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Abstract 

Healthy ageing leads to changes in the brain that impact upon sensory and cognitive 

processing. It is not fully clear how these changes affect the processing of everyday spoken 

language. Prediction is thought to play an important role in language comprehension, where 

information about upcoming words is pre-activated across multiple representational levels. 

However, evidence from electrophysiology suggests differences in how older and younger 

adults use context-based predictions, particularly at the level of semantic representation. We 

investigate these differences during natural speech comprehension by presenting older and 

younger subjects with continuous, narrative speech while recording their 

electroencephalogram. We use linear regression to test how distinct computational measures 

of 1) semantic dissimilarity and 2) lexical surprisal are processed in the brains of both groups. 

Our results reveal dissociable neural correlates of these two measures that suggest 

differences in how younger and older adults successfully comprehend speech. Specifically, 

our results suggest that, while younger and older subjects both employ context-based lexical 

predictions, older subjects are significantly less likely to pre-activate the semantic features 

relating to upcoming words. Furthermore, across our group of older adults, we show that the 

weaker the neural signature of this semantic pre-activation mechanism, the lower a subject’s 

semantic verbal fluency score. We interpret these findings as prediction playing a generally 

reduced role at a semantic level in the brains of older listeners during speech comprehension 

and that these changes may be part of an overall strategy to successfully comprehend speech 

with reduced cognitive resources. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.046201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.046201
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 

Healthy ageing is accompanied by a myriad of sensory and cognitive changes. This includes 

a decline in working memory (1) and episodic memory (2) as well as hearing loss (3) and a 

slowing in processing across cognitive domains (4). It is likely that changes in all of these 

faculties play into the reported extra difficulties that older adults experience in trying to follow 

everyday conversational speech, especially in challenging listening environments (5–7). While 

impaired hearing certainly plays a role in these difficulties (8, 9), it is also clear that “normal” 

hearing is not enough to guarantee good speech comprehension in everyday communication 

(10). But precisely how age-related changes in memory and speed of processing impact upon 

speech comprehension is less clear. In general, older adults show a relatively preserved 

language system and semantic memory (11). However, neuroimaging studies indicate key 

changes that occur with age that could impact the processing of speech at higher linguistic 

levels (12). As such, to better account for the communication challenges faced by older 

people, it is essential that we better understand how linguistic processing at these levels might 

differ between young and old.  

One way in which researchers have explored age-related differences in the neurophysiology 

of language is via the N400 component of the event-related potential (ERP) (13, 14). The 

N400 is a centroparietal negativity that is elicited 200-600ms after word-onset and is strongest 

for words that are incongruent with their preceding context (e.g., “I take my coffee with cream 

and salt”). Several contrasting theories have been advanced to account for the N400. These 

include suggestions that the N400 reflects analysis of the low-level (e.g., orthographic or 

phonological) attributes of the unexpected (read or heard) word before that word is actually 

recognized (15); that it represents the process of accessing the semantic meaning of the word 

(16); or that it represents the process of incorporating the meaning of the word into its 

preceding context (17). One idea that has the potential to unify several of these competing 

theories is that the N400 reflects the stimulus induced change in a multimodal neural network, 

wherein an implicit and probabilistic representation of sentence meaning is held (14, 18). 

Importantly, the state of this internal network can be shaped by predictions, such that 

information can be partially or fully activated before the arrival of bottom-up input. This idea 

relies on the suggestion that listeners process speech predictively. In particular, it has been 

suggested that listeners use context to predictively pre-activate information at multiple 

representational levels during language comprehension (19). At a lexical surface level, this 

could include the activation of representations of word identity (20, 21), whereas a higher 

semantic level relates to the activation of an upcoming word’s semantic features (22). This is 

illustrated by an example sentence in Fig. 1. Indeed, from this perspective, it is conceivable 
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that prediction at multiple representational levels could concurrently contribute to the N400 

component. 

While the N400 component has been useful in studying age-related differences in the 

neurophysiology of language, the lack of consensus over what it reflects has complicated the 

interpretation of results in this area. The idea that the N400 might reflect differences in how 

younger and older adults use context-based predictions is evident in results from previous 

studies, particularly at the level of semantic representation (23). However, such results have 

been interpreted as older adults relying less on prediction in general during language 

comprehension, instead having responses that pattern more with plausibility ratings (12, 23). 

