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Strains of the influenza virus form coherent global populations, yet exist at the level of 13 

single infections in individual hosts.  The relationship between these scales is a critical 14 

topic for understanding viral evolution.  Here we investigate the within-host relationship 15 

between selection and the stochastic effects of genetic drift, estimating an effective 16 

population size of infection Ne for influenza infection.  Examining whole-genome 17 

sequence data describing a chronic case of influenza B in a severely 18 

immunocompromised child we infer an Ne of 2.5 x 107 (95% confidence range 1.0 x 107 19 

to 9.0 x 107) suggesting the importance of genetic drift to be minimal.  Our result, 20 

supported by the analysis of data from influenza A infection, suggests that positive 21 

selection during within-host infection is primarily limited by the typically short period 22 

of infection.  Atypically long infections may have a disproportionate influence upon 23 

global patterns of viral evolution. 24 

 25 

The evolution of the influenza virus may be considered across a broad range of scales.  On a 26 

global level, populations exhibit coherent behaviour1–3, evolving rapidly under collective host 27 
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immune pressure4,5.  On another level, these global populations are nothing more than very 28 

large numbers of individual host infections, separated by transmission events. 29 

 30 

Despite the clear role for selection in global influenza populations, recent studies of within-31 

host infection have suggested that positive selection does not strongly influence evolution at 32 

this smaller scale6–8.  Contrasting explanations have been given for this, with suggestions 33 

either that selection at the within-host level is intrinsically inefficient, being dominated by 34 

stochastic processes7, or that while selection is efficient, a mismatch in timing between the 35 

peak viral titre and the host adaptive immune response prevents selection from taking effect8. 36 

  37 

To resolve this issue, we evaluated the relative importance of selection and genetic drift during 38 

a case of influenza infection.  The balance between these factors is determined by the effective 39 

size of the population, denoted Ne.  If Ne is high, selection will outweigh genetic drift, even 40 

where differences in viral fitness are small9.  By contrast, if Ne is low, less fit viruses are more 41 

likely to outcompete their fitter compatriots. 42 

 43 

Estimating Ne is a difficult task, with a long history of method development in this area10–12.  A 44 

simple measure of Ne may be calculated by matching the genetic change in allele frequencies 45 

in a population with the changes occurring in an idealised population evolving under genetic 46 

drift13.  However, such estimates are vulnerable to distortion, for example being reduced by 47 

the effect of positive selection in a population.  Where the global influenza A/H3N2 population 48 

is driven by repeated selective sweeps14–16 a neutral estimation method suggests a value for 49 

Ne not much greater than 10017.  While methods for jointly estimating Ne and selection exist, 50 

they are limited to systems with only a few loci of interest18–22.  Non-trivial population structure 51 

can also affect estimates23; a growing body of evidence supports the existence of such 52 

structure in within-host influenza infection24–27.  While careful experimental techniques can 53 

reduce sequencing error28, noise from sequencing and unrepresentative sample collection 54 
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combine29, potentially confounding estimates of Ne in viral populations30.  If Ne is high, any 55 

signal of drift can be obscured by noise. 56 

 57 

We here estimate an effective population size for within-host influenza B infection using data 58 

collected from a severely immunocompromised host.  While the viral load of the infection was 59 

not unusual for a hospitalised childhood infection31, an absence of cell-mediated immunity led 60 

to the persistence of the infection for several months32.  Given extensive sequence data 61 

collected during infection, the reduced role of positive selection, combined with novel methods 62 

to account for noise and population structure, enabled an improved inference of Ne.  The large 63 

effective size we infer suggests that selection acts in an efficient manner during within-host 64 

influenza infection.  The influence of positive selection is limited only by the duration of 65 

infection. 66 

 67 

Results and Discussion 68 

 69 

Viral samples from the population were collected at 41 time points spanning 8 months during 70 

the course of an influenza B infection in a severely immunocompromised host (Fig. 1A).  71 

Clinical details of the case, and the use of viral sequence data in evaluating the effectiveness 72 

of clinical intervention, have been described elsewhere32.  After unsuccessful treatment with 73 

oseltamivir, zanamivir and nitazoxanide, a bone marrow transplant and favipiravir combination 74 

therapy led to the apparent clearance of infection.  Apart from a single exception, biweekly 75 

samples tested negative for influenza across a period of close to two months.  A subsequent 76 

resurgence of zanamivir-resistant infection was cleared by favipiravir and zanamivir in 77 

combination. 78 

 79 

Phylogenetic analysis of whole-genome viral consensus sequences showed the existence of 80 

non-trivial population structure, with at least two distinct clades (Fig. 1B, Fig. 1S1); we term 81 

these clades A and B.  While being phylogenetically separated the two clades persisted across 82 
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several months of infection.  Haplotype reconstruction showed that samples from clade B were 83 

comprised of distinct viral haplotypes to those from clade A (Fig. 1C, 1S2).  Clade B slowly 84 

evolved away from the initial consensus sequence (Fig. 1D), while viruses in clade A stayed 85 

close to the initial consensus.  The cladal structure suggests the existence of spatially distinct 86 

viral populations in the host, samples stochastically representing one population or the other. 87 

