

1 **Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex**
2 **demographic history since domestication**

3
4 Erinç Yurtman⁺, Onur Özer⁺, Eren Yüncü, Nihan Dilşad Dağtaş, Dilek Koptekin, Yasin Gökhan
5 Çakan, Mustafa Özkan, Ali Akbaba, Damla Kaptan, Gözde Atağ, Kivilcım Başak Vural, Can
6 Yümni Gündem, Louise Martin, Gülşah Merve Kılınç, Ayşin Ghalichi, Sinan Can Açıan,
7 Reyhan Yaka, Ekin Sağlıcan, Vendela Kempe Lagerholm, Maja Krzewinska, Evangelia Pişkin,
8 Müge Şevketoğlu, C. Can Bilgin, Çiğdem Atakuman, Yılmaz Selim Erdal, Elif Sürer, Johannes
9 Lenstra, Sevgi Yorulmaz, Foad Abazari, Javad Hoseinzadeh, Douglas Baird^{\$}, Erhan Bıçakçı^{\$},
10 Özlem Çevik^{\$}, Fokke Gerritsen^{\$}, Rana Özbal^{\$}, Anders Götherström[#], Mehmet Somel^{#*}, İnci
11 Togan[#], Füsun Özer^{**}

12
13 ⁺ co-first authors

14 ^{\$}equally contributed archaeological material

15 [#] equally contributed to supervision

16 *corresponding authors

17 Correspondence should be addressed to: fusunozer@hacettepe.edu.tr, msomel@metu.edu.tr

18
19
20
21

22 **Abstract**

23 Sheep was among the first domesticated animals, but its demographic history is little
24 understood. Here we present combined analyses of mitochondrial and nuclear polymorphism
25 data from ancient central and west Anatolian sheep dating to the Late Glacial and early
26 Holocene. We observe loss of mitochondrial haplotype diversity around 7500 BCE during the
27 early Neolithic, consistent with a domestication-related bottleneck. Post-7000 BCE,
28 mitochondrial haplogroup diversity increases, compatible with admixture from other
29 domestication centres and/or from wild populations. Analysing archaeogenomic data, we
30 further find that Anatolian Neolithic sheep (ANS) are genetically closest to present-day
31 European breeds, and especially those from central and north Europe. Our results indicate that
32 Asian contribution to south European breeds in the post-Neolithic era, possibly during the
33 Bronze Age, may explain this pattern.

34

35

36

37 **Introduction**

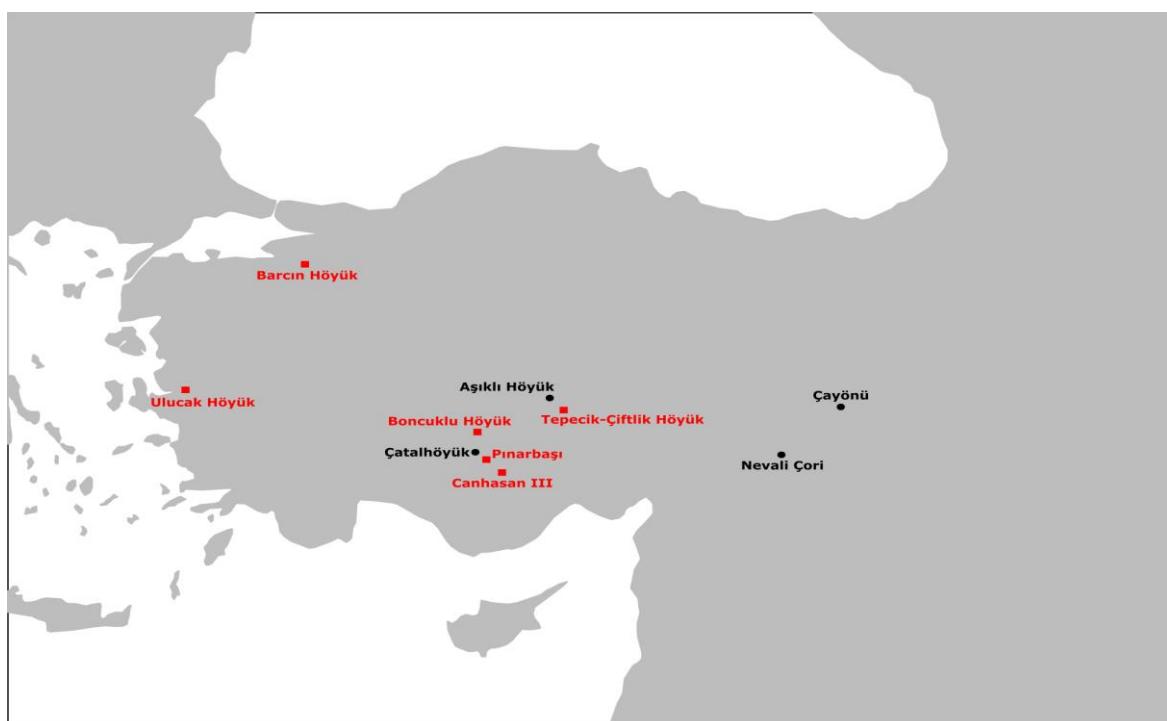
38 Domestication of animals during the Neolithic transition in SW Asia and their spread into new
39 regions had immense economic, demographic, and socio-cultural impacts on human societies^{1,2}.
40 Sheep was one of the four main animal species managed and domesticated in this process.
41 Archaeological evidence indicates that sedentary human communities were practicing sheep
42 management already by 9,000-8,000 BCE in an area ranging from central Turkey to northwest
43 Iran^{3,4}; this is evidenced, for instance, by signs of corralling in the central Anatolian site Aşikli
44 Höyük⁵⁻⁷ and young male kill-off practices identified in southeast Anatolian Çayönü and Nevali
45 Çori^{8,9} (Fig. 1). After 7500 BCE, young male kill-off as well as domestication-related
46 morphological changes, such as small size, became widespread across the Fertile Crescent, as
47 in the 7th millennium central Anatolian site of Çatalhöyük⁹. Following 7000 BCE, along with
48 other elements of Neolithic lifeways, humans spread domesticated sheep to neighbouring
49 regions, including Europe, north Africa, and central Asia^{3,4}.

50 Both zooarchaeological data and genomic evidence imply a complex demographic history of
51 domestic sheep. One notable pattern involves the high levels of genetic heterogeneity in
52 domestic sheep. This includes multiple distinct mitochondrial DNA haplogroups found in
53 modern breeds¹⁰, as well as higher nuclear genetic diversity in sheep compared to that in some
54 other domesticates, such as cattle or dog^{11,12}. High diversity would be consistent with scenarios
55 where domestication involved multiple centres and/or a large and heterogeneous wild
56 population. A non-exclusive scenario would be major introgression from wild sheep into
57 domestic flocks, which is supported by zooarchaeological evidence³.

58 Genetic distinctions between Asian and European sheep also imply multiple domestication or
59 wild admixture events. Indeed, present-day sheep cluster in two main groups based on genome-
60 wide polymorphism data: east (Asian and African, including East Mediterranean islands) and
61 west (European)^{11,12}. Similarly, Asian and European sheep tend to carry distinct proportions of
62 mitochondrial DNA haplogroups, A and B, respectively¹³⁻¹⁵, a pattern that may have been
63 established already by the 2nd millennium BCE^{16,17}.

