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Abstract

Immune checkpoint inhibitor (ICI) treatments produce clinical benefit in many patients. However,

better pretreatment predictive biomarkers for ICI are still needed to help match individual pa-

tients to the treatment most likely to be of benefit. Existing gene expression profiling (GEP)-based

biomarkers for ICI are primarily focused on measuring a T cell-inflamed tumour microenvironment
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that contributes positively to the response to ICI. Here, we identified an immunosuppression signa-

ture (IMS) through analysing RNA sequencing data from a combined discovery cohort (n = 120)

consisting of three publicly available melanoma datasets. Using the ratio of an established IFN-γ

signature and IMS led to consistently better prediction of the ICI therapy outcome compared to a

collection of nine published GEP signatures from the literature on a newly generated internal vali-

dation cohort (n = 55) and three published datasets of metastatic melanoma treated with anti-PD-1

(n = 48) and anti-CTLA-4 (n = 42) as well as in patients with gastric cancer treated with anti-

PD-1 (n = 45), demonstrating the potential utility of IMS as a predictive/prognostic biomarker

that complements existing GEP signatures for immunotherapy.

Key words: Immunology, immunotherapy, anti-PD-1, biomarker, tumour microenviron-

ment, immune checkpoint inhibitor

1 Introduction

Historically, advanced melanoma has a poor prognosis, with a 5-year survival rate of less than

10%1. Immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 have shown improved

survival in advanced melanoma patients1–4, but only a subset of patients respond. Additionally, the

efficacy of ICIs has been observed to be significantly lower for East Asian melanoma patients than

for Caucasian patients5, 6.

Published data suggest that tumour mutational burden (TMB) and PD-L1 expression may

predict the clinical benefit of anti-PD-1 therapy in multiple cancer types7–9. Although the potential
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predictive power of PD-L1 expression for the clinical benefit of anti-PD-1 therapy remains con-

troversial for advanced melanoma patients10, 11, higher TMB has been correlated with a superior

clinical response12, 13, improved survival14, 15, and durable benefit12, 16 in advanced melanomas. In

Asian melanoma patients, acral17, 18 and mucosal melanomas18 are the predominant subtypes and

generally have a low point mutation burden. Consequently, it is not clear whether TMB is an

effective predictor for advanced Asian melanoma patients.

In addition to TMB and PD-L1 expression, prediction models based on gene expression pro-

filing (GEP) have also been proposed. Most GEP signatures consider T cell inflamed microenvi-

ronments characterized by the upregulation of IFN-γ signalling, antigen presentation, and immune

checkpoint-related genes when predicting response to ICIs across multiple cancer types. However,

these features are necessary but not always sufficient for a cancer patient to receive clinical benefit

from ICI treatments19. A recent meta-review showed that predictive models built on inflamed GEP

signatures achieved a moderate area under the receiver operator curve (AUC) value of 0.65 for the

summary receiver operation characteristic (sROC) curve generated from 10 different solid tumour

types in 8,135 patients20.

Here, we argued that immune suppressive elements in the tumour microenvironment (TME)

should be considered in combination with an inflamed GEP signature to more accurately predict

ICI therapy outcomes. The main objective of this study was to develop immunosuppressive GEP

signatures that, when used in combination with inflamed GEP signatures, could better stratify

patients based on their potential benefits from ICI therapy. We started by analysing RNA-seq data
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from baseline biopsy samples of melanoma patients treated with anti-PD-1 therapy and identified

a set of 18 genes that played an “antagonistic” role against a pro-inflammatory TME and lead to

negative outcomes in the discovery cohort consisting of multiple datasets. Our results reveal that

key genes of the identified immunosuppression signature (IMS) are related to hallmark activities

of cancer-associated fibroblasts (CAFs), macrophages and epithelial to mesenchymal transition

(EMT), and the balance between the IFN-γ signature and the IMS plays an important prognostic

and predictive role in both immunotherapy-naive primary tumours from The Cancer Genome Atlas

(TCGA) database and ICI-treated patients.

2 Results

Definition of an immunosuppression signature. We reviewed the literature and found three ex-

ternal datasets14, 15, 21 of advanced melanoma treated with an anti-PD-1 ICI with response and RNA-

seq data, which we used as our discovery cohort (n = 120; Methods). We then identified 18 genes

of which the expression levels, after adjusting for IFN-γ signature score, are consistently associ-

ated with negative response to ICI in the discovery cohort as our IMS (Fig. 1a-c). The genes in

IMS with their respective biological functions are listed in Supplementary Table 1.

Fig. 1d shows a heatmap of the expression of all genes in the IMS and IFN-γ signatures in

the combined discovery cohort. Patients with elevated expression of IFN-γ-related genes included

both responders and nonresponders, suggesting that an inflamed TME alone, as indicated by a

higher IFN-γ signature score, is not sufficient to ensure positive outcomes from ICI. On the other
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hand, elevated expression levels of IMS genes were observed in patients from the nonresponder

groups, particularly in the IFN-γ+ subgroup (n = 49, p = 0.0006). These data indicate a po-

tential immunosuppressive role of the IMS genes that is opposite to the role of the IFN-γ related

inflammatory signature, and both signatures should be considered in order to have more accurate

predictions of outcomes from immunotherapy.

