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Strains of the influenza virus form coherent global populations, yet exist at the level of
single infections in individual hosts. The relationship between these scales is a critical
topic for understanding viral evolution. Here we investigate the within-host relationship
between selection and the stochastic effects of genetic drift, estimating an effective
population size of infection N. for influenza infection. Examining whole-genome
sequence data describing a chronic case of influenza B in a severely
immunocompromised child we infer an N of 2.5 x 107 (95% confidence range 1.0 x 10’
to 9.0 x 107) suggesting the importance of genetic drift to be minimal. Our result,
supported by the analysis of data from influenza A infection, suggests that positive
selection during within-host infection is primarily limited by the typically short period
of infection. Atypically long infections may have a disproportionate influence upon

global patterns of viral evolution.

The evolution of the influenza virus may be considered across a broad range of scales. On a

global level, populations exhibit coherent behaviour'=, evolving rapidly under collective host
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immune pressure*®. On another level, these global populations are nothing more than very

large numbers of individual host infections, separated by transmission events.

Despite the clear role for selection in global influenza populations, recent studies of within-
host infection have suggested that positive selection does not strongly influence evolution at

this smaller scale®?®.

Contrasting explanations have been given for this, with suggestions
either that selection at the within-host level is intrinsically inefficient, being dominated by
stochastic processes’, or that while selection is efficient, a mismatch in timing between the

peak viral titre and the host adaptive immune response prevents selection from taking effect?.

To resolve this issue, we evaluated the relative importance of selection and genetic drift during
a case of influenza infection. The balance between these factors is determined by the effective
size of the population, denoted Ne. If Neis high, selection will outweigh genetic drift, even
where differences in viral fitness are small®. By contrast, if Ne is low, less fit viruses are more

likely to outcompete their fitter compatriots.

Estimating Ne is a difficult task, with a long history of method development in this area’'?. A
simple measure of Ne may be calculated by matching the genetic change in allele frequencies
in a population with the changes occurring in an idealised population evolving under genetic
drift’®. However, such estimates are vulnerable to distortion, for example being reduced by
the effect of positive selection in a population. Where the global influenza A/H3N2 population

is driven by repeated selective sweeps'+®

a neutral estimation method suggests a value for
Ne not much greater than 100"". While methods for jointly estimating Ne and selection exist,
they are limited to systems with only a few loci of interest'®?2. Non-trivial population structure
can also affect estimates?; a growing body of evidence supports the existence of such

24-27

structure in within-host influenza infection While careful experimental techniques can

reduce sequencing error®, noise from sequencing and unrepresentative sample collection
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combine®, potentially confounding estimates of Ne in viral populations®. If Ne is high, any

signal of drift can be obscured by noise.

We here estimate an effective population size for within-host influenza B infection using data
collected from a severely immunocompromised host. While the viral load of the infection was
not unusual for a hospitalised childhood infection®', an absence of cell-mediated immunity led
to the persistence of the infection for several months®’. Given extensive sequence data
collected during infection, the reduced role of positive selection, combined with novel methods
to account for noise and population structure, enabled an improved inference of Ne. The large
effective size we infer suggests that selection acts in an efficient manner during within-host
influenza infection. The influence of positive selection is limited only by the duration of

infection.

Results and Discussion

Viral samples from the population were collected at 41 time points spanning 8 months during
the course of an influenza B infection in a severely immunocompromised host (Fig. 1A).
Clinical details of the case, and the use of viral sequence data in evaluating the effectiveness
of clinical intervention, have been described elsewhere®. After unsuccessful treatment with
oseltamivir, zanamivir and nitazoxanide, a bone marrow transplant and favipiravir combination
therapy led to the apparent clearance of infection. Apart from a single exception, biweekly
samples tested negative for influenza across a period of close to two months. A subsequent
resurgence of zanamivir-resistant infection was cleared by favipiravir and zanamivir in

combination.

Phylogenetic analysis of whole-genome viral consensus sequences showed the existence of
non-trivial population structure, with at least two distinct clades (Fig. 1B, Fig. 1S1); we term