An alternative explanation for these differences is that ageing affects predictive processing at 

specific, semantic levels of representation rather than across all representational levels. This 

explanation is more consistent results from eye-tracking studies where it is believed that older 

adults rely more heavily on context-based probabilistic predictions (24, 25).  But, again, the 

notion that predictive processes at multiple representational levels might contribute 

concurrently to the N400 and how this might be affected by ageing has received less attention.  

In this study, we test whether prediction at distinct linguistic levels is differentially affected by 

ageing. To do this, we leverage a recent experimental framework (26) to isolate neural 

correlates of prediction from these different levels in younger and older adults using natural, 

continuous speech and modern context-based language modelling. This approach includes 

the variations in predictability at different levels that come with natural speech and allows for 

the derivation of interpretable neural correlates of different aspects of predictive language 

processing according to the language models used in analysing the neural data (27). 

Furthermore, the use of natural speech material adds to the ecological validity of observed 

effects and is less taxing on the attention of participating subjects than experiments involving 

artificially constructed sentences. This is important for reducing the potential confound of 

different levels of attentional engagement between older and younger subjects. 

We exploit a recent modelling framework (Fig. 1) to tease apart neural correlates of predictive 

processing at the lexical and semantic level. To model predictive processing at the lexical 

level, we estimated 5-gram surprisal: an information theoretic measure of the inverse of the 

probability of encountering a word, given the ordered sequence of the 4 preceding words (28). 

In short, high lexical surprisal values arise from improbable word sequences. To model 

predictive processing at the semantic level, we exploited a popular distributional semantic 

modelling approach (29) that approximates word meaning, using numeric vectors of values 

reflecting how often each word co-occurred with other words across a large body of text. 

Distributional modelling approaches like this support the construction of conceptual knowledge 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.046201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.046201
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

hierarchies, e.g., a dragonfly is an insect is an animal (30), and would be expected to capture 

similarities between words belonging to similar categories, such as sugar and salt, and their 

difference to, say, socks. Thus, semantic dissimilarity would predict a greater N400 for “I take 

my coffee with cream and socks”, than for “I take my coffee with cream and salt” (31). In 

contrast, a 5-gram surprisal model would likely regard salt and socks as being equally 

unexpected at the lexical level because their occurrences are both, presumably, non-existent 

in a text corpus. So, using this model, one might not expect to see much difference in the 

N400 for salt vs socks. (Fig 1).  

Given the differences in how these models operate, we hypothesized that they could be used 

to dissociate predictive processes at lexical and semantic representational levels in terms of 

how they contribute to the N400. Additionally, based on previous N400 literature (23), we 

hypothesized that older participants would show a specific detrimental effect in their predictive 

processing at the semantic level, and that this effect would correlate with behavioural 

measures of verbal fluency. 

 

Fig. 1: Computational models of predictive processing at lexical and semantic level. To illustrate the idea of prediction 

operating across multiple representational levels, consider the sentence I take my coffee with cream and… which ends with either 

an expected completion (sugar), an unexpected but semantically related completion (salt) or an unexpected and semantically 

unrelated completion (socks). At a lexical level, salt is unexpected because it is extremely rare that this sequence of words is 

heard or read. Processing of this word is therefore assumed to be no different from the processing of other unexpected words 

(i.e. socks). Conversely, at a higher semantic level, salt is relatively more likely, because sugar and salt share common features, 

both being powders and condiments; edible; white etc. We used two models of lexical surprisal and semantic dissimilarity to 
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disentangle the contributions of prediction at lexical and semantic levels, respectively. Top: For the semantic dissimilarity model, 

vector representations of previous words in the sentence are averaged to form an estimation of the event context. The latent 

semantic features of the averaged vector converge on a representation similar to the predicted target “sugar” which, consequently, 

is more similar to words from the same category (e.g. “salt”) than different categories (e.g. “socks”). Bottom: Conversely, the 

lexical surprisal model does not distinguish between unexpected words based on their semantic category as it only reflects the 

probability of encountering either sequence of words in the training corpus, which is either rare or non-existent. 