Association of the immunosuppression signature with immune cell types. The identified IMS

shows a strong presence of genes related to CAFs (FAP and PDGFRB22) and tumour-associated

macrophages (TAMs) (CD16323 and SIGLEC124, 25) as well as their associated cytokines or chemokines

that lead to an immunosuppressive microenvironment (IL1026, CCL2, CCL8, and CCL1314) and

stromal activities that lead to tumour proliferation, invasion and immune escape such as EMT or

extracellular matrix (ECM) degradation (AXL27, TWIST2, ADAM1228, and COL6A329). There-

fore, high infiltration of CAFs and myeloid cells and their related stromal activities may be the

reasons behind the lack of response from patients with an inflammatory TME. To further vali-

date this hypothesis, we performed digital cell composition analysis using xCell30 on a combined

melanoma dataset consisting of the three datasets in the discovery cohort and a TCGA melanoma

dataset (n = 516), and analysed the distribution of different immune cell types with respect to the

IFN-γ signature and IMS scores.

As expected, we observed that the IMS score was positively correlated with the abundances

of fibroblasts (r = 0.62, p < 0.0001), monocytes (r = 0.45, p < 0.0001) and macrophages

(r = 0.34, p < 0.0001) (Fig. 2a). Stratification of patients into IFN-γ+/- and IMS+/- subgroups
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according to their median values further revealed the different distributions of immune cells in re-

lation to these two signatures (Fig. 2b). Fibroblasts were significantly enriched in IMS+ subgroups

regardless of IFN-γ status (p < 0.0001; Fig. 2c). In addition, higher abundances of macrophage

were associated with both higher IMS scores and higher IFN-γ signature scores. Interestingly, M2

macrophages, which play an important immunosuppressive role in the TME, were significantly

associated with the IMS score in only the IFN-γ+ subgroups (p = 0.0281) but not the IFN-γ-

subgroups. On the other hand, higher IFN-γ signature scores were associated with increased in-

filtration of CD8+ T cells, CD4+ T cells and B cells. However, the association of IMS scores and

abundances of these cells within the microenvironment is not significant. All these results are con-

sistent with the notion that IMS genes are related to immunosuppressive activities in cancers, and

the balance between IFN-γ signature and IMS scores has a significant role in determining which

patients benefit from adaptive immune rejuvating therapies.

Balance between the IFN-γ signature and the IMS as a biomarker for cancer. We next stud-

ied the distribution of IMS scores and their interaction with IFN-γ signature scores in different

tumour types using TCGA data. First, we analysed the correlation between IMS scores and IFN-γ

signature scores for all TCGA patients (n = 11, 043; Fig. 3a). The results showed that the IFN-γ

signature and IMS scores had a modest positive correlation with r = 0.53 (p < 0.0001); however,

IMS scores were poorly explained by IFN-γ signature scores (R2 = 0.28), suggesting that these

two signatures are not fully overlapping and might contribute complementary information regard-

ing the TME. A similar conclusion can be made on the correlation of the IMS and IFN-γ scores on

selected cancer types from TCGA (Supplementary Fig. 1).
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Given that the status of the tumour immune microenvironment and the associated composi-

tion of immune cells contain prognostic information, we hypothesized that the balance between

IFN-γ signature and IMS may be associated with the survival of cancers. To assess this possibility,

we performed a stratified multivariate analysis using Cox proportional hazards regression within

each TCGA cancer type. The results showed that the association between the ratio of IFN-γ sig-

nature to the IMS score (IFN-γ/IMS) and overall survival (OS) varied according to cancer type

(Fig. 3b). A higher IFN-γ/IMS ratio was associated with a modest prognostic benefit after ad-

justing for sex, age, and TMB in breast invasive carcinoma (BRCA) (HR = 0.93; 95% CI: 0.88 -

0.99), cutaneous melanoma (SKCM) (HR = 0.91, 95% CI: 0.84 - 0.98), stomach adenocarcinoma

(STAD) (HR = 0.85; 95% CI: 0.76 - 0.94), and cervical tumours (CESC) (HR = 0.83; 95% CI:

0.73 - 0.96). Conversely, a higher IFN-γ/IMS ratio was associated with poor prognosis in uveal

melanoma (UVM) (HR = 1.50; 95% CI: 1.07 - 2.11) and brain lower-grade gliomas (LGG) (HR =

1.41; 95% CI: 1.06 - 1.88), suggesting that these cancers may have different antitumour immune

responses than those cancers mentioned previously. Interestingly, it was previously reported that

a higher TMB was associated with poor survival in patients with glioma7. Associations of the

IFN-γ/IMS ratio and survival in different directions have also been observed in other cancer types

but did not reach statistical significance.

We further checked the relationship between the IFN-γ/IMS ratio and TMB scores in TCGA

data and found that there was a positive but weak association between them (r = 0.20,R2 = 0.042,

p < 0.0001; Fig. 3b) on all samples from TCGA datasets (n = 11, 043) and on selected cancer

types (Supplementary Fig. 1).
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Finally, we compared the median values of the IFN-γ signature score, the IMS score, and

their ratio with objective response rates (ORRs) to anti-PD-1 therapies for cancer types with effi-

cacy performance data available31. A positive correlation of ORR with the IFN-γ signature score

(R2 = 0.27, p = 0.047, Fig. 3e) and IFN-γ/IMS (R2 = 0.54, p = 0.001, Fig. 3g) was observed

(Fig. 3f). Importantly, tumours with high median IFN-γ/IMS values, most notably SKCM32, colon

adenocarcinoma (COAD), CESC33, bladder urothelial carcinoma (BLCA)34, lung squamous cell

carcinoma (LUSC)35 and liver hepatocellular carcinoma (LIHC), have shown clinical sensitivity to

ICI therapies (Fig. 3g). Some tumour types (e.g., pancreatic adenocarcinoma (PAAD) and BRCA)

have shown poor responses to immunotherapy despite their moderate to high median IFN-γ scores

(Fig. 3e). These tumours are known to be highly infiltrated with myeloid cells, which may serve as

an additional immunosuppressive mechanism preventing efficacy with ICI therapy36, 37. Notably,

these cancer types were also characterized by elevated IMS scores (Fig. 3c), and hence, a better

association with ORR to ICI therapies was observed when both signatures were considered.