these clades A and B. While being phylogenetically separated the two clades persisted across
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83  several months of infection. Haplotype reconstruction showed that samples from clade B were
84  comprised of distinct viral haplotypes to those from clade A (Fig. 1C, 1S2). Clade B slowly
85 evolved away from the initial consensus sequence (Fig. 1D), while viruses in clade A stayed
86  close to the initial consensus. The cladal structure suggests the existence of spatially distinct
87  viral populations in the host, samples stochastically representing one population or the other.
88
89 To estimate the effective population size, we analysed genome-wide sequence data from
90 samples in clade A collected before first use of favipiravir. A method of linear regression was
91  used to quantify the rate of viral evolution, measuring the genetic distance between samples
92  as a function of increasing time between dates of sample collection. We inferred a rate of
93  0.051 substitutions per day (97.5% confidence interval 0.034 to 0.068) (Fig. 2A), equivalent to
94  7.94 substitutions genome-wide across 157 days of evolution. The vertical intercept of this
95 line provides an estimate of the contribution of noise to the measured distance between
96 samples, for example arising from sequencing error or undiagnosed population structure. The
97 identified value of close to 40 substitutions is equivalent to a between-sample allele frequency
98 difference of approximately +/- 0.3% per locus. While considerable noise affects each sample,
99 the dataset as a whole provides a clear signal of evolutionary change.

100

101 A simulation based analysis, measuring the extent of evolution in idealised Wright-Fisher

102  populations™, inferred an effective population size of 2.5 x 107 (95% confidence range 1.0 x

103 107 to 9.0 x 10) for viruses in clade A before the use of favipiravir(Fig. 2B). This value is

33,34’ and

104  substantially larger than estimates made recently for within-host HIV infection
105  suggests that even weak selection could easily overcome genetic drift. Data from clade B
106 gave a lower estimated value of 2 x 10°, (95% confidence range 4 x 10° to 2 x 108) perhaps
107  reflecting the less frequent observation of samples in that clade (Fig. 2C, D).

108

109  The value of Ne might be lowered by population structure within the influenza infection®®. The

110  partial onset of zanamivir resistant alleles®, sporadically observed at intermediate frequency
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111 after the administration of the drug (Fig. 2S1), is suggestive of population structure going
112  beyond our simple division into clades; the random sampling of viruses from resistant and
113  susceptible subpopulations would produce this behaviour.

114

115  Positive selection might have led us to underestimate Ne. While viral evolution was generally
116  not driven by positive selection (Fig. 2S2), any such selection (e.g. for zanamivir resistance)
117  would increase the rate of viral evolution, lowering our inferred value. Despite this, our result
118 s clear. Once an infection is established, selection will dominate the stochastic effects of drift
119  upon within-host evolution.

120

121  The dataset we considered is particularly suited to our calculation. The long period of infection
122  combined with frequent sampling allowed for the characterisation of a slow rate of evolution
123  amidst population structure and noise in the data. Further, the absence of strong selection
124  reduced the error intrinsic to our inference approach, which assumed an idealised neutral
125  population. To provide further validation we repeated our approach on data describing long-
126  term influenza A/H3N2 infection in four immunocompromised adults®”. The estimates for Ne
127  we obtained, of between 3 x 10° and 1 x 10° (Fig. 2S3), while high, were smaller than for our
128 flu B case, potentially being reduced by an increased influence of selection.

129

130  We believe that our study provides a first realistic estimate of within-host effective population
131 size for severe influenza infection in humans. The viral load in the influenza B case was high,
132  representative of hospitalised cases of childhood influenza infection. However, the magnitude
133  of our inferred effective size, of order 107, suggests that selection will predominate even at
134  lower viral loads. Our result supports the idea that the observed lack of within-host variation
135  in typical cases of influenza®’ can be explained by the short period of infection; the stochastic
136  effects of genetic drift do not limit the impact of positive selection. Rather, as influenza
137  infections are founded by small numbers of viral particles’*, the majority of low-frequency

138 variants must arise through de novo mutation. In a typical infection, very strong selection is
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139  required for such variants to reach a substantial frequency in the population®*. We suggest
140 that, while not being confounded by drift, selection does not usually have time to fix novel
141 variants in the population. Clinical evidence suggests that in cases of longer infection, or in
142  the emergence of antiviral resistance, selection does influence the evolutionary outcome of
143 infection®"4044,

144

145  Our result highlights the potential importance of longer infections in the adaptation of global
146  influenza populations, particularly where some adaptive immune response remains. A newly
147  emergent variant under strong positive selection increases faster than linearly in frequency®.
148 Given a large Ne, implying efficient selection, additional days of infection will have a
149  disproportionate influence upon the potential transmission of adaptive variants. This does not
150  imply that longer infections are the sole driving force behind global viral adaptation®”; selective
151  effects affecting viral transmissibility>® would provide an alternative explanation. However, our
152  work suggests that longer-term infections may be an important area of study in the quest to
153  better understand global influenza virus evolution.

