

1 **Extensive hybridization between pig and human *Ascaris* identifies a highly interbred species**
2 **complex infecting humans**

3

4 Alice V. Easton^{1,2*}

5 Shenghan Gao^{3,4*}

6 Scott P Lawton⁵

7 Sasisekhar Bennuru¹

8 Asis Khan⁶

9 Eric Dahlstrom⁷

10 Rita G Oliveira²

11 Stella Kepha⁸

12 Steve F Porcella⁷

13 Joanne P Webster^{2,9}

14 Roy M Anderson²

15 Michael E. Grigg⁶

16 Richard E Davis^{3**}

17 Jianbin Wang^{3,10**}

18 Thomas B Nutman^{1**}

19

20 *Contributed equally to the manuscript

21 **Co-corresponding authors

22 richard.davis@cuanschutz.edu

23 jianbin.wang@utk.edu

24 tnutman@niaid.nih.gov

25

26 1. Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of
27 Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892,
28 USA.

29 2. Department of Infectious Disease Epidemiology, Imperial College London, London W2
30 1PG, UK.

31 3. Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative,
32 University of Colorado School of Medicine, Aurora, Colorado 80045, USA.

33 4. Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.

34 5. Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy & Chemistry,
35 Kingston University London, Kingston Upon Thames, Surrey KT1 2EE, UK.

36 6. Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of
37 Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892,
38 USA

39 7. Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious
40 Diseases, National Institutes of Health, Hamilton, MT 59840, USA.

41 8. London School of Tropical Medicine and Hygiene, Keppel St, Bloomsbury, London, WCIE
42 7HT, UK.

43 9. Royal Veterinary College, University of London, Department of Pathobiology and
44 Population Sciences, Hertfordshire AL9 7TA, UK.

45 10. Present Address: Department of Biochemistry and Cellular and Molecular Biology,
46 University of Tennessee, Knoxville, Tennessee 37996, USA

47

48 **Abstract**

49 Human ascariasis is a major neglected tropical disease caused by the nematode *Ascaris*
50 *lumbricoides*. We report a 296 megabase (Mb) reference quality genome comprised of 17902
51 protein-coding genes derived from a single, representative *Ascaris* worm collected from 60 human
52 hosts in Kenyan villages where pig husbandry is rare. Notably, the majority of human isolates
53 (63/68) possessed mitochondrial genomes that clustered closer to the pig parasite *Ascaris suum*
54 than to *A. lumbricoides*. Comparative phylogenomic analyses identified over 11 million nuclear-
55 encoded SNPs but just two distinct genetic types that had recombined across the genomes analysed.
56 The nuclear genomes had extensive heterozygosity and all samples existed as genetic mosaics with
57 either *A. suum*-like or *A. lumbricoides*-like inheritance patterns supporting a highly interbred
58 *Ascaris* species genetic complex. As no barriers appear to exist for anthroponotic transmission of
59 these “hybrid” worms, a one-health approach to control the spread of human ascariasis will be
60 necessary.

61

62 **Introduction**

63 Approximately 447 million people were estimated to be infected with the intestinal
64 nematode *Ascaris lumbricoides* in 2017, resulting in an estimated 3206 deaths and a loss of over
65 860,000 Disability-Adjusted Life Years (DALYs, Global Burden of Disease Study 2017
66 <http://ghdx.healthdata.org/gbd-2017>). Many infections go undiagnosed, but like other soil-
67 transmitted helminths (STH), *Ascaris* spp. infections contribute significantly to global DALYs,
68 perpetuating the cycle of poverty in areas of endemic infection¹⁻⁴. Despite the large global burden
69 of STH, little is known about *A. lumbricoides* transmission patterns or the true prevalence of
70 infection with the pig parasite *A. suum* infection in people in endemic regions.

71 Deworming has become more widespread in areas of endemic STH infection⁵. Regional
72 health authorities and global health organizations are now looking for strategies to build on these
73 programs by achieving local elimination of STH as a public health problem⁶. A greater
74 understanding of transmission dynamics (including the frequency of zoonotic transmission) using
75 molecular epidemiological methods in settings where *A. lumbricoides* prevalence is low but
76 persistent could help move current efforts towards successfully eliminating transmission through
77 more targeted treatment.

78 Population genetic studies of *A. lumbricoides* have drawn varying conclusions about
79 whether zoonotic transmission is frequent⁷⁻¹⁰. Some studies have shown that cross-species
80 transmission occurs between pigs and humans living in close proximity^{9,11-16}. This is especially
81 common in non-endemic regions, probably because zoonotic transmission is less likely to be
82 identified in areas where human-to-human transmission is common. To date, published results fail
83 to conclude whether the human parasite *A. lumbricoides* and the pig parasite *Ascaris suum* are
84 capable of interbreeding, and it is generally accepted that they exist as separate species.
85 Furthermore, it is unclear whether pigs are an important reservoir of infection in humans worldwide
86 or if *A. suum* is readily transmitted anthroponotically^{7,17-20}. Studies have generally concluded that
87 the genetic differences between *Ascaris* worms collected from human populations in different parts

88 of the world^{11,21} are the result of geographic reproductive isolation. Previous studies using *Ascaris*
89 mitochondrial genomes or genes suggest there are *A. lumbricoides*-type (human-associated) and *A.*
90 *suum*-type (pig-associated) clades^{8,22,23}. Other work suggests multiple clades of worms, only one of
91 which is unique to pigs²⁴.

92 In the current study, we constructed a reference-quality *Ascaris* genome (ALV5) based on
93 sequences from a single female worm collected from a single person in Kenya. This person was
94 presumed to be infected with *A. lumbricoides* as there is a lack of local pig husbandry. Draft *A.*
95 *suum* genomes have previously been constructed from worms obtained from pigs in Australia²⁵
96 and in the United States^{26,27}. The *Ascaris* genome ALV5 was found to be highly similar (99%
97 identity) to the *A. suum* genome from worms collected from pigs in the United States²⁸. Our
98 mitochondrial and whole-genome analyses from an additional 68 individual worms indicate that *A.*
99 *suum* and *A. lumbricoides* form a genetic complex that is capable of interbreeding. Our data support
100 a model for a recent worldwide, multi-species *Ascaris* population expansion caused by the
101 movement of humans and/or livestock globally. *Ascaris* isolates from both pigs and humans may be
102 important in human disease, necessitating a one-health approach to control the spread of human
103 ascariasis.

104

105 **Results:**

106 **Human *Ascaris* reference genome to promote comparative genomic analyses**

107 To generate a human *Ascaris* spp. germline genome assembly (prior to programmed DNA
108 elimination²⁸), ovarian DNA was sequenced from a single female worm collected from a Kenyan
109 who was presumed to be infected with *A. lumbricoides* using Illumina paired-end and mate-pair
110 libraries of various insert sizes with a total sequence coverage of ~27-fold (Table S1). Using these
111 data, three different assembly strategies were used (see below and supplemental information).

112 The *de novo* assembly and semi-*de novo* strategies produced poor *A. lumbricoides* germline
113 draft genomes (Table 1 and supplementary text). In the semi-*de novo* assembly, the majority of the

114 >4000 short contigs (making up 15.4 Mb of sequence) that could not be incorporated into the semi-
115 *de novo* assembly are sequences that aligned to the genome at multiple positions. Comparison of
116 the *A. suum* gene annotations to this assembly revealed a low *A. lumbricoides* gene number and
117 high numbers of partial and split genes (Table 1, see footnote 3). These characteristics are typical
118 of highly fragmented genomes or genomes with high levels of mis-assemblies²⁸.

119 Mapping of the human *Ascaris* reads to the *A. suum* reference genome²⁸ revealed an
120 exceptionally high sequence similarity (>99% identity) between the two species with few human
121 *Ascaris* reads that could not be mapped to *A. suum*. Based on this high sequence similarity, a third
122 reference-based-only assembly strategy was used to generate the human *Ascaris* germline genome
123 assembly using the *A. suum* germline genome as a reference (see methods). This approach led to a
124 reference-quality human *Ascaris* genome assembly with many fewer gaps (only 0.98 Mb of
125 sequence) and no unplaced contigs. The *Ascaris* genome assembled into 415 scaffolds with a
126 combined size of 296 Mb. An additional 15.4 Mb of sequence was present in 4072 unscattered
127 short contigs. The assembly N50 value was 4.63 Mb, with the largest scaffold measuring 13.2 Mb.
128 The largest 50 scaffolds combined to represent 78% of the genome. The assembly was further
129 polished using additional Illumina reads from the same worm to more accurately reflect single base
130 differences, indels, and any potential local mis-assembled regions.

131 To evaluate the quality of the assembled genome, we mapped the *Ascaris* Illumina reads
132 back to the reference-based *Ascaris* genome assembly and found that > 99% of the Illumina reads
133 could be mapped, indicating that the reference-based assembly excluded very few *Ascaris* reads.
134 We then mapped and transferred the extensive set of *A. suum* transcripts^{25,28} to the human *Ascaris*
135 germline assembly to annotate the genome, identifying and classifying 17902 protein-coding genes
136 (Table 1, Table S2). As this reference-based assembly exhibits the best assembly attributes,
137 including high continuity with a large N50, low gaps and unplaced sequences, and high-quality
138 protein-coding genes (see Table 1), we suggest that this version should be used as a reference
139 germline genome for a human *Ascaris* spp. isolate (available in NCBI GenBank with accession

140 number PRJNA515325). The other two assemblies are available and are discussed in more detail in
141 the supplemental text.

142 Like *A. suum* embryos, *A. lumbricoides* embryos undergo programmed DNA elimination
143 during the differentiation of the somatic cells from the germline in early development^{29,30}. In *A.*
144 *suum*, ~30 Mb of 120 bp tandem repeats and ~1000 germline-expressed genes are lost from the
145 germline to form the somatic genome^{27,28}. We also sequenced the somatic genome from the
146 intestine of the same female *A. lumbricoides* worm. Comparison of the germline and somatic
147 genomes revealed that DNA elimination in the human *Ascaris* isolate (including the breaks,
148 sequences, and genes eliminated) was identical to that described for the pig *A. suum* isolate²⁸.

149 **Gene content and *Ascaris* proteome**

150 Earlier annotations of protein coding genes for *A. suum* draft genomes were produced by
151 Jex²⁵ and Wang²⁷ and improved with a recent updated genome²⁸—though the focus of the recent
152 study was not on protein annotations. Here, we updated, identified, and fully annotated the 17902
153 protein-coding genes in the reference-based genome assembly (Table S2 and Figure S1), an
154 annotation that can be a resource for others studying *Ascaris*. Using a custom pipeline (see methods
155 and³¹), we classified 48% of the predicted proteome into functional groups (Figure 1A). Although
156 the remaining 52% (9300) of the genes were classified as unknown/uncharacterized, 2515 (27%) of
157 these appear to encode proteins that have signatures indicative of either being secreted or being
158 membrane-bound (some with GPI anchors). To provide a more comprehensive annotation of the
159 transcriptomes of *A. suum* and *A. lumbricoides*, we re-mapped the RNA-seq data from *A. suum* to
160 the current gene models of *A. lumbricoides* (ALV5) (Table S2). We performed multivariate
161 analyses of this revised RNA-seq data compilation to generate a comprehensive RNA-seq data set
162 for differential gene expression in diverse stages/tissues (Table S2).

163 Phylogenetic trees derived from orthologue analyses of the predicted proteomes of ALV5
164 with the predicted proteomes of other nematodes across all clades indicated the similarity among
165 the published genomes of *A. suum* [PRJNA62057 and PRJNA80881 in^{25,27,28}] and *A. lumbricoides*

166 ³² with ALV5 within the *Ascaris* branch (Figure 1C). The variation observed within the *Ascaris*
167 spp. (with relatively weak bootstrap values of 0.3-0.59) is likely due to the differences in protein
168 coding gene annotations and split genes seen in previous assemblies.

169 **Mitochondrial genome assembly**

170 We next took advantage of the abundant reads from the mitochondrial genome in our
171 sequencing data (on average 7690X coverage, see Table S1) to perform *de novo* assembly of 68
172 complete human isolate *Ascaris* spp. mitochondrial genomes from individual worms (Table S3).
173 These mitochondrial genomes were then annotated using sequence similarity to well-characterized
174 and annotated mitochondrial genes.

175 **Population structure inferred from mitochondrial CO1 gene**

176 The mitochondrial CO1 gene has been frequently used to infer evolutionary distances
177 between species as well as between populations ^{22,33-37} due to its rapid mutation rate, lack of
178 recombination and relatively constant rate of change over time ³⁸⁻⁴⁰. Previous CO1 phylogeny
179 studies resolve *Ascaris* spp. worms into three distinct clades: clade A is predominantly comprised
180 of worms isolated from pigs, clade B is predominantly comprised of worms isolated from humans,
181 and clade C is from worms only isolated from pigs in Europe and Asia ²². Interestingly, haplotype
182 network analyses revealed that the majority of worms isolated from humans in the Kenyan villages
183 possessed CO1 haplotypes that were consistent with infection of parasites from clade A (63/68),
184 whereas only 6 isolates had CO1 haplotypes consistent with infection by worms from clade B
185 (Figure S2 and Figure 2a)).

186 When CO1 sequences from the present study were compared against those within the
187 *Ascaris* species complex deposited at NCBI (see Table S4 and Figure 2B)^{22,23,41,42}, within clade A
188 (which appeared to contain the majority of sequences not only from Kenya but also from other
189 localities), 7 unique haplotypes of CO1 from Kenya were identified. These appeared to be shared
190 not only with other haplotypes from Africa, but also with those from Brazil. In contrast, clade B
191 haplotypes appeared to be even more cosmopolitan, with the three haplotypes from Kenya not only

192 being shared with Zanzibar, but also with haplotypes from Brazil, Denmark, China and Japan.
193 Despite the distinct clustering of haplotypes into the three typical *Ascaris* clades, there was very
194 little genetic diversity among haplotypes within each of the clades, with the majority of haplotypes
195 being separated by 1-4 nucleotide differences. There were greater levels of genetic divergence
196 between clades; A and B were closer to each other while C was more distinct. Similar findings
197 were seen with ND4, the most variable gene in the mitochondrial genome (Figure S2, Figure S3,
198 supplemental text).

199 **Phylogenetic analyses and population structure inferred from complete mitochondrial
200 genomes**

201 Forty-seven SNPs were identified in the human *Ascaris* mitochondrial genomes.
202 Approximately a quarter of these variants were in non-coding portions of the mitochondrial
203 genome and half were synonymous (Table S1). As with the CO1 haplotype analyses, whole
204 mitochondrial genome analysis distinguished two clades (clade A and clade B), but there were no
205 distinct geographically specific sub-clades seen within either clade A or B (Figure 2B and Table 2).
206 Clade C was also produced by a single published sequence which was used for comparison. In
207 order to assess the validity of the clades A and B representing two distinct molecular taxonomic
208 units, and thus potentially different species, Birky's ⁴¹ 4X ratio was applied to provide a lineage
209 specific perspective of potential species delimitation. The ratio failed to differentiate clades A and
210 B as distinct species with $K/\Theta < 4$ at 2.285 indicating *Ascaris* is one large population—further
211 supporting the lack of differentiation into separate species (Table S5). Furthermore, there were no
212 significant associations between mitochondrial sequence variations and other factors (e.g. village,
213 household, time of worm collection, host) based on PERMANOVA (see methods and Table 2)
214 after translating the phylogenetic tree into a distance matrix, suggesting not only a lack of
215 differentiation into distinct species but also a potentially large interbreeding population of worms
216 being transmitted between individuals and across villages.

217 To account for a potentially large population of interbreeding worms, analyses to detect
218 signatures of population expansion were performed. When the global mitochondrial genome data
219 were compared, the Tajima's D was negative and significant (Tajima's D -1.5691; P-value 0.028),
220 indicating an excess of low frequency polymorphisms within the global data set suggesting
221 population size expansion. Despite the Fu's F not being significant it was positive (Fu's Fs 8.5673;
222 P-0.975) potentially indicating a deficiency in diversity as would be expected in populations that
223 have recently undergone a bottle neck event. The same pattern was also seen in the Kenyan
224 sequences but neither the Tajima's D nor the Fu's were significant. Although there does appear to
225 be a signature of a recent population expansion event in both the global and Kenyan data, the lack
226 of information on the mutation rates of *Ascaris* and other nematodes prevents the accurate estimate
227 of such an event.

228 **Nuclear Genome Variation in the *Ascaris* population**

229 To quantify genetic variation in the *Ascaris* worms isolated from infected Kenyans, the
230 nuclear genomes of the 68 individual worms were analyzed to assess intraspecific population
231 genetic diversity, heterozygosity, and ploidy. Single nucleotide polymorphisms (SNPs) and
232 insertion/deletions (InDels) across the nuclear genomes was assessed for the first 50 largest
233 scaffolds, that comprised 78% of the genome (see methods). Each *Ascaris* worm was sequenced to
234 a mean coverage depth of ~27-fold. A total of 11.15 million SNP positions were identified in the
235 first 50 scaffolds among the *Ascaris* nuclear genomes. Approximately 25% of these variants were
236 intergenic (Table S1). As an example, SNPs and InDels in a single *Ascaris* chromosome were
237 plotted for two worms collected from humans in Kenya and one worm from a pig in the United
238 States (Figure S4). The profiles and the frequency between SNPs and InDels are highly consistent
239 within individual worms, with the ratio of InDel:SNPs frequency at ~1:7. A comparison of the
240 variations identified between individuals infected with worms that had either *A. lumbricoides*-like
241 or *A. suum*-like mitochondrial genomes illustrates that most of the differences appear to be random
242 variations, and there do not appear to be major differences between *A. lumbricoides*-like and *A.*

243 *suum*-like worms. A total of 1.79 million SNPs were private, or unique to individual strains,
244 presumably representing genetic drift. Of the remaining 9.3 million SNPs, ~32% of these variant
245 positions were present in less than 5 isolates indicating that the *Ascaris* genomes sequenced are
246 ~1% polymorphic among the major alleles circulating within the species complex.

247 **Population structure inferred from nuclear genomes**

248 To investigate the evolutionary pressures that account for the high SNP diversity found
249 among the 68 sympatric isolates, the ploidy, degree of heterozygosity (He) and allelic diversity was
250 determined. Worms were disomic, with little to no evidence of aneuploidy (Figure S5). The vast
251 majority (>98%) of SNP positions were biallelic, and each isolate had, on average, 2.3 million
252 variant positions, of which approximately 60% were heterozygous SNPs (Table S6). SNP density
253 was determined in 10kb windows for each worm against the reference ALV5 isolate and a patchy,
254 mosaic pattern was resolved. SNP density was structured within the genome, with scaffolds being
255 either SNP poor or SNP dense. For example, Algv5r020 was SNP dense whereas Algv5r019x was
256 SNP poor. In other scaffolds, alternating SNP poor and SNP dense regions were defined within the
257 contig, with distinct transition points, see for example the first half of Algv5b02, the last quarter of
258 Algv5b05, or the middle of Algv5r021x (Figure 3A). In those regions where SNP density was low,
259 the Tajima D statistic was net negative, indicating that allele frequencies within these regions were
260 structured and more limited.

261 Genome-wide, homozygous SNP regions were found to be unevenly distributed, with some
262 scaffolds possessing long runs of homozygosity, see for example Algv5b02, Algv5r009x,
263 Algv5r013x, Algv5r014x, Algv5r018x, Algv5r019x, Algv5r027x (depicted by solid blue in Figure
264 3B), and these regions were net negative by the Tajima D test. Conversely, heterozygous SNPs
265 were less structured and appeared randomly distributed throughout the genome (Figure 3B).
266 Overall, three genetic types were resolved by this analysis: in each genome there existed SNP-poor
267 homozygous regions (colored blue) or SNP dense regions, that either possessed homozygous
268 alternate SNPs (also colored blue) or heterozygous SNPs (colored in “red” or “yellow” blocks

269 depending on the density of heterozygous SNPs resolved in each 10kb block: one haplotype was
270 similar to ALV5 and the other was different). Only one isolate (119_3) was heterozygous genome-
271 wide, and this track is depicted as “red” across all scaffolds in the Circos plot (Figure 3B).

272 **Population genetic structure of Kenyan *Ascaris* worm isolates**

273 A phylogenetic tree constructed using genome wide SNPs with at least 10x coverage (11.15
274 million phased SNPs total) from 69 *Ascaris* strains, including the *A. suum* reference genome,
275 established that the Kenyan isolates were more similar to each other than they were to the *A. suum*
276 reference genome, which had many more private SNPs (Figure 4A). Notably, the nuclear genomes
277 from the isolates that possessed *A. lumbricoides*-like mitochondrial genomes did not clade
278 separately, indicating that the nuclear genomes were incongruent with the mitochondrial genomes,
279 and likely recombinant. A co-ancestry heatmap was generated among the sympatric *Ascaris*
280 isolates, and this analysis divided the genome into discrete segments and clustered samples along
281 the diagonal based on the greatest number of shared ancestral blocks using the nearest neighbor
282 algorithm from fineSTRUCTURE. The *Ascaris* genomes resolved as thirteen clusters that
283 possessed high frequency nearest-neighbor, or shared ancestry, relationships. In contrast, the *A.*
284 *suum* reference genome and strain 119_3 were anomalous, likely the result of their excess
285 heterozygosity due in part to elevated numbers of private SNPs. Notably, 9 isolates did not coalesce
286 into a cluster with shared ancestry. Closer examination of these strains indicated that their phased
287 genomes possessed limited allelic diversity and were highly recombinant (Figure 4B). This genetic
288 mosaicism was readily resolved by fluctuating intra-scaffold genealogies established using a
289 sliding-window neighbor-joining topology that identified regions with incongruent tree topologies.
290 See for example the trees generated at the scaffolds ALgV5b01, ALgV5b02, and ALgV5r001.
291 Indeed, the pairwise SNP and F_{ST} estimates for these strains identified segments where SNP density
292 was low, but F_{ST} was elevated with respect to neighboring segments (see block in ALgV5b02) and
293 the most parsimonious explanation for these results is that recombination of a limited number of
294 distinct alleles had occurred in the regions of increased F_{ST} (Figure 4B and 4C).

295 To estimate the number of supported ancestries (K) that could be resolved in the *Ascaris*
296 genomes sequenced, we calculated the Dunn index, which supported 3-6 ancestral populations
297 (Figure 4D). A gradual increase in the Dunn Index after K = 6 was observed for an ancestral
298 population size between 2 and 15 (Figure 4D and Figure S6). We next used POPSICLE to calculate
299 the number of clades present within each 10kb sliding window. Local clades were represented with
300 a different color and painted across the genome to resolve ancestry. The SNP diversity plots across
301 the 68 isolates identified 3 major “parentage blocks” that were resolved as belonging to ALV5 or
302 were genetically distinct with either both haplotypes sharing the alternate parent (homozygous
303 alternate), or were heterozygous between the two parental haplotypes for the majority of the
304 isolates (Figure 4E, middle Circos plot. Color hues cyan, orange, aqua).

305 To visualize such shared ancestry across the different *Ascaris* strains at chromosome
306 resolution, a color hue representing a local genetic “type” present was assigned and integrated to
307 construct haplotype blocks across each chromosome for the ancestries present. Chromosome
308 painting based on shared ancestry revealed a striking mosaic of large haplotype blocks of different
309 admixed color hues, consistent with limited genetic recombination between a low number of
310 parentage haplotypes. These admixture patterns were readily visualized by shared color blocks
311 between different strains across entire scaffolds including ALgV5R019X (Figure 5A) and
312 ALgV5R027X (Figure 5B). In low complexity regions such as the left portion of contig
313 ALgV5R019X, only three major haplotypes were resolved (Figure 5A). Strikingly, within each of
314 the 6 clades resolved, all strains showed a limited, mosaic fingerprint of introgressed sequence
315 blocks indicating that recombination has shaped the population genetic structure among the *Ascaris*
316 isolates sequenced. Evidence for both segregation and recombination were evident. For example,
317 isolates 1107E_1 and 2110F_2 shared the same chromosome at ALgV5R019X, but entirely
318 different chromosomes at ALgV5R027X, whereas isolates 107_1, 108_1 and 2110F_2 were
319 identical except at the subtelomeric end of ALgV5R19X. In this region two admixture blocks were
320 resolved; 107_1 and 2110F_2 remained similar to each other but 108_1 now possessed a sequence

321 block that was shared with isolate 119_3. This extensive chimeric pattern in chromosome painting
322 also closely resembled the genome-wide hierarchy tree (Figure 5A). The data support a model in
323 which the isolates are genetic recombinants between *A. suum* and *A. lumbricoides* that are
324 predominantly inbreeding.