Results 

Two groups of 19 older (55-77 years, mean=63.9) and 19 younger (19-38 years, mean=26.8) 

subjects listened to the same 12-minute long excerpt of narrative speech while their 

electrophysiological (EEG) signal was recorded. The neural tracking of lexical and semantic 

information in the speech signal was assessed using a lagged linear regression. Specifically, 

this method models neural responses to speech by estimating a temporal filter that optimally 

describes how the brain transforms a speech feature of interest into the corresponding 

recorded neural signal. The filter, known as the temporal response function (TRF), consists of 

learned weights at each recorded channel for a series of specified time-lags.  The TRF has 

typically been used to measure the cortical tracking of acoustic and linguistic properties 

continuous speech (32–34). However, recent approaches using this method have sought to 

represent continuous speech beyond its low-level acoustic features, in terms of its higher-level 

lexical-semantic properties (35, 36). For our speech stimulus, we estimated the lexical 

surprisal and semantic dissimilarity values for each content word and modelled neural 

responses to these features with the TRF.  

Lexical surprisal is a measure derived from the probability of encountering 5 words (symbols) 

in a particular sequence, in a steady stream of words. The surprisal estimate itself captures 

nothing about what words mean, in the sense that it supplies no measure of whether cats and 

tigers are categorically similar, or whether either are domestic. However, word symbol 

sequences do in part reflect the structure of events in the real world (cats chase mice). They 

also reflect grammatical constraints on permissible symbol sequences (“The jumped the a cat” 

is nonsensical). In contrast, the semantic dissimilarity measure captures differences in the 

semantic categories that words belong to, and in the contexts that words appear in (cats and 

tigers are both felines, but tigers rarely occur in domestic contexts). Similar measures have 

been used to successfully model observed N400 phenomenon relating to semantic categories 

(31). Dissimilarity between a word and its preceding context was computed by 1 minus the 

Pearson’s correlation between the current word vector and the averaged vectors of all 

previous content words in the same sentence (36). We found that lexical surprisal and 

semantic dissimilarity were only weakly correlated (Pearson’s R = 0.14, p = 1.2 x 10-5, n = 916, 

Fig. S1A), indicating that they captured distinct features of the stimulus. Figure S1B provides 

example sentences with lexical surprisal and semantic dissimilarity values of the final word.   
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To fit the TRF, lexical surprisal and semantic dissimilarity were represented as vectors of 

impulses at the onset of each content word whose heights were scaled according to their 

surprisal or dissimilarity value. We regressed these vectors simultaneously to the recorded 

EEG signal of each individual participant. This produced separate TRF weights for surprisal 

and dissimilarity. Figure 2A shows the surprisal TRF weights for older and younger groups at 

midline parietal electrodes with scalp weight topographies at selected time windows (300ms, 

400ms and 500ms; window width of 50ms) plotted above and below. Both groups show a 

prominent negative component, characteristic of the classic N400 ERP. We found that the 

latency of this component was significantly delayed by 74ms in the older group (T = 3.5, p < 

0.005 , 2 sample t-test, Cohen’s d = 1.13) and observed a correlation between age and 

response peak latency within the older group (Pearson’s r= 0.46, p = 0.047). Figure 2B shows 

the TRF weights for the semantic dissimilarity feature in older and younger subjects. Younger 

subjects showed comparable responses for dissimilarity and surprisal feature weights. In 

contrast, dissimilarity weights were significantly weaker than surprisal weights for older 

subjects (p<0.05 running paired t-test, FDR corrected).  

The performance of a model is also assessed by its ability to predict unseen neural data. 

Employing a cross validation procedure, we used each subject’s trained TRF model to predict 

their held-out EEG data. To test the predictive strength of surprisal and dissimilarity 

individually, we compared prediction accuracy of the full model (including dissimilarity and 

surprisal) with 5 null models where either surprisal or dissimilarity values were randomly 

permuted. Figure 2C shows the prediction accuracy (r) of each feature relative to the average 

null model predictions over midline parietal channels for younger and older subjects. Figure 

2D shows the topographical distribution of r values. For both groups, surprisal and dissimilarity 

could significantly predict EEG above this baseline (Younger subjects: p = 0.0005 and p = 

0.0011 for dissimilarity and surprisal, respectively; Wilcoxon signed-rank test. Older subjects: 

p = 0.022 and p = 0.0002, for dissimilarity and surprisal, respectively; Wilcoxon signed-rank 

test). Consistent with the feature weights of the TRF, there were no significant differences 

between the prediction accuracies for dissimilarity and surprisal for younger subjects (p = 0.28, 

