This was carried out to provide a test scenario to determine whether MPT could be used to
detect induced changes in ECM structure. Organotypic hemispheric brain slices taken from
postnatal (P) day 35 rats were treated with either Chondroitinase ABC (ChABC, 0.4 U/mL) or
hyaluronidase (HYase, 35 U/mL), two enzymes known to degrade components of brain ECM
(Carstens et al., 2016; Kul'chitskii et al., 2009; Sun et al., 2018). Brain slices treated with
enzyme-free slice culture media (SCM) served as the negative control (non-treated, NT). We
monitored the presence of PNNs following treatment by staining with a fluorescently-labeled
Wisteria Floribunda Agglutinin Lectin (WFA) at 15, 30, 45, and 120 minutes post-treatment
(Figure 1A). PNN structure was completely lost in the cortex within 120 min of enzyme

treatment (Figure 1B). PNN structures in non-treated brain slices were unaffected over the
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experimental window (Figure 1B).

A

“~w Hyaluronic Acid
Tenascin R

& Chondroitin Sulfate

e
f&/ <
NN R

n\
N-r
-

|

Proteoglycan \
,» 4 A
| | | I N
B | | | >
0 min 30 min 45 min 120 m|n

HYase ChABC

Non-treated

Figure 1. Timeline of PNN breakdown in rat brain slices ex vivo. (A) Schematic representation
of PNN breakdown following treatment with HYase or ChABC. (B) Representative 20x
magnification images taken from the cortex of P35 rat brain slices receiving one of three
treatments (HYase, ChABC, or SCM). PNNs were stained with WFA (green) and cell nuclei
stained with DAPI (blue). Rows represent treatment group. Columns represent treatment time.

Scale bars: 100 uym.

To ensure treatment conditions did not impact brain slice viability, we monitored the release of

lactate dehydrogenase (LDH) from age-matched P35 hemispheric brain slices for 23 h following
treatment with identical amounts of ChABC (0.4 U/mL), HYase (35 U/mL), and SCM (non-

treated, NT). LDH, an intracellular enzyme that is only released extracellularly when the cell

membrane becomes compromised, provides a measure of slice viability (Su et al., 2011). Both

enzyme treatment groups led to minimal cell death (<33% cytotoxicity) compared to a Triton X-

100 (C14H220(C2H40)10)-treated positive control and no significant increase in cell death over


https://doi.org/10.1101/2020.04.20.050112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050112; this version posted April 20, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the non-treated negative control (Figure S1). Collectively, these results demonstrate our ability

to induce ECM structural changes in acute hemispheric brain slices while retaining slice viability.

MPT in enzyme-treated rat brain slices ex vivo

Having identified the time required to cause complete loss of PNN structure in brain slices
treated with either ChABC (0.4 U/mL) or HYase (35 U/mL), we next investigated whether
changes in the diffusion of near neutral, poly(ethylene glycol) (PEG)-coated 40nm polystyrene
nanoparticles (PS-PEG) were sensitive enough to pick up PNN structural breakdown (Table
S1). We chose 40nm PS-PEG nanoparticles for two reasons. First, their 51nm hydrodynamic
diameter falls below the most recently reported mean and median values of brain ECS width
(Godin et al., 2017; Tonnesen et al., 2018). Second, PEG-coated PS nanoparticles have
demonstrated an ability to evade adhesive interactions with various cellular and ECM-
associated components (Nance et al., 2012) and remain stable in physiologically relevant
conditions (Curtis et al., 2018). By evading electrostatic and hydrophobic interactions while
remaining colloidally stable, the motion these particles exhibit is predominantly impacted by

local fluid properties of the brain ECS and structural properties of the local ECM.

MPT in the cortex of hemispheric brain slices revealed that nanoparticle populations explore a
greater area, move faster, and have increased diffusivities when diffusing in enzyme-treated
brain tissue. Representative trajectory maps generated from a single video taken in a NT,
ChABC-treated, and HYase-treated brain slice are provided in Figure 2A. Despite each map
containing around the same number of total trajectories (1478, 1593, and 1732 for NT, ChABC-
treated, and HYase-treated, respectively), nanoparticles surveyed a greater fraction of the ECS
when diffusing in slices treated with ECM-degrading enzymes. In enzyme-treated slices,
geometrically averaged mean-squared displacements (<MSD>) of nanoparticle trajectories were
greater in magnitude for all lag times between 0 and 2 s. HYase- and ChABC-treated slices
were, on average, 0.80- and 0.93-um? greater than non-treated slices, respectively (Figure 2B).
The Einstein-Smoluchowski relation was used to calculate an effective diffusion coefficient, De,
at a 0.33 s lag time (10 frames) for all trajectories in the dataset. The resulting range of Des
values were similar for all treatment groups, but the geometric mean D« value was greater in
magnitude for both enzyme-treated groups compared to the non-treated control (Figure 2C).
The geometric mean Detat a 0.33 s lag time was 0.096 and 0.11 um?/s for HYase- and ChABC-

treated slices, respectively, compared to 0.049 um?/s for non-treated slices.
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Figure 2. Multiple particle tracking in ChABC-, HYase-, and SCM-treated rat brain slices ex
vivo. (A) Representative trajectory maps generated from MPT experiments carried out in non-
treated (blue), ChABC-treated (gold), and HYase-treated (grey) P35 brain slices ex vivo. (B)
Geometrically ensemble averaged <MSD> versus lag time quantified from trajectories of
nanoparticles diffusing in non-treated (blue), ChABC-treated (gold), and HYase-treated (grey)
P35 brain slices. Faint lines represent individual videos (60 total per group). Bold line represents
the mean of 60 videos. (C) Distribution of log Def values at a 0.33 s lag time for each treatment
group. The dashed lines represent the average log Dess value. The geometric mean Desr value is
provided in writing for each treatment group. (D) Scatter plots of Des values generated from all
videos (n = 5) in all slices (n = 3) in all brains (n = 4), separated by treatment group. Error bars
show median value (95% CIl). (E) Scatter plots of Dest values from all videos (n = 5) in all slices (n
= 3), separated by brain and treatment group. * denotes significant differences (Kruskal-Wallis
test) between groups, after adjusting for multiple comparisons (p < 0.05).
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To account for biological variability slice to slice and animal to animal, MPT experiments were
performed using four separate rats, all within the same age range (P35-P38). From each
animal, nine total brain slices were prepared (three for each treatment group), and five videos
were collected in the cortex of each slice. Significant differences in nanoparticle diffusive ability
exist independent of data grouping. If the trajectories from all videos taken in all slices and all
brains are compiled into one dataset, nanopatrticles diffusing in both ChABC-treated and HYase-
treated slices have significantly larger Des values than those diffusing in non-treated slices
(Figure 2D). If data is instead split by animal, significant differences in Des remain between
treated and non-treated groups (Figure 2E). These analyses demonstrate the robustness of our

findings.

To confirm particle tracking experiments did not interfere with PNN degradation, brain slices
used in tracking studies were fixed at the end of the MPT window and stained with WFA and
4’ 6-diamidino-2-phenylindole (DAPI) for PNNs and cell nuclei, respectively. No WFA signal was
present in ChABC- and HYase-treated slices (Figure 3A). PNNs were visible in the cortex of NT
slices (Figure 3A) and nanoparticles were found in close proximity to or associated with PNN

structures (Figure 3B).

