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Abstract

Healthy ageing leads to changes in the brain that impact upon sensory and cognitive
processing. It is not fully clear how these changes affect the processing of everyday spoken
language. Prediction is thought to play an important role in language comprehension, where
information about upcoming words is pre-activated across multiple representational levels.
However, evidence from electrophysiology suggests differences in how older and younger
adults use context-based predictions, particularly at the level of semantic representation. We
investigate these differences during natural speech comprehension by presenting older and
younger subjects with continuous, narrative speech while recording their
electroencephalogram. We use linear regression to test how distinct computational measures
of 1) semantic dissimilarity and 2) lexical surprisal are processed in the brains of both groups.
Our results reveal dissociable neural correlates of these two measures that suggest
differences in how younger and older adults successfully comprehend speech. Specifically,
our results suggest that, while younger and older subjects both employ context-based lexical
predictions, older subjects are significantly less likely to pre-activate the semantic features
relating to upcoming words. Furthermore, across our group of older adults, we show that the
weaker the neural signature of this semantic pre-activation mechanism, the lower a subject’s
semantic verbal fluency score. We interpret these findings as prediction playing a generally
reduced role at a semantic level in the brains of older listeners during speech comprehension
and that these changes may be part of an overall strategy to successfully comprehend speech

with reduced cognitive resources.
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Introduction

Healthy ageing is accompanied by a myriad of sensory and cognitive changes. This includes
a decline in working memory (1) and episodic memory (2) as well as hearing loss (3) and a
slowing in processing across cognitive domains (4). It is likely that changes in all of these
faculties play into the reported extra difficulties that older adults experience in trying to follow
everyday conversational speech, especially in challenging listening environments (5—7). While
impaired hearing certainly plays a role in these difficulties (8, 9), it is also clear that “normal”
hearing is not enough to guarantee good speech comprehension in everyday communication
(10). But precisely how age-related changes in memory and speed of processing impact upon
speech comprehension is less clear. In general, older adults show a relatively preserved
language system and semantic memory (11). However, neuroimaging studies indicate key
changes that occur with age that could impact the processing of speech at higher linguistic
levels (12). As such, to better account for the communication challenges faced by older
people, it is essential that we better understand how linguistic processing at these levels might

differ between young and old.

One way in which researchers have explored age-related differences in the neurophysiology
of language is via the N400 component of the event-related potential (ERP) (13, 14). The
N400 is a centroparietal negativity that is elicited 200-600ms after word-onset and is strongest
for words that are incongruent with their preceding context (e.g., “I take my coffee with cream
and salt’). Several contrasting theories have been advanced to account for the N400. These
include suggestions that the N400 reflects analysis of the low-level (e.g., orthographic or
phonological) attributes of the unexpected (read or heard) word before that word is actually
recognized (15); that it represents the process of accessing the semantic meaning of the word
(16); or that it represents the process of incorporating the meaning of the word into its
preceding context (17). One idea that has the potential to unify several of these competing
theories is that the N400 reflects the stimulus induced change in a multimodal neural network,
wherein an implicit and probabilistic representation of sentence meaning is held (14, 18).
Importantly, the state of this internal network can be shaped by predictions, such that
information can be partially or fully activated before the arrival of bottom-up input. This idea
relies on the suggestion that listeners process speech predictively. In particular, it has been
suggested that listeners use context to predictively pre-activate information at multiple
representational levels during language comprehension (19). At a lexical surface level, this
could include the activation of representations of word identity (20, 21), whereas a higher
semantic level relates to the activation of an upcoming word’s semantic features (22). This is

illustrated by an example sentence in Fig. 1. Indeed, from this perspective, it is conceivable
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that prediction at multiple representational levels could concurrently contribute to the N400

component.

While the N400 component has been useful in studying age-related differences in the
neurophysiology of language, the lack of consensus over what it reflects has complicated the
interpretation of results in this area. The idea that the N400 might reflect differences in how
younger and older adults use context-based predictions is evident in results from previous
studies, particularly at the level of semantic representation (23). However, such results have
been interpreted as older adults relying less on prediction in general during language
comprehension, instead having responses that pattern more with plausibility ratings (12, 23).
An alternative explanation for these differences is that ageing affects predictive processing at
specific, semantic levels of representation rather than across all representational levels. This
explanation is more consistent results from eye-tracking studies where it is believed that older
adults rely more heavily on context-based probabilistic predictions (24, 25). But, again, the
notion that predictive processes at multiple representational levels might contribute

concurrently to the N400 and how this might be affected by ageing has received less attention.