154

155  Methods

156

157  Summary

158

159 In a single-locus haploid system, the expected change in a variant allele with frequency q

160  caused by genetic drift is given by the formula*®

161
q(1 —q
E[Aq] = (N )
162 e
163

164  This fact has been exploited to evaluate the size of transmission bottlenecks in influenza

165 infection, comparing statistics of genome sequence data collected before and after a
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166  transmission event*®*’. Such a calculation may be affected by noise in the sequencing of a
167  population, particularly where the extent of noise outweighs the genuine change in a
168  population®. Noise in sequence data may be caused by unrepresentative sampling of a
169  population or by error in the experimental process itself*°.

170

171 Because of noise, the comparison of two sequence samples is not a good way of establishing
172  Neif this statistic may be high. Here we look at an alternative statistic, namely the sum change
173  in variant frequencies in a population; this statistic describes the rate of evolution of the
174  population as a whole. We apply a method of linear regression to multiple samples from the
175  population to establish this rate. We then use simulations to identify the value of Ne that, given
176  the diversity of the population, reproduces this rate of evolutionary change. Our approach is
177  robust to noise in the data, the regression calculation identifying the underlying rate of the
178  evolution of the population rather than the simple observed distance between samples.

179

180  Sequence data and bioinformatics

181

182  Sequence data describing the evolution of the infection was generated as part of a previous
183  study®’. Data, edited to remove human genome sequence data, have been deposited in the
184  Sequence Read Archive with BioProject ID PRINA601176. The HCV data used in validating
185 the sequencing pipeline (see below) was previously deposited in the Sequence Read Archive
186  with BioProject ID PRINA380188. Processed files describing raw variant frequencies for both
187  datasets are available, along with code used in this project, at https://github.com/cjri/FluBData.
188

189  Short-read data were aligned first to a broad set of influenza sequences. Sequences from this
190 set to which the highest number of reads aligned were identified and used to carry out a
191  second short-read alignment. The SAMFIRE software package was then used to filter the

192  short-read data with a PHRED score cutoff of 30, to identify consensus sequences, and to
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193  calculate the number of each nucleotide found at each position in the genome. SAMFIRE is
194  available from https://github.com/cjri/samfire.

195

196  Calculation of evolutionary rates

197

198  Variant frequencies at different time points during infection were used to calculate a rate of
199 change in the population over time. For each locus in the genome for which data were
200 collected, we calculated the nucleotide frequencies , describing the frequency at each locus i
201  of each of the nucleotides at the time of sampling t. We then calculated differences in the

202  frequencies observed at each locus i using a generalisation of the Hamming distance

203
dltnt) == S gt — ¢¥(ta)]
i\l1, 2 —2 q; (L1 q, (L2
204 ac{A,C,G,T}
205

206  where the term inside the sum indicates the absolute difference between the frequency of
207 allele a at locus i. The statistic d; is equal to one in the case of a substitution, for example
208  where only A nucleotides are observed in one sample and only G nucleotides in another.
209 However, in contrast to the Hamming distance it further captures smaller changes in allele
210  frequencies, lesser changes producing values between zero and one, such that a change of
211 a variant frequency from 45% to 55% at a two-allele locus would equate to a distance of 0.1,
212  representing half of the sum of the absolute changes in each of the two frequencies.

213

214  Having calculated d; statistics for each locus, the total distance between two samples was
215  calculated as

216

D(t1,ta) =Y _di(t1,t2)
217 i

218  where the sum over j was conducted over all loci in the viral genome.
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219

220 In order to calculate a rate of evolution, between-sample distances were plotted against the
221  separation in time between samples. Linear regression was performed using the Mathematica
222 11 software package, using the same package to calculate a 97.5% confidence interval for
223 theresult. In this case the gradient of the linear model gives the rate of change in time of the
224  genetic distance between samples, averaged across the dataset, providing an estimate of the
225 rate of evolution of the population. The intersection of the line with the vertical axis, equal to
226  the nominal distance between samples at time zero, gives an indication of the extent of ‘noise’
227 in the data, which may arise from artefacts in either the sampling or sequencing of viruses
228  from the host®.

229

230  Calculation of synonymous and non-synonymous rates of evolution in the population were
231 calculated in the same manner, with the exception that the distances d; were calculated over

232 individual nucleotides rather than in a per-locus manner. We calculate

233
1

45 (b1, ty) = 3 > gt () — gf (1)l
234 a€AN.; ,
235 and
236

ds t17t2 Z |Q7, tl — qg; (t2)|
237 aGASz
238

239 where An, and As; are the sets of nucleotides at position i in the genome which respectively
240 induce non-synonymous and synonymous changes in the consensus sequence.
241 Synonymous and non-synonymous variants were identified with respect to influenza B protein
242  sequences; a nucleotide substitution was defined as being non-synonymous if it induced a

243  change in the coded protein in at least one viral protein sequence. Mean rates of synonymous
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244  and non-synonymous evolution were expressed as mean values per nucleotide, reflecting the
245  differing numbers of each type of potential substitution in the viral genome.