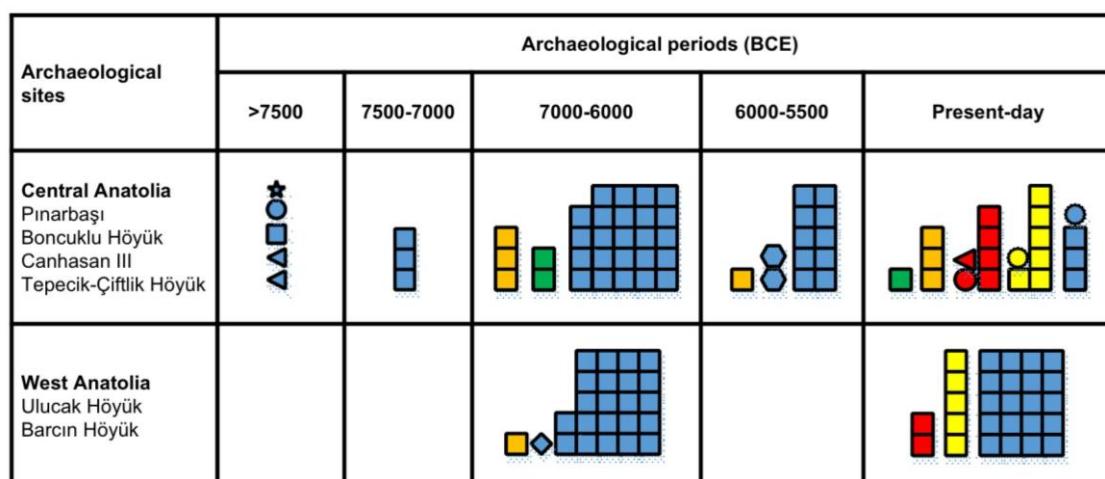
64 At the same time, genomic analyses suggest high degrees of allele sharing across domestic
65 sheep breeds. This has been considered evidence for the recent spread of sheep with desired
66 traits across the globe, especially within the last 5 millennia, as part of the secondary products
67 revolution^{18,19}. Although the first domesticated sheep were likely used for their meat and
68 possibly their milk²⁰, they started to be increasingly exploited for their wool in Bronze Age SW
69 Asia, during the 3rd millennium BCE²¹. Intriguingly, a comparison of DNA retroelements
70 across modern breeds implies an expansion of SW Asian lineages, estimated to date back to the
71 Bronze Age; according to this model, SW Asian sheep with desired traits, such as fine wool,
72 were introduced into local breeds across the globe²². A recent ancient DNA study reports
73 evidence consistent with novel breeds being introduced to Bronze Age Europe, coinciding with
74 archaeological evidence for the introduction of wool to this continent²¹. In later periods, export
75 and admixture of selected sheep breeds into local stocks continued¹¹. Indeed, the most recent
76 common ancestor of domestic sheep breeds has been inferred to date back only 800 generations
77 ago¹¹ - an unexpectedly recent estimate.

78 We currently lack a solid demographic history model to explain these observations: high
79 diversity, clear genetic structure, and recent coalescence times. What is missing is genetic data
80 on the initial steps of domestication and characterisation of the early domesticated sheep gene
81 pool. Here we present a first attempt to bridge this gap, studying ancient DNA from Neolithic
82 period sheep remains from Anatolia, one of the possible domestication centres. Analysing both
83 mitochondrial DNA (mtDNA) sequences and nuclear polymorphism data, we find support for
84 the notions that the present-day domestic sheep population has multiple origins, and also that
85 the sheep gene pool changed considerably since the Neolithic period.


86

87 **Results**

88 We analysed DNA from c.200 archaeological sheep bone and tooth samples from early
89 Holocene Anatolia, originating from six different sites from central and west Anatolia and
90 spanning the Epipaleolithic, Neolithic, and Chalcolithic periods. We obtained and analysed
91 mtDNA sequences from 74 samples, while from four individuals we generated genome-wide
92 ancient DNA data using shotgun sequencing and enrichment capture targeting single nucleotide
93 polymorphisms (SNP). We went on to compare this data with published data sets^{11,23} from
94 present-day wild sheep and domestic sheep breeds (Fig. 1, Supplementary Fig. 1,
95 Supplementary Table 1, Supplementary Table 7).


96 **Mitochondrial DNA data indicates a domestication-related bottleneck around 7500 BCE**

97 To investigate changes in the maternal lineage, we amplified and Sanger sequenced a 144 bp
98 fragment of the mtDNA control region. This region contains diagnostic markers for the five
99 main haplogroups observed in present-day domestic sheep, *i.e.* haplogroups A-E²⁴, and is short
100 enough to be effectively analysed in ancient samples^{23,25} (Supplementary Table 3). A total of
101 178 sheep samples were studied, each likely from distinct individuals according to context
102 (Supplementary Materials and Methods). Among these, 74 yielded consistent sequences from
103 at least two independent amplifications. Success rates ranged between 20% to 61% across the
104 six archaeological sites (Supplementary Table 4). We further excluded 4 sequences where
105 diagnostic changes could be confounded by postmortem damage-induced nucleotide transitions
106 (Methods). The sequences thus obtained were analysed to identify haplogroups and haplotypes,
107 and compared across archaeological periods and regions (west and central Anatolia) and with
108 data from present-day sheep breeds (Fig. 2; Supplementary Table 2).

109

110 **Fig. 1. Map of archaeological sites.** Geographic locations of 6 archaeological sites analysed
111 in this study (red) and four additional Neolithic Anatolian sites relevant for sheep
112 domestication, discussed in the text (black).

113

114 **Fig. 2. Change in mitochondrial lineages over time.** Distribution of different haplogroups
115 (HPG) (indicated by colours) and haplotypes (indicated by geometric shapes) of the studied
116 sheep individuals. Colour coding is as follows: HPG A (red), HPG B (blue), HPG C (yellow),
117 HPG D (green) and HPG E (orange). Note that different periods and haplotypes are not
118 homogeneously represented across different sites from a single region: *e.g.* >7500 BCE in
119 central Anatolia is represented by Pinarbaşı and Boncuklu Höyük, while 7500-7000 BCE by
120 Canhasan III and Tepecik-Çiftlik Höyük. Meanwhile, the only non-B haplogroup in west
121 Anatolia from 7000-6000 BCE belongs to Ulucak Höyük. See Supplementary Table 2 for full
122 details.

123
124 The mtDNA haplogroup data presented in (Fig. 2) reveals a number of interesting patterns. One
125 is the change in haplotype diversity among haplogroup B lineages during the Aceramic
126 Neolithic period, around 7500 BCE. In central Anatolia, haplotype diversity was high (0.9)
127 before 7500 BCE, but totally vanished in the 3 haplotypes we could sample from 7500-6000
128 BCE. After 6000 BCE diversity rose to 0.3, and then to its present day value of 0.5
129 (Supplementary Table 5). Notably, haplogroup B appears as the predominant lineage (>90%)
130 in central and west Anatolia, from the Epipaleolithic to the Chalcolithic. Within this group, the
131 specific haplotype that reached 95% (59/62) frequency after domestication (7500-5500 BCE)
132 was already present in the pre-domestication period, but only at 20% (1/5) frequency (Fisher's
133 exact test $p=0.0002$). This significant shift in haplotype composition and loss of haplotype
134 diversity in haplogroup B (two-sided permutation test $p<0.05$; Supplementary Fig. 2;
135 Supplementary Table 6) would be consistent with a domestication-related bottleneck during the
136 8th millennium BCE. Interestingly, we observe that the same haplotype of B that rose in
137 frequency during the Neolithic still appears as the most widespread type today (Fig. 2).

138 A second pattern involves changes post-7000 BCE, during the Ceramic Neolithic period when
139 farming spreads to west Anatolia and Europe. Compared to pre-7000 BCE, total mtDNA
140 diversity increases in the sample through the appearance of non-B haplogroups (Fig. 2).
141 Although our sample size is yet too small to exclude the presence of non-B haplogroups in
142 central Anatolia pre-7000 BCE, this possible change in haplogroup composition may herald the
143 modest scale introduction of domestic sheep lineages from elsewhere, possibly from another
144 region east of the Fertile Crescent, the south Anatolian coast or the Levant that may have
145 harbored independent domestication events or through ongoing introgression from wild sheep.