  88 

To estimate the effective population size, we analysed genome-wide sequence data from 89 

samples in clade A collected before first use of favipiravir.  A method of linear regression was 90 

used to quantify the rate of viral evolution, measuring the genetic distance between samples 91 

as a function of increasing time between dates of sample collection.  We inferred a rate of 92 

0.051 substitutions per day (97.5% confidence interval 0.034 to 0.068) (Fig. 2A), equivalent to 93 

7.94 substitutions genome-wide across 157 days of evolution.  The vertical intercept of this 94 

line provides an estimate of the contribution of noise to the measured distance between 95 

samples, for example arising from sequencing error or undiagnosed population structure.  The 96 

identified value of close to 40 substitutions is equivalent to a between-sample allele frequency 97 

difference of approximately +/- 0.3% per locus.  While considerable noise affects each sample, 98 

the dataset as a whole provides a clear signal of evolutionary change. 99 

 100 

A simulation based analysis, measuring the extent of evolution in idealised Wright-Fisher 101 

populations13, inferred an effective population size of 2.5 x 107 (95% confidence range 1.0 x 102 

107 to 9.0 x 107) for viruses in clade A before the use of favipiravir(Fig. 2B).  This value is 103 

substantially larger than estimates made recently for within-host HIV infection33,34, and 104 

suggests that even weak selection could easily overcome genetic drift.  Data from clade B 105 

gave a lower estimated value of 2 x 106, (95% confidence range 4 x 105 to 2 x 108) perhaps 106 

reflecting the less frequent observation of samples in that clade (Fig. 2C, D). 107 

 108 

The value of Ne might be lowered by population structure within the influenza infection35.  The 109 

partial onset of zanamivir resistant alleles36, sporadically observed at intermediate frequency 110 
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after the administration of the drug (Fig. 2S1), is suggestive of population structure going 111 

beyond our simple division into clades; the random sampling of viruses from resistant and 112 

susceptible subpopulations would produce this behaviour.   113 

 114 

Positive selection might have led us to underestimate Ne.  While viral evolution was generally 115 

not driven by positive selection (Fig. 2S2), any such selection (e.g. for zanamivir resistance) 116 

would increase the rate of viral evolution, lowering our inferred value.  Despite this, our result 117 

is clear.  Once an infection is established, selection will dominate the stochastic effects of drift 118 

upon within-host evolution. 119 

 120 

The dataset we considered is particularly suited to our calculation.  The long period of infection 121 

combined with frequent sampling allowed for the characterisation of a slow rate of evolution 122 

amidst population structure and noise in the data.  Further, the absence of strong selection 123 

reduced the error intrinsic to our inference approach, which assumed an idealised neutral 124 

population.  To provide further validation we repeated our approach on data describing long-125 

term influenza A/H3N2 infection in four immunocompromised adults37.  The estimates for Ne 126 

we obtained, of between 3 x 105 and 1 x 106 (Fig. 2S3), while high, were smaller than for our 127 

flu B case, potentially being reduced by an increased influence of selection. 128 

 129 

We believe that our study provides a first realistic estimate of within-host effective population 130 

size for severe influenza infection in humans.   The viral load in the influenza B case was high, 131 

representative of hospitalised cases of childhood influenza infection.  However, the magnitude 132 

of our inferred effective size, of order 107, suggests that selection will predominate even at 133 

lower viral loads.  Our result supports the idea that the observed lack of within-host variation 134 

in typical cases of influenza6,7 can be explained by the short period of infection; the stochastic 135 

effects of genetic drift do not limit the impact of positive selection.  Rather, as influenza 136 

infections are founded by small numbers of viral particles7,38, the majority of low-frequency 137 

variants must arise through de novo mutation.  In a typical infection, very strong selection is 138 
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required for such variants to reach a substantial frequency in the population39.  We suggest 139 

that, while not being confounded by drift, selection does not usually have time to fix novel 140 

variants in the population.  Clinical evidence suggests that in cases of longer infection, or in 141 

the emergence of antiviral resistance, selection does influence the evolutionary outcome of 142 

infection37,40–44. 143 

 144 

Our result highlights the potential importance of longer infections in the adaptation of global 145 

influenza populations, particularly where some adaptive immune response remains.   A newly 146 

emergent variant under strong positive selection increases faster than linearly in frequency45.  147 