Ratio of the IFN-γ signature score to the IMS score predicts PD-1 blockade efficacy. We next

assessed whether directly using the ratio of the IFN-γ signature score to the IMS score could be

used as a reliable metric to predict anti-PD-1 therapy outcome for melanoma patients. We used

IFN-γ/IMS together with the clinical response data to generate receiver operating characteristic

(ROC) curves to quantify its prediction performance in our discovery cohorts. The resulting AUCs

were in the range of 0.70 - 0.83 (Supplementary Fig. 3b).

We next tested the prediction ability of IFN-γ/IMS in a newly generated RNA-seq dataset
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from 55 tumour tissues of melanoma patients treated with anti-PD-1 monotherapy at Peking Uni-

versity Cancer Hospital (PUCH), Beijing, China. In this dataset, IFN-γ/IMS achieved a prediction

accuracy of AUC = 0.81 (95% CI: 0.69 - 0.93; Fig. 4e). Using the threshold that generated the

maximum Youden index38 to divide patients into predicted responder (n = 29) and predicted non-

responder groups (n = 26), IFN-γ/IMS successfully captured 67.71% of nonresponders (23 out

of 35) with only 3 exceptions (1 patient with a PR/CR and 2 patients with SD were misclassified

as nonresponders), achieving a classification accuracy of 88.5% (p = 0.0006) for this group. On

the other hand, of the 29 patients classified as predicted responders by IFN-γ/IMS, 17 (13 pa-

tients with a PR/CR and 4 patients with SD) actually responded. Overall, a higher IFN-γ/IMS

ratio was associated with a better ORR (p = 0.0005; Fig. 4a), OS (HR = 2.78; 95% CI: 0.80

- 9.64; p = 0.1214; Fig. 4h) and progression free survival (PFS) (HR = 3.45; 95% CI: 0.97 -

12.19; p = 0.0547; Fig. 4g) than a lower IFN-γ/IMS ratio. Compared with IFN-γ signature-based

classification (Fig. 4b), IFN-γ/IMS correctly classified six nonresponders that would otherwise be

misclassified by IFN-γ signature as responders due to their medium to high IFN-γ scores, and one

patient who had low IFN-γ score but responded to ICI therapy as responder (Fig. 4c). The OS and

PFS results were not significant due to limited sample size, and relatively short follow-up period of

this cohort. However, it was recently found that OS and PFS were significantly different between

clinical responders and progressors of melanoma patients to anti-PD-1 therapy13, suggesting that

short-term response could be used as a surrogate for the survival benefits of patients in this context.

In the public dataset of 48 preclinical metastasis melanoma treated with anti-PD-1 (Liu1913), IFN-

γ/IMS achieved an AUC of 0.66 (95% CI: 0.50 - 0.83, Fig. 5b). In addition, patients with higher
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IFN-γ/IMS ratio (with cutoff value based on the Youden index) had better ORR (p = 0.0043;

Supplementary Fig. 2e) and longer PFS (HR = 4.36; 95% CI: 1.36 - 14.03; p = 0.0013, Fig. 5d).

Collectively, the above data demonstrate the potential value of IFN-γ/IMS ratio as a combinatorial

biomarker for anti-PD-1 treatment for metastastic melanoma.

Although the IMS was derived from advanced melanoma cohorts receiving anti-PD-1 treat-

ment, the resulting genes measure immune-related expression levels with minimal contribution

from tumour-related transcriptomic activities. Therefore, the signature may provide a treatment

or tumour-type agnostic insight into immune microenvironment activities. To test this concept,

we further evaluated the prediction performance of IFN-γ/IMS on two publicly available RNA-

seq datasets with pretreatment samples from melanoma patients treated with anti-CTLA4 therapy

(VanAllen15; n = 42)39 and metastatic gastric cancer patients treated with anti-PD-1 therapy

(Kim18; n = 45)40. The resulting AUCs were 0.75 (95% CI: 0.59 - 0.91; Fig. 5b) and 0.82

(95% CI: 0.64 - 0.99; Fig. 5b), respectively, for these two datasets. In addition, patients with high

IFN-γ/IMS ratios (using the Youden index to determine the cutoff point) had better ORR on the

VanAllen15 dataset (p = 0.0004; Supplementary Fig. 2d) and the Kim18 dataset (p = 0.0022;

Supplementary Fig. 2f) and longer OS in the VanAllen15 dataset (HR = 3.06; 95% CI: 1.41 - 6.61;

p = 0.0032; Fig. 5d) than patients with low IFN-γ/IMS ratios, suggesting the potential of using the

IFN-γ/IMS ratio as a predictive/prognostic biomarker for immunotherapies different to anti-PD-1,

or other cancer types.
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Comparison with other GEP signatures.