In this study, we test whether prediction at distinct linguistic levels is differentially affected by
ageing. To do this, we leverage a recent experimental framework (26) to isolate neural
correlates of prediction from these different levels in younger and older adults using natural,
continuous speech and modern context-based language modelling. This approach includes
the variations in predictability at different levels that come with natural speech and allows for
the derivation of interpretable neural correlates of different aspects of predictive language
processing according to the language models used in analysing the neural data (27).
Furthermore, the use of natural speech material adds to the ecological validity of observed
effects and is less taxing on the attention of participating subjects than experiments involving
artificially constructed sentences. This is important for reducing the potential confound of

different levels of attentional engagement between older and younger subjects.

We exploit a recent modelling framework (Fig. 1) to tease apart neural correlates of predictive
processing at the lexical and semantic level. To model predictive processing at the lexical
level, we estimated 5-gram surprisal: an information theoretic measure of the inverse of the
probability of encountering a word, given the ordered sequence of the 4 preceding words (28).
In short, high lexical surprisal values arise from improbable word sequences. To model
predictive processing at the semantic level, we exploited a popular distributional semantic
modelling approach (29) that approximates word meaning, using numeric vectors of values
reflecting how often each word co-occurred with other words across a large body of text.

Distributional modelling approaches like this support the construction of conceptual knowledge
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hierarchies, e.g., a dragonfly is an insect is an animal (30), and would be expected to capture
similarities between words belonging to similar categories, such as sugar and salt, and their
difference to, say, socks. Thus, semantic dissimilarity would predict a greater N40O0 for “| take
my coffee with cream and socks”, than for “| take my coffee with cream and salt” (31). In
contrast, a 5-gram surprisal model would likely regard salt and socks as being equally
unexpected at the lexical level because their occurrences are both, presumably, non-existent
in a text corpus. So, using this model, one might not expect to see much difference in the
N400 for salt vs socks. (Fig 1).

Given the differences in how these models operate, we hypothesized that they could be used
to dissociate predictive processes at lexical and semantic representational levels in terms of
how they contribute to the N400. Additionally, based on previous N400 literature (23), we
hypothesized that older participants would show a specific detrimental effect in their predictive
processing at the semantic level, and that this effect would correlate with behavioural

measures of verbal fluency.

Example sentence: | take my coffee with cream and sugar/ / socks
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Fig. 1: Computational models of predictive processing at lexical and semantic level. To illustrate the idea of prediction
operating across multiple representational levels, consider the sentence | take my coffee with cream and... which ends with either
an expected completion (sugar), an unexpected but semantically related completion (salt) or an unexpected and semantically
unrelated completion (socks). At a lexical level, salt is unexpected because it is extremely rare that this sequence of words is
heard or read. Processing of this word is therefore assumed to be no different from the processing of other unexpected words
(i.e. socks). Conversely, at a higher semantic level, salt is relatively more likely, because sugar and salt share common features,

both being powders and condiments; edible; white etc. We used two models of lexical surprisal and semantic dissimilarity to
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disentangle the contributions of prediction at lexical and semantic levels, respectively. Top: For the semantic dissimilarity model,
vector representations of previous words in the sentence are averaged to form an estimation of the event context. The latent
semantic features of the averaged vector converge on a representation similar to the predicted target “sugar” which, consequently,
is more similar to words from the same category (e.g. “salt”) than different categories (e.g. “socks”). Bottom: Conversely, the
lexical surprisal model does not distinguish between unexpected words based on their semantic category as it only reflects the

probability of encountering either sequence of words in the training corpus, which is either rare or non-existent.