Given a large Ne, implying efficient selection, additional days of infection will have a 148 

disproportionate influence upon the potential transmission of adaptive variants.  This does not 149 

imply that longer infections are the sole driving force behind global viral adaptation37; selective 150 

effects affecting viral transmissibility30 would provide an alternative explanation. However, our 151 

work suggests that longer-term infections may be an important area of study in the quest to 152 

better understand global influenza virus evolution. 153 

 154 

Methods 155 

 156 

Summary 157 

 158 

In a single-locus haploid system, the expected change in a variant allele with frequency q 159 

caused by genetic drift is given by the formula46 160 

 161 

 162 

 163 

This fact has been exploited to evaluate the size of transmission bottlenecks in influenza 164 

infection, comparing statistics of genome sequence data collected before and after a 165 
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transmission event30,47.  Such a calculation may be affected by noise in the sequencing of a 166 

population, particularly where the extent of noise outweighs the genuine change in a 167 

population30.  Noise in sequence data may be caused by unrepresentative sampling of a 168 

population or by error in the experimental process itself29. 169 

 170 

Because of noise, the comparison of two sequence samples is not a good way of establishing 171 

Ne if this statistic may be high.  Here we look at an alternative statistic, namely the sum change 172 

in variant frequencies in a population; this statistic describes the rate of evolution of the 173 

population as a whole.  We apply a method of linear regression to multiple samples from the 174 

population to establish this rate.  We then use simulations to identify the value of Ne that, given 175 

the diversity of the population, reproduces this rate of evolutionary change.  Our approach is 176 

robust to noise in the data, the regression calculation identifying the underlying  rate of the 177 

evolution of the population rather than the simple observed distance between samples. 178 

 179 

Sequence data and bioinformatics 180 

 181 

Sequence data describing the evolution of the infection was generated as part of a previous 182 

study32.  Data, edited to remove human genome sequence data, have been deposited in the 183 

Sequence Read Archive with BioProject ID PRJNA601176.  The HCV data used in validating 184 

the sequencing pipeline (see below) was previously deposited in the Sequence Read Archive 185 

with BioProject ID PRJNA380188.  Processed files describing raw variant frequencies for both 186 

datasets are available, along with code used in this project, at https://github.com/cjri/FluBData. 187 

 188 

Short-read data were aligned first to a broad set of influenza sequences.  Sequences from this 189 

set to which the highest number of reads aligned were identified and used to carry out a 190 

second short-read alignment.  The SAMFIRE software package was then used to filter the 191 

short-read data with a PHRED score cutoff of 30, to identify consensus sequences, and to 192 
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calculate the number of each nucleotide found at each position in the genome.   SAMFIRE is 193 

available from https://github.com/cjri/samfire. 194 

 195 

Calculation of evolutionary rates 196 

  197 

Variant frequencies at different time points during infection were used to calculate a rate of 198 

change in the population over time.  For each locus in the genome for which data were 199 

collected, we calculated the nucleotide frequencies , describing the frequency at each locus i 200 

of each of the nucleotides   at the time of sampling t.  We then calculated differences in the 201 

frequencies observed at each locus i using a generalisation of the Hamming distance 202 

 203 

 204 

 205 

where the term inside the sum indicates the absolute difference between the frequency of 206 

allele a at locus i.  The statistic di is equal to one in the case of a substitution, for example 207 

where only A nucleotides are observed in one sample and only G nucleotides in another.  208 

However, in contrast to the Hamming distance it further captures smaller changes in allele 209 

frequencies, lesser changes producing values between zero and one, such that a change of 210 

a variant frequency from 45% to 55% at a two-allele locus would equate to a distance of 0.1, 211 

representing half of the sum of the absolute changes in each of the two frequencies. 212 

 213 

Having calculated di statistics for each locus, the total distance between two samples was 214 

calculated as 215 

 216 

 217 

where the sum over i was conducted over all loci in the viral genome. 218 
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 219 

In order to calculate a rate of evolution, between-sample distances were plotted against the 220 

separation in time between samples.  Linear regression was performed using the Mathematica 221 