246

247  Estimating the effective population size: Wright-Fisher simulation

248

249  We used a Wright-Fisher model to simulate the evolution of viral populations, identifying the
250  population size that gave an equivalent rate of evolution to the real data'®. Data from the viral
251 population gives an estimated rate of evolution per day whereas a Wright-Fisher simulation
252  gives an estimated rate of evolution per generation. We therefore scaled the former to match
253  the experimentally ascertained estimate of 10 hours per generation for influenza B*.

254

255  To conduct our simulation we constructed a population of N viruses. Each simulated virus
256 had a genome comprised of eight segments, each identical in length to the corresponding
257  segment of the influenza B virus sampled from the patient. The genetic composition of the
258  viral population at the beginning of the simulation was determined by the observed frequencies
259  of non-consensus alleles in a random sample collected from the population. At each locus, a
260  multinomial sample of viruses were chosen to be assigned each of the non-consensus alleles
261  in accordance with the observed frequencies. Variant alleles were assigned independently
262  for each locus, with no intrinsic association between alleles. The sample collected on 23rd
263 November 2017 was excluded as a starting point from this analysis due to its low read depth;
264  all other samples had a mean read depth in excess of 2000-fold coverage.

265

266  We simulated a single generation of the evolution of our population under genetic drift,
267  generating a random sample of N viruses from the population. We calculated allele frequency
268 data from the initial and final populations, using these to calculate the distance in sequence
269  space through which the population had evolved according to the modified Hamming distance
270  described above.

271
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272  For each population size tested, our simulation was run 400 times, using the data to produce
273 a 97.5% confidence interval for the extent of evolutionary change at a given effective
274  population size. The extent of evolution of the real population was then compared to the
275  results from our simulated populations, giving an inference of the effective size of the viral
276  population.

277

278 Amendments were made to this basic approach.

279

280  Accounting for false-positive variants in sequencing: Estimating a false positive rate

281

282  The evolutionary distance calculated by our method is dependent upon the extent of diversity
283 in the viral population. Given a greater number of polymorphic alleles in a system, the
284  evolutionary distance, calculated as the sum of allele frequency changes, will also increase.
285  While the experimental pipeline we used has been shown to perform well in capturing within-
286  host viral diversity*, the possibility remains that sequencing could contribute additional
287  diversity to the initial populations used in our simulation. We therefore made an estimate of
288  the extent to which our sequencing process led to the false identification of variants.

289

290 To achieve this we used data from a previous study describing the repeat sequencing of
291 hepatitis C virus (HCV) samples from a host?®; data in this previous study were collected using
292  the same sequencing pipeline as that used to collect the data considered here and therefore
293 provide a generic measure of the level of false positive variation. The data we analysed,
294  coded as HCVO1 in the original study, comprised four clinical HCV samples, each of which
295  was split following nucleic acid extraction. Some replicate samples were processed using a
296 DNase depletion method before all samples went through cDNA synthesis, library preparation
297  and sequencing. DNase depletion led to samples with lower read depth; we here compared

298 sequence data collected from the non-depleted replicates of each sample. Variant
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299 frequencies within this dataset, where variation was observed in more than one sample, are
300 shown in Fig. 254.

301

302 Considering the real viral sample, we note that at any given genetic locus, a minority variant
303 either exists or does not exist according to some well-defined criterion. (For the moment the
304  way in which variation is defined is not important; methods for defining variation, which include
305 the use of a frequency threshold, are discussed later.) We denote the possible states of a
306 locus as P and N, according to whether the locus is positive or negative for variation. We
307  suppose that the probability that a random locus in the genome has a minority variant is given
308 by Pp, leading to the equivalent statistic Pn = 1- Pp.

309

310  Sequencing of a specific position in the genome results in the observation or non-observation
311 of avariant. In our data we have sets of two replicate observations of each position in the
312  genome, giving for each minority variant the possible outcomes VV, VX, XV, and XX, where
313  V corresponds to the observation of a variant, and X corresponds to the non-observation of a
314  variant. These observations contain errors; we denote the true positive, false positive, true
315 negative and false negative rates of the variant identification process by Pyp, Pvn, Pxn, and
316  Pxp respectively. In this notation, V|P indicates the observation of a variant conditional on the
317  variant being a true positive.