Results
Two groups of 19 older (55-77 years, mean=63.9) and 19 younger (19-38 years, mean=26.8)

subjects listened to the same 12-minute long excerpt of narrative speech while their
electrophysiological (EEG) signal was recorded. The neural tracking of lexical and semantic
information in the speech signal was assessed using a lagged linear regression. Specifically,
this method models neural responses to speech by estimating a temporal filter that optimally
describes how the brain transforms a speech feature of interest into the corresponding
recorded neural signal. The filter, known as the temporal response function (TRF), consists of
learned weights at each recorded channel for a series of specified time-lags. The TRF has
typically been used to measure the cortical tracking of acoustic and linguistic properties
continuous speech (32-34). However, recent approaches using this method have sought to
represent continuous speech beyond its low-level acoustic features, in terms of its higher-level
lexical-semantic properties (35, 36). For our speech stimulus, we estimated the lexical
surprisal and semantic dissimilarity values for each content word and modelled neural

responses to these features with the TRF.

Lexical surprisal is a measure derived from the probability of encountering 5 words (symbols)
in a particular sequence, in a steady stream of words. The surprisal estimate itself captures
nothing about what words mean, in the sense that it supplies no measure of whether cats and
tigers are categorically similar, or whether either are domestic. However, word symbol
sequences do in part reflect the structure of events in the real world (cats chase mice). They
also reflect grammatical constraints on permissible symbol sequences (“ The jumped the a cat”
is nonsensical). In contrast, the semantic dissimilarity measure captures differences in the
semantic categories that words belong to, and in the contexts that words appear in (cats and
tigers are both felines, but tigers rarely occur in domestic contexts). Similar measures have
been used to successfully model observed N400 phenomenon relating to semantic categories
(31). Dissimilarity between a word and its preceding context was computed by 1 minus the
Pearson’s correlation between the current word vector and the averaged vectors of all
previous content words in the same sentence (36). We found that lexical surprisal and
semantic dissimilarity were only weakly correlated (Pearson’s R=0.14, p=1.2 x 10, n =916,
Fig. S1A), indicating that they captured distinct features of the stimulus. Figure S1B provides

example sentences with lexical surprisal and semantic dissimilarity values of the final word.
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To fit the TRF, lexical surprisal and semantic dissimilarity were represented as vectors of
impulses at the onset of each content word whose heights were scaled according to their
surprisal or dissimilarity value. We regressed these vectors simultaneously to the recorded
EEG signal of each individual participant. This produced separate TRF weights for surprisal
and dissimilarity. Figure 2A shows the surprisal TRF weights for older and younger groups at
midline parietal electrodes with scalp weight topographies at selected time windows (300ms,
400ms and 500ms; window width of 50ms) plotted above and below. Both groups show a
prominent negative component, characteristic of the classic NAOO ERP. We found that the
latency of this component was significantly delayed by 74ms in the older group (T = 3.5, p <
0.005 , 2 sample t-test, Cohen’s d = 1.13) and observed a correlation between age and
response peak latency within the older group (Pearson’s r= 0.46, p = 0.047). Figure 2B shows
the TRF weights for the semantic dissimilarity feature in older and younger subjects. Younger
subjects showed comparable responses for dissimilarity and surprisal feature weights. In
contrast, dissimilarity weights were significantly weaker than surprisal weights for older

subjects (p<0.05 running paired t-test, FDR corrected).