325 **Geographic and demographic correlates of genetic similarity**

326 To examine clustering of worms in similar human hosts, we statistically compared genetic
327 variation within groups (such as within a village) versus between groups (such as between
328 villages). We found significant genetic separation between worms in different villages (using
329 Adonis vegan in R), but not between worms from different countries (Table 2). This suggests
330 genetic diversity is present in the population of *Ascaris* in these Kenyan villages, which is similar
331 to the diversity of populations of *Ascaris* around the world. It also suggests that a high proportion
332 of *Ascaris* transmission may occur within villages in this Kenyan setting. There was no evidence
333 from this analysis that the 13 worms collected three months after albendazole treatment were any
334 different than the worms collected prior to albendazole treatment (Table 2).

335 To expand on our observations, that genetically similar worms are found around the world,
336 but that similar worms cluster within a village based on our nuclear SNPs data, we plotted genetic
337 distances against geographic distances. Surprisingly, we found no significant correlations between
338 genetic and geographic distance, neither across all five studied villages nor within the two most
339 heavily parasitized villages (Figure S7 and supplemental text).

340

341 **Discussion**

342 In this study, we generated a high-quality reference genome from a single worm presumed to be
343 human *A. lumbricoides*. Our comparative phylogenomic analyses of this new *Ascaris* spp. genome
344 against existing draft genomes of *A. lumbricoides* and *A. suum* suggest that *A. suum* and *A.*
345 *lumbricoides* form a genetic complex that is capable of interbreeding that has apparently undergone
346 a recent worldwide, multi-species *Ascaris* population expansion.

347 Our phylogenetic analysis on the complete mitochondrial genomes (from 68 worms
348 collected from human hosts in Kenya and other available sequences) suggests that the worms
349 collected in Kenya mirrors the separation into clade A (worms from pigs in non-endemic regions
350 and humans in endemic regions) and clade B (worms from humans and pigs from endemic and
351 non-endemic regions) described elsewhere ²². It is likely that worms in both of these clades are
352 being transmitted from human to human, as pig husbandry is rare in this area of Kenya. Patterns
353 may differ by locality, and it is possible that some of the pig-associated (*A. suum*-like) worms
354 circulating in this human population in Kenya were acquired, perhaps generations ago, by humans
355 who lived in closer proximity to pigs. It is also possible that these worms were acquired from non-
356 human primates ⁴², or some other *Ascaris* host, rather than from pigs.

357 However, the SNPs across the whole nuclear *Ascaris* genome provide significantly greater
358 power in understanding *Ascaris* speciation. Importantly, our nuclear genome SNP analysis suggest
359 that the 68 Kenyan *Ascaris* are distributed across multiple clades in a phylogeny based on the
360 nuclear genomes. Overall, data from our study and other studies are consistent with a pattern
361 where hybrid genotypes in *Ascaris* populations were observed ^{11,22,43}. Our study represents one of
362 the most detailed accounts of mito-nuclear discordance in nematodes echoing patterns seen in
363 another human nematode *Onchocerca volvulus* ⁴⁴. The data in our current study shows the
364 occurrence of distinct mitochondrial lineages that could be evidence of early stages of species
365 differentiation. The admixture seen within the nuclear genome, however, appears to disrupt the
366 establishment of defined molecular speciation barriers between the different *Ascaris* lineages. Such
367 patterns have been recorded in other parasites not only in *O. volvulus* ⁴⁴, but also in the parasitic
368 blood fluke *Schistosoma* ⁴⁵ and the protist *Leishmania* ⁴⁶. Each of the studies have implicated
369 definitive hosts in the movement of parasites between otherwise isolated populations allowing
370 interbreeding to take place. It is most likely the historical movement of humans and their
371 domesticated livestock that has mediated the transport of *Ascaris* between localities, allowing for

372 extensive interbreeding within the nuclear genomes and the discordance observed between the
373 mitochondrial and nuclear genomes in our study.

374 At a more local scale, the insights into the human transmission dynamics of *Ascaris* showing
375 clustering both within an individual and in villages suggest that villages are appropriate units for
376 interventions and that people are infected with multiple eggs from a single source. These findings
377 are in line with clustering at the village level found in Guatemala⁴⁷ and at the sub-village level in
378 Nepal⁴⁸, but not in line with the lack of small-scale geographical structuring found in Denmark,
379 Zanzibar and Uganda^{49–51}. Differences could be a result of different patterns in human and
380 livestock movement²⁰.

381 Although the current genome is, by far, the most continuous assembly for *Ascaris*, it is not a
382 full chromosome assembly due largely to repetitive sequences, in particular 120 bp tandem repeat
383 clusters and long stretches of subtelomeric repeats. Thus, it is possible that mis-assembly in some
384 scaffolds has increased the frequency of mosaicism detected. It is for this reason that the
385 comparative analyses on the nuclear genome was restricted to the largest 50 scaffolds, most of
386 which are at chromosomal resolution, with only minor localized variation due to the repeat clusters.
387 In these high confident scaffolds, large haplotype blocks possessing either *A. suum*, *A. lumbricoides*
388 or both parental haplotypes (heterozygous) were readily resolved indicating that the genetic
389 mosaicism observed could not be solely attributed to genome mis-assembly. Ultimately, future
390 studies using ultralong PacBio and/or Nanopore sequencing combined with chromosome
391 conformation capture (Hi-C) techniques will improve the genome to full chromosome assembly to
392 more accurately resolve the true extent to which recombination has impacted the population genetic
393 structure of the *Ascaris* species genetic complex.

394 The finding that *A. suum* and *A. lumbricoides* form a genetic complex has important public
395 health implications. Reduced treatment efficacy is not currently a common issue in *Ascaris*
396 infections among humans or pigs^{52–54}, though low efficacy of benzimidazoles is an issue for
397 *Trichuris trichiura* in humans^{55–57} and various intestinal nematodes of veterinary importance^{58–60}.

398 Extensive albendazole use in either human or pig populations could lead to resistance in both
399 populations, if cross-species infections are common and produce fertile offspring. This study
400 suggests that research and public health interventions targeting *A. lumbricoides* and *A. suum* should
401 be more closely integrated, and that extensive work done by the veterinary research community
402 may be highly relevant to mass deworming campaigns that seek to improve human health.

403 The similarity between *Ascaris* from different countries and from different vertebrate hosts
404 suggests that *Ascaris* infection has spread rapidly around the world, leaving little time for it to
405 differentiate. Taken together, these finding have very important implications for parasite control
406 and elimination efforts that only focus on mass deworming of humans for *Ascaris*. The ability of
407 pig-associated worms to become endemic in human populations indicates that a one-health
408 approach may be necessary for the control of *Ascaris*.

409

410 **Online Methods**

411 *Worm collection*

412 Worms were expelled as part of a larger study in rural western Kenya described previously^{61,62}.
413 Worms collected from study participants in five villages (map shown in⁶¹) following treatment
414 with 400 mg albendazole were isolated, washed, labelled and stored frozen (-15 C). They were
415 transported from Bungoma to Kisumu, where they were subsequently stored at the KEMRI-CDC
416 offices until they were shipped to the NIH (Bethesda, MD, USA) on dry ice.

417 *DNA extraction and sequencing*

418 A modified DNA extraction method was developed (see Supplemental Methods and Table S3). For
419 the five germline samples, DNA was extracted from the uterus, oviduct or ovary of the worms. For
420 the remaining samples, DNA was extracted from somatic tissue: the body wall or the intestine.
421 Paired-End Genome Libraries – Sixty-eight *A. lumbricoides* DNA samples were sequenced using
422 Illumina HiSeq 2500 (www.illumina.com) short-read paired-end sequencing. DNA was quantified
423 by UV Spec and Picogreen. A 100 ng of DNA based on picogreen quantification was used as

424 template for NGS library preparation using the TruSeq Nano DNA Sample library prep kit without
425 modification. Primer-dimers in the libraries were removed by additional AMPure beads
426 purification. Sequencing was performed to obtain a minimum genomic depth of 20X coverage for
427 each sample.

428 Mate-Pair Genome Libraries – Two samples were selected for mate-pair sequencing, based on the
429 quality of the DNA preparation. Three independent DNA isolations (corresponding to what region
430 of the worm or what is the sample for DNA isolation) from specimen “119_2.3” were combined to
431 obtain one µg DNA input. The mate-pair libraries were generated using the Nextera Mate Pair
432 Library Prep Kit, following the gel-free method with the only modification that M-270 Streptavidin
433 binding beads were used instead of M-280 beads. The libraries were amplified for 15 cycles given
434 the low DNA input going into the circularization phase. The mate-pair fragment size averaged 6 kb
435 with a range of 2-10 kb fragments.

436 *Assembly and annotation of A. lumbricoides reference genome*

437 The *A. lumbricoides* germline genome assembly was constructed using the *A. suum* genome as a
438 reference. Briefly, sequencing reads from a single *A. lumbricoides* worm (libraries #8457, #8458
439 and #8778) were mapped to the *A. suum* germline genome assembly ²⁸ using BWA⁶³ to generate
440 BAM and MPILEUP alignment files. The MPILEUP files were processed with a PERL script that
441 replaced all variation sites in the reference genome with the highest allele frequencies in the *A.*
442 *lumbricoides* sample. *A. suum* genomic regions that represent < 5X of *A. lumbricoides* reads
443 coverage were excluded from the assembly. We further polished the genome with additional
444 Illumina sequencing reads using Pilon and its default parameters ⁶⁴. The *A. lumbricoides* genome
445 was annotated using the gene models built for *A. suum*, using the annotation transfer tool RATT ⁶⁵.
446 The protein coding regions were defined using TransDecoder
447 (<https://github.com/TransDecoder/TransDecoder/wiki>). To evaluate the gene expression across all
448 stages, we utilized previous RNAseq data from the developmental stages ^{27,28}, re-mapped the SRA
449 from adult males, females, L3 and L4 stages ²⁵ to the current gene models, and quantified the

450 expression using tophat and cufflinks. The re-mapped reads, analyzed by JMP Genomics (SAS)
451 across all the stages and based on the principal component analyses (Figure 1B), were grouped as
452 adult male, adult female, L1, L2, L3 (egg L3, liver L3 and lung L3), L4, carcass, muscle, intestine,
453 embryonic (zygotel1, zygote2, zygote3, zygote4, 24h, 46h, 64h, 96h, 5d, 7d), ovaries (female
454 mitotic region, female early pachytene, female late pachytene, female diplotene and oocyte) and
455 testis (male mitotic region, spermatogenesis, post meiotic region, seminal vesicles and spermatids).
456 Proteome and comparative genomics analyses were done using an in-house pipeline⁶⁶. Automated
457 annotation of proteins was done as described earlier³¹ and based on a vocabulary of nearly 290
458 words found in matches to various databases, including Swissprot, Gene Ontology, KOG, Pfam,
459 and SMART, Refseq-invertebrates and a subset of the GenBank sequences containing nematode
460 protein sequences, as well as the presence or absence of signal peptides and transmembrane
461 domains. Signal peptide, SecretomeP, transmembrane domains, furin cleavage sites, and mucin-
462 type glycosylation were determined with software from the Center for Biological Sequence
463 Analysis (Technical University of Denmark, Lyngby, Denmark)⁶⁷⁻⁶⁹. Classification of kinases was
464 done by Kinannot⁷⁰. Interproscan⁷¹ analyses were done using the standalone version 5.34.
465 Allergenicity of proteins were predicted by Allerdictor⁷², FuzzyApp⁷³ and AllerTOP⁷⁴. Genes that
466 had blast scores <30% of max possible score (self-blast) in other non-Ascaris nematodes with an e-
467 value greater than 1E-05 were considered as ‘unique’. The orthologues of predicted proteome of
468 ALV5 across the publicly available nematode genomes (*Ancylostoma caninum*³², *Ancylostoma*
469 *ceylanicum*^{32,75}, *Ancylostoma duodenale*³², *Ascaris lumbricoides*³², *Ascaris suum*^{25,27,28}, *Brugia*
470 *malayi*⁷⁶, *Caenorhabditis elegans*⁷⁷, *Dirofilaria immitis*⁷⁸, *Loa loa*^{79,80}, *Necator americanus*⁸¹,
471 *Onchocerca volvulus*³¹, *Strongyloides ratti*⁸², *Strongyloides stercoralis*⁸³, *Toxocara canis*^{32,84},
472 *Trichinella spiralis*^{85,86}, *Trichuris trichiura*⁸⁷, *Wuchereria bancrofti*^{32,88}) were analyzed using
473 OrthoFinder⁸⁹. The estimated phylogenetic tree generated was graphed using FigTree v1.4.
474 Further manual annotation was done as required. The data were mapped into a hyperlinked
475 Excel spreadsheet as previously described⁹⁰, available in Table S2.

476 *Read mapping and SNP analysis for whole genome sequences*

477 The Illumina paired end sequence reads of the 68 *Ascaris* whole genomes were trimmed by
478 removing any adapter sequences with CutAdapt v1.12⁹¹, then low quality sequences were filtered
479 and trimmed using the FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Remaining reads
480 were then ref-mapped to the *A. lumbricoides* genome ALV5 reference genome (described in this
481 paper) using either Bowtie2 v2.2.9⁹², with very sensitive, no-discordant, and no-mixed settings or
482 using the Burrows-Wheeler Aligner (BWA, v0.7.9)⁶³ mem in default parameters and then
483 converted into a bam file for sorted with SAMtools⁹³. Sorted reads were soft-clipped and marked-
484 duplicated using Picard-1.8.4 (<http://broadinstitute.github.io/picard>). Single nucleotide
485 polymorphisms (SNPs) were obtained using SAMtools⁹³ and BCFtools⁹⁴ using the mpileup
486 function and –ploidyfile features and taking chromosomal ploidies into account. SNPs were also
487 determined using Genome Analysis Toolkit (GATK)⁹⁵. SNPs were called by GATK Haplotype
488 Caller with a read coverage $\geq 10x$, a Phredscaled SNP quality of ≥ 30 . Mapping statistics were
489 generated in Perl and Awk.

490 *Ploidy determination*

491 The ploidy of each isolate was calculated using AGELESS software
492 (<http://ageless.sourceforge.net/>) by dividing the chromosomes into 10kb sliding windows and
493 averaging the coverage within each window. The windows with zero coverage were not included in
494 any further analyses due to sequencing noise or repeat regions⁹⁶.

495 *Genetic diversity*

496 SNPs, pi⁹⁷, TajimaD⁹⁸, and F_{ST}⁹⁹ values were calculated using VCFtools¹⁰⁰ in 10 kb sliding
497 windows and plotted using either Circos¹⁰¹ or ggbio
498 (<http://bioconductor.org/packages/release/bioc/html/ggbio.html>) and VariantAnnotation
499 (<http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html>) R packages (v. 3.1.0,
500 URL <http://www.R-project.org>). The proportions of heterozygous and homozygous SNPs were

501 estimated in 10kb sliding windows using custom Java scripts to generate histogram plots in Circos
502 ¹⁰¹. Red and blue colors indicate the presence of 90% or more heterozygous and homozygous SNPs
503 respectively whereas yellow color was assigned otherwise.

504 *Co-ancestry heatmap*

505 The SNP data (VCF file) was first phased accurately to estimate the haplotypes using SHAPEIT ¹⁰²
506 after keeping only biallelic SNPs and loci with less than 80% missing data. Co-ancestry heatmaps
507 were generated using the linkage model of ChromoPainter ¹⁰³ and fineSTRUCTURE
508 (<http://www.paintmychromosomes.com>) based on the genome-wide phased haplotype data. For
509 fineSTRUCTURE (version 0.02) ¹⁰³, both the burn-in and Markov Chain Monte Carlo (MCMC)
510 after the burn-in were run for 1000 iterations with default settings. Inference was performed twice
511 at the same parameter values.

512 *Population genetic structure*

513 Population genetic structure was constructed using POPSICLE ¹⁰⁴ by comparing strains against the
514 reference sequence ALV5 in 10 kb sliding windows with the number of cluster K=1 to 15 and then
515 use the Dunn index ⁹⁹ to calculate the optimal number of clusters. After calculating the optimal
516 number of clusters, POPSICLE assigned each block to the existing or new clades depending on
517 population structure of each strain and the ancestral state of each block followed by painting in
518 Circos plot ¹⁰¹ with color assignment based on number of clusters.

519 *Construction of phylogenetic trees*

520 In order to determine the phylogenetic relationship between samples, we selected 19005 base
521 positions where variants were detected in a representative sample vs the reference (ALV5), and
522 where each sample had at least 20x coverage for each locus. Using this list, the base calls for each
523 sample were pooled together to generate a single multi sequence fasta file.

524 Next, both maximum likelihood (ML) trees and bootstrap (BS) trees were generated with a final
525 “best” tree generated from the best scoring ML and BS trees using RAxML v8.2.10¹⁰⁵. The tree
526 was visualized in FigTree v1.4.3 (<http://tree.bio.ed.ac.uk/software/figtree/>).

527 *Permutational Multivariate Analysis of nuclear phylogeny*

528 Similarity within and between worms from different villages, households, people and time-points
529 was analyzed based on the distance matrix of the patristic distances from the phylogenetic tree
530 described above, using permutational multivariate analysis of variance (Adonis Vegan in R). The
531 distance matrix underlying the phylogenetic tree was analyzed in order to measure the significance
532 and contribution of different factors to variance between samples. Each factor (village, household,
533 host, time-point, human age group and worm age/size group) was analyzed both separately and
534 sequentially. The sequence chosen was ordered based on significance of each factor when tested
535 individually. Since multiple groupings were considered using the same dataset, multiple
536 comparison corrections were applied. Sample sizes and descriptions of each group are shown in
537 Table 2. Worms with recorded lengths were split into three groups of equal number. This was in
538 order to test whether larger worms (using worm length as a very approximate proxy for age, where
539 older worms might have survived at least one round of ALB treatment) were any different from the
540 newly acquired younger worms. Similar methods were used to analyze the mitochondrial
541 phylogeny along the same groupings.

542 *Mitochondrial genome assembly*

543 We assembled mitochondrial genomes using a *de novo* approach from 68 individual *Ascaris*
544 genomes. For each individual, the *Ascaris* mitochondrial reads in the total DNA sequencing were
545 identified by mapping the *Ascaris* reads to the *A. suum* reference mitochondrial genome (GenBank
546 accession: NC_001327). Adaptor sequences were trimmed prior to *de novo* assembly. To reduce
547 the complexity of the *de novo* assembly, we randomly sampled 1,000x reads from each individual
548 (the use of higher read coverage often resulted in fragmented scaffolds) and assembled these reads
549 using the SPAdes assembler¹⁰⁶ with continuous k-mer extension from K=21 to the maximum k-

550 mer allowed (average extended k-mer size = 91). The assembled scaffolds were corrected with the
551 built-in tool in SPAdes to reduce potential assembly artifacts. Next, the assembled scaffolds were
552 aligned to the *A. suum* mitochondrial reference genome using BLAST, the order of the scaffolds
553 was adjusted, and they were joined into a single scaffold. Finally, the gaps in the scaffold were
554 filled using GapFiller¹⁰⁷ using mitochondrial reads from the same individual to generate a
555 complete mitochondrial genome. Using the same method, we also *de novo* assembled another five
556 *A. suum* or *A. lumbricoides* mitochondrion genomes from previous studies (see Table S7).

557 *Analysis of mitochondrial genomes*

558 In order to assess overall evolutionary relationships across the complete mitochondrial genomes,
559 we aligned the genomes using Clustal W and phylogenetic trees constructed using RaxML under
560 the conditions of the general time reversible model (GTR) as described above for the whole
561 genome SNP alignment. Subsequent tree files were formatted in FigTree and MEGA v7. The
562 variation in nucleotide diversity across the mitochondrial genome was measured using sliding
563 window analyses, with a window of 300 bp and a step of 50bp, using DNAsp v6¹⁰⁸. In order to
564 assess the validity of potential species groupings in the ML phylogenetic tree the Birk⁴¹ X4 ratio
565 was applied to the alignment of the complete mitochondrial genomes including both samples from
566 Kenya and published mitochondrial reference genomes from Tanzania, Uganda, China, USA,
567 Denmark and the UK. The X4 ratio method of species delimitation compares the ratio of mean
568 pairwise differences between two distinct clades (K) and the mean pairwise differences within each
569 of the clades being compared (Θ). It is considered that if $K/\Theta > 4$ this is indicative of the two clades
570 representing two distinct species. Owing to the fact that two clades are being compared there will
571 be two separate values of Θ , as per recommendations of Birk⁴¹, the larger Θ value is used to
572 perform the final ratio calculation as this will provide a more conservative result which ultimately
573 will be less likely to provide a false positive result.

574 Due to the extensive use of mitochondrial genome data in population genetic analyses of *Ascaris*,
575 several analyses were performed to identify the effect of any population level processes that may be

576 affecting the diversity of the parasites within Kenya. Initially, diversity indices were calculated for
577 each of the genes within the mitochondrial genome across the entire Kenyan data set as well as
578 considering the mitochondrial genome as a whole. In order to account for the diversity within the
579 genic regions, we removed non-coding and tRNA sequences for these analyses. To provide a
580 genealogical perspective of population structure of the Kenya *Ascaris* isolates, we constructed the
581 most parsimonious haplotype network based on the protein coding sequences using the TCS
582 algorithm as implemented in PopArt¹⁰⁹. Further population genetic analyses were also performed
583 to detect the occurrence of selection on the protein coding genes of the mitochondrial genome and
584 if there were any major departures from neutrality. Standard dN/dS ratios were performed to
585 identify the presence of positive selection where both measures equate to 1 = neutral, >1 = positive
586 selection, <1 = purifying selection. Both Tajima's D and Fu's *Fs* were calculated to identify any
587 substantial departure from neutrality which could be indicative of population expansion events
588 (Table S8). All described analyses were performed using DNAsp6¹⁰⁸. As both CO1 and ND4 have
589 been used in the past for epidemiological studies, single gene phylogenies were also constructed as
590 described previously for comparison against the whole mitochondrial genome phylogeny (Figure
591 S3 and supplementary methods).

592 Owing to the extensive use of the CO1 for epidemiological studies the gene was extracted from the
593 complete mitochondrial genomes of Kenya and compared to all other available *Ascaris*
594 *lumbricoides* and *Ascaris suum* CO1 sequences housed by NCBI representing populations from
595 across the globe. Haplotype network analyses was performed to produce the parsimonious network
596 using TCS as implemented through PopArt¹⁰⁹. This provided a genealogical perspective of
597 population structure and allowed genetic connectivity between the Kenyan samples and other
598 geographical isolates to be assessed.

599

600 *Acknowledgements*

601 We would like to thank the school children, schoolteachers, and Bungoma administrators for their
602 support. We would like to extend special thanks to all the members of the study team: Bungoma
603 County Hospital, Siangwe, Siaka, Sang'alo, Nasimbo and Ranje village administrators and
604 Community Health Workers. Particular thanks to Dr. Charles S. Mwandawiro, Prof. Sammy
605 Njenga, and Dr. Jimmy H. Kihara (KEMRI), and Dr Simon J. Brooker (BMGF) for making the
606 fieldwork possible in Kenya, and for their invaluable scientific and logistical advice.

607

608 *Data availability*

609 Data are available under the National Center for Biological Information (NCBI) BioProject
610 numbers; PRJNA511012 and SRA submission SUB4949491 for sequencing data, and
611 PRNJA515325 for the genomic assembly.

612 Links to all genome assemblies are available at: All, de novo, semi-de novo (V1), V2, V3, V4, V5
613 and mitochondrial.