146 Finally, change in haplogroup composition through admixture appears to have continued post-
147 5500 BCE, with significant changes between Neolithic and present-day central Anatolia; this
148 shift happens more subtly in west Anatolia. Overall, analyses of maternal lineages lend support
149 to a domestication event in central Anatolia, as well as major admixture events in the post-
150 Neolithic era sheep populations.

151
152 **Anatolian Neolithic sheep show higher genomic affinity to modern European than non-**
153 **European breeds**

154 We next prepared Illumina high-throughput sequencing libraries from 29 of these ancient sheep
155 samples (Supplementary Table 8). Four Anatolian Neolithic sheep (ANS) individuals' libraries
156 contained >1% endogenous sheep DNA, with a median of %2. Three were from the central
157 Anatolian site Tepecik-Çiftlik Höyük (TEP03, TEP62, TEP83) and one was from the west
158 Anatolian site Ulucak Höyük (ULU31). The four individuals were AMS C14 dated to the 7th
159 millennium BCE (except for TEP62, for which the age range extended into the 8th millennium),
160 broadly overlapping with the Ceramic Neolithic period in Anatolia (Table 1).

161 To increase coverage, we enriched the libraries of these four individuals using hybridization
162 capture, targeting 20,000 single nucleotide polymorphisms, and sequenced deeper (Methods).
163 The capture procedure increased the endogenous proportion by 1.5-4x, and resulted in genome

164 coverages ranging between 0.02-0.27x (Table 1). All four libraries exhibited postmortem
165 damage profiles expected for authentic ancient molecules, with >25% C to T transitions at 5'
166 ends of molecules (Supplementary Fig. 3). After trimming sequencing reads to remove
167 postmortem damage-induced transitions, we called SNPs from these four libraries using the
168 Illumina OvineSNP50 Beadchip variant set¹¹, which included 40,225 SNPs mappable to the
169 oviAri3 reference genome. This resulted in a data set containing pseudohaploidised genotypes
170 for 3,294-10,484 autosomal SNPs per individual (Table 1; Methods).

171
172 **Table 1.** High-throughput sequencing summary statistics, AMS C14 ages, molecular sex
173 identifications and mtDNA haplogroups of four ancient sheep. “Genome coverages” were
174 calculated across the full genome length, while the “number of SNPs” indicate those that were
175 covered by at least one read within a set of 40,225 SNPs.

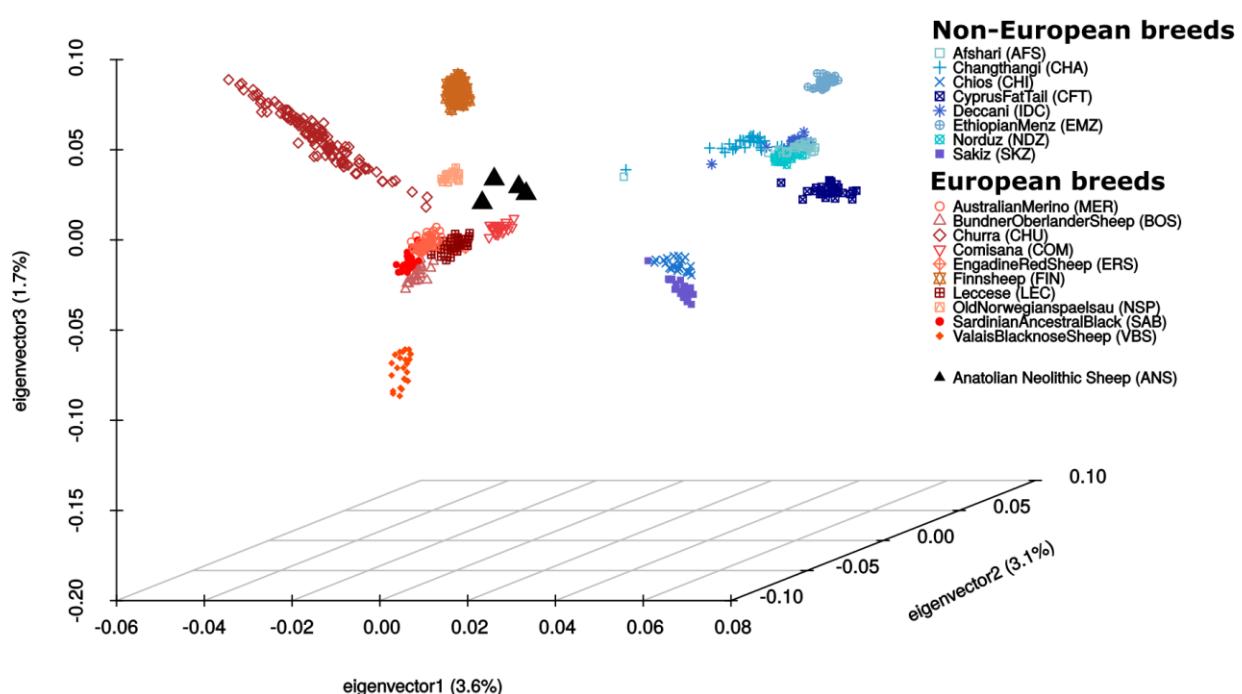
176

Sample ID	C14 ages cal. BCE	Genome coverage	Number of SNPs	Molecular sex	mtDNA HPG
TEP62	7031-6687	0.273	10484	F	B
TEP03	7059-6756	0.103	8223	F	B
TEP83	6469-6361	0.022	3294	M	A
ULU31	6227-6071	0.022	4482	F	B

177
178 We noticed that the average fragment size for the three Tepecik-Çiftlik individuals were >90
179 bp, uncommonly long for ancient DNA molecules. We used three approaches to investigate
180 possible modern sheep DNA contamination in these libraries: (a) we selected molecules that
181 bear the C->T postmortem damage signature and repeated demographic analyses with only
182 these plausibly authentic molecules; (b) we compared short and long molecules with respect to
183 their postmortem damage signatures; (c) we called genotypes using short and long molecules,
184 performed demographic analyses, and searched for inconsistencies (Methods). None of the
185 results indicated modern DNA contamination (Supplementary Fig. 4-7), leading us to conclude
186 that the long DNA molecules of Tepecik-Çiftlik sheep most probably reflect unusual DNA
187 preservation at this site, consistent with our earlier observations on Neolithic human material
188 from the same site²⁶.

189 Next, we sexed the four individuals comparing autosome versus X chromosome coverages,
190 which revealed three females and one male (Table 1, Supplementary Fig. 8). The excess (albeit
191 non-significant) of females is consistent with young male slaughter patterns⁹. We also studied
192 these four individuals’ genotypes at 18 marker SNPs associated with putative domestication-
193 related and positively selected regions, reported by Kijas and colleagues¹¹. We found that
194 among 16 loci where we could assign the ancestral state using *Ovis ammon* (Argali) and *Ovis*
195 *vignei* as outgroups, at 6 loci (38%) the derived allele was carried by at least one Anatolian
196 Neolithic sheep individual, but never among all ANS (Supplementary Table 9). We caution,
197 however, that the present-day linkage disequilibrium between marker alleles and the
198 domestication phenotype-related causal alleles may not necessarily have existed 9,000 years

199 ago. Therefore, this result is not direct evidence that domestication-related derived traits were
200 already present in ANS.


201 To investigate sheep demographic history with this genome data set, we collected published
202 genomic polymorphism data from ten European breeds (representing north, central and south
203 Europe), and eight non-European breeds from the Middle East, East Mediterranean islands,
204 south Asia, and Africa¹¹, generated on Illumina arrays (Supplementary Fig. 1b; Supplementary
205 Table 7). For calculating *f*-statistics we used Argali sheep as outgroup, after confirming that *D*-
206 statistics of the form *D*(*Goat, Argali; modern₁; modern₂*) were all non-significant, suggesting
207 that none of the modern breeds used here had received Argali admixture (1224 tests, multiple
208 testing adjusted *p*>0.05).