One potential reason for the increase in nanoparticle diffusive ability following enzymatic
breakdown of ECM structures is a shift in local extracellular fluid viscosity. Both HYase and, to a
lesser extent, ChABC, degrade hyaluronic acid. A shift in the distribution of hyaluronic acid
molecular weights should result in a reduction of solution viscosity and subsequently reduce the
amount of viscous drag experienced by the particles. To test this, solutions containing
hyaluronic acid at varying molecular weights were prepared in vitro. The apparent viscosity (+
SD) of low (33 kDa), medium (180 kDa), and high (1670 kDa) MW hyaluronic acid solutions, all
at 22 mg/ml in 1xPBS, were determined to be 0.0035, 0.23, and 6.4 Pa-s, respectively (Figure
4A). MPT using 40nm PS-PEG nanoparticles showed an inverse relationship between
nanoparticle diffusive ability and hyaluronic acid MW. The average D¢ at a lag time of 0.33 s
was 0.12, 0.014, and 0.0023 um?/s for particles diffusing in low, medium, and high MW
hyaluronic acid solutions, respectively (Figure 4B). These in vitro results support our hypothesis
that changes in local viscosity contribute to the observed increase in Der values following PNN

degradation ex vivo.
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Figure 3. PNN imaging following MPT in treated and non-treated ex vivo brain slices. (A)
Representative 40x magnification images taken from the cortex of P35-P38 rat brain slices post
MPT. Treatment groups, represented by separate columns, were HYase, ChABC, and NT. PNNs
were stained with WFA (green) and cell nuclei with DAPI (blue). Nanoparticles were red-
fluorescent. (B) 60x magnification, 3D rendered z-stack images taken from the cortex of P35 rat
brain slices post multiple particle tracking. All images were taken in NT slices and demonstrate
the proximity of nanoparticles (red) to PNNs (green).
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Figure 4. Effect of hyaluronic acid molecular weight on nanoparticle diffusive ability in
vitro. (A) Apparent viscosity of solutions of varying hyaluronic acid molecular weight in 1x PBS
(all at 22 mg/mL). Measurements (n=5) were taken at a shear rate of 100 s-'. (B) Distribution of
log Desr values at a 0.33 s lag time for each hyaluronic acid solution (data compiled from n=5
separate videos). The dashed lines represent the average log De value. The geometric average
Dett value is provided in writing for each group (blue = high MW, green = medium MW, red = low
MW). For all data presented, low, medium (med), and high MW correspond to 33, 180, 1670 kDa
hyaluronic acid samples.

Nanoparticle diffusive ability decreases as the density of PNNs in the cortex increases
throughout development

We next show that MPT can detect naturally occurring changes in ECM structure. We leverage
the brain’s tendency to form organized, function-specific ECM structures, like PNNs, during
development. We first established the timeline of PNN appearance in the cortex of Sprague-
Dawley (SD) rats through fluorescence-based lectin staining. PNNs stained using WFA did not
appear qualitatively until 21 days after birth (P21), and preferentially form around parvalbumin-
expressing (PVAY) interneurons (Figure 5A-D). A representative high-resolution image of a PNN
taken in the cortex of a P35 rat shows the structural “mesh-like” nature of the PNN (Figure 5E).
The increase in areal PNN density in the cortex between P14 and P21 was not significant, with
median (95% CIl) areal densities of 5.15 (3.68-6.44) and 6.32 (2.17—10.46) x10-° PNNs/px?,
respectively (Figure 5F). Significant differences did exist between P14 and P28, P14 and P35,
and P21 and P35 (p < 0.05) groups; the median (95% CIl) aerial density of PNNs in the cortex of
P28 and P35 SD rats is 16.85 (13.37—22.61) and 32.85 (26.76—42.27) x10-°* PNNs/px?,
respectively (Figure 5F).

With the timeline of PNN formation established, MPT was performed ex vivo in brain slices
taken from P14, P21, P28, and P35 SD rats. Tracking revealed an inverse relationship between
nanoparticle diffusive ability and brain age. Geometrically averaged MSD (<MSD>) profiles
decrease in magnitude as pup age increases from 14 days to 21, 28 and 35 days after birth
(Figure 5G). Distributions of Dex values at a 0.33 s lag time shift to lower values as the brain
develops and correspondingly PNN density increases (Figure 5H). Significant differences in Des
values exist between all groups (p = 0.05), with median (95% CI) D of values of 0.27 (0.26—
0.28), 0.14 (0.14-0.15), 0.10 (0.10-0.11), and 0.070 (0.069-0.072) um?/s for P14, P21, P28,
and P35, respectively (Figure 5l).

11
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Figure 5. Relationship between perineuronal net formation and nanoparticle diffusion. (A-
E) Representative 40x magnification images taken in the cortex of P14 (A), P21 (B), P28 (C), and
P35 (D) rat brains. Brain sections were stained with WFA for PNNs (green) and anti-parvalbumin
for a subpopulation of interneurons (red). Cell nuclei were stained with DAPI (blue). Scale bar =
50um. (E) 240x magnification high resolution image of a PNN taken in the cortex of a P35 rat.
Scale bar = 5pym. (F) 20x tile scans of the entire cortex were taken and the total number of PNNs
was quantified. The number of PNNs per unit area increased throughout the critical period (P14-
P35). Displayed are median values with a 95% confidence interval. * denotes significant
differences (Kruskal-Wallis test) between groups, after adjusting for multiple comparisons. (p <
0.05). (G) Geometrically ensemble averaged <MSD> versus lag time quantified from NPs
diffusing in P14 (grey), P21 (gold), P28 (blue), and P35 (purple) brain slices. Faint lines represent
individual videos (15 total per group). Bold line represents the average of 15 individual videos.
(H) Distribution of log Deff values at a 0.33 s lag time for each pup age. The dashed lines represent
the average log Det value (grey = P14, gold = P21, blue = P28, purple = P35). (l) Scatter plots of
Detf values generated from all videos (n = 5) in all slices (n = 3), separated by pup age. Error bars
show median value (95% ClI). All groups were significantly different from each other after adjusting
for multiple comparisons (Kruskal-Wallis test, p < 0.05).