11 software package, using the same package to calculate a 97.5% confidence interval for 222 

the result.  In this case the gradient of the linear model gives the rate of change in time of the 223 

genetic distance between samples, averaged across the dataset, providing an estimate of the 224 

rate of evolution of the population.  The intersection of the line with the vertical axis, equal to 225 

the nominal distance between samples at time zero, gives an indication of the extent of ‘noise’ 226 

in the data, which may arise from artefacts in either the sampling or sequencing of viruses 227 

from the host29. 228 

 229 

Calculation of synonymous and non-synonymous rates of evolution in the population were 230 

calculated in the same manner, with the exception that the distances di were calculated over 231 

individual nucleotides rather than in a per-locus manner.   We calculate 232 

 233 

, 234 

and 235 

 236 

, 237 

 238 

where AN,i and AS,i are the sets of nucleotides at position i in the genome which respectively 239 

induce non-synonymous and synonymous changes in the consensus sequence.  240 

Synonymous and non-synonymous variants were identified with respect to influenza B protein 241 

sequences; a nucleotide substitution was defined as being non-synonymous if it induced a 242 

change in the coded protein in at least one viral protein sequence.  Mean rates of synonymous 243 
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and non-synonymous evolution were expressed as mean values per nucleotide, reflecting the 244 

differing numbers of each type of potential substitution in the viral genome. 245 

 246 

Estimating the effective population size: Wright-Fisher simulation 247 

 248 

We used a Wright-Fisher model to simulate the evolution of viral populations, identifying the 249 

population size that gave an equivalent rate of evolution to the real data13.  Data from the viral 250 

population gives an estimated rate of evolution per day whereas a Wright-Fisher simulation 251 

gives an estimated rate of evolution per generation.  We therefore scaled the former to match 252 

the experimentally ascertained estimate of 10 hours per generation for influenza B53. 253 

 254 

To conduct our simulation we constructed a population of N viruses.  Each simulated virus 255 

had a genome comprised of eight segments, each identical in length to the corresponding 256 

segment of the influenza B virus sampled from the patient.  The genetic composition of the 257 

viral population at the beginning of the simulation was determined by the observed frequencies 258 

of non-consensus alleles in a random sample collected from the population.  At each locus, a 259 

multinomial sample of viruses were chosen to be assigned each of the non-consensus alleles 260 

in accordance with the observed frequencies.  Variant alleles were assigned independently 261 

for each locus, with no intrinsic association between alleles.  The sample collected on 23rd 262 

November 2017 was excluded as a starting point from this analysis due to its low read depth; 263 

all other samples had a mean read depth in excess of 2000-fold coverage. 264 

 265 

We simulated a single generation of the evolution of our population under genetic drift, 266 

generating a random sample of N viruses from the population.  We calculated allele frequency 267 

data from the initial and final populations, using these to calculate the distance in sequence 268 

space through which the population had evolved according to the modified Hamming distance 269 

described above. 270 

 271 
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For each population size tested, our simulation was run 400 times, using the data to produce 272 

a 97.5% confidence interval for the extent of evolutionary change at a given effective 273 

population size.  The extent of evolution of the real population was then compared to the 274 

results from our simulated populations, giving an inference of the effective size of the viral 275 

population. 276 

 277 

Amendments were made to this basic approach. 278 

 279 

Accounting for false-positive variants in sequencing: Estimating a false positive rate 280 

 281 

The evolutionary distance calculated by our method is dependent upon the extent of diversity 282 

in the viral population. Given a greater number of polymorphic alleles in a system, the 283 

evolutionary distance, calculated as the sum of allele frequency changes, will also increase.  284 

While the experimental pipeline we used has been shown to perform well in capturing within-285 

host viral diversity54, the possibility remains that sequencing could contribute additional 286 

diversity to the initial populations used in our simulation.  We therefore made an estimate of 287 

the extent to which our sequencing process led to the false identification of variants. 288 

 289 

To achieve this we used data from a previous study describing the repeat sequencing of 290 

hepatitis C virus (HCV) samples from a host29; data in this previous study were collected using 291 

the same sequencing pipeline as that used to collect the data considered here and therefore 292 

provide a generic measure of the level of false positive variation.  The data we analysed, 293 

coded as HCV01 in the original study, comprised four clinical HCV samples, each of which 294 

was split following nucleic acid extraction.  Some replicate samples were processed using a 295 

DNase depletion method before all samples went through cDNA synthesis, library preparation 296 

and sequencing.  DNase depletion led to samples with lower read depth; we here compared 297 

sequence data collected from the non-depleted replicates of each sample.  Variant 298 
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frequencies within this dataset, where variation was observed in more than one sample, are 299 

shown in Fig. 2S4. 300 

 301 

Considering the real viral sample, we note that at any given genetic locus, a minority variant 302 

either exists or does not exist according to some well-defined criterion.  (For the moment the 303 

way in which variation is defined is not important; methods for defining variation, which include 304 

the use of a frequency threshold, are discussed later.)   We denote the possible states of a 305 

locus as P and N, according to whether the locus is positive or negative for variation.  We 306 

suppose that the probability that a random locus in the genome has a minority variant is given 307 

by PP, leading to the equivalent statistic PN = 1- PP. 308 

 309 

Sequencing of a specific position in the genome results in the observation or non-observation 310 

of a variant.   In our data we have sets of two replicate observations of each position in the 311 

genome, giving for each minority variant the possible outcomes VV, VX, XV, and XX, where 312 