614 *Funding*

615 This work was supported in part by the Division of Intramural Research (DIR) of the National
616 Institute of Allergy and Infectious Diseases, NIH and NIH grants to R.E.D. (AI114054) and J.W.
617 (AI125869). Fieldwork was supported by a grant from the Bill and Melinda Gates Foundation to
618 the London Centre for Neglected Tropical Disease Research and the KEMRI Wellcome Trust. The
619 funders had no role in study design, data collection and analysis, decision to publish, or preparation
620 of the manuscript.

621

622 *Authors' contributions*

623 AVE, RMA, RED, JW, TBN conceived the study; SG, ED, JW, ED, SFP, RED performed
624 sequencing and genome analyses; SPL, JPW, AK, MEG performed population biology and
625 evolutionary biology expertise and analyses; AVE, SK, RGO, RMA oversaw the collection of

626 material in Kenya, SB, SG, ED, JW provided protein/gene content analyses, AVE, SPL, SB, AK,
627 ED MED, RED, JW, TBN wrote the manuscript.

628

629 *Ethics approval*

630 This study was approved by the Ethics Review Committee of the Kenya Medical Research Institute
631 (Scientific Steering Committee protocol number 2688) and the Imperial College Research Ethics
632 Committee (ICREC_13_1_15). Informed written consent was obtained from all adults and parents
633 or guardians of each child. Minor assent was obtained from all children aged 12–17. Anyone found
634 to be infected with any STH was treated with 400 mg ALB during each phase of the study, and all
635 previously-untreated village residents were offered ALB at the end of each study phase.

636

637 *Consent for publication*

638 Individuals consented to the publication of their results, without any patient identifying
639 information.

640

641 *Competing interests*

642 The authors declare that they have no competing interests. RMA was a Non-Executive Director of
643 GlaxoSmithKline (GSK) during the period of worm collection in Kenya. GSK played no role in the
644 funding of this research or this publication.

645

646

647

648 **References**

649

- 650 1. Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and
disease burden of soil transmitted helminth infections in 2010. *Parasit. Vectors* **7**, 37 (2014).
- 651 2. Hotez, P. J. *et al.* Helminth infections: the great neglected tropical diseases. *J. Clin. Invest.*
118, 1311–1321 (2008).
- 652 3. Montresor, A. *et al.* Preventive chemotherapy and the fight against neglected tropical
diseases. *Expert Rev Anti Infect Ther* **10**, 237–242 (2012).
- 653 4. Brooker, S. Estimating the global distribution and disease burden of intestinal nematode
infections: adding up the numbers--a review. *Int. J. Parasitol.* **40**, 1137–1144 (2010).
- 654 5. Bundy, D. A. P. *et al.* in *Child and adolescent health and development* (eds. Bundy, D. A. P.,
Silva, N. de, Horton, S., Jamison, D. T. & Patton, G. C.) (The International Bank for
Reconstruction and Development / The World Bank, 2017). doi:10.1596/978-1-4648-0423-
6/pt3.ch13
- 655 6. Becker, S. L. *et al.* Toward the 2020 goal of soil-transmitted helminthiasis control and
elimination. *PLoS Negl. Trop. Dis.* **12**, e0006606 (2018).
- 656 7. Nejsum, P., Betson, M., Bendall, R. P., Thamsborg, S. M. & Stothard, J. R. Assessing the
zoonotic potential of *Ascaris suum* and *Trichuris suis*: looking to the future from an analysis
of the past. *J Helminthol* **86**, 148–155 (2012).
- 657 8. Anderson, T. J. & Jaenike, J. Host specificity, evolutionary relationships and
macrogeographic differentiation among *Ascaris* populations from humans and pigs.
Parasitology **115** (Pt 3), 325–342 (1997).
- 658 9. Nejsum, P. *et al.* Ascariasis is a zoonosis in denmark. *J. Clin. Microbiol.* **43**, 1142–1148
(2005).
- 659 10. Dutto, M. & Petrosillo, N. Hybrid *ascaris suum/lumbricoides* (ascarididae) infestation in a pig
farmer: a rare case of zoonotic ascariasis. *Cent. Eur. J. Public Health* **21**, 224–226 (2013).

674 11. Betson, M., Nejsum, P., Bendall, R. P., Deb, R. M. & Stothard, J. R. Molecular epidemiology
675 of ascariasis: a global perspective on the transmission dynamics of Ascaris in people and
676 pigs. *J. Infect. Dis.* **210**, 932–941 (2014).

677 12. Miller, L. A. *et al.* Ascariasis in humans and pigs on small-scale farms, Maine, USA, 2010–
678 2013. *Emerging Infect. Dis.* **21**, 332–334 (2015).

679 13. Anderson, T. J. Ascaris infections in humans from North America: molecular evidence for
680 cross-infection. *Parasitology* **110** (Pt 2), 215–219 (1995).

681 14. Zhu, X., Chilton, N. B., Jacobs, D. E., Boes, J. & Gasser, R. B. Characterisation of Ascaris
682 from human and pig hosts by nuclear ribosomal DNA sequences. *Int. J. Parasitol.* **29**, 469–
683 478 (1999).

684 15. Peng, W. & Criscione, C. D. Ascariasis in people and pigs: new inferences from DNA
685 analysis of worm populations. *Infect. Genet. Evol.* **12**, 227–235 (2012).

686 16. Takata, I. Experimental infection of man with Ascaris of man and the pig. *Kitasato Arch Exp
687 Med* **23**, 151–9; English transl, 49 (1951).

688 17. Betson, M. & Stothard, J. R. Ascaris lumbricoides or Ascaris suum: What's in a Name? *J.
689 Infect. Dis.* **213**, 1355–1356 (2016).

690 18. da Silva Alves, E. B. *et al.* Ascaris lumbricoides, Ascaris suum, or “Ascaris
691 lumbrisuum”? Multiple Exposures to Ascaris suum Induce Tissue Injury and Mixed Th2/Th17
692 Immune Response in Mice. *J Infect Dis* **213**, 1355 (2016).

693 19. Leles, D., Gardner, S. L., Reinhard, K., Iñiguez, A. & Araujo, A. Are Ascaris lumbricoides
694 and Ascaris suum a single species? *Parasit. Vectors* **5**, 42 (2012).

695 20. Betson, M., Nejsum, P. & Stothard, J. R. in *Ascaris: the neglected parasite* 265–285
696 (Elsevier, 2013). doi:10.1016/B978-0-12-396978-1.00010-0

697 21. Peng, W., Anderson, T. J., Zhou, X. & Kennedy, M. W. Genetic variation in sympatric
698 Ascaris populations from humans and pigs in China. *Parasitology* **117** (Pt 4), 355–361
699 (1998).

700 22. Cavallero, S., Snabel, V., Pacella, F., Perrone, V. & D'Amelio, S. Phylogeographical studies
701 of *Ascaris* spp. based on ribosomal and mitochondrial DNA sequences. *PLoS Negl. Trop.*
702 *Dis.* **7**, e2170 (2013).

703 23. Zhou, C., Li, M., Yuan, K., Hu, N. & Peng, W. Phylogeography of *Ascaris lumbricoides* and
704 *A. suum* from China. *Parasitol. Res.* **109**, 329–338 (2011).

705 24. Nejsum, P. *et al.* *Ascaris* phylogeny based on multiple whole mtDNA genomesHigh
706 prevalence of *Strongyloides stercoralis* in school-aged children in a rural highland of north-
707 western Ethiopia: the role of intensive diagnostic work-up. *Infect Genet Evol* **48**, 4–9 (2017).

708 25. Jex, A. R. *et al.* *Ascaris suum* draft genome. *Nature* **479**, 529–533 (2011).

709 26. Wang, J. *et al.* Deep small RNA sequencing from the nematode *Ascaris* reveals conservation,
710 functional diversification, and novel developmental profiles. *Genome Res.* **21**, 1462–1477
711 (2011).

712 27. Wang, J. *et al.* Silencing of germline-expressed genes by DNA elimination in somatic cells.
713 *Dev. Cell* **23**, 1072–1080 (2012).

714 28. Wang, J. *et al.* Comparative genome analysis of programmed DNA elimination in nematodes.
715 *Genome Res.* **27**, 2001–2014 (2017).

716 29. Wang, J. & Davis, R. E. Programmed DNA elimination in multicellular organisms. *Curr.*
717 *Opin. Genet. Dev.* **27**, 26–34 (2014).

718 30. Streit, A., Wang, J., Kang, Y. & Davis, R. E. Gene silencing and sex determination by
719 programmed DNA elimination in parasitic nematodes. *Curr. Opin. Microbiol.* **32**, 120–127
720 (2016).

721 31. Cotton, J. A. *et al.* The genome of *Onchocerca volvulus*, agent of river blindness. *Nat.*
722 *Microbiol.* **2**, 16216 (2016).

723 32. International Helminth Genomes Consortium. Comparative genomics of the major parasitic
724 worms. *Nat. Genet.* **51**, 163–174 (2019).

725 33. Springer, M. S. *et al.* Mitochondrial versus nuclear gene sequences in deep-level mammalian

726 phylogeny reconstruction. *Mol. Biol. Evol.* **18**, 132–143 (2001).

727 34. Zardoya, R. & Meyer, A. Phylogenetic performance of mitochondrial protein-coding genes in
728 resolving relationships among vertebrates. *Mol. Biol. Evol.* **13**, 933–942 (1996).

729 35. Zou, Y. *et al.* Determining geographical variations in *Ascaris suum* isolated from different
730 regions in northwest China through sequences of three mitochondrial genes. *Mitochondrial*
731 *DNA A DNA Mapp. Seq. Anal.* **28**, 411–415 (2017).

732 36. Nejsum, P. *et al.* *Ascaris* phylogeny based on multiple whole mtDNA genomes. *Infect. Genet.*
733 *Evol.* **48**, 4–9 (2017).

734 37. Wiens, J. J., Kuczynski, C. A. & Stephens, P. R. Discordant mitochondrial and nuclear gene
735 phylogenies in emydid turtles: implications for speciation and conservation. *Biological*
736 *Journal of the Linnean Society* **99**, 445–461 (2010).

737 38. Brown, W. M., George, M. & Wilson, A. C. Rapid evolution of animal mitochondrial DNA.
738 *Proc. Natl. Acad. Sci. USA* **76**, 1967–1971 (1979).

739 39. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human
740 mitochondrial DNA. *Proc. Natl. Acad. Sci. USA* **77**, 6715–6719 (1980).

741 40. Harrison, R. G. Animal mitochondrial DNA as a genetic marker in population and
742 evolutionary biology. *Trends Ecol. Evol. (Amst.)* **4**, 6–11 (1989).

743 41. Birky, C. W. Species detection and identification in sexual organisms using population
744 genetic theory and DNA sequences. *PLoS One* **8**, e52544 (2013).

745 42. Nejsum, P., Bertelsen, M. F., Betson, M., Stothard, J. R. & Murrell, K. D. Molecular
746 evidence for sustained transmission of zoonotic *Ascaris suum* among zoo chimpanzees (*Pan*
747 *troglodytes*). *Vet. Parasitol.* **171**, 273–276 (2010).

748 43. Jesudoss Chelladurai, J. *et al.* Molecular epidemiology of *ascaris* infection among pigs in
749 iowa. *J. Infect. Dis.* **215**, 131–138 (2017).

750 44. Choi, Y.-J. *et al.* Genomic diversity in *Onchocerca volvulus* and its Wolbachia
751 endosymbiont. *Nat. Microbiol.* **2**, 16207 (2016).

752 45. Lawton, S. P., Bowen, L. I., Emery, A. M. & Majoros, G. Signatures of mito-nuclear
753 discordance in *Schistosoma turkestanicum* indicate a complex evolutionary history of
754 emergence in Europe. *Parasitology* **144**, 1752–1762 (2017).

755 46. Kato, H. *et al.* PCR-RFLP analyses of *Leishmania* species causing cutaneous and
756 mucocutaneous leishmaniasis revealed distribution of genetically complex strains with hybrid
757 and mito-nuclear discordance in Ecuador. *PLoS Negl. Trop. Dis.* **13**, e0007403 (2019).

758 47. Anderson, T. J., Romero-Abal, M. E. & Jaenike, J. Mitochondrial DNA and *Ascaris*
759 microepidemiology: the composition of parasite populations from individual hosts, families
760 and villages. *Parasitology* **110 (Pt 2)**, 221–229 (1995).

761 48. Criscione, C. D. *et al.* Landscape genetics reveals focal transmission of a human
762 macroparasite. *PLoS Negl. Trop. Dis.* **4**, e665 (2010).

763 49. Betson, M. *et al.* Genetic diversity of *Ascaris* in southwestern Uganda. *Trans. R. Soc. Trop.*
764 *Med. Hyg.* **106**, 75–83 (2012).

765 50. Betson, M. *et al.* A molecular epidemiological investigation of *Ascaris* on Unguja, Zanzibar
766 using isoenzyme analysis, DNA barcoding and microsatellite DNA profiling. *Trans. R. Soc.*
767 *Trop. Med. Hyg.* **105**, 370–379 (2011).

768 51. Nejsum, P., Frydenberg, J., Roepstorff, A. & Parker, E. D. Population structure in *Ascaris*
769 *suum* (Nematoda) among domestic swine in Denmark as measured by whole genome DNA
770 fingerprinting. *Hereditas* **142**, 7–14 (2005).

771 52. Vercruyse, J. *et al.* Assessment of the anthelmintic efficacy of albendazole in school
772 children in seven countries where soil-transmitted helminths are endemic. *PLoS Negl. Trop.*
773 *Dis.* **5**, e948 (2011).

774 53. Levecke, B. *et al.* The optimal timing of post-treatment sampling for the assessment of
775 anthelminthic drug efficacy against *Ascaris* infections in humans. *Int. J. Parasitol. Drugs*
776 *Drug Resist.* **8**, 67–69 (2018).

777 54. Zuccherato, L. W., Furtado, L. F., Medeiros, C. da S., Pinheiro, C. da S. & Rabelo, É. M.

778 PCR-RFLP screening of polymorphisms associated with benzimidazole resistance in *Necator*
779 *americanus* and *Ascaris lumbricoides* from different geographical regions in Brazil. *PLoS*
780 *Negl. Trop. Dis.* **12**, e0006766 (2018).

781 55. Diawara, A. *et al.* Assays to detect beta-tubulin codon 200 polymorphism in *Trichuris*
782 *trichiura* and *Ascaris lumbricoides*. *PLoS Negl. Trop. Dis.* **3**, e397 (2009).

783 56. Furtado, L. F. V., de Paiva Bello, A. C. P. & Rabelo, É. M. L. Benzimidazole resistance in
784 helminths: From problem to diagnosis. *Acta Trop.* **162**, 95–102 (2016).

785 57. Olsen, A., Namwanje, H., Nejsum, P., Roepstorff, A. & Thamsborg, S. M. Albendazole and
786 mebendazole have low efficacy against *Trichuristrichiura* in school-age children in Kabale
787 District, Uganda. *Trans. R. Soc. Trop. Med. Hyg.* **103**, 443–446 (2009).

788 58. Jaeger, L. H. & Carvalho-Costa, F. A. Status of benzimidazole resistance in intestinal
789 nematode populations of livestock in Brazil: a systematic review. *BMC Vet Res* **13**, 358
790 (2017).

791 59. Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: global worming and
792 anthelmintic resistance. *Vet. Parasitol.* **186**, 70–78 (2012).

793 60. Wolstenholme, A. J., Fairweather, I., Prichard, R., von Samson-Himmelstjerna, G. &
794 Sangster, N. C. Drug resistance in veterinary helminths. *Trends Parasitol.* **20**, 469–476
795 (2004).

796 61. Easton, A. V. *et al.* Multi-parallel qPCR provides increased sensitivity and diagnostic breadth
797 for gastrointestinal parasites of humans: field-based inferences on the impact of mass
798 deworming. *Parasit. Vectors* **9**, 38 (2016).

799 62. Easton, A. V. *et al.* Sources of variability in the measurement of *Ascaris lumbricoides*
800 infection intensity by Kato-Katz and qPCR. *Parasit. Vectors* **10**, 256 (2017).

801 63. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
802 *Bioinformatics* **25**, 1754–1760 (2009).

803 64. Walker, B. J. *et al.* Pilon: an integrated tool for comprehensive microbial variant detection

804 and genome assembly improvement. *PLoS One* **9**, e112963 (2014).

805 65. Otto, T. D., Dillon, G. P., Degrave, W. S. & Berriman, M. RATT: rapid annotation transfer
806 tool. *Nucleic Acids Res.* **39**, e57 (2011).

807 66. Karim, S., Singh, P. & Ribeiro, J. M. C. A deep insight into the sialotranscriptome of the gulf
808 coast tick, *Amblyomma maculatum*. *PLoS One* **6**, e28525 (2011).

809 67. Duckert, P., Brunak, S. & Blom, N. Prediction of proprotein convertase cleavage sites.
810 *Protein Eng Des Sel* **17**, 107–112 (2004).

811 68. Julenius, K., Mølgaard, A., Gupta, R. & Brunak, S. Prediction, conservation analysis, and
812 structural characterization of mammalian mucin-type O-glycosylation sites. *Glycobiology* **15**,
813 153–164 (2005).

814 69. Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting
815 transmembrane helices in protein sequences. *Proc. Int. Conf. Intell. Syst. Mol. Biol.* **6**, 175–
816 182 (1998).

817 70. Goldberg, J. M. *et al.* Kinannote, a computer program to identify and classify members of the
818 eukaryotic protein kinase superfamily. *Bioinformatics* **29**, 2387–2394 (2013).

819 71. Jones, P. *et al.* InterProScan 5: genome-scale protein function classification. *Bioinformatics*
820 **30**, 1236–1240 (2014).

821 72. Dang, H. X. & Lawrence, C. B. Allerdictor: fast allergen prediction using text classification
822 techniques. *Bioinformatics* **30**, 1120–1128 (2014).

823 73. Saravanan, V. & Lakshmi, P. T. V. Fuzzy logic for personalized healthcare and diagnostics:
824 FuzzyApp--a fuzzy logic based allergen-protein predictor. *OMICS* **18**, 570–581 (2014).

825 74. Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v.2--a server for in silico
826 prediction of allergens. *J Mol Model* **20**, 2278 (2014).

827 75. Schwarz, E. M. *et al.* The genome and transcriptome of the zoonotic hookworm *Ancylostoma*
828 *ceylanicum* identify infection-specific gene families. *Nat. Genet.* **47**, 416–422 (2015).

829 76. Ghedin, E. *et al.* Draft genome of the filarial nematode parasite *Brugia malayi*. *Science* **317**,

830 1756–1760 (2007).

831 77. C. elegans Sequencing Consortium. Genome sequence of the nematode *C. elegans*: a platform
832 for investigating biology. *Science* **282**, 2012–2018 (1998).

833 78. Godel, C. *et al.* The genome of the heartworm, *Dirofilaria immitis*, reveals drug and vaccine
834 targets. *FASEB J.* **26**, 4650–4661 (2012).

835 79. Desjardins, C. A. *et al.* Genomics of *Loa loa*, a Wolbachia-free filarial parasite of humans.
836 *Nat. Genet.* **45**, 495–500 (2013).

837 80. Tallon, L. J. *et al.* Single molecule sequencing and genome assembly of a clinical specimen
838 of *Loa loa*, the causative agent of loiasis. *BMC Genomics* **15**, 788 (2014).

839 81. Tang, Y. T. *et al.* Genome of the human hookworm *Necator americanus*. *Nat. Genet.* **46**,
840 261–269 (2014).

841 82. Nemetschke, L., Eberhardt, A. G., Viney, M. E. & Streit, A. A genetic map of the animal-
842 parasitic nematode *Strongyloides ratti*. *Mol. Biochem. Parasitol.* **169**, 124–127 (2010).

843 83. Hunt, V. L. *et al.* The genomic basis of parasitism in the *Strongyloides* clade of nematodes.
844 *Nat. Genet.* **48**, 299–307 (2016).

845 84. Zhu, X.-Q. *et al.* Genetic blueprint of the zoonotic pathogen *Toxocara canis*. *Nat. Commun.*
846 **6**, 6145 (2015).

847 85. Korhonen, P. K. *et al.* Phylogenomic and biogeographic reconstruction of the *Trichinella*
848 complex. *Nat. Commun.* **7**, 10513 (2016).

849 86. Mitreva, M. *et al.* The draft genome of the parasitic nematode *Trichinella spiralis*. *Nat. Genet.*
850 **43**, 228–235 (2011).

851 87. Foth, B. J. *et al.* Whipworm genome and dual-species transcriptome analyses provide
852 molecular insights into an intimate host-parasite interaction. *Nat. Genet.* **46**, 693–700 (2014).

853 88. Small, S. T. *et al.* Population genomics of the filarial nematode parasite *Wuchereria bancrofti*
854 from mosquitoes. *Mol. Ecol.* **25**, 1465–1477 (2016).

855 89. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome

856 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* **16**, 157

857 (2015).

858 90. Bennuru, S. *et al.* Stage-specific proteomic expression patterns of the human filarial parasite

859 *Brugia malayi* and its endosymbiont Wolbachia. *Proc. Natl. Acad. Sci. USA* **108**, 9649–9654

860 (2011).

861 91. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.

862 *EMBnet.j.* **17**, 10 (2011).

863 92. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**,

864 357–359 (2012).

865 93. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and

866 population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–

867 2993 (2011).

868 94. Narasimhan, V. *et al.* BCFtools/RoH: a hidden Markov model approach for detecting

869 autozygosity from next-generation sequencing data. *Bioinformatics* **32**, 1749–1751 (2016).

870 95. McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing

871 next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

872 96. Inbar, E. *et al.* Whole genome sequencing of experimental hybrids supports meiosis-like

873 sexual recombination in *Leishmania*. *PLoS Genet.* **15**, e1008042 (2019).

874 97. Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction

875 endonucleases. *Proc. Natl. Acad. Sci. USA* **76**, 5269–5273 (1979).

876 98. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA

877 polymorphism. *Genetics* **123**, 585–595 (1989).

878 99. Dunn, J. C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact

879 Well-Separated Clusters. *Journal of Cybernetics* **3**, 32–57 (1973).

880 100. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158

881 (2011).

882 101. Krzywinski, M. *et al.* Circos: an information aesthetic for comparative genomics. *Genome*
883 *Res.* **19**, 1639–1645 (2009).

884 102. Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease
885 and population genetic studies. *Nat. Methods* **10**, 5–6 (2013).

886 103. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using
887 dense haplotype data. *PLoS Genet.* **8**, e1002453 (2012).

888 104. Shaik, J. S., Khan, A. & Grigg, M. E. POPSICLE: A Software Suite to Study Population
889 Structure and Ancestral Determinants of Phenotypes using Whole Genome Sequencing Data.
890 *BioRxiv* (2018). doi:10.1101/338210

891 105. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
892 phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

893 106. Bankevich, A. *et al.* SPAdes: a new genome assembly algorithm and its applications to
894 single-cell sequencing. *J. Comput. Biol.* **19**, 455–477 (2012).

895 107. Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. *Genome Biol.*
896 **13**, R56 (2012).

897 108. Rozas, J. *et al.* Dnasp 6: DNA sequence polymorphism analysis of large data sets. *Mol. Biol.*
898 *Evol.* **34**, 3299–3302 (2017).

899 109. Leigh, J. W. & Bryant, D. popart : full-feature software for haplotype network construction.
900 *Methods Ecol. Evol.* **6**, 1110–1116 (2015).

901

902

903

904

905 **Table 1. *Ascaris* germline genome assemblies**

Features	<i>A. lumbricoides de novo</i>	<i>A. lumbricoides semi-de novo</i> ¹	<i>A. lumbricoides</i> reference-based	<i>A. suum</i> ² (Wang et al 2017)	<i>A. suum</i> ² (Jex et al 2011) ⁴
Assembled bases (Mb)	269.2	307.9	296.0	298.0	272.8
N50 (Mb)	0.29	4.77	4.63	4.65	0.41
N50 number	269	21	21	21	179
N90 (Mb)	0.04	0.95	0.91	0.92	0.08
N90 number	1,112	74	75	75	748
Total scaffold number	8,111	412	415	415	29,831
Largest scaffold length (Mb)	1.9	13.9	13.2	13.4	3.8
Protein-coding genes	17,011 ³	17,105 ³	17902	18,025	18,542 ³

906 ¹ Exhibits ~23 Mb of sequence gaps and 15.4 Mb of unplaced sequence in 4,072 short contigs.