XGBoost classifiers provide predictive models for age-dependent MPT data
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XGBoost classifiers were trained on the age-dependent MPT data to determine if the
incorporation of machine learning methods could result in predictive power. Prior to model
training, the amount of data the algorithm could access was enhanced by calculating additional
trajectory features to complement the Dessvalues already available. A total of 39 features were
computed, some based on trajectory geometry (aspect ratio and straightness, for example) and
some based on traditional diffusion theory (anomalous diffusion exponent and MSD ratio). The
list of trajectory features was adopted from previous literature (Curtis et al., 2019a) but scaled
up by introducing additional, local-averaged features (Table S2). An XGBoost classifier was
then trained on a subset of the age-dependent feature dataset. The resulting model achieves a
total predictive accuracy of 51.84% when tested on a separate subset of data, more than
doubling the accuracy of a random guess (25.00%) (Figure 6). The highest predictive precision
exists for the P14 and P35 groups (0.6513 and 0.5159, respectively), while the intermediate age
groups (P21 and P28) are the lowest (0.4399 and 0.4110, respectively) (Figure 6A). Of the
entire population of P35 trajectories included in the test dataset, only 42 were incorrectly
classified as P14 (Figure 6B). Similarly, only 71 of the entire P14 population were mislabeled as
P35. The majority of false predictions are contained within the middle P21 and P28 groups
(Figure 6B). If we reduce the resolution of our classification by combining the P21 and P28
populations and rerun the same analysis, the model performance is elevated to an accuracy of
66.16% (Figure S2).
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P21 0.4399 0.4351 0.4375 1549
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P35 0.5159 0.6175 0.5622 1472 [+

accuracy 0.5184 5967 . s S eeres o

P14 P21 P28 P35
Actual

-600

Predicted

P28

P35

Figure 6. XGBoost analysis for age-dependent data. (A) Evaluation metrics for the XGBoost
classifier carried out on all age groups. Included are precision, recall, f1-score, and support for
each age, as well as the total accuracy and support. (B) A confusion matrix displaying how
predicted outcomes compare to actual classes.
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A distinct advantage of decision tree-based classifiers like XGBoost is the ability to quantify the
importance of each feature to the classification being made. To identify features that influence
the model most significantly, a summary plot of Shapley Additive exPlanation (SHAP) values
was created for the model including all age groups (Figure 7). The top five feature
dependencies are mean Des at 0.33 s (Mean Deff1), mean fractal dimension, mean fitted
diffusion coefficient (D_fit), mean MSD ratio, and mean kurtosis. The least important features do
not appear on the SHAP summary plot, but were determined to be trajectory elongation,
trappedness, and asymmetry. None of these features contributed to model prediction. The five
most important features went unchanged for the analysis performed with reduced resolution,

when the P21 and P28 groups were combined (Figure S3).

mean Deff1 [ .
Mean fractal_dim _
mean D_fit [N
Mean MSD_ratio B e
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mean AR DD
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peffl B P14
ogression l P21
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mean(|SHAP value|) (average impact on model output magnitude)

Figure 7. SHAP summary plot of nanoparticle trajectory features used in XGBoost
classifier for age-dependent data. Provided are the 20 most influential trajectory features.
Feature importance bars are color coded to provide an indication of their importance in predicting
specific age groups (grey = P14, gold = P21, blue = P28, purple = P35).
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Individual SHAP summary plots were created for the five most important features at each age to
provide insight into how the relative importance of each feature fluctuates as both feature values
and age change (Figure 8). For example, large mean Deff1 and mean D_fit values are of high
importance when positively identifying the P14 group (Figure 8A). As the pups age, however,
large diffusion coefficients have an inverse impact on positive prediction (Figure 8B-D).
Additionally, as pups progress from 14 to 35 days old, diffusion coefficients become less
important identifiers, as made evident by the reduced SHAP value and reduction in importance
compared to alternative features like fractal dimension. Individual SHAP summary plots also
show how the model becomes more indecisive when predicting P21 and P28 age groups. The
P21 and P28 age groups contain more values that are intermediate (as indicated by purple
datapoints) and closer to a SHAP value of 0.0. This provides one algorithmic-based explanation

for the reduced precision of P21 and P28 groups compared to P14 and P35.
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Figure 8. Individual SHAP summary plots for trajectory feature data. Summary plot of top
five features for (A) P14, (B) P21, (C) P28, and (D) P35. Positive SHAP values further from 0.00
represent a higher impact toward positive classification in the given age category while negative
SHAP values further from 0.00 represent a higher impact toward negative classification.

Discussion

Both enzymatically induced changes in ECM structure ex vivo (Figure 2) and structural changes
that occur naturally during development (Figure 5) brought about significant changes in the
diffusive ability of 40nm PS-PEG nanoparticles. Collectively, this shows MPT can be used to
capture changes in brain ECM structure. While diffusion-based techniques for characterizing the

brain microenvironment already exist, researchers have been limited to either taking
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macroscopic approaches to quantifying diffusion related parameters (Hrabetova and Nicholson,
2007; Nicholson et al., 1979; Nicholson and Tao, 1993; Patlak and Fenstermacher, 1975;
Sykova and Nicholson, 2008) or only being able to track individual particles, separately (Godin
et al., 2017; Sokoll et al., 2015). Macroscopic approaches fall short in their ability to provide
microscopic spatial resolution, the resolution needed to make inferences on the cellular and
local extracellular level. Single particle tracking techniques provide high spatial resolution, but
typically generate a single trajectory from each video collected, which in turn requires a longer
time to generate datasets large enough for statistical analyses and incorporation of machine
learning techniques. MPT bridges this gap. It provides a large enough sample of individual
nanoparticle trajectories to make ensemble-level conclusions while also retaining high spatial
resolution. This technique represents an improvement over current methods and should
enhance our ability to probe structural aspects of the brain that have functional meaning, such

as in the case of PNNs.

An additional advantage of MPT is that it can be readily applied to biological samples taken from
other tissues and species, and even translated to in vivo environments, if access to proper
instrumentation exists (Nance et al., 2012; Verkman, 2013). Dysregulation of ECM structure is
not specific to neurological diseases. Abnormal ECM remodeling has been linked to a number
of other classes of disease, including chronic pulmonary diseases (Kranenburg et al., 2006;
Saetta et al., 2001), cancers (Insua-Rodriguez and Oskarsson, 2016; Sawai et al., 2008;
Shields et al., 2012), and cardiovascular diseases (Fan et al., 2012; Ju and Dixon, 1996). For
any and all these ailments, particularly if ex vivo culturing techniques exist, MPT should be
considered to provide an enhanced characterization of the role ECM structural changes play in
the pathological process. One relevant brain-related application would be in tissue following a
traumatic brain injury (TBI). In response to TBI, glial cells near the site of injury proliferate and
begin modifying the local extracellular environment to mitigate the propagation of damage and
facilitate repair (Karve et al., 2016; Pekny and Pekna, 2014). Activated microglia and astrocytes
release ECM degrading proteases and deposit ECM components around the injury core
(George and Geller, 2018; Wang et al., 2018). The entire process of glial cell accumulation and
ECM component deposition is known as glial scarring. Changes in the expression of brain ECM-
specific proteoglycans in glial scars has been investigated previously, but the impact TBI has on
ECM structure in both the injury core and surrounding regions remains unknown (George and
Geller, 2018). MPT has the potential to better elucidate how the extracellular environment is

altered in response to TBI. If targeting the injury core with a therapeutic is desired, MPT can

16


https://doi.org/10.1101/2020.04.20.050112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050112; this version posted April 20, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

help refine the design space of potential drug delivery vehicles, particularly with respect to
vehicle size and surface functionalization. This represents one potential application of
microstructural information generated by the MPT technique. Additional extensions of this work
have potential to enhance disease diagnosis, and give insights into disease severity and

disease progression.