V corresponds to the observation of a variant, and X corresponds to the non-observation of a 313 

variant.  These observations contain errors; we denote the true positive, false positive, true 314 

negative and false negative rates of the variant identification process by PV|P, PV|N, PX|N, and 315 

PX|P respectively.  In this notation, V|P indicates the observation of a variant conditional on the 316 

variant being a true positive. 317 

 318 

The underlying purpose of our calculation is to remove falsely detected variation from the 319 

population.  We begin by assuming that the false negative rate of detecting variants is equal 320 

to zero.  That is, where we do not see a variant in the sequence data, we assume that a variant 321 

is never actually present.  This is a conservative step in so far as we never add unobserved 322 

variation to the population.  Our assumption gives the result that the false negative rate, PX|P 323 

= 0.  In so far that a variant is never unobserved it follows that the true positive rate PV|P = 1. 324 

 325 
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We may now construct expressions for the probabilities of observing each of the four possible 326 

outcomes.  Noting that PV|N + PX|N = 1 we obtain 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

Thus the outcome probabilities may be expressed in terms of the underlying probability of a 335 

position having a variant, PP, and the false positive rate PV|N. 336 

 337 

We next processed our sequence replicate data, considering only sites that were sequenced 338 

to a read depth of at least 2000-fold coverage.  For each locus in a dataset, we calculated the 339 

observed frequency of each of the nucleotides A, C, G, and T, generating pairs which 340 

described these frequencies in each of our two replicate datasets.  Removing pairs in which 341 

an allele has a frequency of more than 0.5 in either of the two datasets, we obtained a list of 342 

minority variants from each locus, generally comprising three allele frequency pairs per locus.  343 

If it is correct that two of the three minority alleles have very low frequencies, the frequencies 344 

are close to being statistically independent; the existence of a very few alleles of one minority 345 

type does not greatly affect the probability of another variant allele being observed in another 346 

read.  We note that, of the more than 73 thousand sites sequenced, only 56, fewer than 0.1%, 347 

had more than one minority variant at a frequency greater than 1%.  We proceeded on the 348 

assumption that each pair of minority frequencies was statistically independent of the others. 349 

 350 

From the repeated observations of sites, we may count the number of observations of each of 351 

the four outcomes; given a total of N pairs we denote these as NVV, NVX, NXV, and NXX.  Under 352 
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our model of independent pairs we constructed the multinomial log likelihood of the underlying 353 

variant and false positive rates. 354 

 355 

 356 

 357 

where the terms Pab are constructed from PP and PV|N according to the equations above. 358 

  359 

Given a set of paired observations, we calculated the maximum likelihood values of PP and 360 

PV|N.  From these statistics we are able to calculate the positive predictive value of sequencing, 361 

namely the proportion of observed variants that are true positives.  This is achieved by dividing 362 

the probability that a true positive was detected (as PV|P = 1, equal to the probability that a 363 

locus has a minority variant), by the probability that a variant was detected: 364 

 365 

 366 

 367 

Frequency dependence of false-positive variant calling 368 

  369 

Within our data, our expectation was that minority variants at higher allele frequencies would 370 

be more likely to be observed as variants in both replicate samples.  We note that, where a 371 

frequency cutoff is applied to identify variants, care is required in the above protocol.  For 372 

example, if a hard threshold was applied, in which variants were called at 1% frequency, a 373 

variant that was detected at frequencies of 1.01% and 0.99% would be regarded as having 374 

been observed in one case, and not observed in the other, although it likely represents a 375 

consistent observation. 376 

 377 
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In order to assess the frequency dependence of our true positive rate we defined minimum 378 

and maximum variant frequency thresholds qmin and qmax, and denoted the replicate 379 

observations of a minority variant frequency as qA and qB in the two samples.  We further 380 

defined the frequency qcut according to the formula 381 

 382 

 383 

 384 

We then defined regions of frequency space as follows: 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

These inequalities are illustrated in Fig. 2S5.  395 

 396 

In the above, qcut functions to slightly harshen the criteria for detecting variants at low 397 

frequencies.  If a variant is observed in one sample at frequency greater than qmin, then if qmin 398 

is greater than 0.2%, the frequency in the second sample had to be at least half qmin to be 399 

counted.  If qmin was between 0.1% and 0.2%, the frequency in the second sample had to be 400 

at least 0.1%, while if qmin was less than 0.1%, the frequency in the second sample had to be 401 

at least qmin. 402 
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 403 

For different ranges of frequency values, qmin and qmax, the proportion of observed variants 404 

that were true positives was calculated according to the maximum likelihood method above, 405 

using these categorisations.  Results are shown in Fig. 2S6.  In the process of setting up the 406 

initial state of our Wright-Fisher simulation variants observed in the sequence data were 407 

considered in turn, drawing a Bernoulli random variable for each variant.  Variants were 408 

included in the initial simulated population with probability equal to the proportion of observed 409 

variants that were estimated to be true positives. 410 

 411 

Accounting for mutation-selection balance 412 

 413 

To account for our neglect of mutation, a frequency cutoff was applied to our simulation data.  414 