907 ² The three *A. lumbricoides* assemblies constructed here are compared to the *A. suum* assemblies from
908 Australia ²⁵ and the United States ²⁸.

909 ³ 21-23% are only partial genes based on the annotation from *A. suum* ²⁸.

910 ⁴ The sample for sequencing is derived from a mixture of the germline and somatic genomes (after DNA
911 elimination).

912
913

914 **Table 2. Effects of host, household, village and time point on the genetic variation of *Ascaris***

	Nuclear genome phylogeny ¹			Mitochondrial genome phylogeny		Samples ²
	R ²	p-value	p-adjusted (Bonferroni)	R ²	p-value	
Individual	0.933	0.001	0.004	0.996	0.095	68 worms from 60 people
Household	0.020	0.110	0.440	0.011	0.340	68 worms from 43 houses
Village	0.052	0.001	0.004	0.013	0.335	5 villages with 43, 17, 4, 3, and 1 individual each
Time point	0.018	0.162	0.648	0.024	0.100	55 at baseline and 13 post-deworming

915 ¹ Results based on PERMANOVA using phylogenetic distances among worms. Results were largely similar
916 using a distance matrix generated from the PCA plot (Figure S8) and using the Multi-Response Permutation
917 Procedure (MRPP) method (Table S9).

918 ² Since some worms did not have metadata associated with each variable examined, and some variables were
919 over-represented in the sample (for example, 43 of 68 worms came from a single village) the samples are
920 specified in this column.

921

922 **Figure Legends**

923 **Figure 1. *Ascaris* proteome**

924 A) Functional classification of the predicted proteome of *A. lumbricoides* (an improved proteome
925 of *Ascaris* spp.), excluding proteins with unknown or uncharacterized function. B) PCA plot based
926 on multivariate analyses of RNA-seq data from various stages/tissues. Samples from tissues related
927 to sperm (blue ellipse) and oocyte production (orange ellipse, see also Figure S9) cluster together.
928 C) Estimated tree based on orthology analyses between the predicted proteomes of publicly
929 available nematodes. The *Ascaris* clade has been shaded in purple within Clade III (teal). Samples
930 are labelled by BioProject Accession number, as well as by the first letter of the genus and the first
931 two letters of the species name (ASU = *Ascaris suum*, ALU = *Ascaris lumbricoides*, WBA =
932 *Wuchereria bancrofti*, BMA = *Brugia malayi*, LLO = *Loa loa*, DIM = *Dirofilaria immitis*, OVO =
933 *Onchocerca volvulus*, TCAN = *Toxocara canis*, ACAN = *Ancylostoma caninum*, ADU =
934 *Ancylostoma duodenale*, ACE = *Ancylostoma ceylanicum*, NAM = *Necator americanus*, CEL =
935 *Caenorhabditis elegans*, SST = *Strongyloides stercoralis*, SRA = *Strongyloides ratti*, TSP =
936 *Trichinella spiralis*, TTR = *Trichuris trichiura*). Multiple genomes for the same organism are
937 suffixed with numerals.

938 **Figure 2. Phylogenetics of *Ascaris* spp based on mitochondrial sequences.** A) Haplotype
939 network based on the COI mitochondrial gene. Notches on the lines separating samples represent
940 the number of nucleotide changes between the worms represented, details on the origins of
941 haplotypes can be found in supplementary table S4; B) Maximum likelihood phylogenetic (ML)
942 reconstruction of *Ascaris* complete mitochondrial genomes, constructed under the conditions of the
943 GTR model and 1000 bootstrap replicates were used to provide nodal supports. The tree was
944 constructed using all mitochondrial genomes assembled from the Kenyan isolates and all other
945 published reference *Ascaris* mitochondrial genomes and *Baylisascaris procyonis* was used as the
946 outgroup. The three major clades A, B and C were identified by color hue, and the majority of the

947 Kenyan worms clustered in clade A. Each village was represented by a distinct shape and unfilled
948 shapes represented worms sequenced from specific villages post anthelminthic treatment.

949 **Figure 3: Genetic diversity of the *Ascaris* strains.** A) Circos plot depicting the genetic diversity
950 of the *Ascaris* strains. Outside track (red histograms) shows the total SNP diversity across the
951 genome (first 50 largest scaffolds) in 10kb sliding windows. Blue bar plot indicates the measured
952 degree of polymorphism (π)⁹⁷ within the *Ascaris* population in 10 kb sliding windows. The
953 innermost track with black-green histogram plots the TajimaD⁹⁸ values which reflect the difference
954 between the mean number of pairwise differences (π) and the number of segregating sites using a
955 sliding window of 10 kb. B) The Circos-plot of the genome-wide distribution of heterozygous and
956 homozygous SNPs in 10 kb blocks identified long stretches of homozygosity among the different
957 strains of *Ascaris*, except 119_3, which is predominantly heterozygous throughout and was isolated
958 from village 3. Red color = >90% of heterozygous SNPs, blue = > 90% of homozygous SNPs,
959 yellow = 50% heterozygous, 50% homozygous SNPs. Each track represents a single strain.

960 **Figure 4: Comparative genomics and population genetic structure of *Ascaris*.** A) Hierarchy
961 phylogenetic tree of *Ascaris* strains. Phylogenetic tree was constructed with genome wide SNPs (at
962 10x coverage) from 68 *Ascaris* strains, including the *A. suum* reference (outgroup). Height =
963 number of SNPs per site. Red symbol = *A. lumbricoides* mitochondrion genome. Black symbol =
964 *A. suum* mitochondrion genome. Samples were collected from 5 different villages: Circle = village
965 1, square = village 2, upside triangle = village 3, downside triangle = village 4, diamond = village
966 5. B) Heatmap clustering the co-inheritance of ancestral blocks by Bayesian method using genome
967 wide shared haplotype segments among the *Ascaris* genomes. scale = posterior coincidence
968 probability. Hierarchical clustering and phylogenetic relationships are based on percent shared
969 haplotype segments in scaffolds ALgV5B01, ALgV5B02, and ALgV5R001. Red arrows show
970 examples of genetic recombination demonstrated by phylogenetic incongruence in the tree
971 topology based on shared ancestry among blue highlighted strains (n = 13). C) Pairwise SNPs and
972 F_{ST} estimates in scaffolds ALgV5B01, ALgV5B02, and ALgV5R001 indicate a switching of

973 haplotypes (black arrow), and genetic hybridization among the blue highlighted strains (n = 13) in
974 the phylogenetic tree depicted in figure “B”. X-axis = total SNPs/10kb in SNPs plot or F_{ST} /10kb in
975 F_{ST} plot. **D)** Estimation of the number of ancestral populations (K) based on Dunn Index ⁹⁹. **E)**
976 Population genetic structure and admixture clustering analysis of the *Ascaris* genomes obtained by
977 POPSICLE ¹⁰² using K=6 different color hues in the innermost concentric circle of the Circos plot .
978 The middle concentric circle shows the relative percentage of each genetic ancestry within each
979 genome (represented by the color hues for K = 6). The outermost concentric circle shows the
980 genome wide local admixture profile of each strain in 10 kb sliding windows. The following
981 geometric shapes represent villages, and the color for each shape identifies the mitochondrion
982 genome each sample possesses: Black = *A. suum*; red = *A. lumbricoides*; Circle = village 1; square
983 = village 2; upside triangle = village 3; downside triangle = village 4; diamond = village 5

984 **Figure 5: Local admixture clustering and genome wide analysis of inheritance of haploblocks**
985 **of *Ascaris* obtained by POPSICLE** ¹⁰⁴. Based on ancestral population K= 6. X-axis = strains. Red
986 highlighted box indicates the introgression of large haplotype blocks of defined parentage among
987 the different strains of *Ascaris* in scaffolds ALgV5R019X (A) and ALgV5R027X (B). Many
988 examples exist whereby strains that are in linkage disequilibrium at ALgV5R019X possess
989 different haplotypes in ALgV5R027X (for example 1107E_1 vs. 2110F_2) indicating both
990 segregation as well as recombination in the evolution of the isolates. The local admixture patterns
991 reveal extensive genetic hybridization among different strains of *Ascaris*. Color assignment is
992 depicted based on Figure 6E.

993

994

995 **Supplemental Figure Legends:**

996 **Figure S1. Predicted proteome and stage-specific transcriptomes of Ascaris.**

997 A) Functional classification of the predicted proteome of *A. lumbricoides* (an improved proteome
998 of *Ascaris* spp.) with the majority of proteins being unknown/uncharacterized. B) 2-dimensional
999 principal component analysis plot illustrating the similarities in transcription profiles between the
1000 major stages (Fig 1B) and the developmental stages.

1001 **Figure S2. Phylogenetic trees based on CO1 and ND4**

1002 Maximum likelihood phylogenetic analyses of the A) CO1 and B) ND4 genes using RaxML under
1003 the conditions of the GTR model with nodal support values generated through 1000 bootstrap
1004 replicates. The trees were generated using complete sequences of the genes extracted from the 68
1005 Kenyan *Ascaris* mitochondrial genomes generated in this study and other published reference
1006 genomes.

1007 **Figure S3. Sliding window analyses.** A) Comparison between Kenyan samples and reference
1008 mitochondrial genomes of *Ascaris lumbricoides* and *Ascaris suum*, B) Comparison between
1009 villages, C) CO1 comparison between villages.

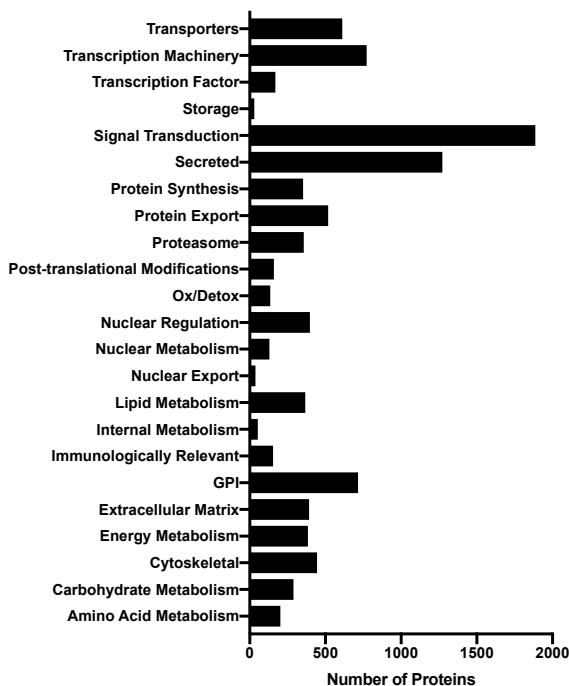
1010 **Figure S4. *Ascaris* SNPs and insertion/deletions (InDels) maps.**

1011 An assembled 6.5 Mb *Ascaris lumbricoides* chromosome fragment (ALgV5R006), with the
1012 frequency of identified SNPs and InDels plotted for one representative *A. lumbricoides-like* worm
1013 from this study (#7664) and one *A. suum-like* worm (#7680). Genes are shown on the top of the
1014 plot, with red and blue indicating genes transcribed from forward and reverse strands, respectively.
1015 The y-axis shows the frequency of SNPs and InDels for a 20-kb window size (with a 4-kb sliding
1016 window in x-axis). Note the profiles and the frequency between SNPs and InDels are highly
1017 consistent within individual worms.

1018 **Figure S5. Somy analysis of the *Ascaris* isolates.** The ploidy of the *Ascaris* strains are represented
1019 in a heatmap. Ploidy was calculated by averaging the count of aligned reads in 10 kb sliding
1020 windows across the genome after reference mapping against ALV5. The ploidy data suggest that

1021 *Ascaris* is completely diploid (close to 2n), except at two scaffolds ALgB5B14 and ALgv5RO23,
1022 where the majority of strains show elevated ploidy. X-axis shows the first 50 largest scaffolds
1023 involved in this study and the y-axis shows the strains (ordered by code number 1-68).

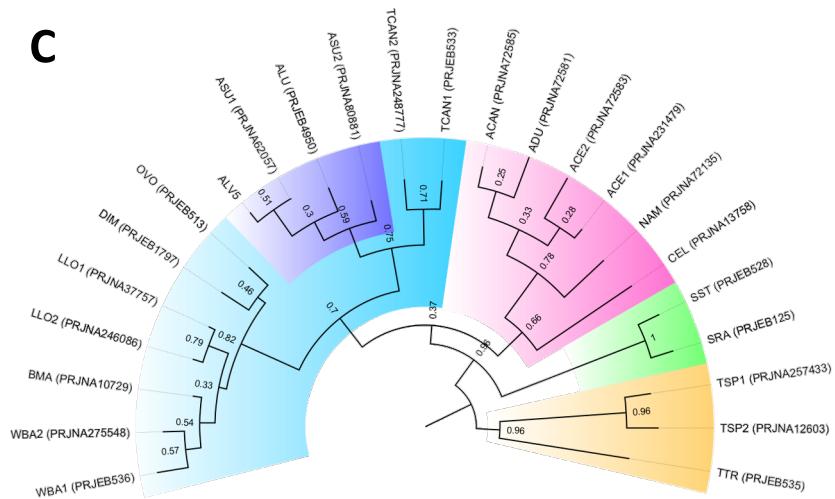
1024 **Figure S6.** Admixture clustering and current population genetic structure of *Ascaris* were
1025 determined. Data analyzed with POPSICLE with an ancestral population size = 4 (A) and 8 (B) in
1026 10 kb sliding windows as described in Figure 4E.


1027 **Figure S7. Plot of phylogenetic distances compared to geographic distances.** A) For village #1
1028 and village #5. B) Plot of diversity versus geographical distance (Hs on left, Fst on right). Genetic
1029 distances based on CO1 genes are plotted against the geographic distances between the places from
1030 which these worms were collected.

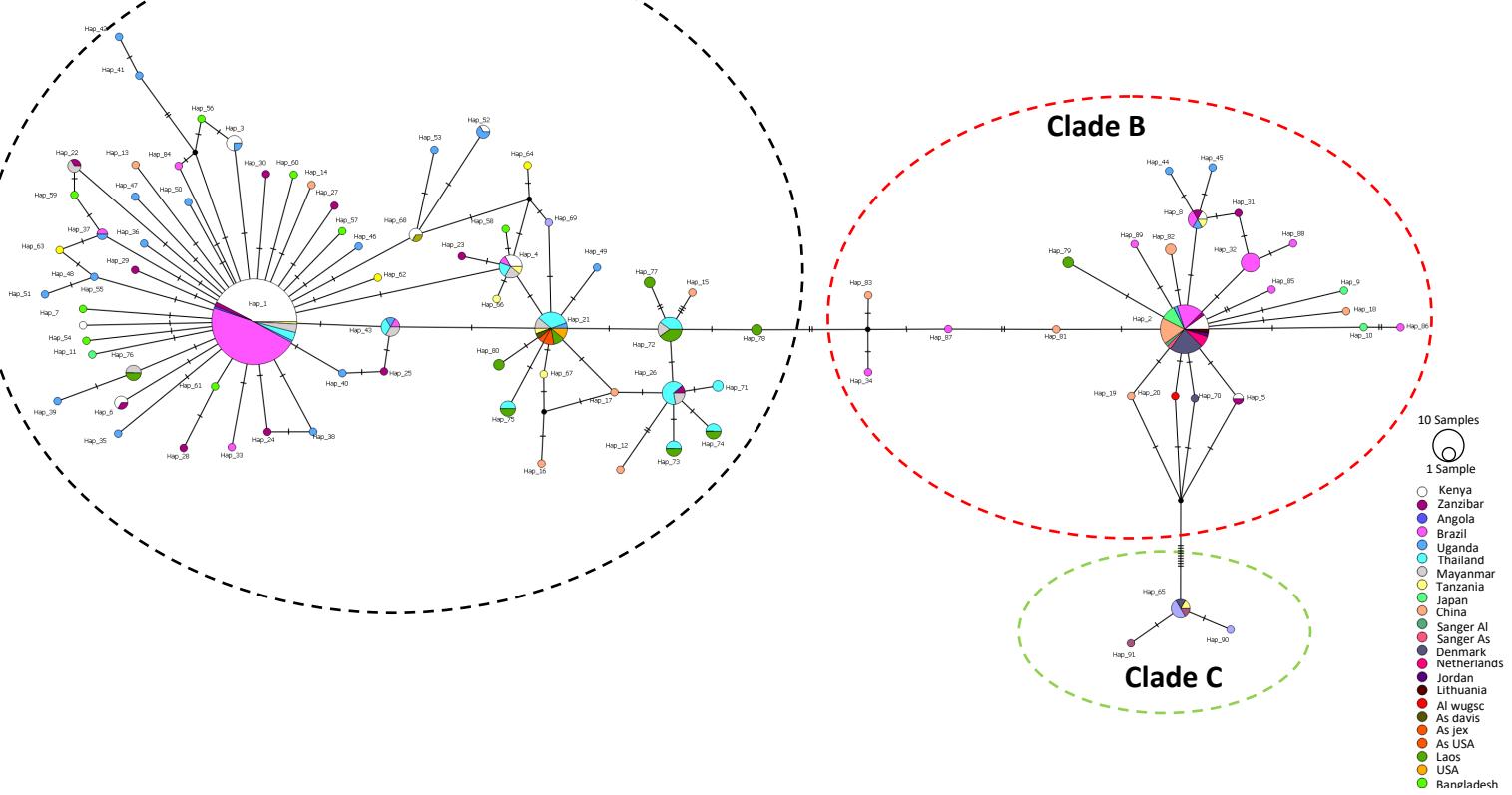
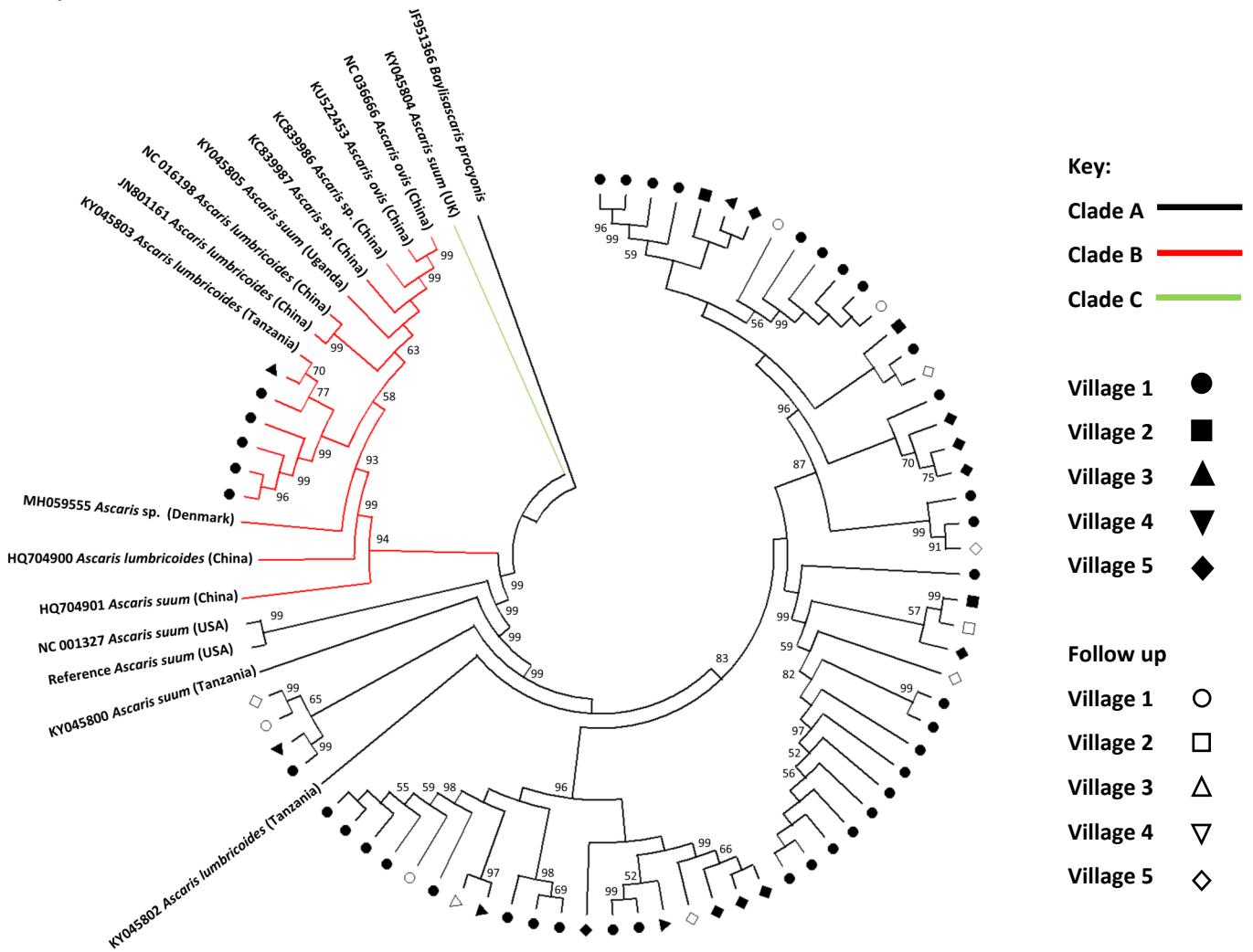
1031 **Figure S8. PCA plot of worms sequenced for 5 Kenyan villages.** Each point is color-coded by
1032 village-of-origin and plotted according to the 1st and 2nd principal components, based on genome
1033 sequences. Worms from village #1 are found in each of 3 clusters, and two clusters contain only
1034 worms from village #1.

