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Abstract: The soil microbial reservoir and plant recruitment are predominant forces 15 

determining microbiota assembly in rhizosphere (i.e. active and passive processes 16 

respectively), but to date, no straightforward method to evaluate the respective contribution 17 

of forces to the rhizospheric microbiota assembly rules is available. We propose herein a 18 

promising way to quantitatively partition the assembling forces of rhizosphere microbiota 19 

using ordination metrics. We anticipate that this new method can not only weight the plants 20 

individual contributions to microbiota assembly in rhizosphere, but can also indirectly provide 21 

a way to quantitatively evaluate soil health by the contribution from plant selection. 22 

 23 

The rhizosphere is of central importance not only for plant nutrition, health and quality 24 

but also for microorganism-driven ecosystem functioning and nutrient cycling in 25 

agroecosystems [1-3]. It is well established that plant species and soil type cooperatively 26 

shape the structure and function of microbial communities in the rhizosphere, indicating that 27 

both plant selection and the soil microbial reservoir confer forces that serve to structure the 28 

rhizosphere microbial community [4-7]. It is also well known that plants can recruit particular 29 

microorganisms to the rhizosphere from the soil reservoir through root exudates and 30 

signaling compounds as a deterministic process of rhizosphere assembly [8]. Measurements 31 

of the degree of plant influence on the assembly of the rhizosphere microbiome would offer 32 

an improved assessment of the co-evolved fraction of rhizosphere microorganisms. It has 33 
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recently been demonstrated that plants can leave a ‘fingerprint’ of their endosphere 34 

microbiome on the soil reservoir [9]. In an environment where plant diversity is low, one would 35 

expect there to be a pronounced influence of plants on the soil reservoir. This would be 36 

reflected in a reduction of heterogeneity between microbial communities in the bulk soil, 37 

rhizosphere and the root-endosphere. A similar trend is expected when the soil microbial 38 

reservoir has been eroded, perhaps due to a biotic or abiotic stressor. In both these cases the 39 

apparent weight of the plant contribution to the rhizospheric microbiota is expected to vary 40 

(i.e. bulk soil, rhizosphere and endosphere microbiota more similar). Therefore, the measure 41 

of the weight of the respective plant filtering/recruitment coupled with the influence of the 42 

bulk soil microbial reservoir should allow the interpretation of the level of disturbance to the 43 

soil reservoir.  44 

An experimental design where bulk soil, rhizosphere soil and plant roots are sampled 45 

and microbial communities determined for each of the three compartments can easily 46 

produce a contingency matrix [10, 11]. Based on the matrix, beta-diversity are usually 47 

calculated, showing the compositional similarity of microbial community between each other. 48 

Thereby, the distances between samples from bulk soil (B), rhizosphere soil (R) and plant 49 

endosphere (E) based on Bray-Curtis dissimilarity as the equation (1), where nik is the 50 

abundance of OTU k at the i and j samples.  51 

DistanceBray−Curtis = 
∑|𝑛𝑖𝑘−𝑛𝑗𝑘|

∑(𝑛𝑖𝑘+𝑛𝑗𝑘)
                                        (1) 52 

Based on the distances, a triangle can be constructed in a plane (Fig. 1). Consequently, 53 

the angle (α) size between the distance from bulk soil to endosphere (|BE|) and the distance 54 

from bulk soil to rhizosphere (|BR|) can be easily calculated from this ordinations. 55 
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 56 

Fig. 1 The triangle in a plane based on Bray-Curtis distances among the microbial 57 

communities’ structures in bulk soil (B), endoshphere (E) and rhizosphere (R). α is the angle 58 

degree between the |BE| and |BR|. Panels A and B indicate the two kinds of treatment 59 

arrangement in a plane. The back arrow indicates the assembling vector of rhizosphere 60 

microbiota recruiting from the bulk soil. Panels C shows the equations for calculating angle 61 

(α) size. 62 

 63 

Then, we may link the endosphere (E) point with the bulk soil (B) point. Based on this line, 64 

an X-axis was constructed, then at the point B, a vertical line was drawn to be the Y-axis (Fig. 65 

2). Thus, the vector representing the contribution of rhizosphere microbial assembly from the 66 

bulk soil (BR) can be decomposed along the X- and Y-axis. The resulting vector, along the X-67 

axis, weights the effect from “plant selection”, since 1) the endophyte assemblages 68 

predominantly depends on the plant genotype, 2) the root endophyte assemblages 69 

overwhelmingly relies on the soil microbial reservoir since very few species stem from seed-70 

borne or other negligible environments.  71 
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 72 

Fig. 2 Decomposition of the rhizosphere microbial assembling forces into plant selection 73 

vector and Soil reservoir vector. X-axis was constructed based on the link line between bulk 74 

soil (B) and endosphere (E), and Y-axis was drawn as a vertical line at the point of B. the blue 75 

vectors indicate the partitioned vector of rhizosphere microbiota assembling. Panels A and B 76 

indicate the two kinds of treatment arrangement. Panels C shows the equations for “plant 77 

selection” and “soil reservoir”. 78 

 79 

The other resulting vector, along the Y-axis and always pointing to the rhizosphere, 80 

indicates that the soil reservoir randomly influences microbial assembly in the rhizosphere. 81 

This stochastic process influenced by the soil microbial reservoir effect can be weighted as 82 

“Soil reservoir”. 83 

As described above, we successfully weighted the major processes impacting the 84 

assembly of the rhizosphere microbiome due to plant selection (a deterministic process) and 85 

from the soil reservoir (a stochastic process). These effects were termed as “plant selection” 86 

and “soil reservoir”, respectively.  87 

However, it is interesting to observe that: 1) if α < 90˚ (Fig.2A), the value of the plant 88 

selection effect can be positive, this means the vector points to the direction of the 89 

endosphere microbiome, indicating the plant selection confers a recruiting power for 90 

microbial assembly in the rhizosphere; 2) if α > 90˚ (Fig.2B), a negative value of plant selection 91 

is obtained, this means the vector points in the reverse direction in relation to the endosphere. 92 

This negative value indicates that plant selection is a repulsive effect in assemblage selection, 93 

perhaps due to incompatibility between plant growth and the indigenous microbiota. We 94 
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suspect that this incompatibility may be observed in disease-conducive soils, as previous 95 

studies have reported the recruitment of beneficial microbes for fitness maintenance [12, 13]. 96 

Thus, if the bulk soil microbial reservoir is characterized by microbial taxa detrimental to plant 97 

fitness, a plant-derived negative selection may take place.  98 

Overall, this proposed method provides a platform to partition contributions in 99 

rhizosphere microbiome assembly from plant selection (a deterministic process) and soil 100 

reservoir (a stochastic process). For example, this method can be used to quantify the soil 101 

reservoir effect with one cultivar plant in different soils or between different cultivars in one 102 

soil type. This weighting method may also provide a comparable parameter to evaluate soil 103 

health for plant growth.  104 
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