Furthermore, we expanded the utility of biological MPT datasets by integrating a machine
learning algorithm for more predictive assessments. Incorporating an XGBoost classifier into the
age dependent MPT study resulted in a model capable of predicting age with 51.84% accuracy
(Figure 6). Here, we limited our focus to rats grouped 7 days apart spanning a 21-day window in
early postnatal development. While the model was able to predict the extreme ages, P14 and
P35, with high precision, it struggled to resolve the P21 and P28 populations (Figure 6A).
Recent work by Sigal et al. used a stochastic optical reconstruction microscopy technique to
show that earlier in development, PNNs have greater structural heterogeneity (Sigal et al.,
2019). This structural heterogeneity could necessitate larger data sets at the ages where PNNs
are in the process of forming. In fact, by combining the P21 and P28 groups in one aggregate
data set and retraining the model, we achieved a 66.16% accuracy (Figure S2). Despite neither
classifier reaching 70% accuracy, both far exceeded the performance of a random guess, the
baseline standard. Being able to accurately predict biological age to within a 1-2 day window
would carry significant weight, especially if aiming to distinguish biological age from

chronological age or identify the deviation from normal aging as a sign of pathological aging.

A distinct advantage of decision tree-based classifiers like XGBoost is the ability to quantify
individual feature importance. Through the use of SHAP summary plots, the five most important
trajectory features in accurately predicting chronological age were determined to be mean Dt at
0.33 s (Mean Deff1), mean fractal dimension, mean fitted diffusion coefficient (D_fit), mean
MSD ratio, and mean kurtosis (Figure 7). While the reasons why these features were most
influential in predicting age falls outside the scope of this study, there is potential that certain
features provide insight into specific interactions the nanoparticle is experiencing in the
biological environment. For example, a shift in trajectory boundedness could represent cellular
uptake, or an increase in efficiency could be indicative of particles being actively transported
across a membrane (Hofling and Franosch, 2013; Wagner et al., 2017). Further work is needed
to address these questions and requires the use of more controlled environments like in vitro

cell culture. Additionally, there exist different algorithms that can be used for multiclass
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classification. Artificial neural networks represent a promising alternative, as they have already
displayed an ability to accurately predict both nanoparticle properties like size and surface
functionality, and environmental properties like gel stiffness and in vitro cell uptake status, when
trained on trajectory feature datasets (Curtis et al., 2019a). Random forests, a form of ensemble
decision trees, are another promising algorithm for classifications that exist along a continuum,
having recently been applied to classifying neuroimaging data from Alzheimer’s Disease
patients (Sarica et al., 2017). Therefore, the combined approach of MPT and machine learning
taken herein would benefit from additional studies to determine the most optimal algorithm for
this specific application. Any improvements in analytical performance and interpretability of an
algorithm would accelerate progression towards predicting biological phenomena with higher

granularity.

The in vitro work performed in solutions of varying hyaluronic acid MW elucidated one possible
contributing factor to the observed changes in nanoparticle diffusive ability following a
restructuring of brain ECM. In vivo, hyaluronic acid is produced at the cell surface and extruded
through the cellular membrane into the ECS, where it acts as the main scaffolding for brain-
specific ECM structures (Spicer and Nguyen, 1999; Weigel et al., 1997). Hyaluronic acid is a
large, anionic, unbranched glycosaminoglycan that can reach molecular weights up to 107 Da in
native brain tissue (Bignami et al., 1993; Sherman et al., 2015). Given the highly anionic nature
and large molecular weight of hyaluronic acid, the effect its presence can have on the
movement of extracellular substances is clear. In addition to acting as a steric barrier to
diffusion, diffusing substances are also subject to electrostatic interactions and local viscosity
changes brought about by hyaluronic acid presence. The application of either HYase or ChABC,
enzymes which degrade hyaluronic acid, to a hyaluronic acid-containing tissue sample will
decrease the average MW of hyaluronic acid, reduce the local viscosity, and in turn increase the
diffusive ability of extracellular substances. This phenomenon was demonstrated successfully in
our in vitro MPT experiments, where an inverse relationship existed between hyaluronic acid

MW and geometric mean Des.

While a reduction in interstitial viscosity provides one possible explanation for the changes
observed in ex vivo brain slice studies, there could be additional factors that contribute to
changes in local diffusivity. Nanoparticles are subject to steric and adhesive interactions with
ECM constituents and cellular surfaces, as well as hydrodynamic interactions brought about by

the narrow confines of the ECS. The physical properties of the ECM are strongly dictated by the
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density of the biopolymers that make up the ECM, which influence the effective ECM mesh size
(Engin et al., 2017). In the brain, the effect of steric constraints brought about by the ECS and
ECM has been demonstrated previously. Nance et al. found Desr of non-adhesive nanoparticles
ranging from 40 — 200 nm decreased dramatically when nanoparticle size exceeds a certain
threshold, in vivo in mice, and ex vivo in human and rat tissue (Nance et al., 2012). In
reconstituted ECM systems, nanoparticles with a diameter larger than the average size of the
ECM mesh are unable to penetrate, while particles smaller than the cutoff pass through (Lieleg
et al., 2009). Therefore, when ECM structure condenses, as is the case for PNN formation with
aging (Hensch, 2005; Testa et al., 2019), particles that were previously diffusive could
experience reduced or restricted movement. This phenomenon has been demonstrated in vitro
for biomolecular diffusion around cells embedded in a collagen gel. Kihara et al. show collagen
condensation around cells results in a decrease in diffusion coefficient compared to diffusion in
cell-free collagen regions, and this effect was more significant for large molecules (Kihara et al.,
2013).

By reducing the size of the nanoparticle probe further than 40 nm, the size used in this study,
the behavior of the nanoparticle becomes even more dependent on local ECM structure,
composition, and charge distribution, and less influenced by the spatial confines of the ECS.
The enhanced sensitivity to changes in ECM could give rise to more notable differences in
trajectory features across different age groups, leading to more accurate predictors. However,
nanoparticles with diameters smaller than the ECM mesh size can be influenced by adhesive
interactions brought on by charge-charge, hydrophobic, or hydrogen bonding. The ECM network
serves as a charge-selective filter, with localized charge patches (Lieleg et al., 2009). Both
Nance et al. and Curtis et al. found significant differences in extracellular diffusion depending on
whether PS nanoparticles had a PEG or carboxylate surface coating (Curtis et al., 2018; Nance
et al., 2012). Additional studies in non-brain ECM have demonstrated the interaction between
amine-modified particles with ECM protein fibrils. Researchers such as Lieleg et al. have shown
that liposomal and polymer particles that are strongly charged either negatively or positively are
equally unlikely to diffuse, independent of size (Lieleg et al., 2009). They further demonstrate
the recovery of smaller particle diffusion when the particle charges are shielded. While this
study was performed in reconstituted mouse basement membrane ECM, it's an important
insight into the impact charge-charge interactions can have on nanoparticle diffusion in the

ECM. Although our study utilized densely PEG-coated particles that do not interact with the
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ECM (Nance, 2017), the use of charged particles to direct nanoparticle-ECM interaction could

further elucidate mechanisms of ECM influence on nanoparticle diffusion in the brain ECS.