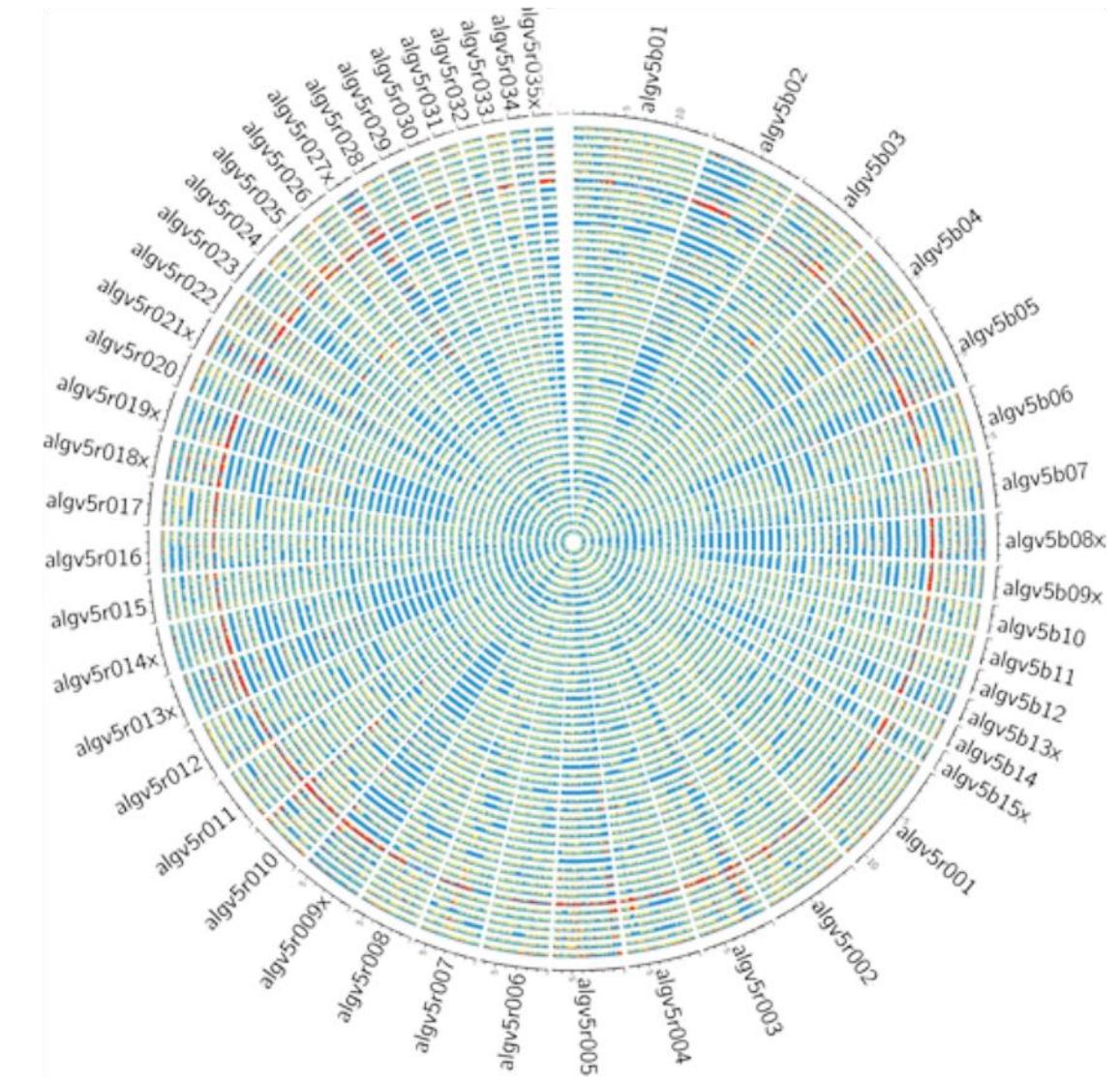
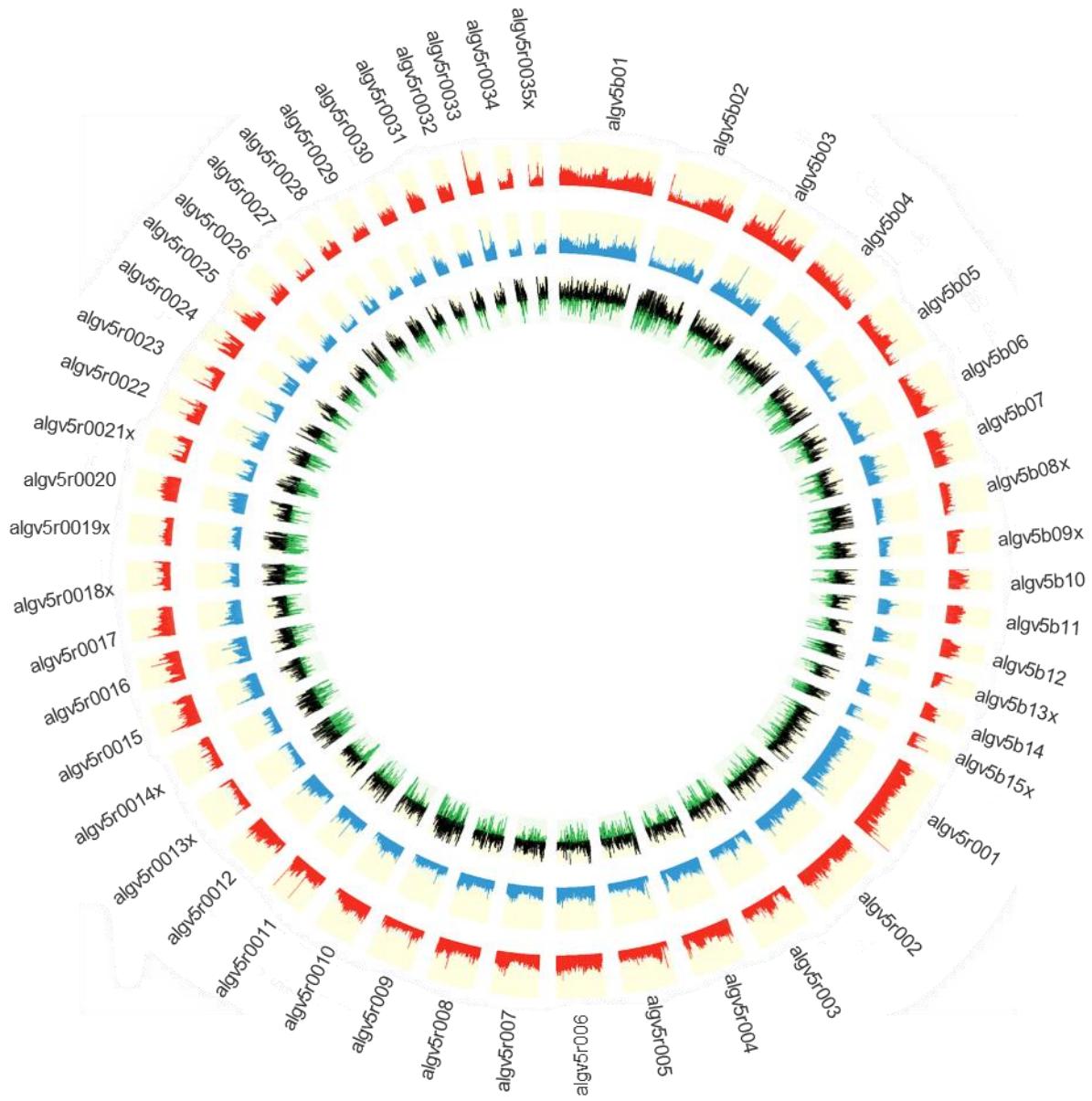

1035 **Figure S9. *Ascaris* stage-specific RNA expression heatmaps** (A) Correlation heatmap comparing
1036 parasite transcriptomes at different life stages. (B) 1870 genes differentially expressed across the
1037 stages.

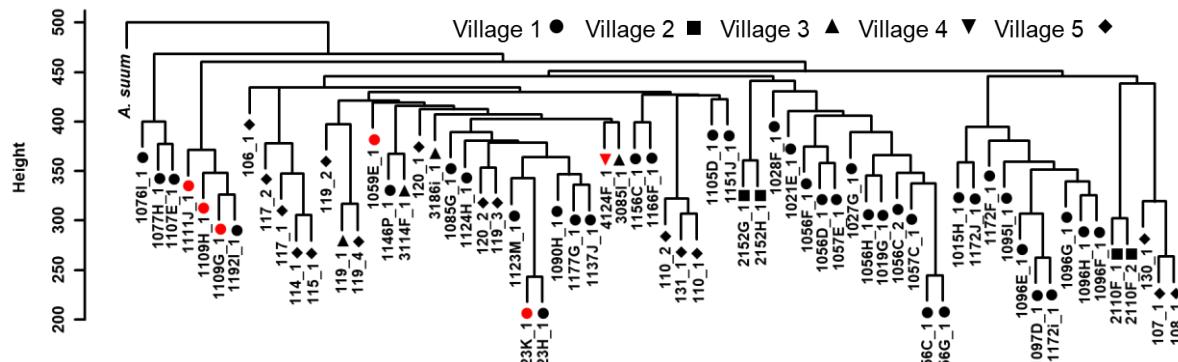
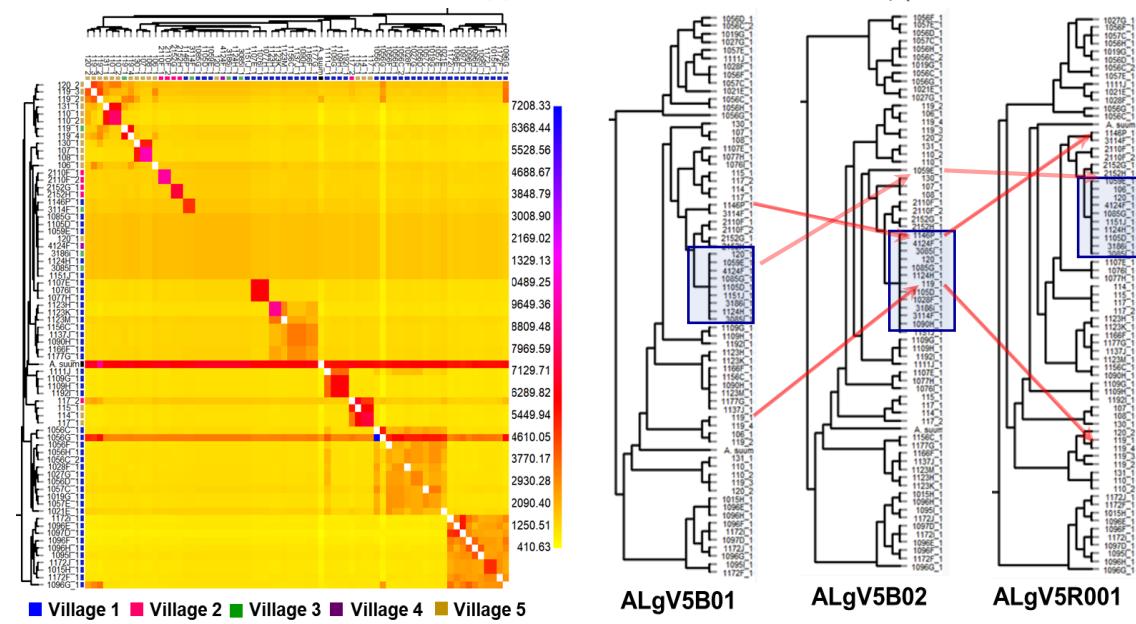
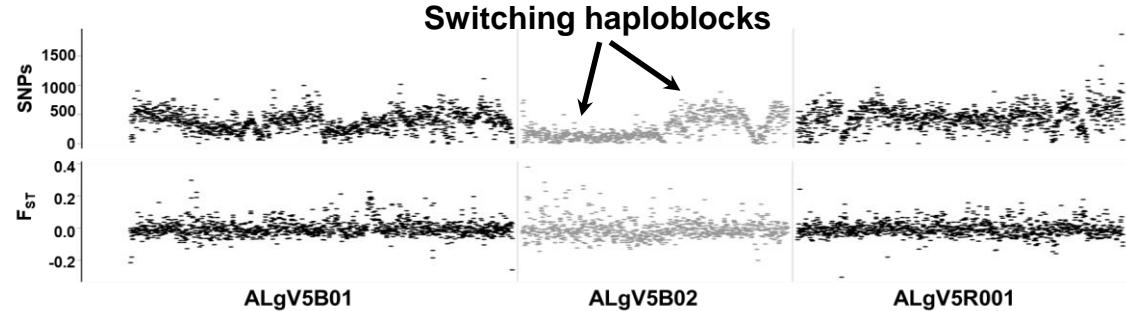
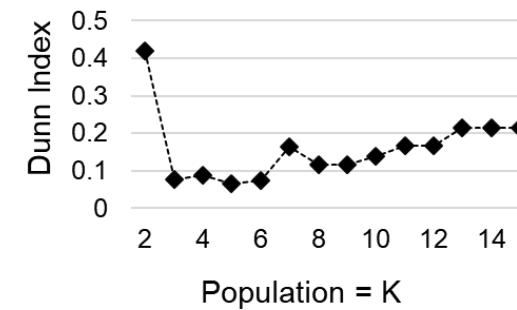
1038 **Figure S10. Evidence of *Ascaris* population expansion.** The pairwise nucleotide differences
1039 between worm samples (solid line) are compared to the binomial function that would most closely
1040 represent a theoretical stable population (dotted line). Additional information is available in Table
1041 S8.


A

B

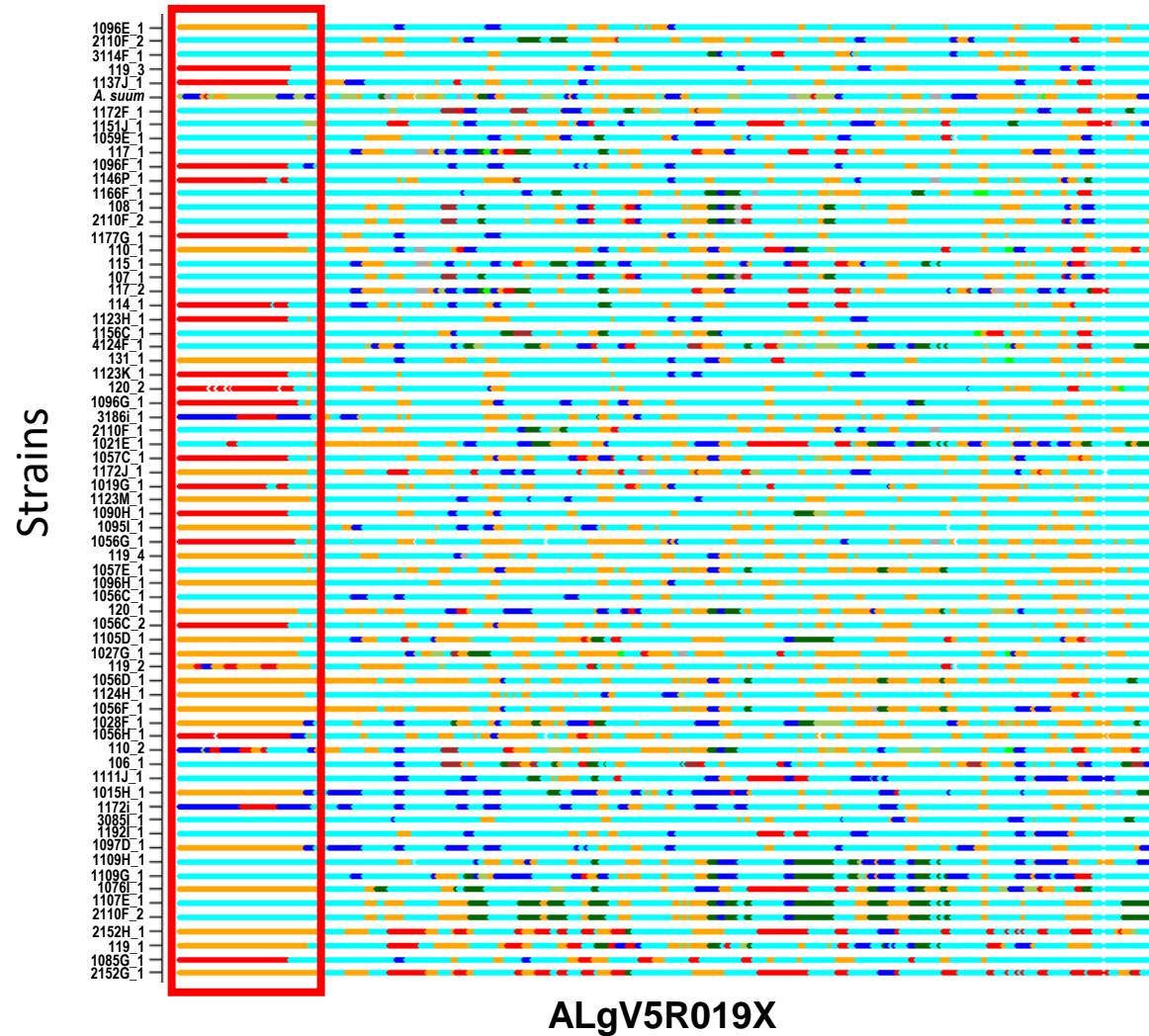


C

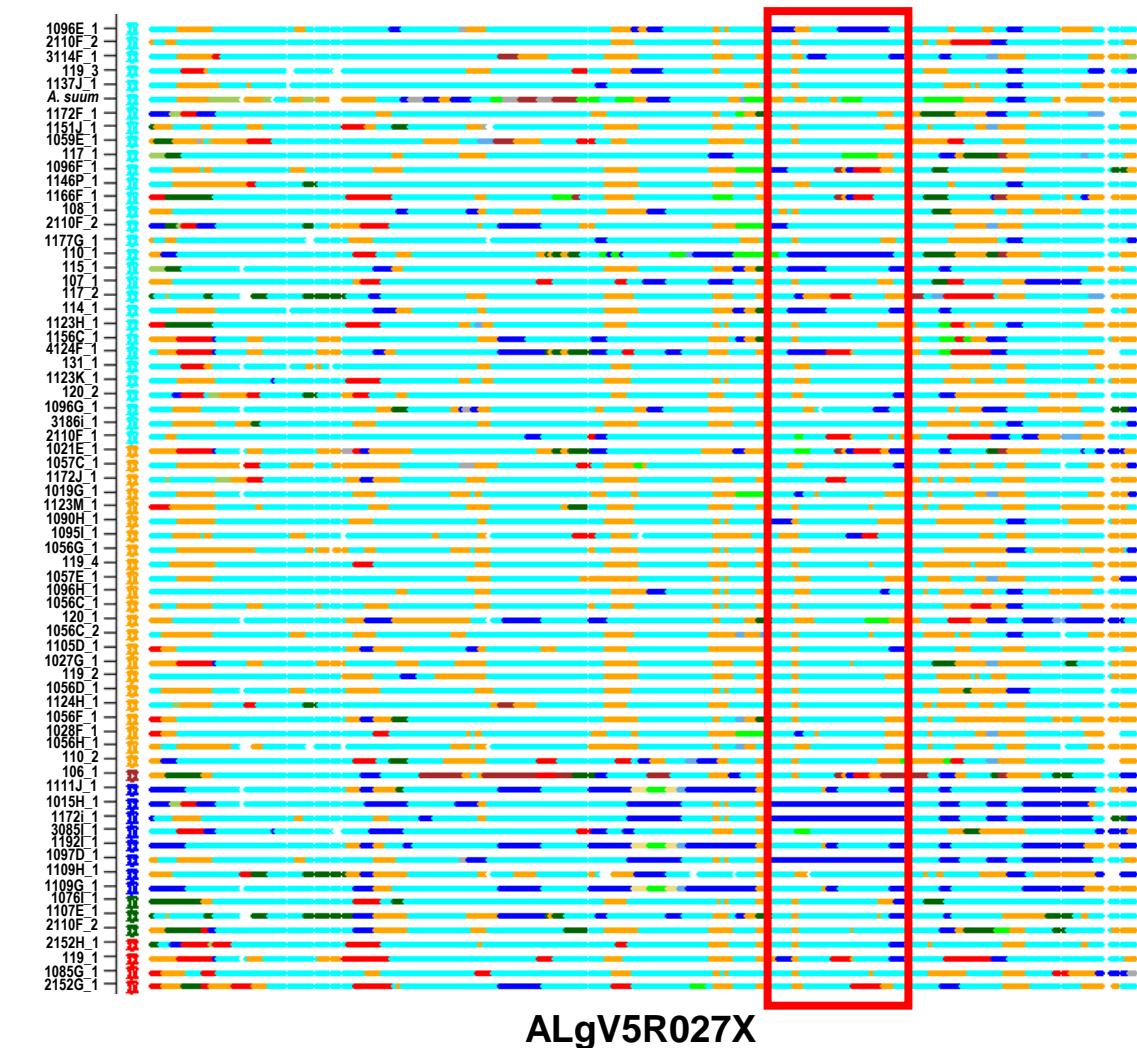
a)

bioRxiv preprint doi: <https://doi.org/10.1101/2020.04.17.047407>; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Clade A**Clade B****Clade C****b)**



Figure


A**B****C****D****E**

Supplemental figure

A

B

1 **Supplementary text**

2 ***Ascaris lumbricoides* reference genome**

3 We first evaluated a *de novo*-only assembly strategy. To facilitate scaffolding, we
4 obtained Pacific Biosciences (PacBio) reads from the female germline (ovary and oviduct)
5 and intestinal tissues. Despite the high coverage of the Illumina paired-end and mate-pair
6 reads and additional longer PacBio reads, the *de novo*-only assembly approach led to a low-
7 quality draft genome with a small N50 value and many scaffolds. We next used a *de novo*
8 assembly strategy with scaffolding to the reference *A. suum* genome (semi-*de novo* strategy).
9 While this assembly led to relatively high N50 values, the assembly contained ~23 Mb of
10 sequence gaps and an additional 15.4 Mb of sequence that could not be incorporated into the
11 assembly. We believe the reference-based *ALV5* assembly described in the main text is the
12 highest quality assembly among the three versions (Table 1) and it should be used for future
13 studies. However, we note that several caveats should be considered when using this genome
14 assembly: (1) potential assembly errors in the reference *A. suum* genome could be
15 propagated into the *ALV5* genome; (2) potential sequence differences between *ALV5* and *A.*
16 *suum*, particularly large-scale genome rearrangements and structure variations, are not likely
17 incorporated into the *ALV5* assembly; and (3) annotation errors and/or missed annotation,
18 either due to errors in the original *A. suum* annotation or due to the potential different gene
19 expression profiles between the two species may be present in the *ALV5* genome. To identify
20 assembly errors and structure variations, we have used additional Illumina sequencing reads
21 to further improve the genome assembly using Pilon genome polishing software. Pilon uses a
22 local re-assemble strategy to correct draft assembly and to call sequence variants of multiple
23 sizes, including very large insertions and deletions¹. Overall, the *ALV5* genome assembly is
24 reference-quality and is suitable for downstream analysis, including SNPs and InDels
25 identification. All genome assemblies are made available (see section *Data availability*).

26 Optical mapping, long sequencing reads, and three-dimension chromosomes organization
27 data (Hi-C) will be necessary to further improve the assembly.

28

29 **Genome annotation and *Ascaris* proteome**

30 In addition to transferring *A. suum* annotations to the reference-based germline *A.*
31 *lumbricoides* genome, we also transferred the *A. suum* gene models to the *de novo* and semi-
32 *de novo* *A. lumbricoides* genome versions. While ~94.6% of the genes can be transferred to
33 both genomes, over 20% of the transferred genes are only partial matches and are fragmented
34 supporting the view that the *de novo* and semi *de novo* *A. lumbricoides* assemblies are highly
35 fragmented. Although the updated *Ascaris suum* proteome was reported in our previous study
36 ², that study's focus was on comparative analysis of programmed DNA elimination. Thus, no
37 in-depth analysis of the revised *Ascaris* proteome (based on the annotation of the reference-
38 based genome) was carried out in that study.

39

40 **Nucleotide diversity and population structure inferred from mitochondrial genomes**

41 Sliding window analyses showed considerable diversity across *Ascaris* mitochondrial
42 genomes. The most diverse region was the non-coding control region, both between worms
43 from different villages in this study and between Kenyan and other worms. The ND4 gene
44 had a nucleotide diversity of $\pi = 0.008827$; that of the CO1 barcoding gene was 0.006243
45 (Figure S2). Despite differences in their molecular diversity, phylogenetic analyses based on
46 the ND4 and CO1 genes revealed the same overall topology: distinct *A. lumbricoides* and *A.*
47 *suum* type clades (Figure S3). Though the phylogeny passed on the whole mitochondrial
48 genomes also suggests the presence of an *A. lumbricoides*-type clade and an *A. suum*-type
49 clade, the mitochondrial genome generated from the Sanger institute *A. suum* genome reads
50 (Acc: PRJEB2435) clustered into the *A. lumbricoides* type clade (Figure 3B).

51

52 **Evolution of *Ascaris* mitochondrial genomes**

53 To account for potential population expansion events, both datasets including all
54 published mitochondrial genomes from across the globe and those from Kenya alone were
55 assessed (Figure S10 and Table S8). The Tajima's D value was negative and significant
56 (Tajima's D -1.5691; P-value 0.028, P<0,05) indicating an excess of low frequency
57 polymorphisms within the global population data set. The Fu's F_s for the global data was
58 shown to be positive but not significant (Fu's F_s 8.5673; P-value 0.98, P>0.05), potentially
59 indicating a deficiency in diversity as would be expected in populations that has recently
60 undergone a bottle neck event. Furthermore, the same patterns were also seen when only the
61 Kenyan sequences were compared to each other where the Fu's F_s was positive and
62 nonsignificant (Fu's F_s 4.979; P-value 0.917, P>0.05), and the Tajima's D ⁴³ was also
63 negative but nonsignificant (Tajima's D -1.28930; P-value 0.079, P>0.05).