Wilcoxon signed-rank test). However, importantly, older subjects showed significantly higher 

prediction accuracy for surprisal compared to dissimilarity (p = 0.0048, Wilcoxon signed-rank 

test). Younger subjects also showed significantly higher prediction accuracy for dissimilarity 

than older subjects (p=0.033, Mann-Whitney U-test).  
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Fig. 2: TRF weights and prediction accuracies. A) Lexical surprisal TRF weights averaged over parietal electrodes and across 

older (blue) and younger (red) subjects. Shaded areas show s.e.m. across subjects. N400 components are seen in the TRF 

weights at later time-lags for both groups and the peak latency of this component is significantly delayed for the older group. B) 

In contrast, semantic dissimilarity TRF weights are significantly weaker at later time lags for the older group compared to the 

younger group. C) Trained TRFs were used to predict unseen EEG in a cross-validation procedure. Consistent with the feature 

weights of the TRF, there were no significant differences between the prediction accuracies for dissimilarity and surprisal over 

parietal channels for younger subjects. However, older subjects showed significantly higher prediction accuracy for surprisal 

compared to dissimilarity at these channels. D) Topographical plots of prediction accuracy for both age groups and both models.  

From these results it is evident that semantic dissimilarity is weaker at explaining the neural 

responses for older subjects compared to younger subjects. However, this difference in model 

performance could conceivably be due to the particular way in which we have computed 

semantic dissimilarity. For instance, it has been shown that older adults have reduced working 

memory capacity (1), and thus for older adults it may be more appropriate to compute 

dissimilarity using a smaller window of previous words. To safeguard against this possibility, 

we tested several semantic dissimilarity vectors, where dissimilarity was estimated by 

comparing a word with a fixed number of previous words. We used context window sizes of 3, 

5, 7, 9 and 11 words. We found no differences between models with different context window 

sizes or the model with a sentence context window (p = 0.61 for the older group, p = 0.79, for 

the younger group, Kruskal-Wallis test), indicating that the difference in brain responses 

between younger and older participants was not the result of the selected parameters. Finally, 

we investigated the low-level acoustic tracking of the speech envelope in both groups to check 

if our results might be explained based on differences in low-level encoding of the speech 

signal. Consistent with previous reports (6, 37), we found significantly stronger tracking of the 

speech envelope in older adults (Fig. S2), suggesting that low-level acoustic processing does 

not explain the between-group differences we see in semantic dissimilarity. 

Previous work has indicated that older adults with higher verbal fluency scores were more 

likely to engage predictive processes at the level of semantics, resulting in N400 response 
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patterns that were more similar to their younger counterparts (23). On this basis, we tested 

whether semantic dissimilarity model performance could predict verbal fluency in our older 

subjects. Semantic verbal fluency (VF) scores were collected from all but 2 of the older 

subjects. We found that, when controlling for age, model prediction accuracies were positively 

correlated with these scores across subjects (Pearson’s R = 0.59, p < 0.02, Fig. 3). This 

reveals that semantic dissimilarity was more accurately modelled for older subjects with higher 

semantic fluency. The model accuracy for surprisal was not predictive of this measure 

(Pearson’s R = -0.11, p > 0.05).  

 

Fig. 3: Within the older subjects, semantic category fluency was positively correlated with the semantic dissimilarity model 

performance when controlling for age (R = 0.59 p < 0.02) 

 

Discussion 

The current article has revealed differences between younger and older adults’ 

electrophysiological responses to natural, narrative speech. In both young and old, a joint 

model capturing lexical surprisal and semantic dissimilarity produced N400 component 

responses in its temporal weights. While the lexical surprisal measure was robust in older 

adults, its peak negativity was delayed in a way that is similar to previous reports based on 

the N400 (13). In contrast, the semantic dissimilarity component was much reduced in the 

older subjects. We interpret this as evidence for two distinct contributions to the N400 that 

reflect predictive processing at the level of lexical and semantic representation. Furthermore, 

the pattern of results suggests that while older subjects maintain a robust ability to utilize 

lexical predictions during language processing, their ability to do so based on semantic 

representations appears to be impaired. Importantly, this interpretation was supported by the 

fact that the performance of the semantic dissimilarity model in older adults reflected a 

semantic behavioural measure of their categorical verbal fluency. These results extend basic 
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scientific understanding of neurophysiological changes that accompany ageing and could 

have implications for research into naturalistic measures of brain health, as we discuss below. 