318

319  The underlying purpose of our calculation is to remove falsely detected variation from the
320 population. We begin by assuming that the false negative rate of detecting variants is equal
321 to zero. Thatis, where we do not see a variant in the sequence data, we assume that a variant
322  is never actually present. This is a conservative step in so far as we never add unobserved
323  variation to the population. Our assumption gives the result that the false negative rate, Pxpp
324 =0. In so far that a variant is never unobserved it follows that the true positive rate Pyp = 1.

325
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326  We may now construct expressions for the probabilities of observing each of the four possible
327  outcomes. Noting that Py + Pxn= 1 we obtain

328

309 Pvv="PpPlp+ (1 —Pp)Pjy=Pp+ (1 —Pp)Pyy

330

331 Pvx = Pxv = PpPxipPvip+(1—Pp)Px\nPyin = (1—Pp)(1— Py n) Pyn

332

333 Pxx = PpP3p+ (1— Pp)P3 )y = (1 — Pp)(1— Pyy)*

334

335  Thus the outcome probabilities may be expressed in terms of the underlying probability of a
336  position having a variant, Pp, and the false positive rate Py.

337

338  We next processed our sequence replicate data, considering only sites that were sequenced
339 to aread depth of at least 2000-fold coverage. For each locus in a dataset, we calculated the
340 observed frequency of each of the nucleotides A, C, G, and T, generating pairs which
341 described these frequencies in each of our two replicate datasets. Removing pairs in which
342  an allele has a frequency of more than 0.5 in either of the two datasets, we obtained a list of
343  minority variants from each locus, generally comprising three allele frequency pairs per locus.
344  If itis correct that two of the three minority alleles have very low frequencies, the frequencies
345  are close to being statistically independent; the existence of a very few alleles of one minority
346  type does not greatly affect the probability of another variant allele being observed in another
347 read. We note that, of the more than 73 thousand sites sequenced, only 56, fewer than 0.1%,
348  had more than one minority variant at a frequency greater than 1%. We proceeded on the
349  assumption that each pair of minority frequencies was statistically independent of the others.
350

351 From the repeated observations of sites, we may count the number of observations of each of

352  the four outcomes; given a total of N pairs we denote these as Nw, Nvx, Nxv, and Nxx. Under
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353  our model of independent pairs we constructed the multinomial log likelihood of the underlying

354  variant and false positive rates.

355

L(Pp, Py|y) = log K N )PNVVPNVXPNXVPNXX
356 7 NyyNyxNxyNxx) VYV 2 V% 24V 22X
357

358  where the terms P, are constructed from Pp and Py according to the equations above.

359

360 Given a set of paired observations, we calculated the maximum likelihood values of Pp and
361 Pvin. From these statistics we are able to calculate the positive predictive value of sequencing,
362  namely the proportion of observed variants that are true positives. This is achieved by dividing
363 the probability that a true positive was detected (as Pvp = 1, equal to the probability that a

364 locus has a minority variant), by the probability that a variant was detected:

365
Pp
PPV =
366 Pp+ (1= Pp)Pyn
367

368  Frequency dependence of false-positive variant calling

369

370  Within our data, our expectation was that minority variants at higher allele frequencies would
371 be more likely to be observed as variants in both replicate samples. We note that, where a
372  frequency cutoff is applied to identify variants, care is required in the above protocol. For
373  example, if a hard threshold was applied, in which variants were called at 1% frequency, a
374  variant that was detected at frequencies of 1.01% and 0.99% would be regarded as having
375 been observed in one case, and not observed in the other, although it likely represents a
376  consistent observation.

377
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In order to assess the frequency dependence of our true positive rate we defined minimum

and maximum variant frequency thresholds g™ max

and g™, and denoted the replicate

observations of a minority variant frequency as q* and g® in the two samples. We further

cut

defined the frequency q

¢““* = min {qmm, max {QT’ 0.001}}

according to the formula

We then defined regions of frequency space as follows:
qA > qcut. qB > qcut. qA + qB > 3qmm
— ) — ) —_— 2
VvV .
A . B . A B _ 3gmo®
q* < qm q” < g ¢t + g <
VX . qmzn S qA < qmax; qB < qcut
XV . qA < qcut; qmin S qB < qma:c
Sqmin
XX - qA < qcut; qB < qcut; qA+qB < 5

These inequalities are illustrated in Fig. 2S5.