209 We first summarised genome-wide variation through principal component analysis (PCA),
210 calculating the principal components with modern breeds and projecting the four ANS
211 genotypes onto the space described by the first three components (Fig. 3). As observed in earlier
212 work, modern breeds from mainland Europe and of non-European descent (Asian, African, and
213 East Mediterranean) form two distinct clusters in the PCA. Within this world-wide constellation
214 of modern sheep, the ANS attained a relatively central location, although conspicuously closer
215 to the European cluster than to the non-European group.

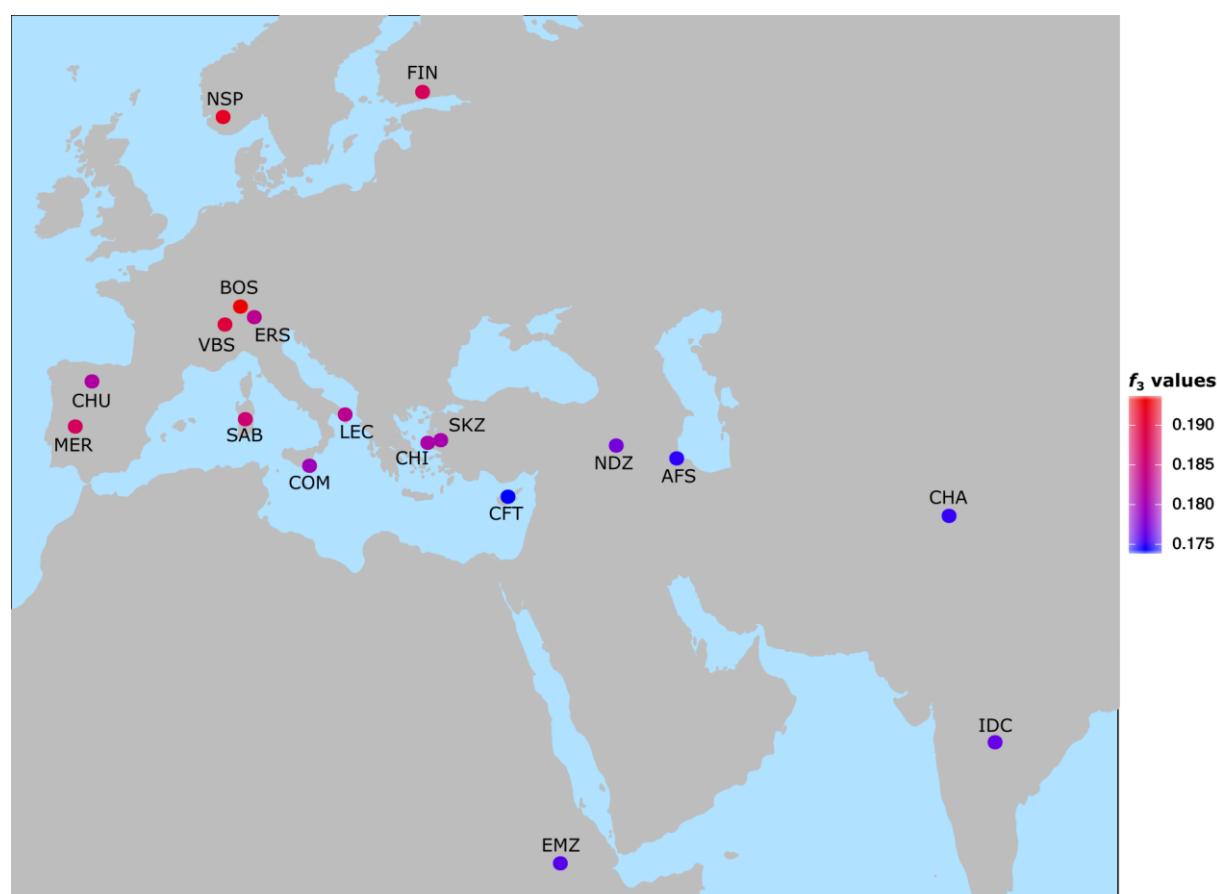
216 To confirm this clustering using a formal statistical framework, we calculated *D*-statistics²⁷ of
217 the form *D*(*Argali, ANS₁; ANS₂, modern*), where *ANS₁* and *ANS₂* denote two different ANS
218 individuals and *modern* denotes any of the 18 present-day (modern) breeds. ANS were
219 consistently genetically closer to each other than to modern breeds (89% of 216 tests, multiple
220 testing adjusted *p*<0.05). Meanwhile, tests of the form *D*(*Argali, modern; ANS₁, ANS₂*) showed
221 that modern breeds did not show higher affinity to any ANS individual over any other ANS
222 individual (216 tests, multiple testing adjusted *p*>0.05). Likewise, *D*(*Argali, ANS₁; ANS₂, ANS₃*)
223 showed no significant affinity between any pair of ANS (24 tests, multiple testing adjusted
224 *p*>0.05). These results suggest that Anatolian Neolithic sheep, from different periods and
225 origins, had similar demographic histories.

226 We further used the outgroup *f*₃ statistic²⁷ to measure shared genetic drift between ANS and
227 modern breeds. We calculated *f*₃ in the form of *f*₃(*Argali; modern, ANS*), where *modern* denotes
228 a modern sheep breed while *ANS* denotes one of the ancient individuals (Methods;
229 Supplementary File 1). The *f*₃ distributions were highly correlated between pairs of ANS
230 individuals (Spearman correlation rho>0.55; Supplementary Fig. 9), indicating that the
231 affinities of ANS to modern breeds were highly alike, irrespective of ANS origin or age. This
232 further supports the notion that ANS were a genetically rather homogeneous population.

233

234

235 **Figure 3. Genomic variation of modern breeds and Anatolian Neolithic sheep.** The graph
236 represents the first 3 components of a PCA calculated using genotypes of 18 modern sheep
237 breeds. The four Anatolian Neolithic sheep individuals' genotypes (triangles) were projected
238 on these 3 components.


239

240 The PCA had suggested that ANS may be closer to European modern breeds than to non-
241 European ones. Accordingly, ANS showed significantly higher f_3 values with European breeds
242 (median=0.19) than with non-European breeds (median=0.18) (Fig. 4; Mann-Whitney U-test
243 $p=0.0002$), indicating stronger affinity of ANS to present-day European breeds. We further
244 examined this pattern by two approaches. Tests of the form $D(\text{Argali}, \text{ANS}; \text{European}, \text{non-}$
245 $\text{European})$ revealed that ANS had higher affinity to European breeds (43% of 80 tests were
246 significant, multiple testing adjusted $p<0.05$; Supplementary File 2). This was notable, given
247 that the non-European breeds included east Mediterranean strains that are geographically
248 closest to the ANS individuals' provenance among all modern breeds analysed. Moreover, in
249 D -statistics of the form $D(\text{Argali}, \text{ANS}; \text{European}_1, \text{European}_2)$ ANS showed a trend toward
250 higher allele sharing with central and northern European breeds relative to south European
251 breeds (9% of 90 comparisons had multiple testing adjusted $p<0.05$); in none of these
252 comparisons did we find significantly higher affinity to south European breeds (Supplementary
253 File 2). ADMIXTURE analysis²⁸ of modern and ancient breeds likewise indicated similarity

254 between ancestry components in ANS and north and central European breeds (Supplementary
255 Figure 6).

256 We finally tested modern-ANS relations using $D(\text{Argali}, \text{modern}_1; \text{modern}_2, \text{ANS})$. Here, in all
257 306 comparisons performed, modern breeds consistently chose other modern breeds over ANS
258 (multiple testing adjusted $p < 0.05$). This result could have a number of explanations, including
259 technical issues and complex demographic histories, which we discuss below.

260

261

262 **Figure 4. Shared genetic drift between ancient individuals and present-day (modern)**
263 **populations.** Outgroup f_3 -statistics were calculated as $f_3(\text{Argali}; \text{ANS}, \text{modern individual})$,
264 using the joint allele frequencies of the four ANS individuals. Higher f_3 values, in red, indicate
265 higher shared drift.