Conclusion

The ECM plays many critical roles to maintain homeostasis in the brain. Altered ECM structure
is thought to be involved in the pathophysiology of many neurological diseases, and the
implications of altered PNN integrity on neuronal plasticity and activity have garnered significant
attention in recent decades. In this study, we demonstrated that MPT is sensitive enough to
detect changes in brain ECM structure. In addition to leveraging the brain’s natural tendency to
restructure during the critical period of development, we also applied MPT to ex vivo
hemispheric brain slices undergoing an enzymatically-induced breakdown of ECM. By
incorporating XGBoost classifiers into our analysis workflow, we demonstrated the ability to use
MPT data to predict chronological age. The further application of MPT in studying ECM
structure could more explicitly define mechanisms involved in neurological disease progression
and open new avenues of therapeutic intervention. Additionally, MPT can enhance our baseline
understanding of the structure-function relationships of the brain under normal physiological
conditions and has the potential to become used as one marker of neurological disease

severity.

Materials and Methods

Organotypic hemispheric brain slice preparation

Brain slices were prepared from male SD rat pups at varying ages, depending on the specific
study. This study was performed in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health (NIH). All of the
animals were handled according to approved institutional animal care and use committee
(IACUC) protocols (#4383-02) of the University of Washington. The University of Washington
has an approved Animal Welfare Assurance (#A3464-01) on file with the NIH Office of
Laboratory Animal Welfare (OLAW), is registered with the United States Department of
Agriculture (USDA, certificate #91-R-0001), and is accredited by AAALAC International. Every
effort was made to minimize suffering. Following euthanasia, brains were extracted, immersed
in room temperature (22°C) dissection media, and cut into hemispheres with a razor blade. 300
pm-thick coronal slices were prepared from each hemisphere using a Mcllwain tissue chopper
(Ted Pella, Redding, CA) (Curtis et al., 2019a). Briefly, individual slices were plated on 30 mm

cell culture inserts in non-treated 6-well plates. Prior to plating, 6-well plates were filled with 1
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mL SCM. Slices were incubated in sterile conditions at 37°C and 5% CO.. For a more detailed,
step-by-step procedure of slice preparation, and buffer recipes, refer to SI Appendix, Si

Experimental Procedures.

Characterizing the timeline of enzyme-induced perineuronal net breakdown in
organotypic rat brain slices ex vivo

All experiments were carried out within 24 h of slice preparation and used litter-matched male
rats to reduce biological variability. Slices were treated with either ChABC (0.4 U/mL), HYase
(35 U/mL), or SCM (NT). At the initial timepoint, 200 pL of a given treatment was applied to
each brain slice and returned to the incubator. One brain slice from each treatment group was
removed and fixed at 15, 30, 45, and 120 min post treatment, resulting in a total of 4 slices per
treatment condition. Slices were stained with 500 uL of 1x PBS containing 10 ug/mL
Fluorescein-labeled WFA Lectin for 12 h at 4°C. Cell nuclei were stained with 1 ug/mL DAPI for
30 min. All imaging was performed using a confocal microscope (Nikon Instruments, Melville,
NY). Three representative images were taken at 20x magnification from the cortex of each brain
slice at each time point. For specific details on ChABC, HYase, and NT working solution
preparation and staining buffers, and LDH assay to measure slice viability, see S| Appendix, Si

Experimental Procedures.

Nanoparticle preparation and characterization

40nm fluorescent carboxylate (COOH)-modified polystyrene latex (PS) nanoparticles (PS-
COOH) (Fisher Scientific, Hampton, NH) were covalently modified with methoxy (MeO)-
poly(ethylene glycol) (PEG)-amine (NH2) (5kDa MW, Creative PEG Works, Winston-Salem, NC)
by carboxyl amine reaction (Nance, 2017). The hydrodynamic diameter and polydispersity index
(PDI) of the resulting PEG-conjugated fluorescent nanoparticles were measured via dynamic
light scattering (DLS) and the C-potential was measured by laser Doppler anemometry. Refer to
Sl Appendix, SI Experimental Procedures for more detailed reaction conditions and

characterization.

Multiple particle tracking in organotypic brain slices ex vivo

All MPT studies were performed within 24 h of slice preparation. Slices were imaged in a
temperature-controlled incubation chamber maintained at 37°C, 5% CO,, and 80% humidity. 30
min prior to video acquisition, injections of 40nm PS-PEG nanoparticles diluted in 1x PBS were

carried out in each slice using a 10 L glass syringe (model 701, cemented needle, 26 gauge,
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Hamilton Company, Reno, NV). A total of five 0.5 pL injections were made in the cortex of each
slice. For the study involving the degradation of PNNs ex vivo, particle injections were made 90
min after treatment was applied, and videos were collected following a 30 min incubation. In
total, MPT was performed 120 min after treatment with either HYase, ChABC, or SCM.

A total of five videos were collected from the cortex of each slice. Videos were collected at 33
frames-per-second and 100x magnification for 651 frames via fluorescent microscopy using a
cMOS camera (Hamamatsu Photonics, Bridgewater, NJ) mounted on a confocal microscope.
Nanoparticle trajectories, trajectory MSDs, and Des were calculated via diff_classifier
(https://github.com/ccurtis7/diff _classifier), a Python package developed within our group (Curtis
et al., 2019b).

For enzyme induced PNN breakdown experiments, three brain slices for each treatment group
(ChABC, HYase, and NT) were taken from each of the four animals used. Collecting five videos
from each slice resulted in a total of 60 videos and >60,000 total trajectories per treatment
group. For age-dependent MPT, a total of 15 videos were taken from three slices at each age.

This resulted in >4,900 total trajectories per group.

Rheological characterization of hyaluronic acid solutions

Low (33 kDa), medium (180 kDa), and high (1670 kDa) MW hyaluronic acid samples (R&D
Systems, Boston, MA) were added to separate solutions of 1x PBS to achieve a final
concentration of 22 mg/mL (2.2 wt%). A rheometer (Physica MCR 301, Anton Paar, Graz,
Austria) operating in rotational mode was used to measure the apparent viscosity of each
solution at a shear rate of 100 s'. A 25 mm parallel plate attachment (Anton Paar) was operated
at a 0.5 mm gap for all experiments. The base plate was set to 22°C 30 min prior to the

experiment and held constant throughout the duration of the experimental window.