Currently, there were significant number of independent studies on GEP signatures that predict the

response of patients to anti-PD-1 therapy. To compare the prediction accuracy of the proposed

IFN-γ/IMS ratio with that of existing GEP signature-based predictors, we generated predictions

using nine published GEP signatures (Table 2) and the comparison results showed that IFN-γ/IMS

ratio achieved better AUC performance on both PUCH (Fig. 4f) and the three external validation

cohorts (Fig. 5c). One limitation of existing GEP signature studies is that many of these signatures

were validated with independent cohorts within each publication, but frequently these signatures

have not performed well in follow-up reports. To further validate the robustness of the proposed

approach, we performed a randomized permutation test where three datasets were randomly se-

lected from the seven datasets (Table 1) as the discovery cohort to identify the top 18 IMS genes

as described previously. We then tested the prediction performance of ratio of IFN-γ and the iden-

tified IMS on the remaining four datasets. The results from the total 35 purmutation tests indicated

that IFN-γ/IMS outperformed other GEP singatures by a significant margin (Wilcoxon matched-

pairs signed rank test, p < 0.0001; Fig. 6a). Significantly, we found that the IMS signatures from

the randomized tests were highly consistent despite that they were obtained from different training

datasets. More than half of the total 630 occurrences of the IMS genes from the 35 randomized

tests were from the top 23 frequent genes (Fig. 6b). Moreover, of the 18 IMS genes identified from

the original discovery cohorts, 13 (OLFML2B, AXL, ADAM12, STC1, VCAN, PDGFRB, IN-

HBA, CAT1, COL6A3, SIGLEC1, CD163, IL10, TWIST2) can be found in these top 23 frequent

IMS genes from the randomized test. Further analysis of these genes on a public single-cell RNA-
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seq (scRNA) dataset from melanoma41 indicated that most of these genes are highly expressed on

CAF (e.g., OLFML2B, VCAN, PDGFRB, COL6A3; Fig. 6d and Supplementary Fig. 4) and/or

macrophages (e.g., VCAN, CD163, SIGLEC1; Fig. 6d and Supplementary Fig. 4), confirming the

significant roles of these immune cells and their related immune suppressive activities in preventing

patients from responding to anti-PD-1 therapy.

3 Discussion

There is significant interest in developing robust biomarkers of response to immunotherapy, as

well as identifying actionable targets in those who do not respond to the current standard ICI

therapies. Gene expression biomarkers, such as Oncotype DX42, have demonstrated clinical utility

in predicting treatment benefits in breast cancer. However, as interactions between the tumour

and its microenvironment are highly complex, constructing predictors of patient response to ICIs

remains a serious challenge.

Existing efforts to create gene expression-based tests for ICI efficacy have mainly focused on

developing “response signatures” that measure the expression of adaptive immune response-related

inflammatory genes20, most of which include an IFN-γ gene signature as a major component43.

However, due to the presence of intricate immunosuppressive mechanisms within the tumour mi-

croenvironment (TME), the presence of a peripherally suppressed adaptive immune response alone

appears to be necessary but not sufficient for clinical benefit from PD-1/PD-L1 blockade. In this

study, we identified an immunosuppression signature that, when combined with an inflammatory
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signature, had prognostic/predictive value in patients with advanced melanoma treated with PD-1

blockade. To maximize our chance in identifying the correct genes for this signature, we started

with an established 10-gene IFN-γ signature measuring the expression of genes associated with

cytotoxic cells, antigen presentation, and IFN-γ activity43 and then selected genes that were con-

sistently upregulated in nonresponsive vs responsive groups after adjusting for the IFN-γ signature

score based on their p-values on multiple datasets. In addition, since conceptually, a truly predic-

tive gene should produce a significant result in all datasets, we used Pearson’s method44, which is

more sensitive to the largest p-value, to combine p-values from different datasets to avoid artefacts

due to single significance from individual dataset45.

Strikingly, the genes identified in our IMS through the above computational method were

highly consistent with several important biological activities related to innate or acquired resistance

to ICIs. CAFs are a nonredundant, immunosuppressive component of the TME46, 47. It was previ-

ously reported that INHBA production by cancer cells helps to induce CAFs, and ablating inhibin

β A decreases the CAF phenotype both in vitro and in vivo48. CAFs hinder antitumour immu-

nity by secreting immunosuppressive cytokines such as IL-10 and TGF-β, reducing CTL function

and viability49, 50 and attracting immunosuppressive myeloid cells, including tumour-associated

macrophage (TAMs), via CCL247, 51. Notably, SIGLEC1/CD163 is associated with the activa-

tion of macrophages towards an immunosuppressive phenotype, and accordingly, the expression

of both CAF (FAP+) and TAM (SIGLEC1+) markers is associated with poor clinical outcomes

across multiple tumour types52–55. CAF-mediated EMT, which is strongly correlated with the ex-

pression of AXL, TWIST2 and ADAM12 from the IMS, can result in biomechanical and biochem-
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ical changes that facilitate tumour immune escape, invasion, and metastasis56. The dense collagen

matrix produced by CAFs may also present a physical barrier to the infiltration of T lymphocytes57

or treatments reaching the cancer cells58. Indeed, the association between a lack of response to

ICIs and upregulated EMT-related genes has been observed in multiple cancers40, 59, and inhibiting

CAF/TAM-related pathways and extracellular collagen and hyaluronan can induce T cell accumu-

lation and improve the outcome of ICIs60–63, reinforcing the role of those stromal-related activities

in limiting the efficacy of immune checkpoint blockade immunotherapy.