In the above, gq° functions to slightly harshen the criteria for detecting variants at low
frequencies. If a variant is observed in one sample at frequency greater than g™, then if ™"
is greater than 0.2%, the frequency in the second sample had to be at least half q™" to be

counted. If g™ was between 0.1% and 0.2%, the frequency in the second sample had to be

at least 0.1%, while if ™" was less than 0.1%, the frequency in the second sample had to be

min

at least q™".
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403

404  For different ranges of frequency values, ™" and q™, the proportion of observed variants
405 that were true positives was calculated according to the maximum likelihood method above,
406  using these categorisations. Results are shown in Fig. 2S6. In the process of setting up the
407 initial state of our Wright-Fisher simulation variants observed in the sequence data were
408 considered in turn, drawing a Bernoulli random variable for each variant. Variants were
409 included in the initial simulated population with probability equal to the proportion of observed
410 variants that were estimated to be true positives.

411

412 Accounting for mutation-selection balance

413

414  To account for our neglect of mutation, a frequency cutoff was applied to our simulation data.
415  Under a pure process of genetic drift, low-frequency variants in our population are likely to die
416  out, reaching a frequency of zero. In a real population, this would not occur, variants being
417  sustained at low frequencies by a balance of mutation and purifying selection®¢. To correct
418  for this we post-processed the initial and final frequency values from our simulations before
419  calculating our distance, imposing a minimum minority allele frequency of 0.1%. All changes
420 in allele frequency below this threshold were ignored, such that, for example, if a variant
421  changed from 0.5% to 0%, this was processed after the fact so that the variant changed from

422  0.5% to 0.1%. The choice of threshold here is conservative; leading to a conservatively low

423 estimate of Ne.
424

425  Confidence intervals

426

427  Confidence intervals for the effective population size were calculated as the overlap of 97.5%
428  confidence intervals for the evolutionary rates in the observed data, calculated from the
429  regression for the real data, and estimated from the simulated statistics. The overlap of these

430 values gives an approximate 95% confidence interval for Ne.
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431
432  Approximations in the Wright-Fisher model
433

434 In the calculation to set up an initial viral population, the assignment of minority alleles to
435 sequences becomes slow at large population sizes. Our code simulated viral genomes; a
436 variant allele was included into the population by choosing an appropriate proportion of
437  genomes to which the variant was assigned. For greater computational efficiency we used a
438 pseudo-random approach for choosing genomes. Given a population size N, we generated a
439  set P of prime numbers that were each larger than N. Given some desired allele frequency q
440 we wish to choose gN genomes to which to assign the variant. We therefore calculated the
441  set of numbers

442

443  a*(mod p)

444

445  where p is a prime number sampled at random from the set P, and a is a randomly chosen
446  primitive root of p. Given this choice of a and p, the values a* (where k is an integer between
447 1 and p-1) form a pseudorandom permutation of the numbers from 1 to p-1. We constructed
448 a set of gN genomes by choosing genomes indexed in turn by the elements of this set,
449  beginning from k=1, and discarding values greater than N.

450

451  To achieve calculations for population sizes larger than 10’ we implemented a statistical
452  averaging method. We generated a single population of size 10°, then generated 200
453  outcomes of a single generation of the same size, recording allele frequencies in each case.
454  In order to simulate a value of N of size r x 10° we compared the frequencies of the initial
455  population to the mean frequencies of a random set of r outcomes. This is equivalent of
456  simulating transmission from a population of size r x 10 in which the initial population contains
457  r copies of each of one of 10° genotypes.

458
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459  Phylogenetic analysis

460

461 Consensus sequences of data were analysed using the BEAST2 software package®.
462 Consensus sequences from each viral segment were concatenated then aligned using
463 MUSCLE® before performing a phylogenetic analysis on the whole genome sequence
464 alignment. The B/Venezuela/02/2016 sequence was used to root the alignment, the
465 haemagglutinin segment of this virus having been identified as being very close to those from

466  the patient. Trees were generated using the HKY substitution model*

. A Monte Carlo process
467  was run for 10 million iterations, generating a consensus tree with TreeAnnotator using the
468 first 10% of trees as burn-in. Figures were made using the FigTree package
469  (http://tree.bio.ed.ac.uk/software/figtree/).