266

267 Discussion

268 Our combined analyses of mitochondrial DNA and genome-wide polymorphism data from
269 ancient central and west Anatolian sheep provide novel insights into sheep domestication and
270 later dynamics. First, the abrupt loss of mitochondrial haplotype diversity we observe post-7500
271 BCE in central Anatolia, and the apparent genetic homogeneity of the four Anatolian Neolithic
272 sheep individuals studied at the genome level, both suggest that we are witnessing signs of

273 domestication in Anatolia. It is also notable that the specific mitochondrial haplotype that
274 becomes common in what are probably the earliest domesticated caprines in the Konya basin
275 is already present in central Anatolia in the Epipalaeolithic, c.6000 years before any
276 morphological or isotope evidence of domestication^{29,30}. A central Anatolian domestication
277 scenario would be consistent with archaeological evidence such as early 8th millennium
278 corraling activities documented at the central Anatolian Aşıklı Höyük⁷, and the mid 8th
279 millennium BCE dramatic shift in sheep and goat diets in the central Anatolian Konya plain³⁰.

280 Second, we observe a trend of increasing haplogroup diversity post-7000 BCE, which could be
281 explained by two non-exclusive models: (a) that another domestication centre existed to the
282 east of central Anatolia (possibly southeast Anatolia and/or the Zagros), the products of which
283 eventually spread westward into central and west Anatolia, and (b) ongoing introgression from
284 wild stocks. Here it is interesting to note that in Anatolian sites dating to the early Chalcolithic
285 (in Çatalhöyük west and in Erbaba in the Lakes district), more than one millennium after the
286 initial decrease in sheep body size, sheep body sizes again rise to wild caprine levels, a pattern
287 that has been interpreted as a sign of wild introgression³. Similar patterns have been reported
288 for pigs, cattle and goats, supported by both zooarchaeological analysis³ as well as ancient
289 DNA^{31,32}. To fully elucidate the history of early sheep domestication, though, we will need to
290 study ancient DNA data from a wider region of southwest Asia.

291 Third, we find that Anatolian Neolithic sheep show significantly higher affinity to modern-day
292 European breeds than to Asian breeds, including east Mediterranean sheep. This result is also
293 consistent with the mitochondrial haplogroup compositions of ANS and breeds from
294 Europe^{13,14,16,33}, where haplogroup B predominates. A possible explanation for this pattern is
295 that ANS were the direct ancestors of modern-day European sheep, and were brought to Europe
296 through the Neolithic migrations of the 7th and 6th millennia³⁴. Modern-day Asian sheep, in
297 turn, may have been influenced by non-Anatolian domestic sheep gene pools and/or wild
298 introgression in Asia. Our results further imply that the east Mediterranean and Anatolian sheep
299 gene pools underwent major shifts since the Neolithic, likely through gene flow from the east.
300 Such a turnover would partly echo what has been described for the human gene pool in Anatolia,
301 such that Neolithic Anatolians show higher similarity to modern-day south Europeans than to
302 modern-day Anatolians^{26,35}.

303 Fourth, both D -statistics and f_3 analyses (Fig. 4) indicate higher affinity of ANS to central and
304 north European sheep than to south European sheep. This observation may suggest that ANS
305 were ancestors of European sheep that followed the Danube (land) route rather than the
306 Mediterranean sea route³⁶⁻³⁸. Alternatively, this pattern could arise due to higher Asian
307 introgression into south than into north European breeds; *e.g.* in the post-Neolithic era, Asian
308 alleles could have spread among south European breeds through Mediterranean sea routes. A
309 comparison among present-day breeds supports a scenario of Asian introgression into the
310 Mediterranean: Middle Eastern sheep (AFS, NDZ) are genetically closer to south European
311 than to central or north European breeds [among tests of the form $D(\text{Argali}, \text{MiddleEastern};$
312 $\text{southEuropean}, \text{central/northEuropean})$, 25% of 70 comparisons had multiple testing adjusted
313 $p < 0.05$]. This raises the possibility that Neolithic and/or post-Neolithic admixture events in the
314 Mediterranean led to the observed higher ANS affinity to central and north European breeds.

315 An unexpected result here is that in D -statistics, modern breeds were consistently closer to other
316 modern breeds than to ANS. Likewise, admixture f_3 statistics of the form $f_3(\text{southEuropean};$
317 *ANS, MiddleEastern*) did not yield significantly negative results ($p>0.05$), which would have
318 been expected if South European breeds were a product of simple admixture between ANS and
319 Middle Eastern breeds (Supplementary File 1). One possible explanation could be technical:
320 while the modern data is based on arrays, the ANS data is based on shotgun sequencing and
321 also capture; either technology may be biased with respect to alleles genotyped (Methods). Yet
322 another, biological explanation could be post-Neolithic admixture events that universally
323 influenced all sheep breeds, eclipsing earlier trends. For instance, a west Asian sheep lineage
324 bred for its fine wool may have spread during and after the Chalcolithic and dramatically
325 influenced the global sheep gene pool, which would be consistent with the aforementioned high
326 degrees of haplotype sharing¹¹ or retrovirus genotype sharing²² observed among modern-day
327 breeds, as well as recent ancient DNA work implicating post-Neolithic gene flow from eastern
328 sources altering the west Eurasian sheep gene pools²¹. Our results suggest that although central
329 Anatolian wild sheep were probably locally domesticated and eventually gave rise to Europe's
330 first domestic sheep, the present-day domestic sheep gene pool was strongly remoulded by
331 subsequent admixture events of Asian origin.

332

333 **Material and Methods**

334 **Sample collection**

335 Ancient sheep bone and tooth samples were obtained from 6 archaeological sites: Pınarbaşı,
336 Boncuklu Höyük, Tepecik-Çiftlik Höyük, and Canhasan III in central Anatolia, and Ulucak
337 Höyük and Barçın Höyük in west Anatolia (Fig. 1). Brief information about the sites are
338 provided in Supplementary Material and Methods.

339 **AMS radiocarbon dating**

340 Five samples were AMS C14 dated at the TÜBİTAK-MAM (Gebze, Turkey) and one sample
341 at Beta Analytic Inc. (London, UK). Radiocarbon ages were calibrated using the INTCAL13
342 database. The 2 sigma calibrated age estimates were as follows: TEP3_depo: 7059-6756 BCE
343 (TÜBİTAK-694), TEP58: 6645-6505 BCE (Beta-373271), TEP62: 7031-6687 BCE
344 (TÜBİTAK-695), TEP83: 6469-6361 BCE (TÜBİTAK-696), and ULU31: 6227-6071 BCE
345 (TÜBİTAK-697), respectively (Supplementary Table 1). The remaining samples were dated by
346 the excavation directors based on their archaeological context.

347 **Ancient DNA extraction**

348 Ancient DNA extraction was performed in a dedicated aDNA laboratory at METU, following
349 the protocol described in Dabney et al.³⁹ (Supplementary Material and Methods). DNA was
350 extracted twice from each sample at different times.

351

352 **mtDNA sequencing and haplogroup assignment**

353 The 144 bp long fragment of sheep mtDNA corresponding to the positions 15391-15534 on the
354 reference AF010406 sequence was sequenced from 76 ancient samples using published primer
355 pairs²⁵. Samples were assigned to mtDNA haplogroups (A to E) according to the identity of
356 nucleotides on haplogroup-determining positions with respect to the reference AF010406
357 sequence (Supplementary Table 3). Following shotgun sequencing, we determined that one
358 individual's assignment was inconsistent between mtDNA and Illumina sequencing data, which
359 we determined to be caused by postmortem damage at mtDNA sequences. We consequently
360 corrected one haplogroup assignment based on Illumina sequencing, and we further removed
361 three sequences (all haplogroup A) where assignment could be confounded by postmortem
362 damage.

363 **Mitochondrial genetic diversity**

364 Genetic diversity measures such as haplogroup and haplotype diversity were calculated using
365 *DnaSP* (v.6)⁴⁰ and their significance were determined by random permutation tests
366 (Supplementary Material and Methods).