64 Overall, these data suggest that *Ascaris* either underwent a population expansion or a
65 significant selective pressure. To test for selection on the *Ascaris* population, we calculated
66 the ratio of non-synonymous to synonymous substitutions (dN/dS ratio) for each of the genes
67 in the mitochondrial genome. All genes appeared to be under purifying selection with a
68 dN/dS ratio <1 (with ND6 having the lowest ratio value of 0.05 and ND5 with the highest
69 ratio value of 0.527). Since we observed a dN/dS ratio below 1 for all genes, it is unlikely
70 that the genetic variability of the *Ascaris* samples examined here resulted from selective
71 sweeps. This means that these genes are likely under purifying selection to maintain the
72 existing functionality of these mitochondrial-encoded proteins, as opposed to drastic changes
73 resulting from selective sweeps. Thus, the Tajima's D and Fu's F measurements are most
74 likely due to a population expansion. Since we do not know how quickly *Ascaris* mutates, we
75 cannot estimate how recently such a population expansion might have occurred. Results were

76 similar when based on sequences of worms collected only in Kenya, suggesting that a recent
77 (worldwide) *Ascaris* population expansion may have occurred.

78

79 **Population structure inferred from nuclear genomes**

80 Most clades in the nuclear genome phylogeny are dominated by worms from either village #1
81 or village #5, which were the most heavily parasitized and also the most heavily represented
82 in this sampling. P-values for clustering of worms from the same host-groups (Table 2) are
83 shown with Bonferroni corrections for multiple comparisons. The two significant groupings
84 (for the nuclear phylogeny) were individual and village. These remain significant if both
85 factors are included in the same regression, or if the “individual” variable is treated as being
86 nested within the “village” variable.

87 Geographic distance was not a significant predictor of phylogenetic distance across
88 the five villages ($r^2=0.07$, $p=0.15$) within village #5 ($r^2=0.05$, $p=0.27$), or within village #1
89 ($r^2=-0.07$, $p=0.81$). This analysis was only done for these two villages, as they had the largest
90 number of worms sequenced in this study (Figure S6).

91

92 **Supplementary Methods**

93 *DNA extraction from adult worms*

94 DNA extraction methods were modified several times before a protocol was identified
95 that produced DNA of sufficient quality. Extraction was likely difficult because the worms
96 have a high polyphenol content³. In the end, approximately 200-400 mg of worm material
97 was put in a 1.5 mL tube (Eppendorf, Hamburg, Germany). To the sample, 750 μ l of Qiagen
98 Digestion buffer G2 (Qiagen, Hilden, Germany) and 20 μ l of Proteinase K (Qiagen, Hilden,
99 Germany) was added. Tubes were manually shaken for ten seconds, and then incubated in a
100 Thermomixer C heat block (Eppendorf, Hamburg, Germany) at 50 degrees and 500 rpm for

101 four hours. Halfway through the incubation, tubes were manually shaken again. Tubes were
102 spun at 10000 rpm for one minute, and 700 μ l of the supernatant was removed and to which
103 700 μ l one-phase Phenol/Chloroform/Isoamyl alcohol (Amresco LLC, Solon, Ohio, USA)
104 was added to these tubes. Tubes were inverted 30 times, then spun 4 $^{\circ}$ C at 14000 rpm for 20
105 minutes. The supernatant was removed, and 3 μ l RNase A (ThermoFisher Scientific,
106 Waltham, MA, USA) was added. The sample was mixed and incubated at 37 $^{\circ}$ C for 30
107 minutes at 200 rpm. Once again, 700 μ l one-phase Phenol/Chloroform/Isoamyl alcohol was
108 added to these samples, the samples were inverted 30 times, and spun for 15 minutes. The
109 supernatant was then removed and added to the Zymo Genomic DNA Clean & Concentrator
110 kit.

111

112 *Analysis of mitochondrial genomes*

113 Genetic diversity was compared to the CO1 gene, as the CO1 gene has been used extensively
114 in molecular epidemiological studies of *Ascaris* and other nematodes. The sliding window
115 was performed on all mitochondrial genomes and the subset containing only those from
116 Kenya. For comparison, sliding window analyses were also performed on the complete CO1
117 gene in order to identify if the barcoding region itself was actually the most diverse region of
118 the gene to be used.

119 Non-coding and tRNA sequences were removed from the analyses, to remove the
120 potential effect of high mutation rates which could have caused mutational saturation in any
121 of the analyses and masked the true impact of the divergence in the protein coding genes.

122

123 **Supplementary Tables**

124 **Table S1. Characteristics of genome assemblies**

125 **Table S2. Proteome annotation**

126 **Table S3. Description of worm from which each sample was sequenced.** The sex of the
127 worm (based on morphological identification) and the part of the worm (germline vs somatic)
128 is listed. Some hosts donated multiple worms.

129 **Table S4. CO1 haplotype list**

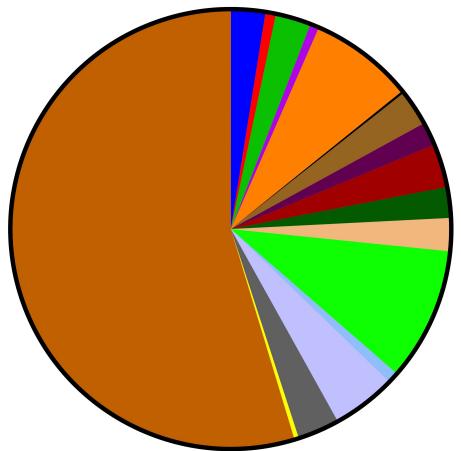
130 **Table S5. X4 ratio analyses of Clade A and B using complete mitochondrial genomes**
131 **used to construct the phylogeny in Figure 2b.**

132 **Table S6. Number of heterozygous and homozygous SNPs in each of the 68 worms from**
133 **Kenya sequenced.**

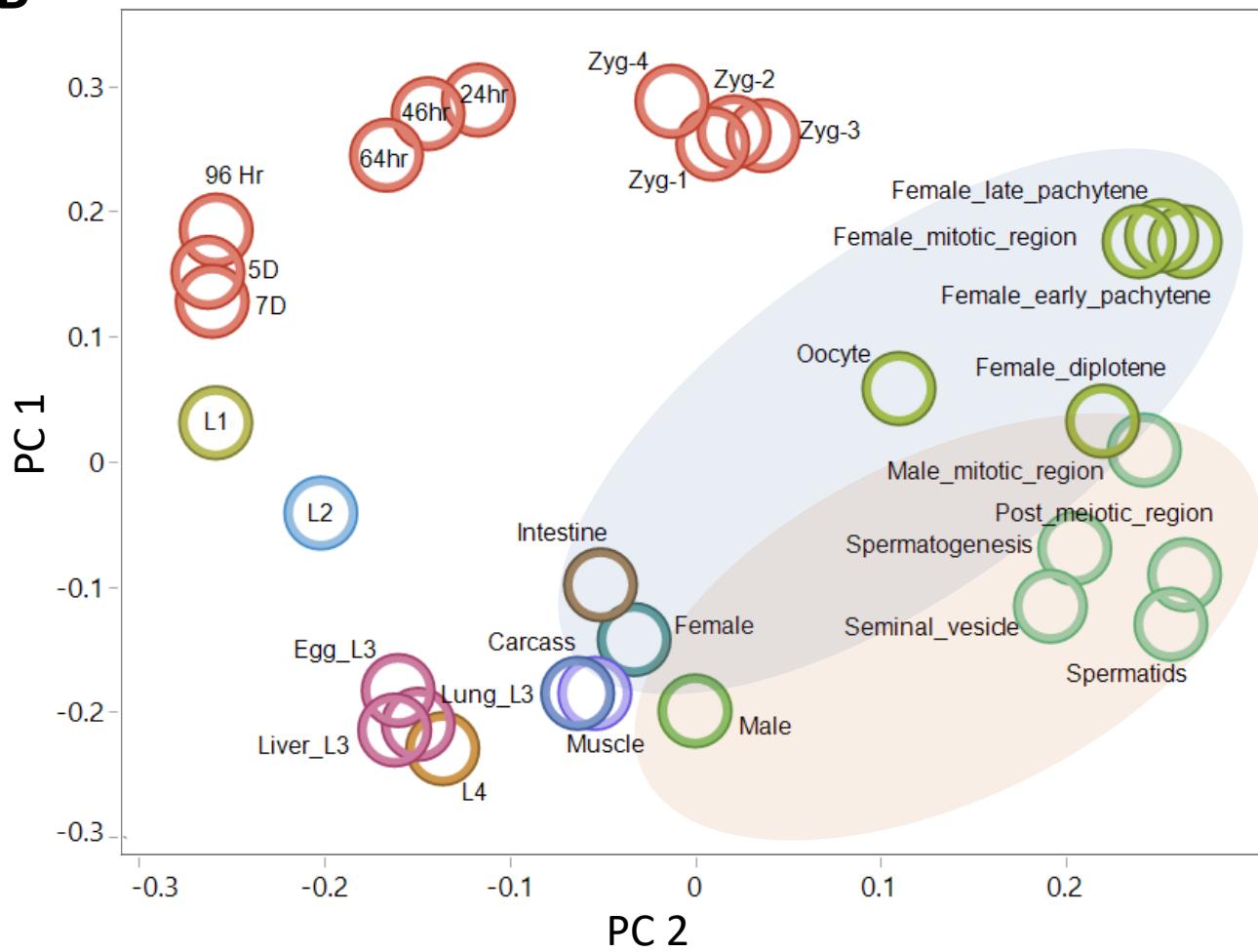
134 **Table S7. Reference mitochondrion genomes**

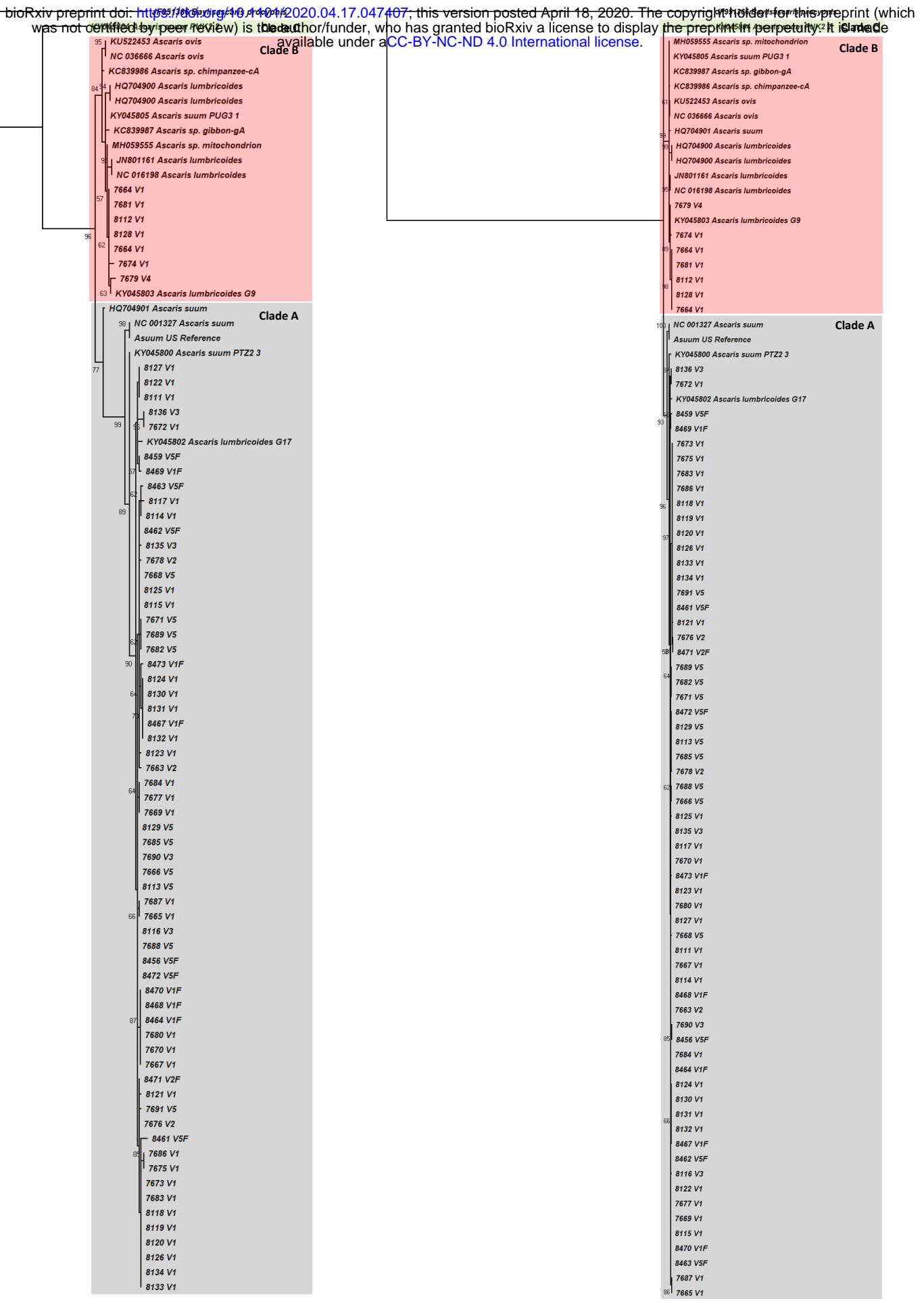
135 **Table S8. Demographic analyses using Tajima's D and Fu's F statistic across complete**
136 **mitochondrial genomes as a detection for the signature of population expansion events.**

137 **Table S9. Supplement to Table 2 using alternative measures of phylogenetic distance**

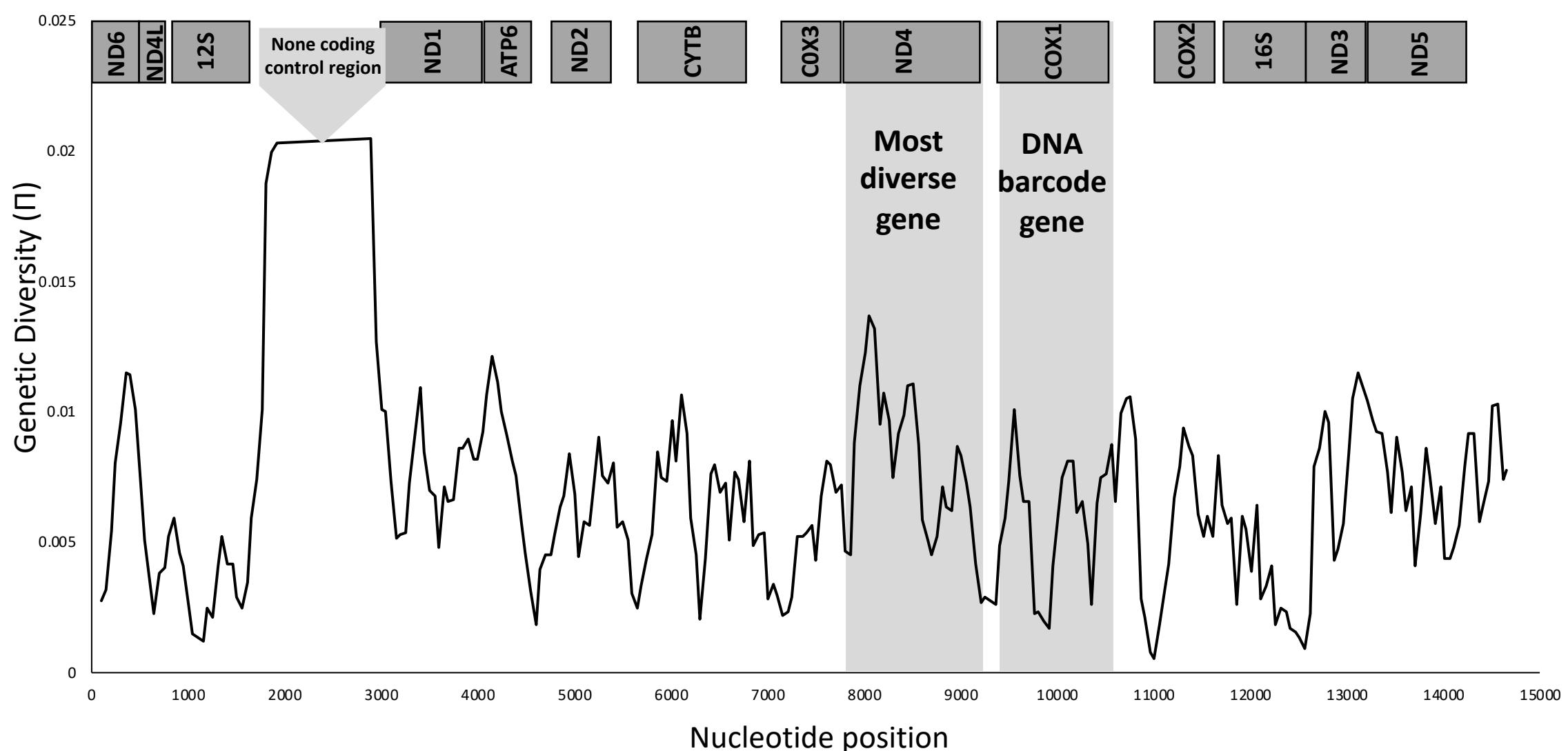

138

139 **Supplementary figure legends in main manuscript file**

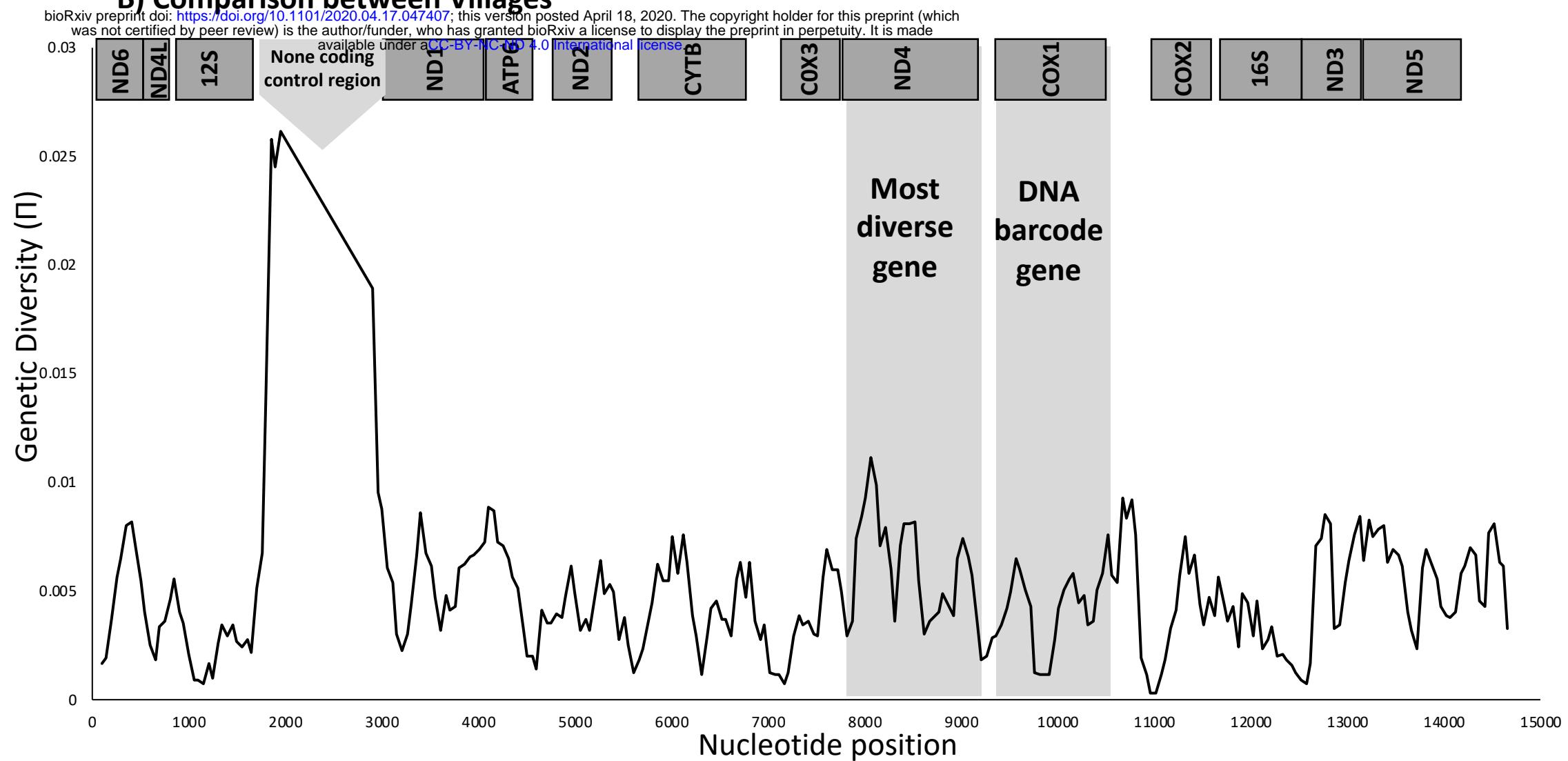

140 **Bibliography**


- 141 1. Walker, B. J. *et al.* Pilon: an integrated tool for comprehensive microbial variant detection
142 and genome assembly improvement. *PLoS One* **9**, e112963 (2014).
- 143 2. Wang, J. *et al.* Comparative genome analysis of programmed DNA elimination in
144 nematodes. *Genome Res.* **27**, 2001–2014 (2017).
- 145 3. Di Mito, C. & Betschart, B. DNA extraction from *Ascaris suum* muscle tissue. *Parasitol.*
146 *Res.* **84**, 596–597 (1998).