The performance of a model is also assessed by its ability to predict unseen neural data.
Employing a cross validation procedure, we used each subject’s trained TRF model to predict
their held-out EEG data. To test the predictive strength of surprisal and dissimilarity
individually, we compared prediction accuracy of the full model (including dissimilarity and
surprisal) with 5 null models where either surprisal or dissimilarity values were randomly
permuted. Figure 2C shows the prediction accuracy (r) of each feature relative to the average
null model predictions over midline parietal channels for younger and older subjects. Figure
2D shows the topographical distribution of r values. For both groups, surprisal and dissimilarity
could significantly predict EEG above this baseline (Younger subjects: p = 0.0005 and p =
0.0011 for dissimilarity and surprisal, respectively; Wilcoxon signed-rank test. Older subjects:
p = 0.022 and p = 0.0002, for dissimilarity and surprisal, respectively; Wilcoxon signed-rank
test). Consistent with the feature weights of the TRF, there were no significant differences
between the prediction accuracies for dissimilarity and surprisal for younger subjects (p = 0.28,
Wilcoxon signed-rank test). However, importantly, older subjects showed significantly higher
prediction accuracy for surprisal compared to dissimilarity (p = 0.0048, Wilcoxon signed-rank
test). Younger subjects also showed significantly higher prediction accuracy for dissimilarity
than older subjects (p=0.033, Mann-Whitney U-test).
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Fig. 2: TRF weights and prediction accuracies. A) Lexical surprisal TRF weights averaged over parietal electrodes and across
older (blue) and younger (red) subjects. Shaded areas show s.e.m. across subjects. N400 components are seen in the TRF
weights at later time-lags for both groups and the peak latency of this component is significantly delayed for the older group. B)
In contrast, semantic dissimilarity TRF weights are significantly weaker at later time lags for the older group compared to the
younger group. C) Trained TRFs were used to predict unseen EEG in a cross-validation procedure. Consistent with the feature
weights of the TRF, there were no significant differences between the prediction accuracies for dissimilarity and surprisal over
parietal channels for younger subjects. However, older subjects showed significantly higher prediction accuracy for surprisal
compared to dissimilarity at these channels. D) Topographical plots of prediction accuracy for both age groups and both models.
From these results it is evident that semantic dissimilarity is weaker at explaining the neural
responses for older subjects compared to younger subjects. However, this difference in model
performance could conceivably be due to the particular way in which we have computed
semantic dissimilarity. For instance, it has been shown that older adults have reduced working
memory capacity (1), and thus for older adults it may be more appropriate to compute
dissimilarity using a smaller window of previous words. To safeguard against this possibility,
we tested several semantic dissimilarity vectors, where dissimilarity was estimated by
comparing a word with a fixed number of previous words. We used context window sizes of 3,
5, 7,9 and 11 words. We found no differences between models with different context window
sizes or the model with a sentence context window (p = 0.61 for the older group, p = 0.79, for
the younger group, Kruskal-Wallis test), indicating that the difference in brain responses
between younger and older participants was not the result of the selected parameters. Finally,
we investigated the low-level acoustic tracking of the speech envelope in both groups to check
if our results might be explained based on differences in low-level encoding of the speech
signal. Consistent with previous reports (6, 37), we found significantly stronger tracking of the
speech envelope in older adults (Fig. S2), suggesting that low-level acoustic processing does

not explain the between-group differences we see in semantic dissimilarity.

Previous work has indicated that older adults with higher verbal fluency scores were more

likely to engage predictive processes at the level of semantics, resulting in N40O response
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patterns that were more similar to their younger counterparts (23). On this basis, we tested
whether semantic dissimilarity model performance could predict verbal fluency in our older
subjects. Semantic verbal fluency (VF) scores were collected from all but 2 of the older
subjects. We found that, when controlling for age, model prediction accuracies were positively
correlated with these scores across subjects (Pearson’s R = 0.59, p < 0.02, Fig. 3). This
reveals that semantic dissimilarity was more accurately modelled for older subjects with higher
semantic fluency. The model accuracy for surprisal was not predictive of this measure
(Pearson’s R =-0.11, p > 0.05).

30 ¢

Verbal Fluency

10 +

-0.01 -0.005 0 0.005 0.01

EEG Prediction Accuracy (residual)

Fig. 3: Within the older subjects, semantic category fluency was positively correlated with the semantic dissimilarity model

performance when controlling for age (R = 0.59 p < 0.02)

Discussion

The current article has revealed differences between younger and older adults’
electrophysiological responses to natural, narrative speech. In both young and old, a joint
model capturing lexical surprisal and semantic dissimilarity produced N400 component
responses in its temporal weights. While the lexical surprisal measure was robust in older
adults, its peak negativity was delayed in a way that is similar to previous reports based on
the N400 (13). In contrast, the semantic dissimilarity component was much reduced in the
older subjects. We interpret this as evidence for two distinct contributions to the N400 that
reflect predictive processing at the level of lexical and semantic representation. Furthermore,
the pattern of results suggests that while older subjects maintain a robust ability to utilize
lexical predictions during language processing, their ability to do so based on semantic
representations appears to be impaired. Importantly, this interpretation was supported by the
fact that the performance of the semantic dissimilarity model in older adults reflected a

semantic behavioural measure of their categorical verbal fluency. These results extend basic
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scientific understanding of neurophysiological changes that accompany ageing and could

have implications for research into naturalistic measures of brain health, as we discuss below.