367 **Whole genome libraries and prescreening**

368 We prepared 36 double-stranded Illumina sequencing libraries following Meyer and Kircher⁴¹
369 and sequenced these on Illumina HiSeq platforms at low coverage (median c.13 million reads
370 per library) (Supplementary Table 8). Libraries from four individuals (TEP3, TEP62, TEP83,
371 ULU31) contained >1% endogenous sheep DNA, while other libraries had negligible
372 proportions.

373 **Hybridization capture**

374 To increase genome coverage, the chosen four libraries were used for hybridization capture
375 with custom designed 80K probes targeting 20K SNPs. Briefly, the SNPs were chosen from the
376 Illumina OvineSNP50 Beadchip variant set, giving priority to transversions and also including
377 mitochondrial markers and SNPs associated with putatively positively selected regions¹¹
378 (Supplementary Material and Methods). The biotinylated RNA capture probes were produced
379 by Arbor Biosciences Inc. and capture experiments were implemented following the
380 manufacturer's instructions.

381 **Data preprocessing**

382 We combined BAM files from shotgun and capture libraries from the same individual, removed
383 the residual adapter sequences in *fastq* files and merged paired-end sequencing reads using
384 *MergeReadsFastQ_cc.py*⁴². We mapped the merged reads to the sheep reference genome
385 (Oar_v3.1) using *BWA aln* (v. 0.7.12)⁴³, merged all libraries from the same individual using
386 *SAMtools merge*⁴⁴, removed the PCR duplicates using *FilterUniqueSAMCons.py*⁴², removed
387 reads shorter than 35 base pairs and/or with >10% mismatches to the sheep reference genome.
388 Ancient individuals' *BAM* files were trimmed from both ends by 10 bp using *trimBAM*
389 command of *bamUtil* software⁴⁵ to avoid postmortem damage at read ends being interpreted as

390 true variants. We used the Illumina OvineSNP50 Beadchip SNP panel for genotype calling,
391 with 40,225 SNPs in this list that could be mapped to the oviAri3 reference sequence. We ran
392 the *SAMtools* (v. 1.3)⁴⁶ *mpileup* program on *BAM* files and pseudohaploidised the data by
393 randomly choosing a single read to represent the genotype⁴⁷ (Supplementary Material and
394 Methods).

395 **Authentication of ancient sequences**

396 We used *PMDtools*⁴⁸ to measure postmortem damage patterns at 5' and 3' ends of the reads,
397 and generated postmortem damage profile graphs using the *PMDtools* '--deamination'
398 parameter. Observing read lengths longer than usual (>90 bp) in 3 Tepecik-Çiftlik libraries, we
399 used multiple approaches to rule out modern sheep DNA contamination. (1) We selected 27-
400 53% (median 41%) DNA molecules bearing the postmortem damage signature (i.e. were most
401 likely authentic) using *PMDtools*⁴⁸ with the '--threshold 3' parameter. We then compared the
402 PMD-bearing reads with the unfiltered read set with respect to read lengths (Supplementary
403 Figure 4); we observed that these molecules were not shorter than the rest, which would have
404 been expected if the long reads represented modern DNA contamination. (2) We repeated PCA
405 and outgroup f_3 calculations of ANS using these PMD-bearing reads only (Supplementary
406 Figure 5); we found that using this restricted read set yields the same fundamental observations
407 as using all reads. (3a) From each individual's *BAM* files we selected short (<70 bp) and long
408 (>100 bp) reads. We compared 5' C->T damage profiles between these short vs. long read sets,
409 which did not reveal any systematic difference (Supplementary Figure 6). (3b) We called SNPs
410 from these short vs. long read sets: 1616 vs. 7661 for TEP03, 2817 vs. 9318 for TEP62, 544 vs.
411 2009 for TEP83, and 3547 vs. 500 for ULU31. Using these datasets, we calculated outgroup f_3
412 of the form $f_3(\text{Argali}; \text{ANS}_i, \text{modern})$, where ANS_i represents one of the ANS individual's
413 genotype based on either short or long reads, and *modern* represents a modern sheep breed's
414 genotype. We then calculated the Pearson correlation between outgroup f_3 values based on short
415 vs. long reads for each individual. The correlation coefficients were all positive, although
416 significant for only TEP62 and ULU31 (Supplementary Figure 7). In addition, in the main text,
417 we show that all four ANS individuals, irrespective of provenance or read length, displayed
418 similar population genetic affinities, which further supports the notion that the long molecules
419 detected in Tepecik-Çiftlik are authentic.

420 **Molecular sex determination**

421 We determined the molecular sex of samples by comparing the relative mapping frequency of
422 autosomes to the X chromosome using regression analysis (Supplementary Material and
423 Methods).

424 **Modern sheep genotypes**

425 From the 74 worldwide breeds included the Kijas et al.¹¹ SNP chip dataset, we chose a subset
426 that would be representative and relevant to our study, and also exclude breeds known to have
427 undergone strong bottlenecks (e.g. Soay) or recent admixture (e.g. Creole). We thus selected
428 10 European (north, middle and south) and 8 non-European modern breeds, the latter from the
429 Middle East, south Asia, Africa, and the east Aegean Sea (Supplementary Table 7).

430 **Principal component analysis**

431 We merged four ancient individuals with the chosen 18 modern breeds using *PLINK*⁴⁹. We
432 conducted principal component analysis (PCA) using the *smartpca* command of *EIGENSOFT*
433 (v. 7.2.0) software⁵⁰. Components of eighteen modern populations and four Mouflon
434 individuals from SheepHapMap project dataset were first calculated, and the four ANS
435 individuals were projected onto the first three components (Fig. 3). Visualization of the PCA
436 was done in the *R* (v. 3.5) environment with the *scatterplot3d* package⁵¹.

437 ***f*₃-statistics**

438 We performed outgroup-*f*₃ and admixture-*f*₃ statistics using the *qp3Pop* program of the
439 *AdmixTools* (v. 5.1) software²⁷. We performed outgroup-*f*₃ in the form *f*₃(*Argali*; *ANS, modern*),
440 where *Argali* represents the outgroup (for which we randomly chose one Argali sheep
441 individual), *ANS* represents the genotype of an Anatolian Neolithic sheep individual or all four
442 Anatolian Neolithic sheep combined, and *modern* represents the genotype one of the eighteen
443 modern breeds. In order to calculate admixture *f*₃-statistics, we repeated the same procedure but
444 using the *Admixtools* (v. 5.1) software²⁷ with the ‘*inbreed: YES*’ parameter, and calculating
445 *f*₃(*modern1; ANS, modern2*), where *ANS* represents the genotype of all four Anatolian Neolithic
446 sheep combined, and *modern1* and *modern2* represent the genotypes of modern south European
447 and modern Asian breeds, respectively.

448 ***D*-statistics**

449 We conducted *D*-statistics using the *qpDstat* program of *AdmixTools* (v. 5.1) software²⁷. For
450 this, we constructed subsets of the data set used for principal component analysis. As in the
451 outgroup-*f*₃ analysis, we used the same Argali sheep individual as outgroup. To control for the
452 false positive rate, we performed multiple testing correction using Benjamini and Hochberg
453 method⁵² in the *R* (v. 3.5) environment separately for each set of comparisons.

454 **ADMIXTURE analysis**

455 We conducted clustering analysis using *ADMIXTURE* (v.1.3) software²⁸. We pruned the data
456 set to remove SNPs in linkage disequilibrium using *PLINK*⁴⁹, and performed 10 trials for all
457 *K*'s between 2 and 12. We used the *Pong* software⁵³ to visualize *ADMIXTURE* results
458 (Supplementary Material and Methods).