The notion that our measures reflect predictive processing at different lexical-semantic levels 

fits with results from previous modelling studies on young adults. Surprisal and dissimilarity 

measures were jointly modelled on both EEG and fMRI responses in younger adults during 

sentence reading and narrative speech comprehension respectively (27). The measures both 

produced similar N400 responses in the sentence reading EEG data, as they have done for 

the younger adults in our study (Fig 2). However, the fMRI results provided evidence that 

distinct brain regions were involved in processing the two different aspects of the speech input. 

In particular, visual word form areas reflected surprisal (i.e., lexical processing) and areas of 

the semantic network (38) reflected dissimilarity (i.e., semantic processing). However, in that 

study, the distinct contributions of lexical and semantic processing were not dissociable in the 

N400 data because they were both strongly represented in younger adults. Our study goes 

beyond this, in 1) revealing that electrophysiological activity elicited in narrative speech 

comprehension reflects components of lexical surprisal and semantic dissimilarity; 2) 

demonstrating an age-related dissociation between the contribution of surprisal and 

dissimilarity, with the dissimilarity component being less pronounced in older people. 

Together, these findings provide convergent evidence that the N400 response reflects 

contributions from multiple processes relating to prediction at different levels of the linguistic 

processing hierarchy (19, 39). 

Indeed, the idea that the N400 is affected by prediction at lexical and semantic levels fits with 

previous N400 ERP literature. N400 ERP responses in younger adults are enhanced for words 

that are not only unexpected in the context, but also belong to a different semantic category 

to the expected word (22). This is consistent with semantic features of upcoming words being 

predictively preactivated during comprehension. Importantly, the relative contribution of lexical 

and semantic components to the N400 appears to change with age. Specifically, in older 

adults there is less sensitivity to an unexpected word's semantic category, especially when 

the preceding context is highly constraining. These results are consistent with the idea of 

prediction playing a reduced role at a semantic level in the ageing brain (23, 40). However, 

whereas N400 ERP paradigms propose that different sub processes contribute to the N400 

based on how evoked responses vary as a function of sentence-ending, our approach has 

dissociated lexical surprisal and semantic dissimilarity in neural responses to a continuous 

stretch of narrative speech. Furthermore, we have uncovered additional evidence that the 

semantic dissimilarity subprocess, specifically, yields a weaker response in older adulthood. 

Older adults show remarkably preserved language comprehension skills despite experiencing 
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an overall decline in sensory and cognitive function (11). Changes in prediction at a semantic 

level may be part of a strategy to successfully comprehend speech with reduced cognitive 

resources (41). This possibly highlights the putative value of high-level predictions to support 

speech comprehension in noisy environments, when the input is corrupted and where older 

adults often struggle to comprehend. Future work, presenting speech at different levels of 

signal-to-noise ratio could help our understanding of such phenomena.  

Two points we wish to further emphasize are firstly that the study was undertaken using a 

short, 12-minute segment of natural continuous speech stimulus. Previous research into the 

electrophysiological changes in language processing in the ageing brain have leveraged ERP-

based experimental protocols that rely on experimenter-configured stimulus sets to enable 

contrasts between different stimulus conditions (e.g. congruent and incongruent sentence 

wordings). However, the ERP approach constrains the breadth of linguistic stimuli that can be 

investigated to the subset of sentences configured into matched experimental pairs. 

Additionally, the degree of ecological validity of results generated from bespoke ERP setups 

is unclear, because the experimental conditions are rarely experienced in everyday life. By 

examining electrophysiological responses elicited in audiobook comprehension, we have 

utilized a stimulus that is actually experienced in the wild, and the participant experiences an 

uninterrupted prolonged and cohesive discourse, that is likely to be more engaging than 

listening to disjoint experimental sentences. A second point we wish to emphasize is the 

current use of a predictive modelling approach. Previous ERP work on ageing tends to rely at 

least partially, on the experimenter to first configure stimulus categories to contrast and then 

populate them with sentences. It is challenging for a new experimenter to translate such an 

experiment to new stimuli, because they will have to manually select the new stimulus set. 

Conversely, the current modelling approach and the temporal response functions constructed 

in this experiment are portable and can be directly transferred to predict electrophysiological 

responses for entirely new narrative stimuli in new groups of young and old participants. 