Using the ratio of opposing immune signatures instead of the absolute value of individual

signatures as a predictive/prognostic biomarker brings another advantage. It is well known that

to compensate for potential technical variation, raw gene expression data from RNA-seq must be

normalized so that meaningful biological comparisons can be made64. Typically, this is done with

a set of housekeeping genes that are expected to maintain constant expression levels under differ-

ent experimental conditions65. However, it has become increasingly clear that housekeeping gene

expression levels may vary considerably in some conditions66, 67. When that happens, the normal-

ization process itself can lead to increased intersample “noise” that covers meaningful differences

in target genes if the chosen housekeeping genes fluctuate randomly or erroneous results if there is

a directional change in the housekeeping genes between experimental groups66, 68. The calculation

of the IFN-γ/IMS ratio provides a self-normalization method that directly measures the balance

between contradicting biological processes within the tumour microenvironment, thus eliminating

the need for using housekeeping genes that can be unreliable.
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Our study has limitations. Since the current ICI clinical trials have generated gene expres-

sion data for only a limited number of pretreatment samples, which were insufficient to train robust

prediction models, we did not systematically optimize the weights of individual genes in the IFN-

γ/IMS ratio calculation. With more RNA-seq data available from subsequent studies, we expect

that further optimization of the combined biomarker will yield even better predictive accuracy. In

this study, we did not attempt to specify a universally applicable cutoff point for IFN-γ/IMS for

different datasets due to potential batch effects from different RNA-seq procedures conducted at

multiple sites. Rather, we demonstrated a trend that shows an increase in benefits with increasing

IFN-γ/IMS ratios. Nevertheless, we envision that a relevant cutoff would need to be aligned to

specific assay designs and clinical situations, and such a cutoff point could be further standard-

ized based on additional evidence of merits from future clinical studies. Finally, our analysis is

retrospective in nature, and validation of the findings in additional datasets is warranted.

In conclusion, the IMS studied in this paper exemplifies the potential of using GEP sig-

natures for modeling the adverse TME, and using IMS in combination with an existing inflam-

matory GEP signature enables better identification of patients who could respond favorably to

ICIs. Currently, clinical trials are assessing the efficacy of combining anti-PD-1 therapy with

medicines that target at normalization of immune suppressive TME including the CSF1R inhibitor

Cabrilizumab for the treatment of resectable biliary tract cancer (NCT03768531), CCR2 inhibitor

plozalizumab for the treatment of melanoma (NCT02723006), the FAP inhibitor RO6874281 for

the treatment of metastatic head and neck, oesophageal or cervical cancers (NCT03386721) and

metastatic melanoma (NCT03875079), and the TGF-β inhibitor galunisertib (LY2157299) for the
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treatment of advanced-stage NSCLC or hepatocellular carcinoma (NCT02423343) and metastatic

pancreatic cancer (NCT02734160). However, due to the diversity of the immune evasion mecha-

nisms in inflammatory tumours, such as loss of heterozygosity at the HLA locus69, mutations in

JAK-STAT signalling70 or loss of IFN-γ pathway genes71, reduced expression or loss of function of

β2-microglobulin72, and loss of immunogenic mutations73 or epigenetic repression of neoantigen

transcripts74, specific immunosuppressive mechanisms utilized by each individual tumour would

still need to be fully understood and gauged to better direct patients to different combination ther-

apy options. In this regard, it is anticipated that IMS or future immunosuppressive signatures

gleaning through deeper understanding of the immunosuppressive mechanisms of cancer would

enable the development of more effective stratification models or therapeutic combinations to in-

crease the efficacy and cost-effectiveness of immunotherapies for the benefits of cancer patients.

4 Methods

Patients and tissue samples. In this study, we obtained 55 formalin-fixed, paraffin-embedded

(FFPE) tumour tissues from melanoma patients treated with anti-PD-1 monotherapy at PUCH,

Beijing, China, between March 2016 and March 2019 (Supplementary Table 2). Diagnosis was

histopathologically confirmed for all patients. Clinical data, including sex, age, tumour site, tu-

mour thickness, metastasis status, and clinical efficacy, were collected. Therapy outcomes eval-

uated following Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, including

presence of a complete or partial response (CR/PR), stable disease (SD) and progressive disease

(PD), were used to assess efficacy. OS was calculated from the treatment start date. Patients who
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did not die were censored at the date of last contact.

Whole-transcriptome RNA sequencing. Total RNA was extracted from unstained FFPE tumour

samples by the All Prep-DNA/RNA-Micro Kit (Qiagen) following the standard manufacturer’s

protocol. Reverse transcription and second-strand cDNA synthesis were subsequently performed.

Barcoded RNA libraries were generated and captured by a customized whole-exome panel. All

libraries were sequenced on the Illumina NovaSeq 6000 platform with 2x150 bp paired-end reads.

The mean sequencing coverage across all samples was ∼100X (3.5 G). RNA-seq reads were

mapped to the human reference genome GRCh37 using STAR75, and gene expression was quan-

tified using RSEM76. Coding region reads were counted to calculate fragments per kilobase of

transcript per million mapped reads (FPKM) values at the gene level and log2-transformed before

analysis to avoid extremely skewed gene expression distributions.