Multiple particle tracking in hyaluronic acid solutions

MPT experiments carried out in hyaluronic acid solutions in vitro were performed similarly to
MPT experiments in brain tissue ex vivo. Briefly, 40nm PS-PEG nanoparticles were added to
hyaluronic acid solutions and a total of five videos were collected from each solution. Videos
were collected at 33 frames-per-second and 100x magnification for 651 frames via fluorescent
microscopy using a cMOS camera mounted on a confocal microscope. Nanoparticle

trajectories, trajectory MSDs, and Dex were calculated via diff_classifier (Curtis et al., 2019b).
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Immunohistochemistry and lectin staining on fixed rat brain slices

Following euthanasia, SD rats were perfused with sterile 1x PBS. Brains were immediately
extracted and placed in 10% formalin phosphate buffer for 24 h at 4°C. Brains went through a
30% sucrose gradient to be frozen and sectioned into 30 um-thick coronal sections using a
Leica CM1950 cryostat (Leica Biosystems, Buffalo Grove, IL). Sections were first incubated with
rabbit anti-Parvalbumin (anti-PVA, Abcam ab11427, Cambridge, UK) at a 1:100 dilution in 1x
PBS containing 1% Triton X-100 (MilliporeSigma), 3% donkey serum (MilliporeSigma), and 10
Mg/mL WFA for 6 h at room temperature (22°C). Following a wash step, a 1:500 dilution of
Alexa Fluor 568-labeled donkey anti-rabbit IgG (ThermoFisher) in 1x PBS containing 1% Triton
X-100 and 10 ug/mL WFA was applied to sections for 2 h. Cellular nuclei were stained with a 1
Mg/mL solution of DAPI in 1x PBS for 15 min. Following a final wash, microscope slides were
mounted with a glass coverslip using Wako antifade media (Vector Laboratories) and stored at -
20°C until imaged. Sections were imaged using a confocal microscope. Z-stack scans of the
entire coronal section were taken at 20x magnification. For a more detailed methodology, image

processing and PNN quantification, see S| Appendix, S| Experimental Procedures.

XGBoost predictive model for age related data classification

XGBoost is a type of boosted decision tree in which the algorithm builds itself sequentially using
multiple weak learners until a strong learner can be produced. Every tree produced in the series
is fit to a modified weighted version of the original dataset. This sequential method continues
until a set number of learners has been created or until the model converges within the
exponential loss function. Prediction is then made by calculating the weighted average of all
produced learners (Trevor Hastie, 2009). XGBoost specifically incorporates regularization into
its algorithm to control overfitting the data during training. It incorporates a unique objective

function that encourages simple models and decreases variance (Patryk Orzechowski, 2018).

50,444 samples were rebalanced using under-sampling into four even sets of 6000 data points
for each age classification. Training and testing datasets were randomly sampled from the age
data with a training/testing split percentage of 80% to 20%. Features were chosen and
calculated based on the geometry of the trajectory using feature calculation algorithms on

diff_classifier (https://github.com/ccurtis7/diff _classifier). This includes asymmetry, anomalous

exponent, aspect ratio, elongation, boundedness, fractal dimension, efficiency, straightness,

kurtosis, and MSD ratio. Extra features were created based on the immediate surrounding data.

23


https://doi.org/10.1101/2020.04.20.050112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050112; this version posted April 20, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Mean values of each calculated feature were calculated and used in prediction. In total, 39
different features were used. A comprehensive list and description of every feature used can be
found in the supplemental text (Table S2). The XGBoost model was trained using a max depth
of 7, an eta of 0.005, a gamma of 5, a subsample of 0.15, and a colsample_bytree of 0.8.
Following initial training, feature selection was implemented to remove features that were

unimportant to prediction and to improve model performance.

To better understand the individual contribution to overall prediction, shapely additive
explanations (SHAP) were calculated for every feature. SHAP is based on the theoretically
optimal use of Shapley Values (Lundberg, 2017), which are a feature’s contribution to the
prediction, f(x):

¢;(f) = Bxj — E(B;X;)
in which E(B;X;) is the mean effect estimate for feature j. The contribution is the difference in
the feature effect and the average effect (Molnar, 2019). SHAP were used to create summary
and dependency plots of the top features in prediction of each age category. The summary plot

shows the average impact of each feature on prediction output calculated by the mean absolute

SHAP values:
n
= 1o
i=1

This importance value differs from other importance calculations due to its basis on magnitude
of feature attributions (Molnar, 2019). Analysis for age-related data can be found on the ECM-
MPT-Predictive_Age_Data repository (https://github.com/dash2927/ECM-MPT-

Predictive Age Data).

Statistical Analysis

All statistical analyses were carried out in GraphPad Prism (GraphPad Software Inc, Version
8.2.0). For all tests run, differences were defined as statistically significant at p < 0.05. The
D’Agostino-Pearson omnibus K2 test was used to test for normality. If we were unable to reject
the null hypothesis that data were sampled from a population that follows a Gaussian
distribution, we ran Brown-Forsythe and Welch ANOVA tests. We used Dunnett T3 to correct for
multiple comparisons. If we were able to reject the null hypothesis that the data were taken from
a normally distributed population, we used the Kruskal-Wallis test for significance. In these

instances, we applied Dunn’s method to correct for multiple comparisons.
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Data and Code Availability
All data presented herein can be provided upon request. All code is available on github, with

links included in the methods.
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Supplemental Information

S| Experimental Procedures

Organotypic hemispheric brain slice preparation

Animals were administered an intraperitoneal injection of pentobarbital (150 mg/kg). After
euthanasia, brains were rapidly removed and immersed in room temperature (22°C) dissection
media consisting of 500 mL HBSS (no Mg?*, no Ca?*, ThermoFisher, Waltham, MA), 1%
Penicillin-Streptomycin (MilliporeSigma), and 3.2 g glucose (MilliporeSigma). Whole brains were
cut into hemispheres with a razor blade, and 300 um-thick coronal slices were prepared from
each hemisphere using a Mcllwain tissue chopper. Slices were transferred to a Petri dish filled
with room temperature dissection media and separated under a surgical dissection microscope
using fine tip paint brushes. Individual slices containing corpus callosum were taken from the
prefrontal cortex and placed on 30 mm cell culture inserts (Fisher Scientific) in non-treated 6-
well plates (USA Scientific). Prior to plating, 6-well plates were filled with 1 mL slice culture
media (SCM) containing 250 mL MEM (ThermoFisher, no glutamine, no phenol red), 125 mL
HBSS (with Mg?*, with Ca?*, ThermoFisher), 125 mL horse serum (ThermoFisher), 5 mL
GlutaMAX Supplement (Fisher Scientific), and 1% Penicillin-Streptomycin. Slices were

incubated in sterile conditions at 37°C and 5% CO..

Characterizing the timeline of enzyme-induced perineuronal net breakdown in
organotypic rat brain slices ex vivo

Slices were treated with either ChABC (MilliporeSigma), HYase (Fisher Scientific), or SCM
(non-treated, NT) working solution. ChABC working solution was prepared by reconstituting
Chondroitinase ABC to 0.4 U/mL in an aqueous buffer containing 50mM Tris HCI, pH 8.0
(ThermoFisher Scientific), and 50mM sodium acetate (MilliporeSigma). For the HYase working
solution, HYase from Streptomyces hyalurolyticus (Fisher Scientific) was reconstituted to 35
U/mL in 4°C 1x Dulbecco’s Phosphate-Buffered Saline (1x PBS, no Mg?*, no Ca?*, Corning).
Following reconstitution, both ChABC and HYase working solutions were aliquoted and stored

at -20°C until use. The NT working solution consisted of SCM.