The notion that our measures reflect predictive processing at different lexical-semantic levels
fits with results from previous modelling studies on young adults. Surprisal and dissimilarity
measures were jointly modelled on both EEG and fMRI responses in younger adults during
sentence reading and narrative speech comprehension respectively (27). The measures both
produced similar N40O responses in the sentence reading EEG data, as they have done for
the younger adults in our study (Fig 2). However, the fMRI results provided evidence that
distinct brain regions were involved in processing the two different aspects of the speech input.
In particular, visual word form areas reflected surprisal (i.e., lexical processing) and areas of
the semantic network (38) reflected dissimilarity (i.e., semantic processing). However, in that
study, the distinct contributions of lexical and semantic processing were not dissociable in the
N400 data because they were both strongly represented in younger adults. Our study goes
beyond this, in 1) revealing that electrophysiological activity elicited in narrative speech
comprehension reflects components of lexical surprisal and semantic dissimilarity; 2)
demonstrating an age-related dissociation between the contribution of surprisal and
dissimilarity, with the dissimilarity component being less pronounced in older people.
Together, these findings provide convergent evidence that the N400 response reflects
contributions from multiple processes relating to prediction at different levels of the linguistic

processing hierarchy (19, 39).

Indeed, the idea that the N40O is affected by prediction at lexical and semantic levels fits with
previous N400 ERP literature. N4AOO ERP responses in younger adults are enhanced for words
that are not only unexpected in the context, but also belong to a different semantic category
to the expected word (22). This is consistent with semantic features of upcoming words being
predictively preactivated during comprehension. Importantly, the relative contribution of lexical
and semantic components to the N400 appears to change with age. Specifically, in older
adults there is less sensitivity to an unexpected word's semantic category, especially when
the preceding context is highly constraining. These results are consistent with the idea of
prediction playing a reduced role at a semantic level in the ageing brain (23, 40). However,
whereas N400 ERP paradigms propose that different sub processes contribute to the N400
based on how evoked responses vary as a function of sentence-ending, our approach has
dissociated lexical surprisal and semantic dissimilarity in neural responses to a continuous
stretch of narrative speech. Furthermore, we have uncovered additional evidence that the
semantic dissimilarity subprocess, specifically, yields a weaker response in older adulthood.

Older adults show remarkably preserved language comprehension skills despite experiencing

10


https://doi.org/10.1101/2020.04.17.046201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046201; this version posted April 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

an overall decline in sensory and cognitive function (11). Changes in prediction at a semantic
level may be part of a strategy to successfully comprehend speech with reduced cognitive
resources (41). This possibly highlights the putative value of high-level predictions to support
speech comprehension in noisy environments, when the input is corrupted and where older
adults often struggle to comprehend. Future work, presenting speech at different levels of

signal-to-noise ratio could help our understanding of such phenomena.

Two points we wish to further emphasize are firstly that the study was undertaken using a
short, 12-minute segment of natural continuous speech stimulus. Previous research into the
electrophysiological changes in language processing in the ageing brain have leveraged ERP-
based experimental protocols that rely on experimenter-configured stimulus sets to enable
contrasts between different stimulus conditions (e.g. congruent and incongruent sentence
wordings). However, the ERP approach constrains the breadth of linguistic stimuli that can be
investigated to the subset of sentences configured into matched experimental pairs.
Additionally, the degree of ecological validity of results generated from bespoke ERP setups
is unclear, because the experimental conditions are rarely experienced in everyday life. By
examining electrophysiological responses elicited in audiobook comprehension, we have
utilized a stimulus that is actually experienced in the wild, and the participant experiences an
uninterrupted prolonged and cohesive discourse, that is likely to be more engaging than
listening to disjoint experimental sentences. A second point we wish to emphasize is the
current use of a predictive modelling approach. Previous ERP work on ageing tends to rely at
least partially, on the experimenter to first configure stimulus categories to contrast and then
populate them with sentences. It is challenging for a new experimenter to translate such an
experiment to new stimuli, because they will have to manually select the new stimulus set.
Conversely, the current modelling approach and the temporal response functions constructed
in this experiment are portable and can be directly transferred to predict electrophysiological
responses for entirely new narrative stimuli in new groups of young and old participants.