External data sources. We collected the RNA-seq data of melanoma patients from six immunother-

apy studies with gene expression profiles for pretreatment tumours and complete clinical informa-

tion, including the Riaz17 (n = 51)15, Hugo16 (n = 28)14, Gide19 (n = 41)21, VanAllen15

(n = 42)39, Liu19 (n = 54)13 and Kim18 (n = 45)40 datasets (Table 1). Patients from these clin-

ical studies were treated with nivolumab15 and/or pembrolizumab14, 21. For the Gide19 and Liu19

studies, only baseline data from samples that received anti-PD-1 monotherapy (nivolumab or pem-

brolizumab) were used. The immunotherapy outcomes provided in the original publications fol-

lowing RECIST guidelines (PR/CR/SD/PD) were used in our analysis. The gene expression data

of VanAllen15 and Liu19 are download from respective references as provided by the authors. For
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Riaz17, Hugo16, Gide19 and Kim18, the RNA-seq raw data was obtained and processed by the

above mentioned pipeline to generate the gene expression data.

We downloaded TCGA Level-3 RSEM-normalized RNA-seq data and mutation packer calls

from the TCGA database. The RNA-seq data were log2-transformed. Each patient’s TMB was

calculated as the number of nonsynonymous mutations.

Housekeeping normalization. We renormalized the RNA-seq data using a set of 20 reference

(“housekeeping”) genes (ABCF1, DNAJC14, ERCC3, G6PD, GUSB, MRPL19, NRDE2, OAZ1,

POLR2A, PSMC4, PUM1, SDHA, SF3A1, STK11IP, TBC1D10B, TBP, TFRC, TLK2, TMUB2,

and UBB) with low variance across a set of banked tumour samples from a variety of cancer types.

The log2-transformed expression of each gene was normalized by subtracting the arithmetic mean

of the log2-transformed expressions of the housekeeping genes.

Identification of the IMS genes. To identify the IMS genes, we performed a one-sided Student’s

t-test to capture genes that were systematically upregulated in the nonresponse groups (PD) vs re-

sponse groups (PR/CR) after normalization by the IFN-γ signature score in each individual dataset.

Due to the large dimensionality of the data, we restricted our search to the 770 cancer immune-

related genes curated in Nanostring’s IO 360 panel. The resulting p-values from the three datasets

in the discovery cohort were combined using Pearson’s method44 to avoid artefacts due to single

significance from individual dataset. The genes were ranked based on their Pearson combined

p-values, and the top 18 genes were identified as our IMS genes.
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Calculation of GEP signatures. We collected nine published GEP signatures related to the im-

mune checkpoint response from the literature and validated in our cohorts (Table 2). Sample-wise

scores of these signatures were calculated from RNA-seq data following the methodology de-

scribed in the corresponding papers. Genes with unavailable expression data were excluded from

the calculation of signature scores.

For the IFN-γ signature and IMS scores in this paper, we used the arithmetic mean of the

log2-transformed, housekeeping gene normalized expression level of the 10-gene “preliminary”

IFN-γ signature (IFNG, STAT1, CCR5, CXCL9, CXCL10, CXCL11, IDO1, PRF1, GZMA, and

HLA-DRA)43, and the 18 IMS genes listed in Supplementary Table 1 respectively. Furthermore,

the IFN-γ signature/IMS ratio was calculated as the difference between these two scores in the

logarithmic domain.

Single cell RNA-seq. Briefly, scRNA-seq data of 31 melanoma tumors were downloaded from

GEO database (GSE115978)41. The original expression profiles and cell type annotations were

used. Principal component analysis (PCA) was performed to reduce the dimensionality of the

scRNA-seq profiles. Then t-SNE projections were generated using the first 25 principal compo-

nents. Both PCA and t-SNE analysis were performed by RunPCA and RunTSNE functions in the

Seurat package (version 3.1.0) with default parameters.

Data analysis and statistical information. Associations between categorical measurements and

patient groups, such as the predictive accuracy of different biomarkers/panels, were evaluated us-

ing Fisher’s exact test. Differences in continuous measurements were tested using the two-tailed
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Mann-Whitney U-test. Correlations between two groups of continuous variables were evaluated

using Pearson correlation analysis. The Kaplan-Meier method was utilized to estimate overall sur-

vival, and difference between groups were assessed using the log-rank test. Two-sided p-values

were used unless otherwise specified, and a p-value less than 0.05 was considered significant. For

boxplots, centre mark is median and whiskers are minimum/maximum unless specified otherwise.

PRISM was used for basic statistical analysis and plotting (http://www.graphpad.com), and

the Python language and programming environment were used for the remainder of the statistical

analysis. The abundances of multiple cell types in whole tissue samples were estimated using

xCell30.

Code availability. Codes are implemented in Python and are publicly available in GitHub: http:

//github.com/xxx.

Data availability. All patients data analysed from published papers are referenced to and publicly

available accordingly. The gene expression data of patients from PUCH cohort will be deposited

in the NCBI database once the manuscript is accepted for publishing. All the other data supporting

the findings of this study are available within the article and its Supplementary Information files

and from the corresponding author upon reasonable request.
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Döcker, and Saskia Biskup. Tumor mutation burden and circulating tumor DNA in com-

bined CTLA-4 and PD-1 antibody therapy in metastatic melanoma - Results of a prospective

biomarker study. Journal for ImmunoTherapy of Cancer, 7(1):1–15, 2019.