All working solutions were brought to room temperature (22°C) prior to use. At the initial
timepoint, 200 uL of a given treatment solution was applied to the top of each brain slice in a
dropwise fashion and returned to the incubator, where slices were maintained at 37°C and 5%

CO.. At subsequent timepoints, a brain slice was removed and placed in 10% formalin
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phosphate buffer (Fisher Scientific) for fixation. One brain slice from each treatment group was
removed at 15, 30, 60, and 120 min post treatment, resulting in a total of 4 slices per treatment
condition. Slices were incubated in formalin for 1 h at room temperature (22°C), washed 2 times
with 500 pL 1x PBS for 5 minutes each, and stored at 4°C until staining commenced. Slices
were stained within 1 week of fixation with 500 pL of 1x PBS containing 10 uyg/mL WFA Lectin
(Vector Laboratories Inc, Burlingame, CA) for 12 h at 4°C. Following WFA incubation, slices
were washed 2 times with 500 uL 1x PBS for 5 minutes, and cell nuclei were stained with 500
ML of 1x PBS containing 1 ug/mL DAPI (ThermoFisher) for 30 min. Slices were subject to a final

washing step and stored in 1x PBS at 4°C until imaged.

All imaging was performed within two weeks of staining using a confocal microscope (Nikon
Instruments, Melville, NY). At a 20x magnification, 3 representative images were taken from the

cortex of each brain slice.

Lactate dehydrogenase assay for assessment of brain slice viability

Whole hemisphere brain slice viability was evaluated using LDH assay (Cayman Chemical, Ann
Arbor, MI), which measures the LDH released into the culture medium from degenerating cells
in brain slices (Su et al., 2011). All experiments were carried out within 24 h of slice preparation,
and all working solutions were brought to room temperature (22°C) prior to use. Two hours prior
to the 0 h timepoint (-2 h), the SCM present below the membrane insert was exchanged for 1
mL of serum-free SCM consisting of 250 mL MEM (no glutamine, no phenol red), 250 mL HBSS
(with Mg?*, with Ca?*), 5 mL GlutaMAX Supplement, and 1% Penicillin-Streptomycin.
Immediately following media exchange (still at the -2 h timepoint), 200 L of a given treatment
solution was applied in dropwise fashion to the top of each slice. Brain slices were returned to
the incubator for a 2 h treatment period, where they were maintained at 37°C and 5% CO.. At 0,
1, 2, 4, and 23 h after the initial 2 h treatment period, the serum-free SCM supernatant resting
below the membrane insert was collected, frozen at -80°C, and replaced with 1 mL of fresh
serum-free SCM that had been preheated to 37°C. For the Triton-X 100-treated positive control,
no treatments were applied to the top of the slice (at the -2 h timepoint). Instead, the serum-free
SCM was doped with 1% Triton-X 100 at every media exchange. The percentage of LDH
released in each whole hemisphere brain slice was quantified according to manufacturer’'s
recommendations (Cayman Chemical). Briefly, the fluorescence intensity of the supernatant
samples was measured, the background of a negative control (serum-free SCM) was

subtracted, and all values were normalized to the intensity of the Triton-X 100-treated positive
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control (the supernatant collected at the final time point), which represented max cell death
(100% cytotoxicity).

Nanoparticle preparation and characterization

The covalent attachment of MeO-PEG- NH; (5kDa MW, Creative PEG Works) to the surface of
40nm fluorescent PS-COOH nanoparticle (Fisher Scientific) was carried out using a carboxyl
amine reaction (Nance, 2017). Briefly, 50 uL of stock PS-COOH particle suspension was
washed and resuspended to six-fold dilution in ultrapure water. A four-fold molar excess of
MeO-PEG-NH, was added to the particle suspension and mixed to dissolve the PEG. N-
Hydroxysulfosuccinimide (NHS, MilliporeSigma, Burlington, MA) was added to a final
concentration of 60 mM and 200 mM borate buffer (pH 8.2) was added to dilute the 300 pL
sample volume five-fold. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, Invitrogen,
Carlsbad, CA) was added to stoichiometrically complement the MeO-PEG-NH,. Tubes
containing particle suspensions were wrapped in aluminum foil and placed on a rotary incubator
for 6 h at 22°C and then washed via centrifugation (Amicon Ultra 0.5 mL 100k MWCO;
MilliporeSigma) at conditions specified previously (Nance, 2017). Particles were resuspended in

ultrapure water to the initial stock particle volume and stored at 4°C until use.

For nanopatrticle characterization, both DLS and laser Doppler anemometry were performed
using the Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). Particles were diluted to
~0.002% solids in filtered (0.45 um, Whatman, Maidstone, UK) 10 mM NaCl, pH 7.0, prior to

measurement.

Immunohistochemistry and lectin staining on fixed rat brain slices

Male SD rats were first administered an intraperitoneal injection of pentobarbital (150 mg/kg).
After euthanasia, rats were perfused with sterile 1x PBS. Brains were removed and immediately
placed in 10% formalin phosphate buffer for 24 h at 4°C. Brains were then subjected to a
sucrose gradient: 10% formalin phosphate was first exchanged for 15 weight % sucrose
(MilliporeSigma) in 1x PBS and allowed to incubate for 24 h; the 15% sucrose was then
exchanged for 30% sucrose in 1x PBS. Following a 24 h incubation in 30% sucrose, brains
were removed from solution and frozen at -80°C until ready for use. Frozen brains were
sectioned into 30 um-thick coronal sections using a Leica CM1950 cryostat (Leica Biosystems,
Buffalo Grove, IL).
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Sections were first incubated in the dark with rabbit anti-PVA (Abcam ab11427, Cambridge, UK)
at a 1:100 dilution in 1x PBS containing 1% Triton X-100 (MilliporeSigma), 3% donkey serum
(MilliporeSigma), and 10 pg/mL WFA for 6 h at room temperature (22°C). Following primary
antibody incubation, slices were washed two times for 2 min each with 1x PBS. A 1:500 dilution
of Alexa Fluor 568-labeled donkey anti-rabbit IgG (ThermoFisher) in 1x PBS containing 1%
Triton X-100 and 10 pg/mL WFA was then applied to the sections for 4 h at room temperature in
the dark. Again, sections were washed two times with 1x PBS for 2 min. Cellular nuclei were
stained with a 1 ug/mL solution of DAPI in 1x PBS for 15 min. Following a final wash step,
microscope slides were mounted with a glass coverslip using Wako antifade media (Vector
Laboratories) and stored at -20°C until they were imaged. Sections were imaged using a
confocal microscope. Z-stack scans of the entire coronal section were taken at 20x

magnification.

Image processing for quantifying the density of perineuronal nets in the cortex

Image processing was performed in Imaged (Schindelin et al., 2012). First, the maximum
intensity projection of the full section z-stack scan was generated and a region of interest (ROI)
drawn around the entire cortex. All signal that fell outside the ROl was eliminated. The
background was subtracted from the resulting image using a rolling ball radius of 5 pixels. A
threshold was then applied, with the lower threshold being set to 0 and the upper threshold set
by the user. The image was then subjected to a dilation, holes were filled, and a watershed
applied. The total number of PNNs was quantified using the Analyze Particles plugin, with the
minimum particle size set to 50 px2. The total number of PNNs was normalized to the area of

the ROI. Experimental groups were separated based on brain age.
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Supplemental Figures and Tables
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Figure S1. Quantifying brain slice viability following treatment with either HYase, ChABC,

or SCM. (A) The LDH assay was used to quantify the % cytotoxicity versus time for brain slices
treated with either Triton X-100 (black), SCM (NT, blue), Hyase (gold), or ChABC (grey). All
values were normalized to the final Triton X-100 measurement. (B) Y-axis range was adjusted
to better visualize the NT (blue), Hyase (gold), and ChABC (grey) groups. In all instances, scale
bars represent the standard deviation of n=3 brain slices. Neither treatment (ChABC, HYase)

led to a significant difference in % cytotoxicity compared to the NT control (Brown-Forsythe and

Welch ANOVA test with Dunnett T3 correction).