459

460 **Data availability**

461 All *.fastq* files were submitted to the European Nucleotide Archive (ENA) with reference
462 number PRJEB36540.

463 **Code availability**

464 The code for probe design is available at <https://github.com/dkoptekin/bait-design>.

465 **References**

- 466 1. Maher, L. A., Richter, T. & Stock, J. T. The Pre-Natufian Epipaleolithic: Long-term
467 Behavioral Trends in the Levant. *Evol. Anthropol. Issues, News, Rev.* **21**, 69–81 (2012).
- 468 2. Asouti, E. & Fuller, D. Q. Reconstructing Early Neolithic Plant-Food Production. *Curr.*
469 *Anthropol.* **54**, 299–345 (2013).
- 470 3. Arbuckle, B. S. *et al.* Data sharing reveals complexity in the westward spread of
471 domestic animals across Neolithic Turkey. *PLoS One* **9**, (2014).
- 472 4. Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: Origins,
473 diffusion, and impact. *Proc. Natl. Acad. Sci.* **105**, 11597–11604 (2008).
- 474 5. Stiner, M. C. *et al.* A forager-herder trade-off, from broad-spectrum hunting to sheep
475 management at Aşikli Höyük, Turkey. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 8404–8409
476 (2014).
- 477 6. Baird, D. Origins of caprine herding. *Proc. Natl. Acad. Sci.* **111**, 8702–8703 (2014).
- 478 7. Abell, J. T. *et al.* Urine salts elucidate Early Neolithic animal management at Aşikli
479 Höyük, Turkey. *Sci. Adv.* **5**, (2019).
- 480 8. Peters, J., von den Driesch, A. & Helmer, D. The upper Euphrates-Tigris basin: Cradle
481 of agro-pastoralism? in *The First Steps of Animal Domestication: New Archaeological*
482 *Approaches* (eds. Vigne, J.-D., Peters, J. & Helmer, D.) 96–124 (Oxbow Books, 2005).
- 483 9. Arbuckle, B. S. & Atici, L. Initial diversity in sheep and goat management in Neolithic
484 south-western Asia. *Levant* **45**, 219–235 (2013).
- 485 10. Pedrosa, S. *et al.* Evidence of three maternal lineages in near eastern sheep supporting
486 multiple domestication events. *Proc. R. Soc. B Biol. Sci.* **272**, 2211–2217 (2005).
- 487 11. Kijas, J. W. *et al.* Genome-wide analysis of the world's sheep breeds reveals high
488 levels of historic mixture and strong recent selection. *PLoS Biol.* **10**, (2012).
- 489 12. Naval-Sánchez, M. *et al.* Sheep genome functional annotation reveals proximal
490 regulatory elements contributed to the evolution of modern breeds. *Nat. Commun.* **9**,
491 859 (2018).
- 492 13. Tapió, M. *et al.* Sheep mitochondrial DNA variation in European, Caucasian, and
493 Central Asian areas. *Mol. Biol. Evol.* **23**, 1776–1783 (2006).
- 494 14. Bruford, M. W. & Townsend, S. J. Mitochondrial DNA diversity in modern sheep:
495 Implications for domestication. *Doc. Domest. New Genet. Archaeol. Paradig.* **57**, 306–
496 316 (2006).
- 497 15. Lv, F. H. *et al.* Mitogenomic meta-analysis identifies two phases of migration in the
498 history of Eastern Eurasian sheep. *Mol. Biol. Evol.* **32**, 2515–2533 (2015).
- 499 16. Niemi, M. *et al.* Mitochondrial DNA and Y-chromosomal diversity in ancient
500 populations of domestic sheep (*Ovis aries*) in Finland: comparison with contemporary
501 sheep breeds. *Genet. Sel. Evol.* **45**, 2 (2013).
- 502 17. Cai, D. *et al.* New ancient DNA data on the origins and spread of sheep and cattle in
503 northern China around 4000 BP. *Asian Archaeol.* **2**, 51–57 (2018).
- 504 18. Schoop, U.-D. Weaving Society in Late Chalcolithic Anatolia: Textile Production and
505 Social Strategies in the 4th Millennium BC. in *Western Anatolia before Troy. Proto-*

506 *Urbanisation in the 4th Millennium BC. Proceedings of the International Symposium*
507 *held at the Kunsthistorisches Museum Wien Vienna, Austria, 21-24 November, 2012*
508 (eds. Horejs, B. & Mehofer, M.) 421–446 (Austrian Academy of Sciences Press, 2014).

509 19. Marciniak, A. The Secondary Products Revolution: Empirical Evidence and its Current
510 Zooarchaeological Critique. *J. World Prehistory* **24**, 117–130 (2011).

511 20. Hendy, J. *et al.* Ancient proteins from ceramic vessels at Çatalhöyük West reveal the
512 hidden cuisine of early farmers. *Nat. Commun.* **9**, 4064 (2018).

513 21. Sabatini, S., Bergerbrant, S., Brandt, L. Ø., Margaryan, A. & Allentoft, M. E.
514 Approaching sheep herds origins and the emergence of the wool economy in
515 continental Europe during the Bronze Age. *Archaeol. Anthropol. Sci.* **11**, 4909–4925
516 (2019).

517 22. Chessa, B. *et al.* Revealing the History of Sheep Domestication Using Retrovirus
518 Integrations. *Science* (80-.). **324**, 532 LP – 536 (2009).

519 23. Demirci, S. *et al.* Mitochondrial DNA diversity of modern, ancient and wild sheep
520 (*Ovis gmelinii anatolica*) from Turkey: New insights on the evolutionary history of
521 sheep. *PLoS One* **8**, (2013).

522 24. Meadows, J. R. S., Cemal, I., Karaca, O., Gootwine, E. & Kijas, J. W. Five ovine
523 mitochondrial lineages identified from sheep breeds of the near east. *Genetics* **175**,
524 1371–1379 (2007).

525 25. Cai, D. W., Han, L., Zhang, X. L., Zhou, H. & Zhu, H. DNA analysis of archaeological
526 sheep remains from China. *J. Archaeol. Sci.* (2007). doi:10.1016/j.jas.2006.10.020

527 26. Kılınç, G. M. *et al.* The Demographic Development of the First Farmers in Anatolia.
528 *Curr. Biol.* **26**, 2659–2666 (2016).

529 27. Patterson, N. *et al.* Ancient admixture in human history. *Genetics* **192**, 1065–1093
530 (2012).

531 28. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry
532 in unrelated individuals. *Genome Res.* **19**, 1655–1664 (2009).

533 29. Baird, D. *et al.* Juniper smoke, skulls and wolves' tails. The Epipalaeolithic of the
534 Anatolian plateau in its South-west Asian context; insights from Pinarbaşı. *Levant* **45**,
535 175–209 (2013).

536 30. Middleton, C. The beginning of herding and animal management: the early
537 development of caprine herding on the Konya plain, central Anatolia. *Anatol. Stud.* **68**,
538 1–31 (2018).

539 31. Ottoni, C. *et al.* Pig domestication and human-mediated dispersal in western Eurasia
540 revealed through ancient DNA and geometric morphometrics. *Mol. Biol. Evol.* **30**,
541 824–832 (2013).

542 32. Schibler, J., Elsner, J. & Schlumbaum, A. Incorporation of aurochs into a cattle herd in
543 Neolithic Europe: single event or breeding? *Sci. Rep.* **4**, 5798 (2014).

544 33. Rannamäe, E. *et al.* Three Thousand Years of Continuity in the Maternal Lineages of
545 Ancient Sheep (*Ovis aries*) in Estonia. *PLoS One* **11**, e0163676 (2016).

546 34. Özdoğan, M. Archaeological evidence on the westward expansion of farming
547 communities from Eastern Anatolia to the Aegean and the Balkans. *Curr. Anthropol.*
548 **52**, S415–S430 (2011).

549 35. Damgaard, P. de B. *et al.* 137 ancient human genomes from across the Eurasian
550 steppes. *Nature* **557**, 369–374 (2018).

551 36. Fernandez, H. *et al.* Divergent mtDNA lineages of goats in an Early Neolithic site, far
552 from the initial domestication areas. *PNAS* **103**, 15375–15379 (2006).