13. David Liu, Bastian Schilling, Derek Liu, Antje Sucker, Elisabeth Livingstone, Livnat Jerby-

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.18.047852doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.047852
http://creativecommons.org/licenses/by-nc-nd/4.0/


Amon, Lisa Zimmer, Ralf Gutzmer, Imke Satzger, Carmen Loquai, et al. Integrative molec-

ular and clinical modeling of clinical outcomes to pd1 blockade in patients with metastatic

melanoma. Nature Medicine, 25(12):1916–1927, 2019.

14. Willy Hugo, Jesse M Zaretsky, Lu Sun, Chunying Song, Blanca Homet Moreno, Siwen Hu-

Lieskovan, Beata Berent-Maoz, Jia Pang, Bartosz Chmielowski, Grace Cherry, et al. Genomic

and transcriptomic features of response to anti-pd-1 therapy in metastatic melanoma. Cell,

165(1):35–44, 2016.

15. Nadeem Riaz, Jonathan J Havel, Vladimir Makarov, Alexis Desrichard, William H Sharfman,

Shailender Bhatia, Wen-jen Hwu, Thomas F Gajewski, and L Craig. Tumor and microenvi-

ronment evolution during immunotherapy with Nivolumab. Cell, 171(4):934–949, 2017.

16. Nicholas Mcgranahan, Andrew J S Furness, Rachel Rosenthal, Rikke Lyngaa, Sunil Kumar

Saini, Mariam Jamal-hanjani, A Gareth, Nicolai J Birkbak, Crispin T Hiley, Thomas B K

Watkins, Seema Shafi, Nirupa Murugaesu, Richard Mitter, Ayse U Akarca, Joseph Linares,

Jake Y Henry, Eliezer M Van Allen, Diana Miao, and Bastian Schilling. Clonal neoanti-

gens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science,

351(6280):1463–1469, 2016.

17. Nicholas K. Hayward, James S. Wilmott, Nicola Waddell, Peter A. Johansson, Matthew A.

Field, Katia Nones, Ann Marie Patch, Hojabr Kakavand, Ludmil B. Alexandrov, Hazel

Burke, Valerie Jakrot, Stephen Kazakoff, Oliver Holmes, Conrad Leonard, Radhakrishnan

Sabarinathan, Loris Mularoni, Scott Wood, Qinying Xu, Nick Waddell, Varsha Tembe, Guli-

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.18.047852doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.047852
http://creativecommons.org/licenses/by-nc-nd/4.0/


etta M. Pupo, Ricardo De Paoli-Iseppi, Ricardo E. Vilain, Ping Shang, Loretta M.S. Lau,

Rebecca A. Dagg, Sarah Jane Schramm, Antonia Pritchard, Ken Dutton-Regester, Felicity

Newell, Anna Fitzgerald, Catherine A. Shang, Sean M. Grimmond, Hilda A. Pickett, Jean Y.

Yang, Jonathan R. Stretch, Andreas Behren, Richard F. Kefford, Peter Hersey, Georgina V.

Long, Jonathan Cebon, Mark Shackleton, Andrew J. Spillane, Robyn P.M. Saw, Núria López-
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FIGURE LEGENDS

Fig. 1 | The definition of the IMS genes. a-c, Volcano plot depiction of differentially expressed

genes after normalization by the IFN-γ score of individual sample by response on Riaz17 (in a,

n = 51), Gide19 (in b, n = 41) and Hugo16 (in c, n = 28). R, responders (CR or PR); NR,

nonresponders (PD) as per RECIST 1.1. IMS genes are highlighted in red. d, Heatmap showing

the expression of genes from the IFN-γ signature and the IMS stratified by IFN-γ and response to
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anti-PD-1 therapy. Rows represent genes and columns represent patients. The expression levels

were z-normalized within rows for visualization. The cutoff value for the IFN-γ signature score

was set to its median. e, The IMS scores in responders versus nonresponders for IFN-γ+ and

IFN-γ- subgroups.

Fig. 2 | Association of IMS with abundance of immune cell types in TME. a- b, Heatmap

showing the Pearson correlation of selected immune cell types with IMS scores (in a) and IFN-γ

(in b) in combined melanoma cohorts consisting of all samples data from the discovery cohort

and TCGA melanoma dataset (n = 516). Fibroblasts showed the strongest association with the

IMS score (Pearson correlation r = 0.62, p < 0.001), followed by M1 macrophage (r = 0.50,

p < 0.001), monocytes (r = 0.45, p < 0.001) and macrophage (r = 0.35, p < 0.001). On

the other hand, CD8+ T-cell showed the strongest association with the IFN-γ score (r = 0.61,

p < 0.0001). c, Violin plot showing the cell type distributions estimated using xCell for 4 groups

of patients with IFN-γ+/IMS+ (n = 183), IFN-γ+/IMS- (n = 75), IFN-γ-/IMS+ (n = 75), IFG-

γ-/IMS- (n = 183) in the combined melanoma cohort. Cutoff values for the IFN-γ signature and

IMS scores were set to their median in all the data.