470

471 Haplotype reconstruction

472

473  Haplotype reconstruction was performed using multi-locus polymorphism data generated by
474  the SAMFIRE software package®'. Variant loci in the genome were identified as those at
475  which a change in the consensus nucleotide was observed between the initial and the final
476  consensus. The short-read data were then processed, converting reads into strings of alleles
477  observed at these loci; a single paired-end read may describe alleles at none, one, or multiple
478 loci. Next, these strings were combined using a combinatorial algorithm to construct a list of
479  single-segment haplotypes, sufficient to explain all of the observed data; no frequencies were
480 inferred at this point. Finally, a Dirichlet-multinomial model was used to infer the maximum
481 likelihood frequencies of each haplotype given the data from each time point®. Formally, we
482  divided reads into sets, according to the loci at which they described alleles. A multi-locus
483 variant consists of an observation of some specific alleles at the loci in question. By way of
484  notation, we denote by the number of reads in set i which describe the multi-locus variant a,
485 and denote the total number of reads in the set as N. Given a set of haplotypes with

486 frequencies given by the elements of the vector q, we write as the summed frequencies of
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487  haplotypes that match each multi-locus variant a in set i. For example, the haplotypes ATA
488 and ATG would both match the multi-locus variant AT- describing alleles at only the first two

489 loci. We now express a likelihood for the haplotype frequencies:

490
I'(N; + 1) roe., Cad) L(n¢ + Cq¥)
L(q) = log - . LA T
o 9= 2 T e T+ o) Ll T
492

493 Here the parameter C describes the extent of noise in the sequence data, a lower value
494  indicating a lower confidence in the sequence data. Haplotype reconstruction was performed
495 by finding the maximum likelihood value of the vector of haplotype frequencies q. A value of
496  C=200 was chosen for the calculation, representing a conservative estimate given the prior
497 performance of the sequencing pipeline used in this study®. In contrast to previous
498  calculations in which an evolutionary model was fitted to data®?, haplotype frequencies for
499  each time point and for each viral segment were in this case inferred independently, with no
500 underlying evolutionary model.

501

502  Data describing influenza A/H3NZ2 infection

503

504  Our analysis of data describing long-term influenza A/H3N2 infection was performed on data
505 from a previous study*’. As our method does not require an exceptional quality of sequencing
506 data to calculate a rate of evolution more samples were included in our analysis than were
507 examined in the original study. Using the codes established in the previous study, we used
508 samples from patient W from days 0, 7, 14, 21, 28, 56, 62, 67 and 76; from patient X from
509 days 0,7, 14, 21, 28, 42, and 72; from patient Y from days 0, 7, 14, 21, 28, 35, 48, 56, and
510 70; from patient Z from days 14, 15, 20, 25, 41, 48, 55, 62, and 69. An identical procedure to
511  that used to estimate Ne from the influenza B data was applied, calculating a rate of evolution
512  per day from sequence data, scaling this to a rate per generation (in this case a seven hour

513  generation time was modelled®), and then running simulations to estimate Ne. We note that
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the estimates of false positive rate generated for the influenza B data were applied equally in
this case, due to not having equivalent data to re-estimate these values. Examining the data
from patient W, our distance measurements suggested potential population structure involving
the samples collected on days 62 and 69; these samples were excluded from our regression

analysis.
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520

521 Figure Legends

522

523  Figure 1. Population structure of the influenza infection. A. CT values from viral samples
524  collected over time indicate the viral load of the infection; a higher number corresponds to a
525 lower viral load. Drug information, above, shows the times during which oseltamivir (green),
526  zanamivir (yellow), nitazoxanide (blue) and favipiravir (purple) were prescribed. Black dots
527  show samples from which viral sequence data were collected; gray dots show samples from
528  which viral sequence data were not collected. The green box shows the window of time over
529  which samples were analysed, preceding the use of favipiravir in January. The mean viral
530 load (dashed horizontal line, red) was close to the mean reported for a set of samples from
531 hospitalised children with influenza (dashed horizontal blue line)*'. A black arrow shows the
532  date of a bone marrow transplant (BMT). B. A phylogeny of whole-genome viral consensus
533 sequences identified two distinct clades in the viral population. Clade B featured three
534  samples, distributed across the period of infection, with the remaining samples contained in
535 Clade A. C. Sub-consensus structure of the viral population inferred via a haplotype
536  reconstruction algorithm using data from the neuraminidase segment. The same division of
537  sequences into two clades is visible, with samples being comprised of distinct viral genotypes.
538 The area of each circle is proportional to the inferred frequency of the corresponding haplotype
539 in the viral population. Haplotypes reaching a frequency of at least 10% in at least one time
540 point are shown. Multiple drugs were administered to the patient through time, with a
541  favipiravir/zanamivir combination first causing a temporary reduction of the population to
542  undetectable levels, then finally clearing the infection. Haplotypes spanned the loci 96, 170,
543 177, 402, 403, 483, 571, 653, 968, 973, 1011, 1079, 1170, and 1240 in the NA segment. D.
544  Evolutionary relationship between the haplotypes; clade B is distinct from and evolves away
545  from those sequences comprising the initial infection. Numbers refer to the distinct haplotypes
546 identified within the population.