553 37. Alberto, F. J. *et al.* Convergent genomic signatures of domestication in sheep and
554 goats. *Nat. Commun.* **9**, (2018).

555 38. Zeder, M. A. Out of the Fertile Crescent: The dispersal of domestic livestock through

556 Europe and Africa. in *Human Dispersal and Species Movement: From Prehistory to*
557 *the Present* (eds. Petraglia, M., Boivin, N. & Crassard, R.) 261–303 (Cambridge
558 University Press, 2017). doi:DOI: 10.1017/9781316686942.012

559 39. Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. *Cold Spring Harb.
560 Perspect. Biol.* **5**, 1–7 (2013).

561 40. Rozas, J. *et al.* DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets.
562 *Mol. Biol. Evol.* **34**, 3299–3302 (2017).

563 41. Meyer, M. & Kircher, M. Illumina Sequencing Library Preparation for Highly
564 Multiplexed Target Capture and Sequencing. *Cold Spring Harb. Protoc.* **2010**,
565 pdb.prot5448 (2010).

566 42. Kircher, M. Analysis of High-Throughput Ancient DNA Sequencing Data. in *Ancient
567 DNA. Methods in Molecular Biology (Methods and Protocols)* 197–228 (Humana
568 Press, 2012).

569 43. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler
570 transform. *Bioinformatics* **25**, 1754–1760 (2009).

571 44. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
572 2078–2079 (2009).

573 45. Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable
574 analysis framework for variant extraction and refinement from population-scale DNA
575 sequence data. *Genome Res.* **25**, 918–925 (2015).

576 46. Li, H. *et al.* The Sequence Alignment / Map format and SAMtools. **25**, 2078–2079
577 (2009).

578 47. Günther, T. *et al.* Ancient genomes link early farmers from Atapuerca in Spain to
579 modern-day Basques. *Proc. Natl. Acad. Sci.* **112**, 11917 LP – 11922 (2015).

580 48. Skoglund, P. *et al.* Separating endogenous ancient DNA from modern day
581 contamination in a Siberian Neandertal. *Proc. Natl. Acad. Sci.* **111**, 2229 LP – 2234
582 (2014).

583 49. Purcell, S. *et al.* PLINK : A Tool Set for Whole-Genome Association and Population-
584 Based Linkage Analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

585 50. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. *PLoS
586 Genet.* **2**, e190 (2006).

587 51. Mächler, M. & Ligges, U. scatterplot3d - An R Package for Visualizing Multivariate
588 Data. *J. Stat. Softw.* **08**, (2003).

589 52. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and
590 Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B* **57**, 289–300 (1995).

591 53. Behr, A. A., Liu, K. Z., Liu-Fang, G., Nakka, P. & Ramachandran, S. pong: fast
592 analysis and visualization of latent clusters in population genetic data. *Bioinformatics*
593 **32**, 2817–2823 (2016).

594

595

596 **Acknowledgements**

597 We are grateful to Torsten Günther, Pedro Morell Miranda and other members of the Günther
598 Lab and Daniel Bradley for helpful suggestions and/or comments. This work was supported
599 by TÜBİTAK 1001 (Project No: 114Z356) and ERC Consolidator grant “NEOGENE” (Project
600 No 772390).

602 **Author information**

603 **Affiliations**

604 *Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey*

605 Erinç Yurtman, Onur Özer, Eren Yüncü, Nihan Dilşad Dağtaş, Mustafa Özkan, Damla Kaptan,
606 Gözde Atağ, Kivilcim Başak Vural, Gülşah Merve Kılınç, Ayshin Ghalichi, Sinan Can Acan,
607 Ekin Sağlıcan, C.Can Bilgin, Sevgi Yorulmaz, Mehmet Somel, İnci Togan

608 *Emmy Noether Group Evolutionary Immunogenomics, Max Planck Institute for Evolutionary
609 Biology, 24306 Plön, Germany*

610 Onur Özer

611

612 *Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia*

613 Eren Yüncü

614

615 *Department of Anthropology, University of Oklahoma, Norman, OK 73019*

616 Nihan Dilşad Dağtaş

617

618 *Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey*

619 Dilek Koptekin

620

621 *Department of Prehistory, Istanbul University, Laleli, 34134 Istanbul, Turkey*

622 Yasin Gökhan Çakan, Erhan Bıçakçı

623

624 *Department of Anthropology, Ankara University, 06100 Ankara, Turkey*

625 Ali Akbaba

626

627 *Department of Archaeology, Batman University, 72100 Batman, Turkey*

628 Can Yümni Gündem

629

630 *Institute of Archaeology, University College London, UK*

631 Louise Martin

632

633 *Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University,
634 06100, Ankara, Turkey*

635 Gülşah Merve Kılınç

636

637 *Department of Archaeogenetics, Max-Planck Institute for the Science of Human History,
638 Kahlaische Strasse 10, D-07745, Jena, Germany*

639 Ayshin Ghalichi

640 *Archaeological Research Laboratory, Department of Archaeology and Classical Studies,*
641 *University of Stockholm, Lilla Frescativägen 7, 106 91 Stockholm, Sweden*
642 Vendela Kempe Lagerholm, Maja Krzewinska, Anders Götherström

643

644 *Department of Settlement Archaeology, Middle East Technical University, 06800 Ankara,*
645 *Turkey*
646 Evangelia Pişkin, Çiğdem Atakuman

647

648 *Centre for Archaeology, Cultural Heritage and Conservation, Cyprus International*
649 *University, Haspolat, Cyprus*
650 Müge Şevketoğlu

651

652 *Department of Anthropology, Hacettepe University, 06800 Ankara, Turkey*
653 Yılmaz Selim Erdal, Füsün Özer

654

655 *Hacettepe University Molecular Anthropology Group (Human_G) 06800, Ankara, Turkey*
656 Yılmaz Selim Erdal, Füsün Özer

657

658 *Department of Modeling and Simulation, Graduate School of Informatics, Middle East*
659 *Technical University, 06800 Ankara, Turkey*
660 Elif Sürer

661

662 *Faculty of Veterinary Medicine, Utrecht Univ., Utrecht, Netherlands*
663 Johannes A. Lenstra

664

665 *Department of Genetics, Azad University, Varamin Branch, Tehran*
666 Foad Abazari

667

668 *Department of Archaeology, University of Kashan, Kashan, Iran*
669 Javad Hoseinzadeh Sadati

670 *Department of Archaeology, Classics, and Egyptology, University of Liverpool, Liverpool*
671 *L69 7WZ, UK*
672 Douglas Baird

673

674 *Department of Archaeology, Trakya University, 22030 Edirne, Turkey*
675 Özlem Çevik

676

677 *Netherlands Institute in Turkey, Istanbul, TR*
678 Fokke Gerritsen

679

680 *Department of Archaeology and History of Art, Koç University, 34450 Istanbul, Turkey*
681 Rana Özbal

682

683 **Author contributions**

684 İ. Togan, M.S., F.Ö., A.G., designed and supervised the study; D.B., Y.G.Ç., E.B., Ö.Ç., F.G.,
685 L.M., R.Ö., E.P., equally contributed archaeological samples, archaeological information,
686 discussion and writing up of results; C.Y.G, M.Ş., J.H., equally contributed archaeological
687 samples and archaeological information; O.Ö., E.Yüncü., N.D.D., A.A., S.Y., V.K.L., M.K.,
688 F.A., F.Ö., performed the wet lab experiments; E.Yurtman., O.Ö., D.Ko., D.Ka., G.A.,
689 performed data analysis with contributions from M.Ö., K.B.V., G.M.K., A.G., S.C.A., R.Y.,
690 E.S., C.C.B., A.G., M.S., İ.T.; and M.S., İ.T., E.Yurtman., O.Ö., F.Ö., D.Ko., wrote the
691 manuscript with input from all authors.

692

693

694