However, we also wish to make explicit that the study of uncontrolled naturalistic stimuli, as 

opposed to tightly controlled N400 ERP sentence pairs, comes with its own limitations and 

presents a different rather than a “better” perspective on brain function. In the case at hand, it 

is unclear whether particular words and sentences in the audiobook played a key role in 

eliciting the electrophysiological response profiles and, if so, whether these critical sentences 

were the same for younger and older adults. In addition, the scope of experimentation is 

constrained by the content of the audiobook, which is not guaranteed to contain adequate 

variation in the linguistic factors of interest. This said, with the current set up, we have revealed 

a clear dissociation between lexical surprisal and semantic dissimilarity in the brains of older 
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adults, thus establishing the general utility of using narrative speech to uncover age-related 

differences in high-level linguistic processing. 

In conclusion, we have revealed neural correlates of language prediction relating to distinct 

measures of lexical surprisal and semantic dissimilarity. We show how one of these forms of 

prediction becomes less effective with age and patterns with behavioural cognitive measures, 

enabling us to predict an individual’s verbal semantic fluency from their neural data alone. 

These findings open new possibilities to study language impairment in the elderly and detect 

the onset of neurodegenerative disorders. 

 

Materials and Methods 

Participants. Data from 38 individuals (19 younger (6 female), age 19-38 years, M=26.8 years 

± s.d. = 5 years; 19 older (12 female), age 55-77 years, M = 63.9 years ± s.d. = 6.7 years) was 

used in the study. Data from the younger subjects was collected in previous studies (34, 36) 

and in the current analysis only a portion of the dataset was used in order to match the data 

that was recorded for the older participants. Both studies were undertaken in accordance with 

the Declaration of Helsinki and were approved by the Ethics Committee of the School of 

Psychology at Trinity College Dublin. Each subject provided written informed consent. 

Subjects reported no history of hearing impairment or neurological disorder. 

Stimuli and Experimental procedure. The stimulus was an audio-book version of a popular 

mid-20th century American work of fiction (The Old Man and the Sea, Hemingway, 1952), 

read by a single male American speaker. The first 12 minutes of the audiobook was divided 

into 4 trials, each 3 minutes in duration. The average speech rate was 190 words/minute. The 

mean length of each content word was 334ms with standard deviation of 140ms. Trials were 

presented chronologically to the story with no repeated trials. All stimuli were presented 

monophonically at a sampling rate of 44.1 kHz using Sennheiser HD650 headphones and 

Presentation software from Neurobehavioural Systems. Testing was carried out in a dark, 

sound attenuated room and subjects were instructed to maintain visual fixation on a crosshair 

centred on the screen for the duration of each trial, and to minimise eye blinking and all other 

motor activities. 

Older participants were additionally tested with 2 verbal fluency (VF) tasks. Letter verbal 

fluency was measured by asking participants to name as many words beginning with the letter 

‘F’ as they could in 60 seconds. Similarly, semantic verbal fluency was measured by asking 

participants to name as many animals as they could in 60 seconds. Prior to the verbal fluency 

task, participants were screened using the Montreal Cognitive Assessment (MOCA). 
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Individuals who scored below 25 out of 30 in this test did not complete this task and therefore 

VF measures from 2 of the 19 subjects were not obtained.  

EEG Acquisition and Preprocessing. 128-channel EEG data were acquired at a rate of 512 

Hz using an ActiveTwo system (BioSemi). Offline, the data were downsampled to 128Hz and 

bandpass filtered between 0.5 and 8Hz using a zero-phase shift Butterworth 4th order filter. To 

identify channels with excessive noise, the standard deviation of the time series of each 

channel was compared with that of the surrounding channels. For each trial, a channel was 

identified as noisy if its standard deviation was more than 2.5 times the mean standard 

deviation of all other channels or less than the mean standard deviation of all other channels 

divided by 2.5. Channels contaminated by noise were recalculated by spline interpolating the 

surrounding clean channels. Data were then referenced to the average of the 2 mastoid 

channels.  

Finally, we applied multiway canonical component analysis (MCCA) to denoise the data. 

MCCA is a technique that seeks to extract canonical components across subjects (42). Like 

CCA, which is applied to single subjects, it can be used to find linear components that are 

correlated between stimulus and response. However, rather than analysing the components 

directly, EEG can be denoised by projecting it to the overcomplete basis of canonical 

components, selecting a set of components and then projecting back to EEG space. We 

denoised each age-group separately, with the prior hypothesis that latency and morphology 

of the group responses would be different. For each group, we chose parameters of 40 

principal components for the initial principal component analysis and then 110 canonical 

components. These chosen values were based on the parameters that were recommended 

for denoising speech related EEG (42); however, we tried several different parameter pairs 

and tested their effect on the prediction accuracy of EEG from the speech envelope. We found 

that the recommended parameters returned the optimal denoising for both groups as 

determined by prediction accuracy of EEG based on the speech envelope (Figure S2).  