Fig. 3 | Balance between the INF-γ signature and IMS as a biomarker for cancer. a, Pearson

correlations of IMS score with the IFN-γ signature (r = 0.54, R2 = 0.28, p < 0.0001) for all

TCGA patients (n = 11, 043). b, Pearson correlation of logTMB with IFN-γ/IMS ratio (r = 0.20,

R2 = 0.04, p < 0.0001) for all TCGA patients (n = 11, 043). c, Boxplots showing a summary

of the distribution of IMS scores for all TCGA patients, with tumour types ordered by their me-

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.18.047852doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.047852
http://creativecommons.org/licenses/by-nc-nd/4.0/


dian IMS score. d, Log hazard ratio estimates and 95% confidence intervals, with adjustment

for sex, age, and TMB, with a binary cutoff (top 20% of each cancer type). Cancers in which

the IFN-γ/IMS ratio was statistically significantly (p < 0.05) associated with good prognosis are

highlighted in blue; significant associations with poor prognosis are in red. e-g, Associations of

the ORR to immunotherapy for different cancer types with their median IFN-γ signature (linear

regression goodness-of-fit R2 = 0.27, p = 0.381; in e), IMS (R2 = 0.01, p = 0.715; in f), and

IFN-γ/IMS (R2 = 0.52, p = 0.017; in g) values in the TCGA datasets.

Fig. 4 | Ratio of IFN-γ signature and IMS predicts response to ICI immunotherapy on the

PUCH cohort. a, The ORR of patients from IFN-γ/IMS-high vs IFN-γ/IMS-low and b IFN-γ-

high vs IFN-γ-low on the PUCH cohort. The cutoff points were decided by the Youden index

for IFN-γ/IMS and IFN-γ scores, respectively. c, IFN-γ signature and IMS scores of individual

patients in the PUCH cohort. The red and blue dashed lines indicate the cutoff points for IFN-

γ/IMS ratio and IFN-γ, respectively. d, Waterfall plots of IFN-γ/IMS versus patients with different

clinical responses to anti-PD-1 therapy in the PUCH cohort. e, ROC curve of the sensitivity versus

1-specificity of the predictive performance of IFN-γ/IMS. Patients with SD were not included in

AUC calculation. f, Comparison of the AUC of IFN-γ/IMS with nine GEP signatures (Table 2) in

predicting response to ICI. g, Kaplan-Meier plots of OS and PFS segregated by IFN-γ/IMS ratio

with cutoff points selected according to the Youden index.

Fig. 5 | Ratio of IFN-γ signature and IMS predicts response to ICI immunotherapy on pub-

lished datasets. a, Waterfall plots of the IFN-γ/IMS versus patients with different clinical re-
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sponses to anti-PD-1 therapy in each validation cohort. b, ROC curve of the sensitivity versus

1-specificity of the predictive performance of IFN-γ/IMS. Patients with SD were not included in

AUC calculation. c, Comparison of the AUC of IFN-γ/IMS with nine GEP signatures (Table 2)

in predicting response to ICI. d, Kaplan-Meier plots of OS or PFS segregated by IFN-γ/IMS ratio

with cutoff values selected according to the Youden index identified in individual datasets. Kaplan-

Meier plot for Kim19 was not generated due to unavailability of survival data for this dataset.

Fig. 6 | Robustness of the proposed IMS signatures. a, Comparison of AUC performance of

IFN-γ/IMS ratio with nine published GEP signatures (Table 2) after 35 bootstrapping randomized

tests on the seven datasets (Table 1). In each randomized test, the IMS genes were identified from

three randomly selected datasets (Methods), and the AUC prediction performance of the ratio of

IFN-γ signature and the IMS identified from the randomly selected dataset was evaluated on the

remaining four datasets. Models are sorted by their median AUC performances and Wilcoxon

matched-pairs signed rank test was performed to compare the AUC performances of IFN-γ/IMS

and the second best model T eff. b, Top 23 highly frequent genes from the bootstrapping tests.

Genes in the original IMS signature are marked with an asterisk (*) symbol. c-d, t-SNE plot of

cells from melanoma41. Cells are colored by cell types in (c) and by normalized expression of

different IMS genes in (d).
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Table 1: Cohorts used in this study
Cohort name Tumour type Cohort size Target checkpoint
PUCH Melanoma 55 PD-1
Riaz1715 Melanoma 51 PD-1
Gide1921 Melanoma 41 PD-1
Hugo1614 Melanoma 28 PD-1
VanAllen1539 Melanoma 42 CTLA-4
Liu1913 Melanoma 54 PD-1
Kim1840 Gastric 45 PD-1
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Table 2: GEP signatures used in this study
Signature name Number of genes Description
IFN-γ/IMS 28 This work.
IFN-γ43 6 Averaging the expression levels of the IFN-γ

signature genes.
Exp. Immu.43 18 Averaging the expression levels of the expanded

immune genes.
Roh Immu.77 41 Averaging the expression levels of immune

genes.
Messina78 12 Principal component 1 score from PCA of

expression levels of 12 chemokine signature
genes.

IMPRES79 28 Sum of ratios of 15 checkpoint or immune gene
pairs.

Huang NRS80 69 Averaging the expression levels of neoadjuvant
response signature (NRS) genes.

T eff.81 8 Averaging the expression levels of T-effector
IFN-γ signature genes.

Davoli82 7 Averaging the expression levels of cytotoxic
immune signature genes

Cytotoxic83 2 Averaging the expression levels of granzyme A
(GZMA) and perforin (PRF1).
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