However, we also wish to make explicit that the study of uncontrolled naturalistic stimuli, as
opposed to tightly controlled N400 ERP sentence pairs, comes with its own limitations and
presents a different rather than a “better” perspective on brain function. In the case at hand, it
is unclear whether particular words and sentences in the audiobook played a key role in
eliciting the electrophysiological response profiles and, if so, whether these critical sentences
were the same for younger and older adults. In addition, the scope of experimentation is
constrained by the content of the audiobook, which is not guaranteed to contain adequate
variation in the linguistic factors of interest. This said, with the current set up, we have revealed

a clear dissociation between lexical surprisal and semantic dissimilarity in the brains of older
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adults, thus establishing the general utility of using narrative speech to uncover age-related

differences in high-level linguistic processing.

In conclusion, we have revealed neural correlates of language prediction relating to distinct
measures of lexical surprisal and semantic dissimilarity. We show how one of these forms of
prediction becomes less effective with age and patterns with behavioural cognitive measures,
enabling us to predict an individual’'s verbal semantic fluency from their neural data alone.
These findings open new possibilities to study language impairment in the elderly and detect

the onset of neurodegenerative disorders.

Materials and Methods

Participants. Data from 38 individuals (19 younger (6 female), age 19-38 years, M=26.8 years
t s.d. = 5 years; 19 older (12 female), age 55-77 years, M = 63.9 years + s.d. = 6.7 years) was
used in the study. Data from the younger subjects was collected in previous studies (34, 36)
and in the current analysis only a portion of the dataset was used in order to match the data
that was recorded for the older participants. Both studies were undertaken in accordance with
the Declaration of Helsinki and were approved by the Ethics Committee of the School of
Psychology at Trinity College Dublin. Each subject provided written informed consent.

Subijects reported no history of hearing impairment or neurological disorder.

Stimuli and Experimental procedure. The stimulus was an audio-book version of a popular
mid-20th century American work of fiction (The Old Man and the Sea, Hemingway, 1952),
read by a single male American speaker. The first 12 minutes of the audiobook was divided
into 4 trials, each 3 minutes in duration. The average speech rate was 190 words/minute. The
mean length of each content word was 334ms with standard deviation of 140ms. Trials were
presented chronologically to the story with no repeated trials. All stimuli were presented
monophonically at a sampling rate of 44.1 kHz using Sennheiser HD650 headphones and
Presentation software from Neurobehavioural Systems. Testing was carried out in a dark,
sound attenuated room and subjects were instructed to maintain visual fixation on a crosshair
centred on the screen for the duration of each trial, and to minimise eye blinking and all other

motor activities.

Older participants were additionally tested with 2 verbal fluency (VF) tasks. Letter verbal
fluency was measured by asking participants to name as many words beginning with the letter
‘F’ as they could in 60 seconds. Similarly, semantic verbal fluency was measured by asking
participants to name as many animals as they could in 60 seconds. Prior to the verbal fluency

task, participants were screened using the Montreal Cognitive Assessment (MOCA).
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Individuals who scored below 25 out of 30 in this test did not complete this task and therefore

VF measures from 2 of the 19 subjects were not obtained.

EEG Acquisition and Preprocessing. 128-channel EEG data were acquired at a rate of 512
Hz using an ActiveTwo system (BioSemi). Offline, the data were downsampled to 128Hz and
bandpass filtered between 0.5 and 8Hz using a zero-phase shift Butterworth 4" order filter. To
identify channels with excessive noise, the standard deviation of the time series of each
channel was compared with that of the surrounding channels. For each trial, a channel was
identified as noisy if its standard deviation was more than 2.5 times the mean standard
deviation of all other channels or less than the mean standard deviation of all other channels
divided by 2.5. Channels contaminated by noise were recalculated by spline interpolating the
surrounding clean channels. Data were then referenced to the average of the 2 mastoid

channels.

Finally, we applied multiway canonical component analysis (MCCA) to denoise the data.
MCCA is a technique that seeks to extract canonical components across subjects (42). Like
CCA, which is applied to single subjects, it can be used to find linear components that are
correlated between stimulus and response. However, rather than analysing the components
directly, EEG can be denoised by projecting it to the overcomplete basis of canonical
components, selecting a set of components and then projecting back to EEG space. We
denoised each age-group separately, with the prior hypothesis that latency and morphology
of the group responses would be different. For each group, we chose parameters of 40
principal components for the initial principal component analysis and then 110 canonical
components. These chosen values were based on the parameters that were recommended
for denoising speech related EEG (42); however, we tried several different parameter pairs
and tested their effect on the prediction accuracy of EEG from the speech envelope. We found
that the recommended parameters returned the optimal denoising for both groups as

determined by prediction accuracy of EEG based on the speech envelope (Figure S2).
Semantic dissimilarity and surprisal estimation.