Under a pure process of genetic drift, low-frequency variants in our population are likely to die 415 

out, reaching a frequency of zero.  In a real population, this would not occur, variants being 416 

sustained at low frequencies by a balance of mutation and purifying selection55,56.  To correct 417 

for this we post-processed the initial and final frequency values from our simulations before 418 

calculating our distance, imposing a minimum minority allele frequency of 0.1%.  All changes 419 

in allele frequency below this threshold were ignored, such that, for example, if a variant 420 

changed from 0.5% to 0%, this was processed after the fact so that the variant changed from 421 

0.5% to 0.1%. The choice of threshold here is conservative; leading to a conservatively low 422 

estimate of Ne. 423 

 424 

Confidence intervals 425 

 426 

Confidence intervals for the effective population size were calculated as the overlap of 97.5% 427 

confidence intervals for the evolutionary rates in the observed data, calculated from the 428 

regression for the real data, and estimated from the simulated statistics.  The overlap of these 429 

values gives an approximate 95% confidence interval for Ne. 430 
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 431 

Approximations in the Wright-Fisher model 432 

 433 

In the calculation to set up an initial viral population, the assignment of minority alleles to 434 

sequences becomes slow at large population sizes.  Our code simulated viral genomes; a 435 

variant allele was included into the population by choosing an appropriate proportion of 436 

genomes to which the variant was assigned.  For greater computational efficiency we used a 437 

pseudo-random approach for choosing genomes.  Given a population size N, we generated a 438 

set P of prime numbers that were each larger than N.  Given some desired allele frequency q 439 

we wish to choose qN genomes to which to assign the variant.  We therefore calculated the 440 

set of numbers 441 

 442 

ak (mod p) 443 

 444 

where p is a prime number sampled at random from the set P, and a is a randomly chosen 445 

primitive root of p.  Given this choice of a and p, the values ak (where k is an integer between 446 

1 and p-1) form a pseudorandom permutation of the numbers from 1 to p-1.  We constructed 447 

a set of qN genomes by choosing genomes indexed in turn by the elements of this set, 448 

beginning from k=1, and discarding values greater than N.  449 

 450 

To achieve calculations for population sizes larger than 107 we implemented a statistical 451 

averaging method.  We generated a single population of size 106, then generated 200 452 

outcomes of a single generation of the same size, recording allele frequencies in each case.  453 

In order to simulate a value of N of size r x 106 we compared the frequencies of the initial 454 

population to the mean frequencies of a random set of r outcomes.  This is equivalent of 455 

simulating transmission from a population of size r x 106 in which the initial population contains 456 

r copies of each of one of 106 genotypes. 457 

 458 
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Phylogenetic analysis 459 

 460 

Consensus sequences of data were analysed using the BEAST2 software package48.  461 

Consensus sequences from each viral segment were concatenated then aligned using 462 

MUSCLE49 before  performing a phylogenetic analysis on the whole genome sequence 463 

alignment.  The B/Venezuela/02/2016 sequence was used to root the alignment, the 464 

haemagglutinin segment of this virus having been identified as being very close to those from 465 

the patient.  Trees were generated using the HKY substitution model50.  A Monte Carlo process 466 

was run for 10 million iterations, generating a consensus tree with TreeAnnotator using the 467 

first 10% of trees as burn-in.  Figures were made using the FigTree package 468 

(http://tree.bio.ed.ac.uk/software/figtree/). 469 

 470 

Haplotype reconstruction 471 

 472 

Haplotype reconstruction was performed using multi-locus polymorphism data generated by 473 

the SAMFIRE software package51.  Variant loci in the genome were identified as those at 474 

which a change in the consensus nucleotide was observed between the initial and the final 475 

consensus.  The short-read data were then processed, converting reads into strings of alleles 476 

observed at these loci; a single paired-end read may describe alleles at none, one, or multiple 477 

loci.  Next, these strings were combined using a combinatorial algorithm to construct a list of 478 

single-segment haplotypes, sufficient to explain all of the observed data; no frequencies were 479 

inferred at this point.  Finally, a Dirichlet-multinomial model was used to infer the maximum 480 

likelihood frequencies of each haplotype given the data from each time point52.  Formally, we 481 