Semantic dissimilarity and surprisal estimation.  

Semantic Dissimilarity. Distributed word embeddings were derived using GloVe (29). This 

method factorizes the word co-occurrence matrix of a large text corpus, in this case Common 

Crawl (https://commoncrawl.org/). The output is 300-dimensional vectors for each word, 

where each dimension can be thought to reflect some latent linguistic context. These word 

embeddings are used to calculate our semantic dissimilarity measure. This is an impulse 

vector, the same length as a presented trial, with impulses at the onset of each content word. 

The height of each impulse is 1 minus the Pearson’s correlation between that word’s vector 
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and average of all preceding word vectors in the same sentence. Semantic dissimilarity values 

have a mean of 0.48 ± s.d. = 0.17.   

Surprisal. Surprisal values were calculated using a Markov model trained on the same corpus 

as GloVe (common crawl). These models, commonly referred to as n-grams, estimate the 

conditional probability of the next word in a sequence given the previous n-1 words. We 

applied a 5-gram model that was produced using interpolated modified Kneser-Ney smoothing 

(28, 43). Surprisal vectors were calculated as impulses at the onset of all words whose heights 

were scaled according to the negative log of a word’s 5-gram probability. Any impulses that 

were not common between dissimilarity and surprisal vectors were removed. Surprisal values 

were normalised to match the distribution of dissimilarity values with a mean of 0.48 ± s.d. = 

0.16.  

Temporal Response Function. The forward encoding model or temporal response function 

(TRF) can be thought of as a filter that describes the brain’s linear mapping between 

continuous speech features, S(t), and continuous neural response, R(t). 

𝑅(𝑡) = 𝑇𝑅𝐹 ∗ 𝑆(𝑡) 

Where ‘*’ represents the convolution operator. The speech input can comprise of a single 

speech feature, i.e. univariate, or multiple speech features, i.e. multivariate. Each feature 

produces a set temporal weights for a series of specified time lags. TRF weights are estimated 

using ridge regression. 

𝑇𝑅𝐹 = (𝑆𝑇𝑆 + 𝜆𝐼)−1𝑆𝑇𝑟 

where λ is the regularization parameter that controls for overfitting. The models are trained 

and tested using a 4-fold cross-validation procedure. 3 of the 4 trials are used to train the TRF 

which predicts the EEG of the remaining trial, based on speech representation input. We train 

and test models based on the combined semantic dissimilarity and surprisal impulse vectors 

with the addition of an onset impulse vector with impulse height equal to the average 

dissimilarity and surprisal values across all words in the current trial. The onset vector acts as 

a nuisance regressor to capture variance relating to any acoustic onset responses. For testing, 

the prediction accuracy (R) of the model is calculated as the Pearson’s correlation between 

the predicted EEG and the actual EEG. A range of TRFs were constructed using different λ 

values between 0.1 and 1000. The λ value corresponding to the TRF that produced the highest 

EEG prediction accuracy, averaged across trials and channels, was selected as the 

regularisation parameter for all trials per subject.  

To test directly how well each feature accurately captured neural activity for each subject we 

measured the model’s ability to predict EEG based on the true feature representation above 
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null feature representations. Specifically, the heights of the impulses for the semantic models 

were randomly shuffled to produce permuted dissimilarity or permuted surprisal vectors. In the 

testing phase of the cross-validation procedure, a trained TRF would attempt to predict the 

neural response to the permuted features, while all other features remained constant. This 

was repeated for 5 permutations of each stimulus feature. Hence, prediction accuracy for 

semantic features refers to the prediction accuracy difference between true speech feature 

and the average of the 5 null speech feature representations. 

In addition, we extracted properties of the model weights themselves. N400 peak latency was 

calculated automatically for each subject as the time lag with the lowest peak weight within a 

window of 200-600ms after a time-lag of zero. The response peak delay between groups was 

calculated as the difference between group averaged peak delays. 

Statistical Testing 

For every statistical comparison, we first verified whether the distribution of the data violated 

normality and was outlier free. This was determined using the Anderson-Darling test for 

normality and 1.5 IQR criterion, respectively. We used parametric tests (t-test, paired t-test) 

for data which satisfied these constraints and non-parametric tests for data which violated 

them. 
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