Semantic Dissimilarity. Distributed word embeddings were derived using GloVe (29). This
method factorizes the word co-occurrence matrix of a large text corpus, in this case Common

Crawl (https://commoncrawl.org/). The output is 300-dimensional vectors for each word,

where each dimension can be thought to reflect some latent linguistic context. These word
embeddings are used to calculate our semantic dissimilarity measure. This is an impulse
vector, the same length as a presented trial, with impulses at the onset of each content word.

The height of each impulse is 1 minus the Pearson’s correlation between that word’s vector

13


https://commoncrawl.org/
https://doi.org/10.1101/2020.04.17.046201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.17.046201; this version posted April 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

and average of all preceding word vectors in the same sentence. Semantic dissimilarity values

have a mean of 0.48 + s.d. = 0.17.

Surprisal. Surprisal values were calculated using a Markov model trained on the same corpus
as GloVe (common crawl). These models, commonly referred to as n-grams, estimate the
conditional probability of the next word in a sequence given the previous n-1 words. We
applied a 5-gram model that was produced using interpolated modified Kneser-Ney smoothing
(28, 43). Surprisal vectors were calculated as impulses at the onset of all words whose heights
were scaled according to the negative log of a word’s 5-gram probability. Any impulses that
were not common between dissimilarity and surprisal vectors were removed. Surprisal values
were normalised to match the distribution of dissimilarity values with a mean of 0.48 + s.d. =
0.16.

Temporal Response Function. The forward encoding model or temporal response function
(TRF) can be thought of as a filter that describes the brain’s linear mapping between

continuous speech features, S(t), and continuous neural response, R(t).
R(t) = TRF * S(t)

Where ' represents the convolution operator. The speech input can comprise of a single
speech feature, i.e. univariate, or multiple speech features, i.e. multivariate. Each feature
produces a set temporal weights for a series of specified time lags. TRF weights are estimated

using ridge regression.
TRF = (STS + AI)~1STr

where A is the regularization parameter that controls for overfitting. The models are trained
and tested using a 4-fold cross-validation procedure. 3 of the 4 trials are used to train the TRF
which predicts the EEG of the remaining trial, based on speech representation input. We train
and test models based on the combined semantic dissimilarity and surprisal impulse vectors
with the addition of an onset impulse vector with impulse height equal to the average
dissimilarity and surprisal values across all words in the current trial. The onset vector acts as
a nuisance regressor to capture variance relating to any acoustic onset responses. For testing,
the prediction accuracy (R) of the model is calculated as the Pearson’s correlation between
the predicted EEG and the actual EEG. A range of TRFs were constructed using different A
values between 0.1 and 1000. The A value corresponding to the TRF that produced the highest
EEG prediction accuracy, averaged across trials and channels, was selected as the

regularisation parameter for all trials per subject.

To test directly how well each feature accurately captured neural activity for each subject we

measured the model’s ability to predict EEG based on the true feature representation above
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null feature representations. Specifically, the heights of the impulses for the semantic models
were randomly shuffled to produce permuted dissimilarity or permuted surprisal vectors. In the
testing phase of the cross-validation procedure, a trained TRF would attempt to predict the
neural response to the permuted features, while all other features remained constant. This
was repeated for 5 permutations of each stimulus feature. Hence, prediction accuracy for
semantic features refers to the prediction accuracy difference between true speech feature

and the average of the 5 null speech feature representations.

In addition, we extracted properties of the model weights themselves. N400 peak latency was
calculated automatically for each subject as the time lag with the lowest peak weight within a
window of 200-600ms after a time-lag of zero. The response peak delay between groups was

calculated as the difference between group averaged peak delays.
Statistical Testing

For every statistical comparison, we first verified whether the distribution of the data violated
normality and was outlier free. This was determined using the Anderson-Darling test for
normality and 1.5 IQR criterion, respectively. We used parametric tests (t-test, paired t-test)
for data which satisfied these constraints and non-parametric tests for data which violated

them.
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