divided reads into sets, according to the loci at which they described alleles.  A multi-locus 482 

variant consists of an observation of some specific alleles at the loci in question.  By way of 483 

notation, we denote by  the number of reads in set i which describe the multi-locus variant a, 484 

and denote the total number of reads in the set as Ni.  Given a set of haplotypes with 485 

frequencies given by the elements of the vector q, we write as  the summed frequencies of 486 
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haplotypes that match each multi-locus variant a in set i.  For example, the haplotypes ATA 487 

and ATG would both match the multi-locus variant AT- describing alleles at only the first two 488 

loci.  We now express a likelihood for the haplotype frequencies: 489 

 490 

 491 

 492 

Here the parameter C describes the extent of noise in the sequence data, a lower value 493 

indicating a lower confidence in the sequence data.  Haplotype reconstruction was performed 494 

by finding the maximum likelihood value of the vector of haplotype frequencies q.  A value of 495 

C=200 was chosen for the calculation, representing a conservative estimate given the prior 496 

performance of the sequencing pipeline used in this study29.  In contrast to previous 497 

calculations in which an evolutionary model was fitted to data52, haplotype frequencies for 498 

each time point and for each viral segment were in this case inferred independently, with no 499 

underlying evolutionary model.  500 

 501 

Data describing influenza A/H3N2 infection 502 

 503 

Our analysis of data describing long-term influenza A/H3N2 infection was performed on data 504 

from a previous study37.  As our method does not require an exceptional quality of sequencing 505 

data to calculate a rate of evolution more samples were included in our analysis than were 506 

examined in the original study.  Using the codes established in the previous study, we used 507 

samples from patient W from days 0, 7, 14, 21, 28, 56, 62, 67 and 76; from patient X from 508 

days 0, 7, 14, 21, 28, 42, and 72; from patient Y from days 0, 7, 14, 21, 28, 35, 48, 56, and 509 

70; from patient Z from days 14, 15, 20, 25, 41, 48, 55, 62, and 69.  An identical procedure to 510 

that used to estimate Ne from the influenza B data was applied, calculating a rate of evolution 511 

per day from sequence data, scaling this to a rate per generation (in this case a seven hour 512 

generation time was modelled53), and then running simulations to estimate Ne.  We note that 513 
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the estimates of false positive rate generated for the influenza B data were applied equally in 514 

this case, due to not having equivalent data to re-estimate these values.  Examining the data 515 

from patient W, our distance measurements suggested potential population structure involving 516 

the samples collected on days 62 and 69; these samples were excluded from our regression 517 

analysis. 518 

519 
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 520 

Figure Legends 521 

 522 

Figure 1. Population structure of the influenza infection.  A. CT values from viral samples 523 

collected over time indicate the viral load of the infection; a higher number corresponds to a 524 

lower viral load.  Drug information, above, shows the times during which oseltamivir (green), 525 

zanamivir (yellow), nitazoxanide (blue) and favipiravir (purple) were prescribed.  Black dots 526 

show samples from which viral sequence data were collected; gray dots show samples from 527 

which viral sequence data were not collected.  The green box shows the window of time over 528 

which samples were analysed, preceding the use of favipiravir in January.  The mean viral 529 

load (dashed horizontal line, red) was close to the mean reported for a set of samples from 530 

hospitalised children with influenza (dashed horizontal blue line)31.  A black arrow shows the 531 

date of a bone marrow transplant (BMT).  B. A phylogeny of whole-genome viral consensus 532 

sequences identified two distinct clades in the viral population.  Clade B featured three 533 

samples, distributed across the period of infection, with the remaining samples contained in 534 

Clade A.  C.  Sub-consensus structure of the viral population inferred via a haplotype 535 

reconstruction algorithm using data from the neuraminidase segment.  The same division of 536 

sequences into two clades is visible, with samples being comprised of distinct viral genotypes.  537 

The area of each circle is proportional to the inferred frequency of the corresponding haplotype 538 

in the viral population.  Haplotypes reaching a frequency of at least 10% in at least one time 539 

point are shown.  Multiple drugs were administered to the patient through time, with a 540 

favipiravir/zanamivir combination first causing a temporary reduction of the population to 541 

undetectable levels, then finally clearing the infection.  Haplotypes spanned the loci 96, 170, 542 

177, 402, 403, 483, 571, 653, 968, 973, 1011, 1079, 1170, and 1240 in the NA segment. D. 543 