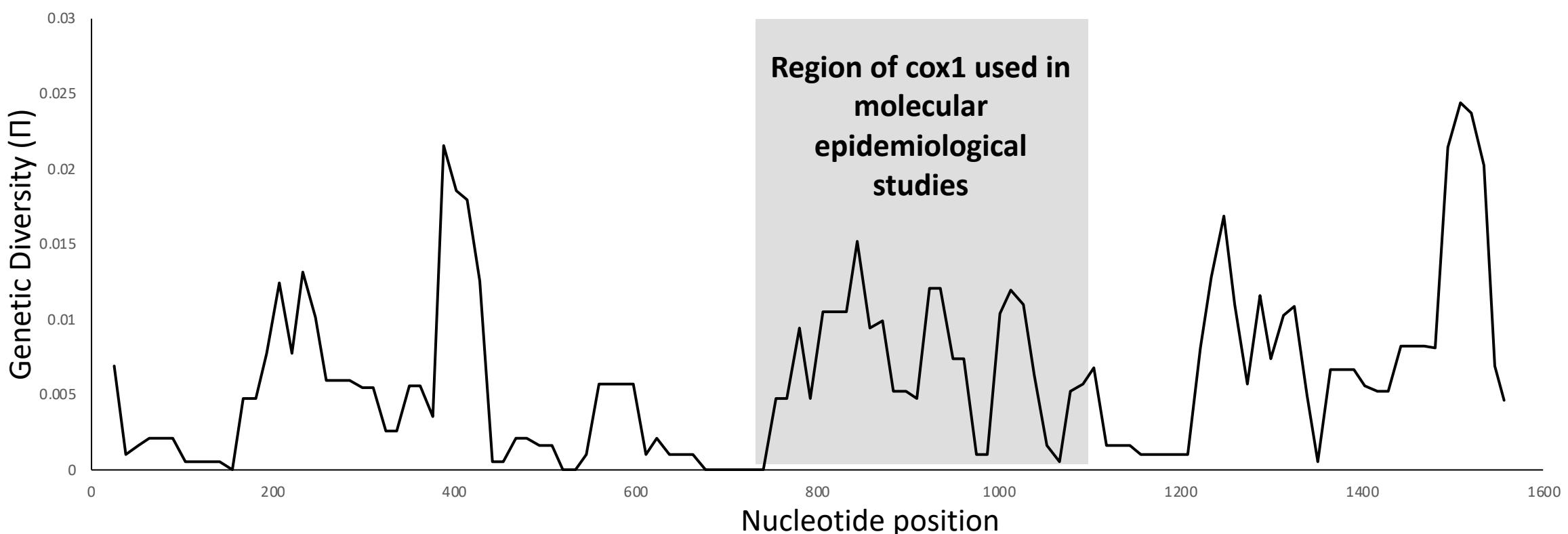
147

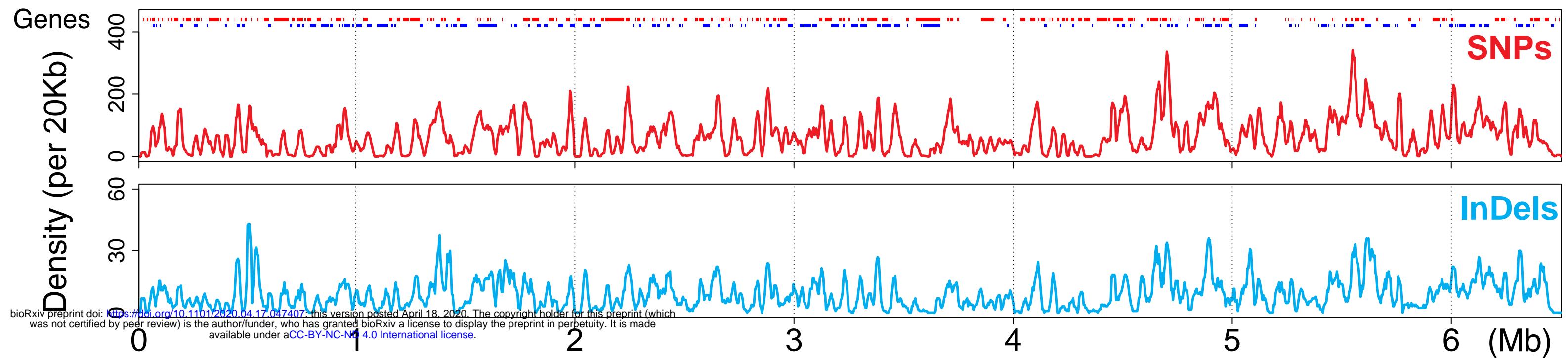

A

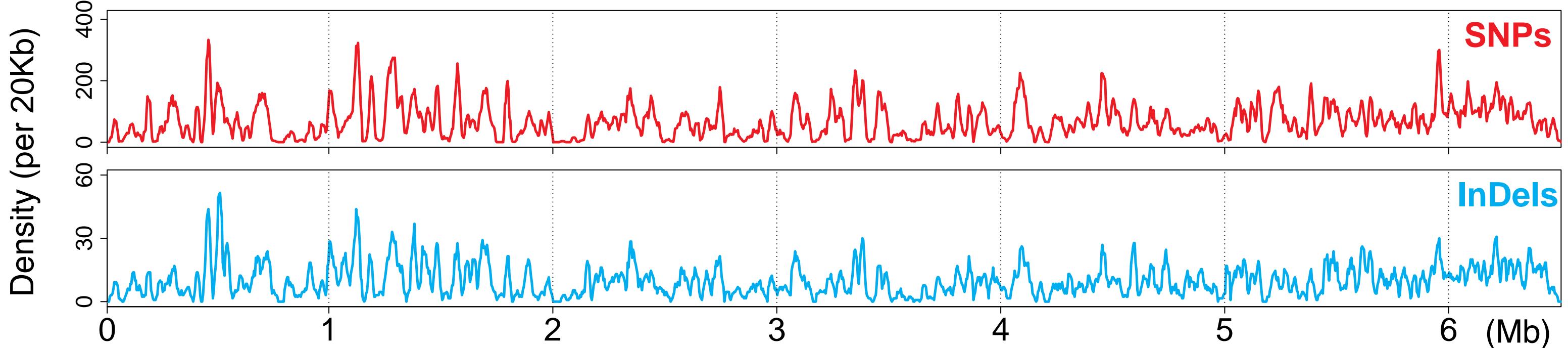
- Cytoskeletal
- Detoxification
- Extracellular Matrix
- Immunologically Relevant
- Metabolism
- Nuclear Export
- Nuclear Regulation
- Proteasome
- Protein Export
- Protein Synthesis
- Secreted
- Signal Transduction
- Transcription Factors
- Transcription Machinery
- Transporters
- Transposable Elements
- Uncharacterized
- Viral

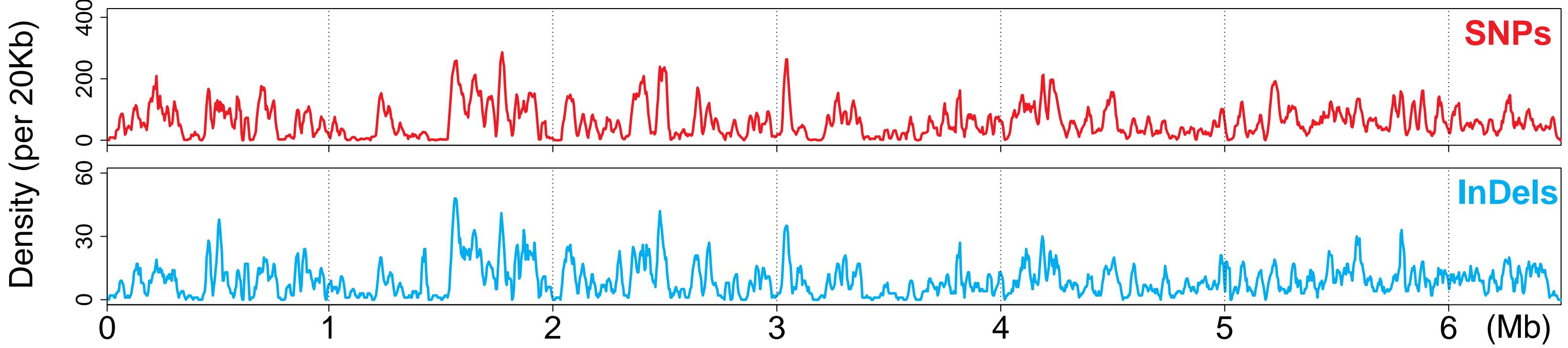

B

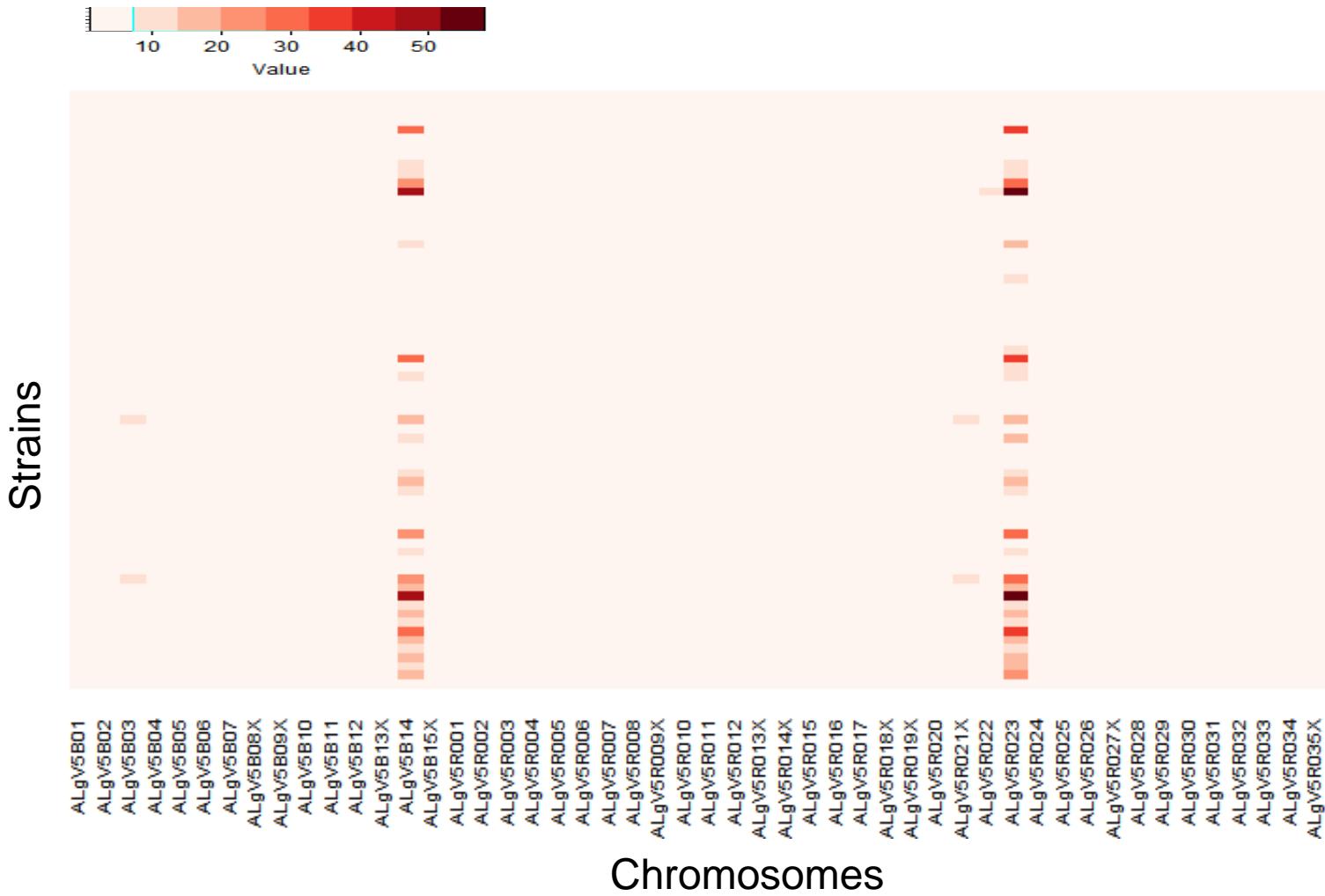
a) CO1**b) ND4**

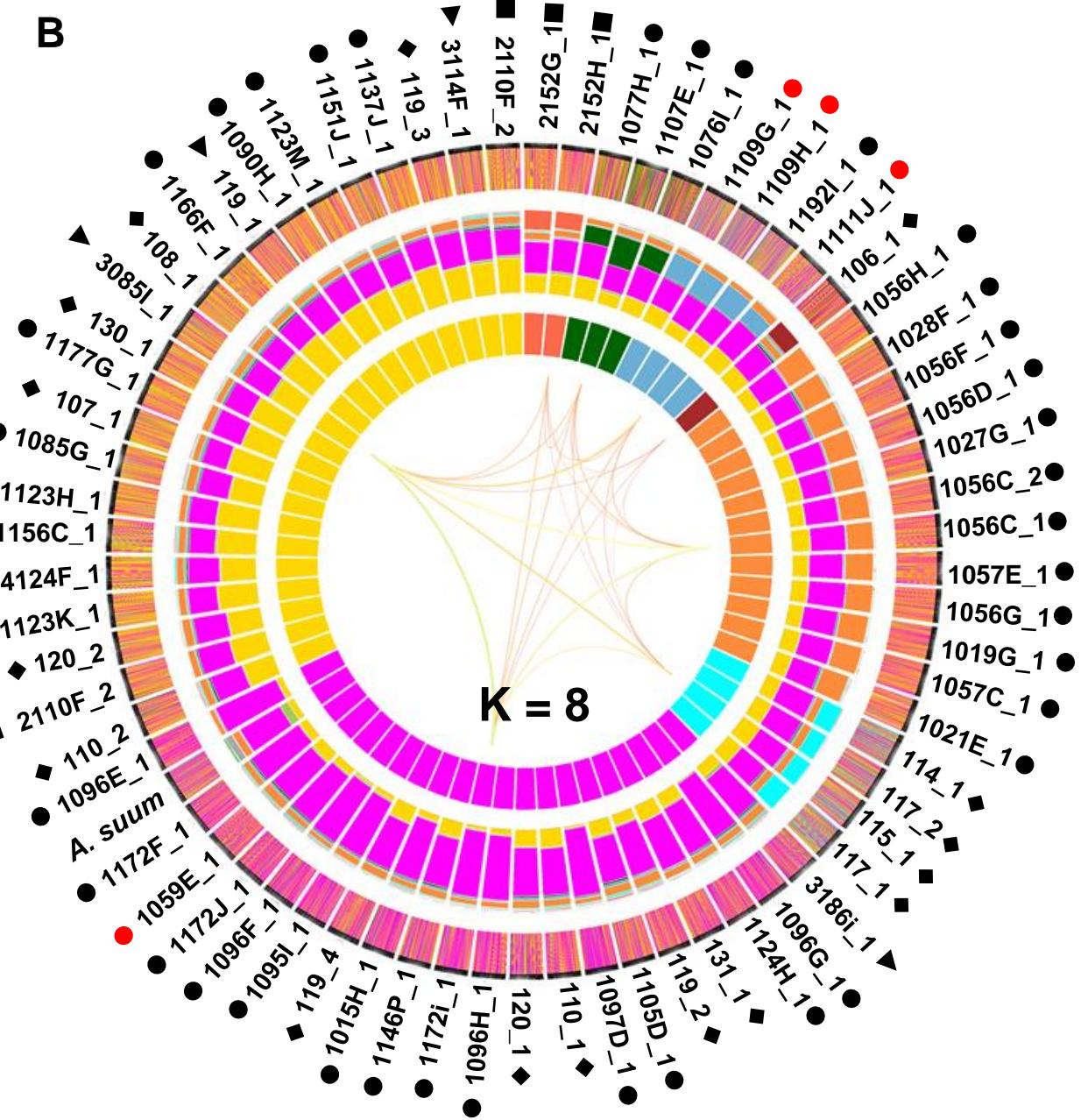
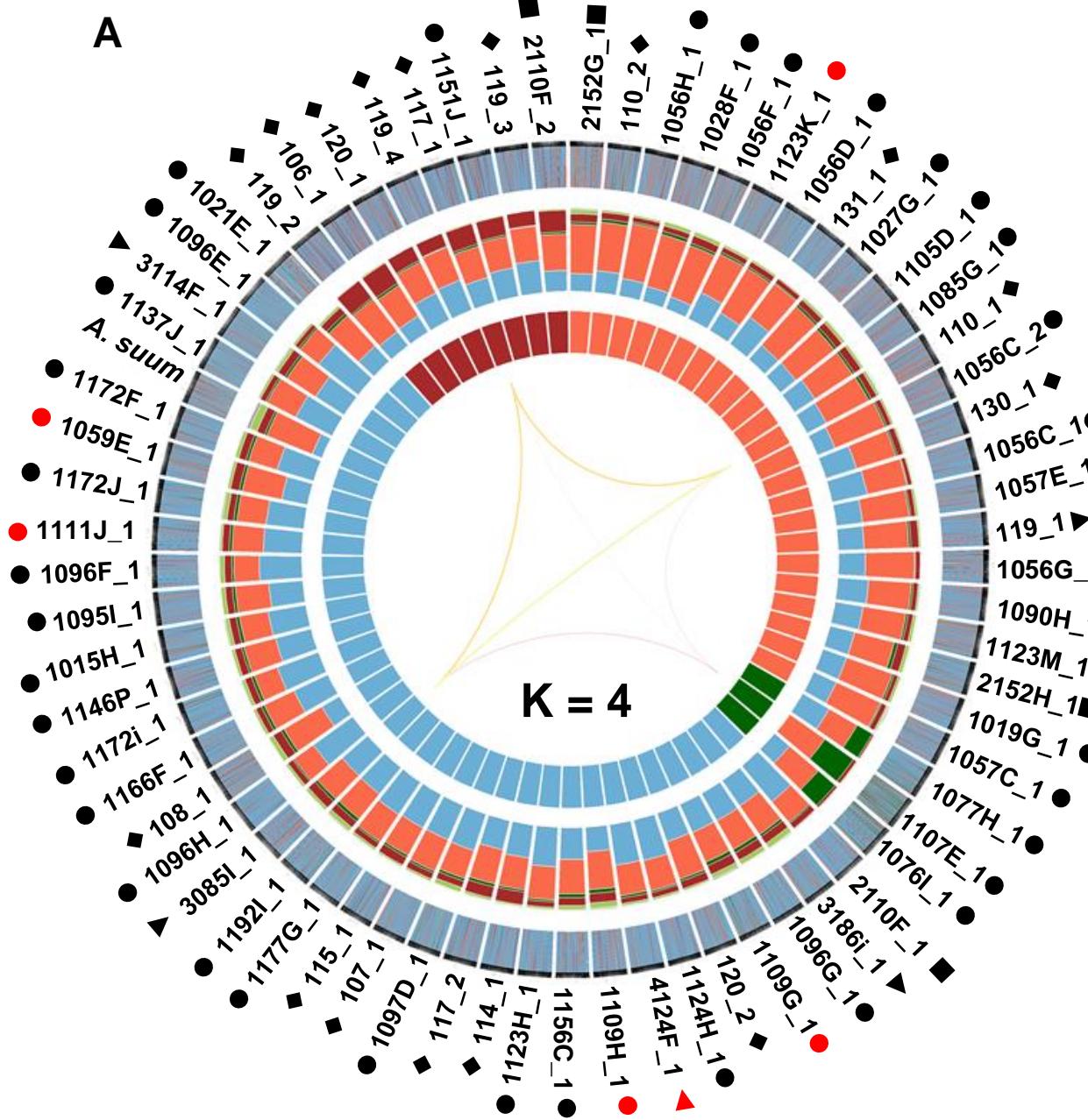

A) Comparison between Village samples and reference mt genomes of *Ascaris lumbricoides* and *Ascaris suum*