547
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548  Figure 2 : Measuring rates of evolution in the viral population. A. Computed rate of
549  evolution for viruses in clade A up to the time of the first use of favipiravir. The distance
550 between two sequences is calculated as the total absolute difference in four-allele frequencies
551 measured across the genome. The calculated rate per generation is based upon a generation
552  time for influenza of 10 hours®. B. Distribution of evolutionary distances in influenza
553  populations simulated using a Wright-Fisher model compared to the distance per generation
554  calculated in the regression fit. A solid blue line shows the mean, with shading indicating an
555  approximate 97.5% confidence interval around the mean. Statistics were calculated from sets
556  of 400 simulations conducted at each value of Ne. The dashed black line shows the rate of
557  evolution of the real population; gray shading shows a 97.5% confidence interval for this
558  statistic. C. Calculated rate of evolution for viruses in clade B. For the purposes of calculating
559  a rate of evolution the first sample collected from the patient was included as part of clade B.
560 D. Estimation of Ne for clade B. The results of simulations shown here are identical to those
561 in part B of the figure.

562

563  Figure 1 supplement 1. Complete phylogeny of whole-genome viral consensus sequences,
564  coloured by clade.

565

566  Figure 1 supplement 2: A. Sub-consensus structure of the viral population inferred via a
567  haplotype reconstruction algorithm using data from the haemagglutinin segment. A division
568  of sequences into two clades is visible, with samples including largely distinct viral genotypes.
569 The area of each circle is proportional to the amount of virus in each clade. Haplotypes
570 reaching a frequency of at least 10% in at least one time point are shown. Haplotypes spanned
571  the loci 258, 261, 364, 451, 521, 541, 635, and 641 in the HA segment. B. Evolutionary
572  relationship between the haplotypes; clade B is distinct from and evolves away from those
573  sequences comprising the initial infection. Numbers refer to the distinct haplotypes identified
574  within the population.

575
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576  Figure 2 supplement 1: Amino acids present at codon 117 of the neuramindase segment of
577  the virus after the first administration of zanamivir. The consensus glutamate nucleotide (blue)
578 was sometimes replaced by glycine (green), valine (yellow), and alanine (red). Glycine and
579  alanine are associated with zanamivir resistance in influenza B.

580

581 Figure 2 supplement 2: A. Comparison of rates of synonymous and non-synonymous
582  evolution for viruses in clade A up to the time of the administration of favipiravir. The distance
583  between two samples is calculated as the mean absolute difference in allele frequency, as
584  averaged over synonymous and non-synonymous positions in the genome. B. Comparison
585 of rates of synonymous and non-synonymous evolution for viruses in clade B. The rate of
586  evolution in both clades was slower at non-synonymous sites than at synonymous sites,
587  suggesting a general pattern of purifying selection at non-synonymous sites. Change in the
588  population was not as a whole driven by positive selection.

589

590 Figure 2 supplement 3: Estimates of the effective population size for data from a study of
591 long-term influenza A/H3N2 infection in four patients. Patients are denoted with the letters
592  assigned them in the original study*’. Rates of evolution within each patient were calculated
593 by linear regression, conducted on a plot of evolutionary versus temporal distance between
594  samples. The inferred regression line is shown in red for each dataset. For Patient W samples
595 collected at two time points appear as outliers in the distance plot; distances involving these
596 samples, shown in yellow, were excluded from the calculation. Accompanying plots show
597  distances inferred via simulation compared to the inferred rates. A solid blue line shows the
598 mean, with shading indicating an approximate 97.5% confidence interval around the mean.
599  Statistics were calculated from sets of 400 simulations conducted at each value of Ne.

600

601 Figure 2 supplement 4: Frequencies of minority variant alleles identified in the HCVO01
602 dataset used to evaluate the accuracy of variant calling in our sequencing pipeline. Samples

603 in this dataset were split following RNA extraction with replicate sets of RNA being processed
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604 and sequenced independently. Variants at higher frequencies were identified at more
605 consistent frequencies than variants at lower frequencies.

606

607  Figure 2 supplement 5: Regions of frequency space used to define observations and non-
608 observations of allele frequencies. V indicates the identification of a variant, while X indicates
609 the non-identification of a variant. Combinations of V and X indicate observations made in
610 two replicate samples.

611

612  Figure 2 supplement 6: Positive predictive value for minority variants under our sequencing
613  pipeline, calculated at different frequency ranges. While high frequency variants were very
614  reliably identified, the reliability of identifying variants was significantly impaired at lower
615 frequencies.

616

617
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