Evolutionary relationship between the haplotypes; clade B is distinct from and evolves away 544 

from those sequences comprising the initial infection.  Numbers refer to the distinct haplotypes 545 

identified within the population.   546 

 547 
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Figure 2 : Measuring rates of evolution in the viral population.  A. Computed rate of 548 

evolution for viruses in clade A up to the time of the first use of favipiravir.  The distance 549 

between two sequences is calculated as the total absolute difference in four-allele frequencies 550 

measured across the genome.  The calculated rate per generation is based upon a generation 551 

time for influenza of 10 hours53.  B. Distribution of evolutionary distances in influenza 552 

populations simulated using a Wright-Fisher model compared to the distance per generation 553 

calculated in the regression fit.  A solid blue line shows the mean, with shading indicating an 554 

approximate 97.5% confidence interval around the mean.  Statistics were calculated from sets 555 

of 400 simulations conducted at each value of Ne.  The dashed black line shows the rate of 556 

evolution of the real population; gray shading shows a 97.5% confidence interval for this 557 

statistic.  C. Calculated rate of evolution for viruses in clade B.  For the purposes of calculating 558 

a rate of evolution the first sample collected from the patient was included as part of clade B.  559 

D. Estimation of Ne for clade B.  The results of simulations shown here are identical to those 560 

in part B of the figure. 561 

 562 

Figure 1 supplement 1.  Complete phylogeny of whole-genome viral consensus sequences, 563 

coloured by clade. 564 

 565 

Figure 1 supplement 2: A. Sub-consensus structure of the viral population inferred via a 566 

haplotype reconstruction algorithm using data from the haemagglutinin segment.  A division 567 

of sequences into two clades is visible, with samples including largely distinct viral genotypes.  568 

The area of each circle is proportional to the amount of virus in each clade.  Haplotypes 569 

reaching a frequency of at least 10% in at least one time point are shown.  Haplotypes spanned 570 

the loci 258, 261, 364, 451, 521, 541, 635, and 641 in the HA segment.  B. Evolutionary 571 

relationship between the haplotypes; clade B is distinct from and evolves away from those 572 

sequences comprising the initial infection.  Numbers refer to the distinct haplotypes identified 573 

within the population.  574 

 575 
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Figure 2 supplement 1: Amino acids present at codon 117 of the neuramindase segment of  576 

the virus after the first administration of zanamivir.  The consensus glutamate nucleotide (blue) 577 

was sometimes replaced by glycine (green), valine (yellow), and alanine (red).  Glycine and 578 

alanine are associated with zanamivir resistance in influenza B. 579 

 580 

Figure 2 supplement 2: A. Comparison of rates of synonymous and non-synonymous 581 

evolution for viruses in clade A up to the time of the administration of favipiravir.  The distance 582 

between two samples is calculated as the mean absolute difference in allele frequency, as 583 

averaged over synonymous and non-synonymous positions in the genome.  B. Comparison 584 

of rates of synonymous and non-synonymous evolution for viruses in clade B.  The rate of 585 

evolution in both clades was slower at non-synonymous sites than at synonymous sites,  586 

suggesting a general pattern of purifying selection at non-synonymous sites.  Change in the 587 

population was not as a whole driven by positive selection. 588 

 589 

Figure 2 supplement 3: Estimates of the effective population size for data from a study of 590 

long-term influenza A/H3N2 infection in four patients.  Patients are denoted with the letters 591 

assigned them in the original study37.  Rates of evolution within each patient were calculated 592 

by linear regression, conducted on a plot of evolutionary versus temporal distance between 593 

samples.  The inferred regression line is shown in red for each dataset.  For Patient W samples 594 

collected at two time points appear as outliers in the distance plot; distances involving these 595 

samples, shown in yellow, were  excluded from the calculation.  Accompanying plots show 596 

distances inferred via simulation compared to the inferred rates.  A solid blue line shows the 597 

mean, with shading indicating an approximate 97.5% confidence interval around the mean.  598 

Statistics were calculated from sets of 400 simulations conducted at each value of Ne. 599 

 600 

Figure 2 supplement 4: Frequencies of minority variant alleles identified in the HCV01 601 

dataset used to evaluate the accuracy of variant calling in our sequencing pipeline.  Samples 602 

in this dataset were split following RNA extraction with replicate sets of RNA being processed 603 
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and sequenced independently.  Variants at higher frequencies were identified at more 604 

consistent frequencies than variants at lower frequencies. 605 

 606 

Figure 2 supplement 5: Regions of frequency space used to define observations and non-607 

observations of allele frequencies.  V indicates the identification of a variant, while X indicates 608 

the non-identification of a variant.  Combinations of V and X indicate observations made in 609 

two replicate samples. 610 

 611 

Figure 2 supplement 6: Positive predictive value for minority variants under our sequencing 612 

pipeline, calculated at different frequency ranges.  While high frequency variants were very 613 

reliably identified, the reliability of identifying variants was significantly impaired at lower 614 

frequencies. 615 

 616 

 617 

 618 
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