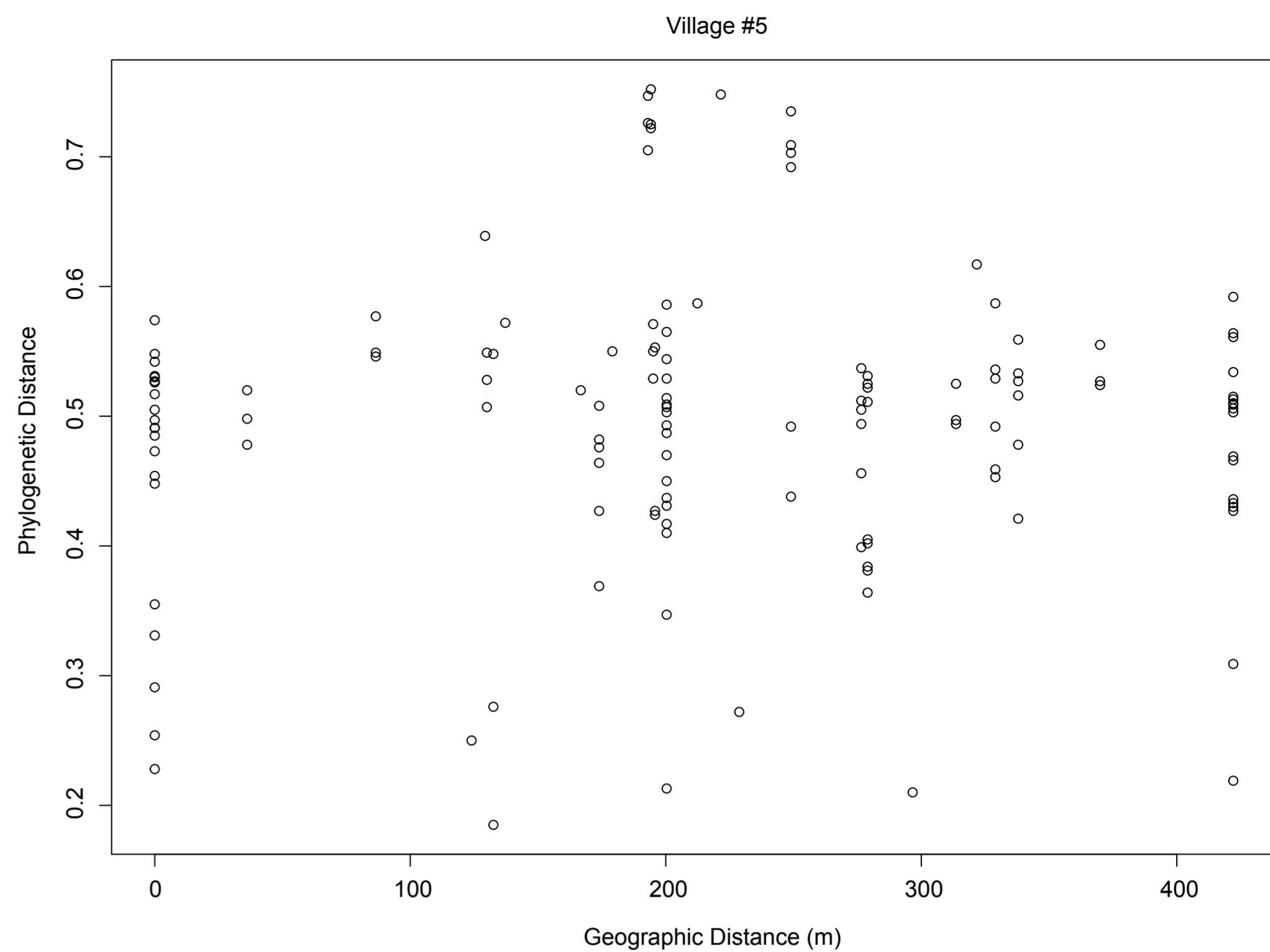
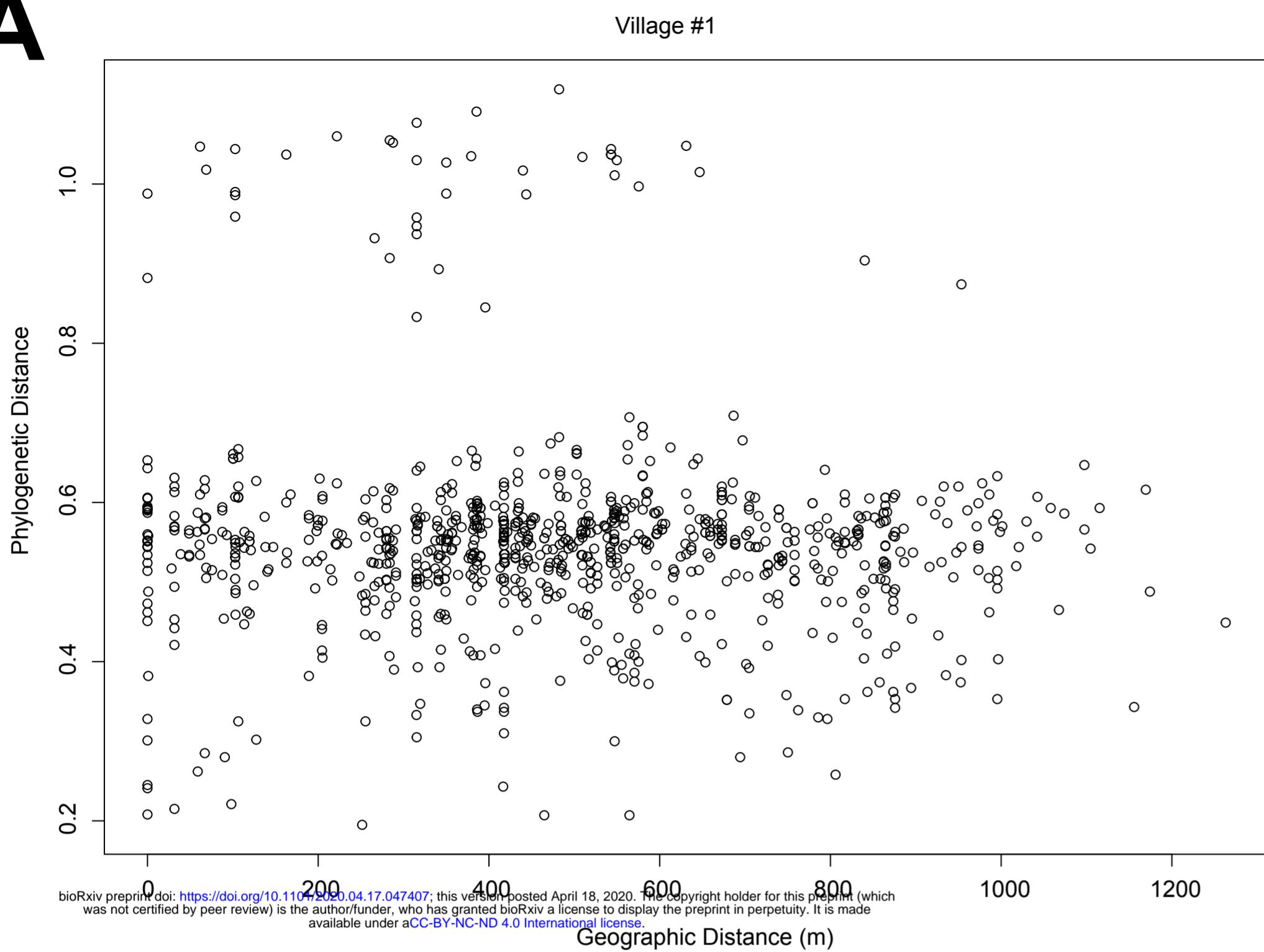
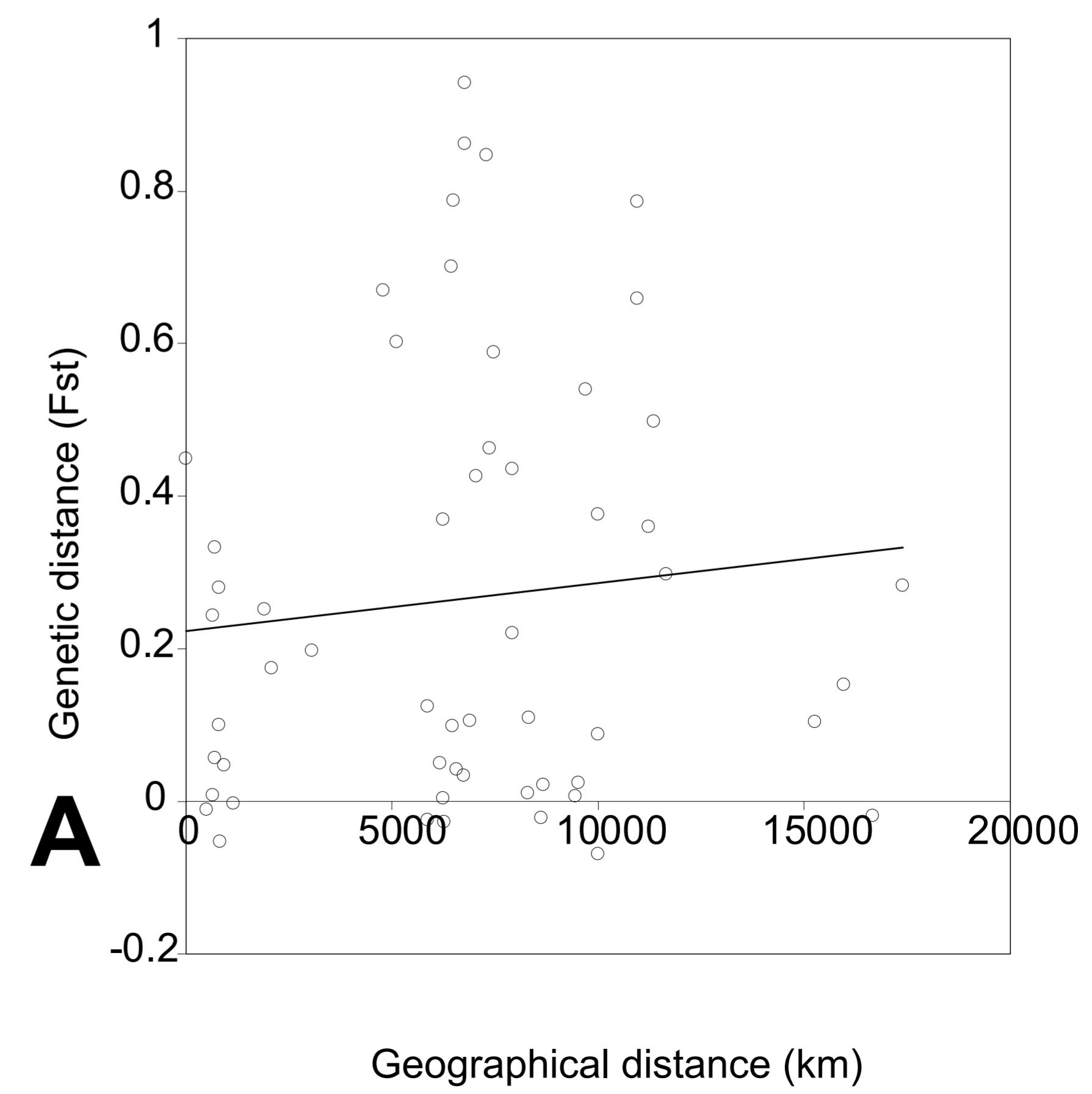
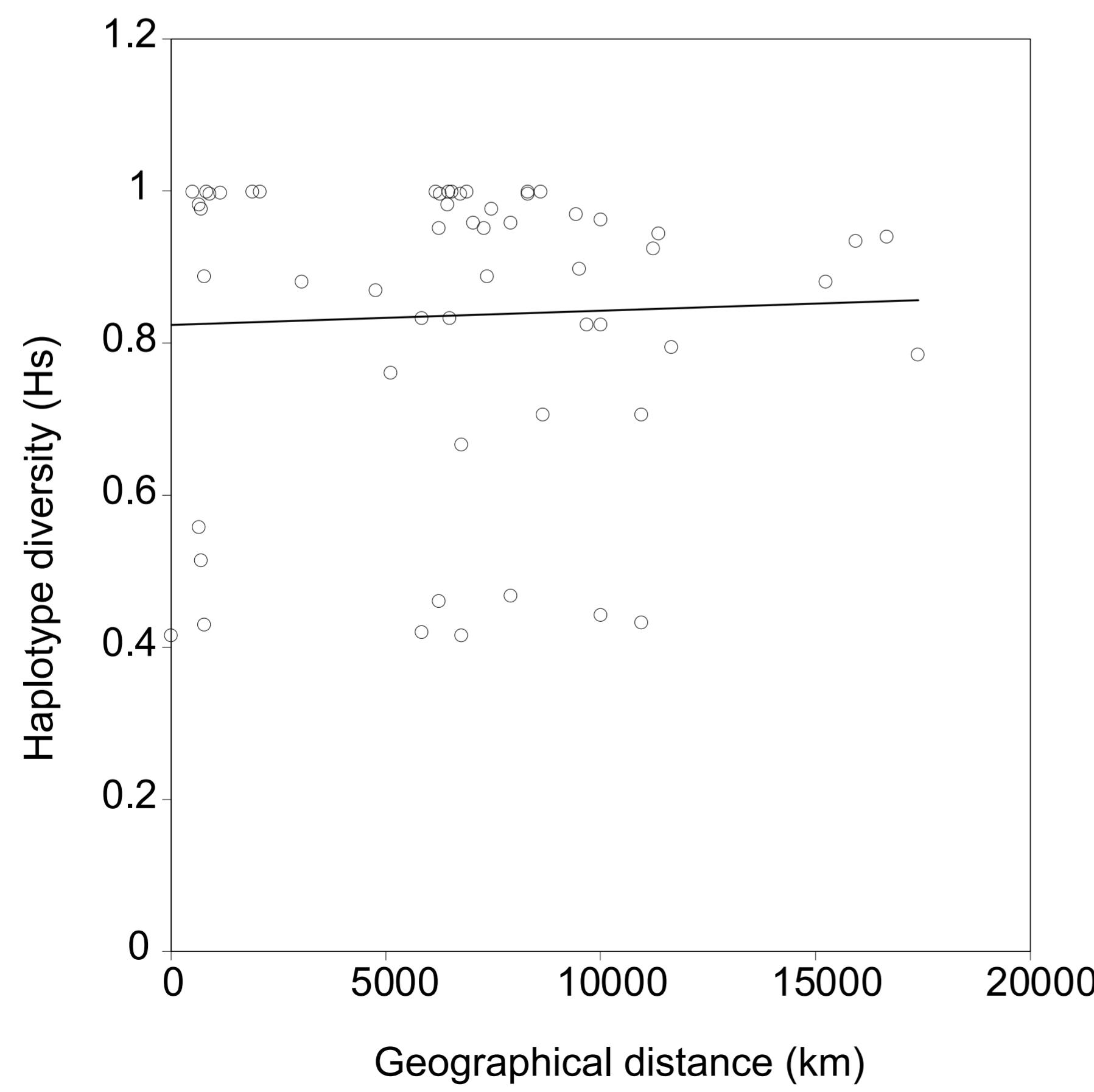

B) Comparison between Villages

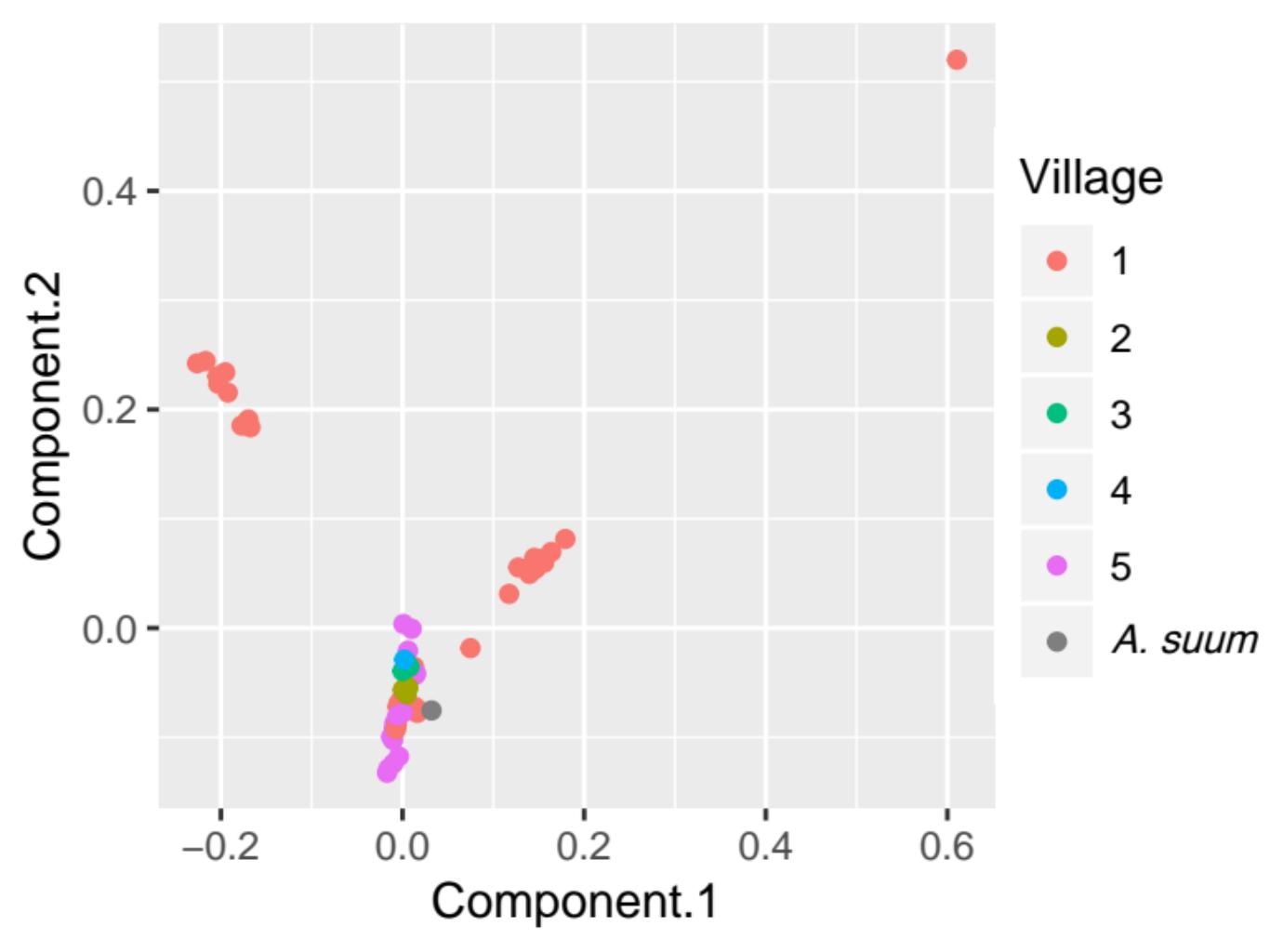

C) Cox1 comparison between villages

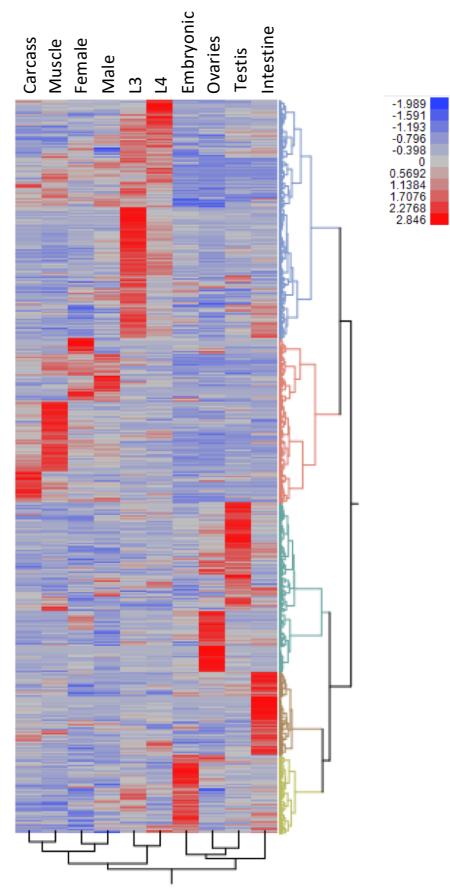
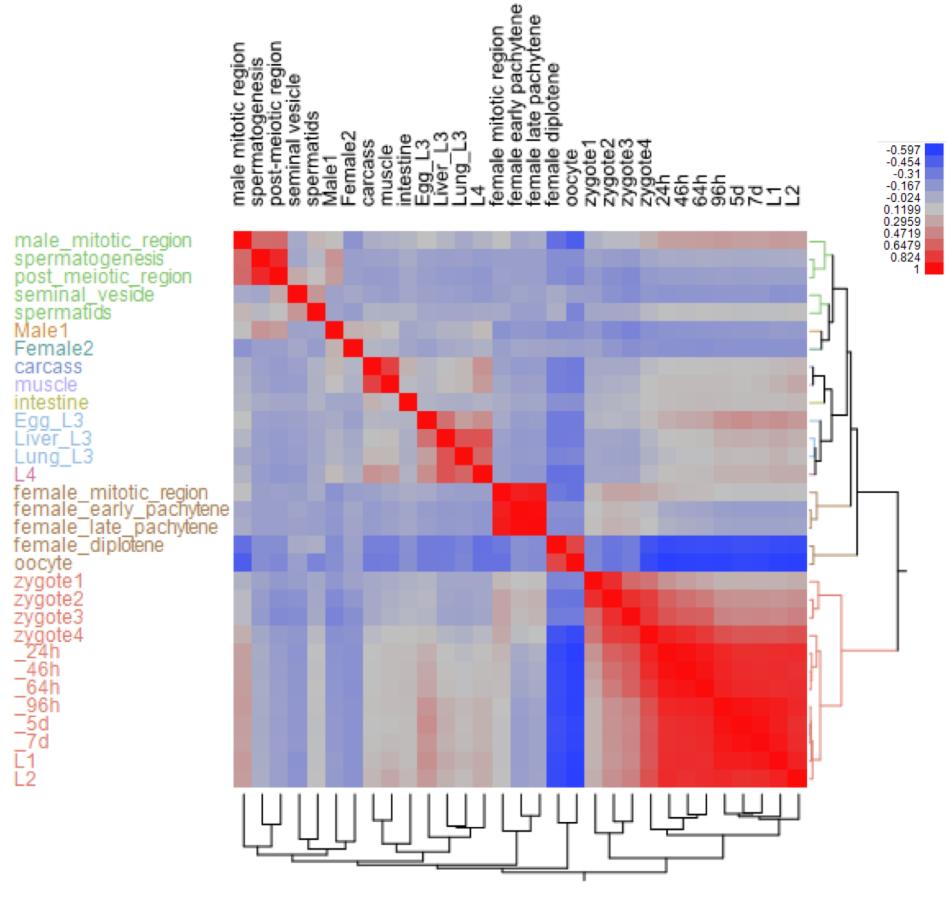

#7664

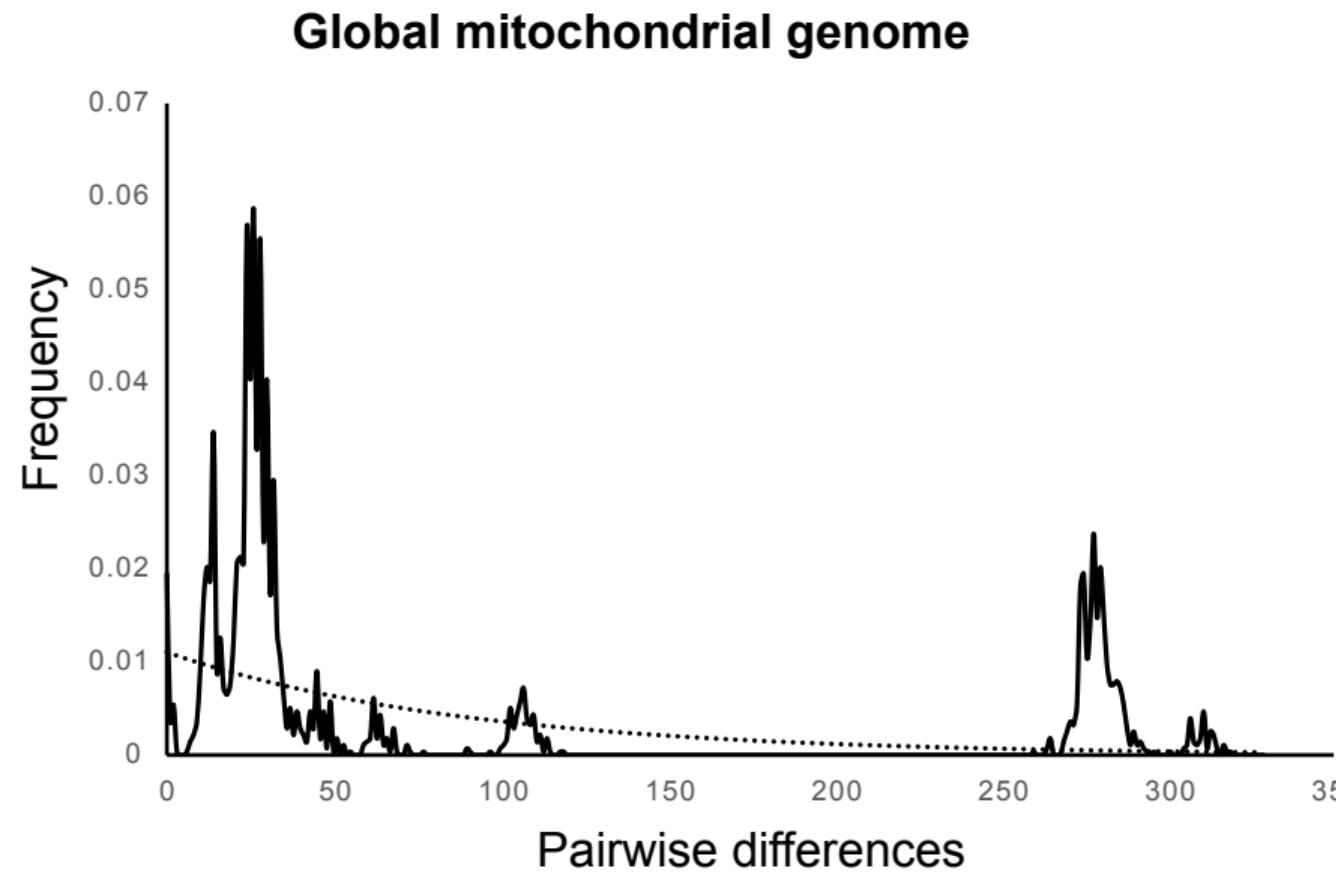
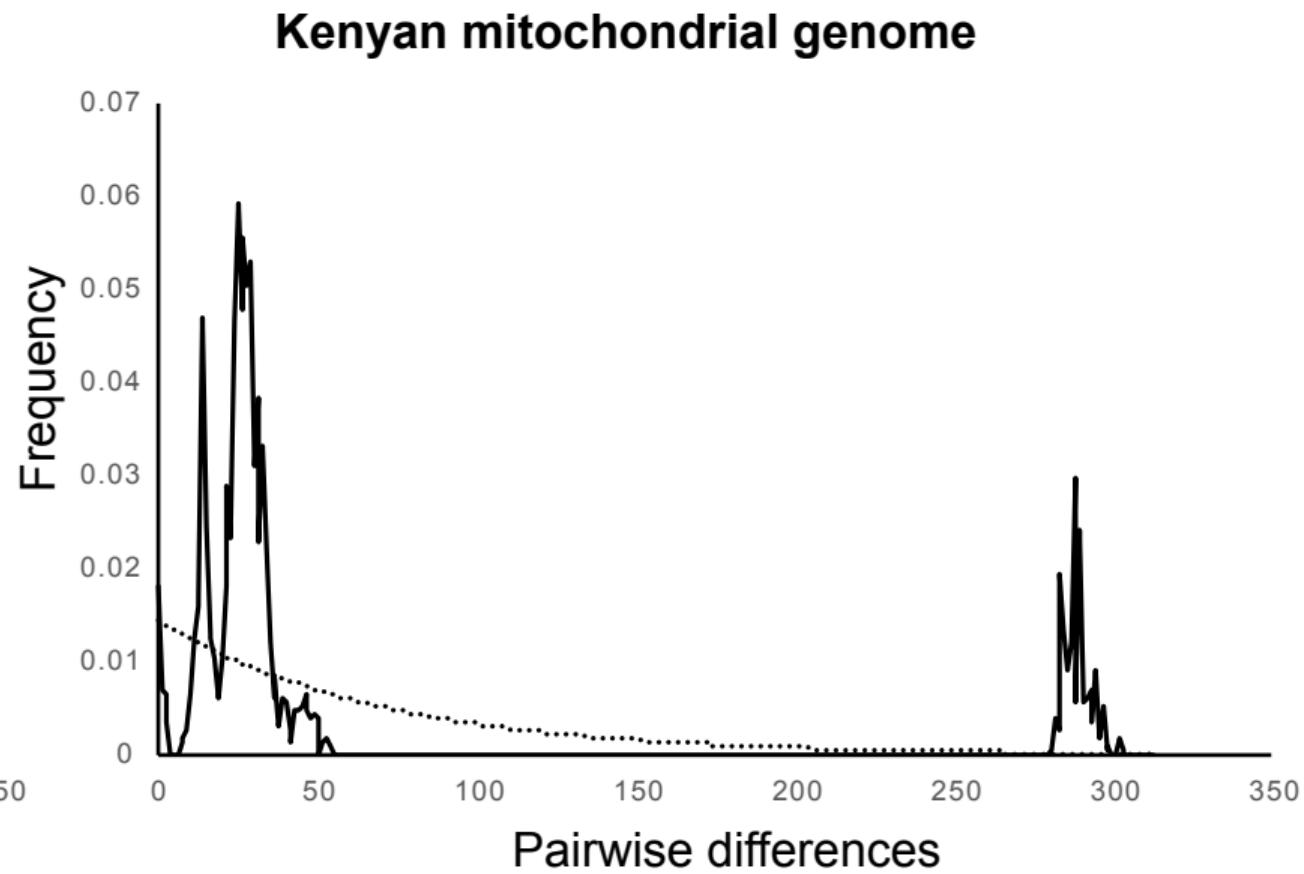




#7680


A. suum (USA)

A**B**

A**B**