Table S1. Physicochemical properties of the 40nm PS-PEG NPs. Nanoparticle
hydrodynamic diameter and PDI as determined by DLS. Laser Doppler anemometry was used

to determine nanoparticle {-potential. All experiments were performed at 25°C in 10mM NaCl,

pH 7.0. Values represent the average * standard deviation of n=3 measurements.

Sample Hydrodynamic PDI {-Potential (mV)
Size (nm)
40nm PS-PEG 51+2 0.027 £ 0.018 -0.59 +0.10

36


https://doi.org/10.1101/2020.04.20.050112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.050112; this version posted April 20, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table S2. A complete list of all 39 trajectory features calculated by the diff-classifier Python
package. Included for each feature is a brief description and how it is determined. Additional documentation

can be found in the TraJd GitHub repository (https://github.com/thorstenwagner/Trad.git).

Feature Model Description How it is determined

Abbreviation

alpha (&) alpha Exponent of the anomalous diffusion equation. | Non-linear least squares is used to fit raw
MSD vs. lag time (7) data to the
anomalous diffusion equation:
MSD = 4Dy c®
Effective D_fit Coefficient of the anomalous diffusion Non-linear least squares is used to fit raw
diffusion equation. MSD vs. lag time (7) data to the
coefficient anomalous diffusion equation:
(D) MSD = 4Dyt
Kurtosis (K) kurtosis The fourth moment of the projected positions

on the dominant eigenvector of the radius of

K —l!il_("p —xn*
- 4
gyration tensor (T). N =0 ar

Asymmetry1 asymmetry1 Characterizes the asymmetry of the trajectory.

_@Gi-a?

(a) Asymmglrw equals O_for circu_lar\y gymmelric a= @z +2)?
trajectories and 1 for linear trajectories. where 4, and 4; are the eigenvalues of
radius of gyration tensor T:
%2:'_'&/ — o ;‘,Zj(q — Oy = )
. 4
R )
Asymmetry2 asymmetry2 The ratio of the smaller to larger principal @ = Ay
(az) radius of gyration. 2=
Asymmetry3 asymmetry3 An asymmetry feature that accounts for non- _ (A — ;)%
(as) cylindrically symmetric point distributions. az = —log|1 T2 F A
Aspect ratio AR The ratio of the long and short side of the 1imax — Xuin| e — Youin] < Pmax — o]
(AR) trajectory’s minimum bounding rectangle AR = | Wmaz = Yminl’ max Jmin e i
Perfectly symmetric trajectories have an M inae — Yorind 2 Ponas — Tl
aspect ratio of 1, and aspect ratic increases as Peonae = X

trajectories become more elongated

Elongation elongation An estimation of amount of extension of the Elongation = 1 — (i)
trajectory from its centroid. AR
Boundedness boundedness | Boundedness quantifies how much a particle B= DeppNAL
(B) with diffusion coefficient D, is restricted by a T2
circular confinement of radius r when diffusing
for a period of time NAt.
Fractal fractal_dim Fractal dimension is a measure of how D, = log(WV)
Dimension “complicated” a self similar figure is. = log(NdL™)
(Df)
Trappedness trappedness The probability (p,) that a particle with _ DerpNAL
(pe) diffusion coefficient D, is trapped in a region | Pt~ 1= exp(0.2048 — 0.25117( i )
(r,) for a period of time NAt.
Efficiency (E) efficiency The ratio of squared net displacement to the Be (Xn— 2 +(¥n_1—Yo)?
sum of squared step lengths. T X )P+ OV 1)?
(Ssl;aightness straightness Tthe :atin tf‘f net displacement to the sum of . /(IN—1*710)2+()'N— v
step lengths. =IN o i
pleng I O+ Oy )
MSD Ratio MSD_ratio MSD ratio characterizes the shape of the MSD MSD. _MSD, m
(MSDp, n,) curve. For Brownian motion, it is 0; For M T MSD,,  ng
restricted maotion it is < 0; For directed motion
itis > 0.
Frames frames The total number of frames the trajectory Frames = N
spans.
Mean Turning | angle_mean The trajectory mean of the turning angle which 1
Angle (Smean) is the counterclockwise angle from one point N Z Biis1
to another i=1
Mean Turning angle_mag_ The trajectory mean of the magnitude turning 1 N
Angle mean angle which is the counterclockwise angle FZ 181411
Magnitude from one point to another =
(Ormag)
Tuming Angle | angle_var The trajectory variance of the turning angle (84, —0)?
Variance (Br) which is the counterclockwise angle from one N

point to another

Total Distance | dist_tot Total distance particle travels throughout

N
iatar = ZfoL X+ i Wi

(Aotar} trajectory
Net Distance dist_net Net distance traveled throughout trajectory dyer = ‘[(IN —x0)% + (yy — ¥o)?
(dret)
Progression progression The ratio of the net distance traveled, and the rogression — et

total distance traveled prog " drotal
Deff1 Deff1 Effective diffusion coefficient at 0.33 5. Deffl = MSLr=o1

4e01

Deff2 Deff2 Effective diffusion coefficient at 3.3 s.
Mean values were calculated based on surrounding datapoints for alpha, D_fit, kurtosis, y1, asy Y2, Y.
AR, elongation, boundedness, fractal_dim, trapp efficiency, strai MSD_ratio, Deff1, and Deff2
MSD: mean squared displacement T: lag time
N: number of frames " projected 2D position
o+ standard deviation of the projected 2D positions T: gyration tensor

A1,42: eigenvalues of radius of gyration tensor
D, ffective diffusion coefficient
r: radius of circular confinement

{x),{y): average x and y location
At: inverse of frame rate
d: largest distance between any two positions

n: frame number L: total length (sum over all steplengths) of trajectory
ro: radius of trapped region o of pixel i iti
LBack* g gl pixel i
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Figure S2. Results of XGBoost analysis for reduced resolution age-dependent data. (A)
Evaluation metrics for the XGBoost classifier carried out on P14, P21/P28 combined, and P35
groups. Included are precision, recall, f1-score, and support for each age, as well as the total
accuracy and support. (B) A confusion matrix displaying how predicted outcomes compare to
actual classes.
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Figure S3. SHAP summary plot of features used in reduced resolution XGBoost classifier.
Provided are the 20 most influential features. Feature importance bars are color coded to provide

an indication of their importance in predicting specific age groups (grey = P14, turquoise =
P21/P28 combined, purple = P35).
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