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Abstract

Background.

Assessing arm and hand sensorimotor impairments that are functionally relevant is essential to
optimize the impact of neurorehabilitation interventions. Technology-aided assessments should
provide a sensitive and objective characterization of upper limb impairments, but often pro-
vide arm weight support and neglect the importance of the hand, thereby questioning their
functional relevance. The Virtual Peg Insertion Test (VPIT) addresses these limitations by
quantifying arm movements and grip forces during a goal-directed manipulation task without
arm weight support. The aim of this work was to evaluate the potential and robustness of the
VPIT metrics to inform on sensorimotor impairments in arm and hand, and especially identify
the functional relevance of the detected impairments.

Methods.

Arm and hand sensorimotor impairments were systematically characterized in 30 chronic stroke
patients using conventional clinical scales and the VPIT. For the latter, ten previously estab-
lished kinematic and kinetic core metrics were extracted and compared to conventional clinical
scales of impairment and activity limitations. Additionally, the robustness of the VPIT metrics
was investigated by analyzing their clinimetric properties (test-retest reliability, measurement
error, and learning effects).

Results.

Twenty-three of the participants, the ones with mild to moderate sensorimotor impairments
and without strong cognitive deficits, were able to successfully complete the VPIT protocol
(duration 16.6 min). The VPIT metrics detected impairments in arm and hand in 90.0% of the
participants, and were sensitive to increased muscle tone and pathological joint coupling. Most
importantly, moderate to high significant correlations between conventional scales of activity
limitations and the VPIT metrics were found, thereby indicating their functional relevance
when grasping and transporting lightweight objects as well as dexterous finger manipulations.
Lastly, the robustness of three out of the ten VPIT core metrics in post-stroke individuals was
confirmed.

Conclusions.

This work provides evidence that technology-aided assessments requiring goal-directed manip-
ulations without arm weight support can provide an objective, robust, and clinically feasible
way to assess functionally relevant sensorimotor impairments in arm and hand in chronic post-
stroke individuals with mild to moderate deficits. This allows better identifying impairments
with high functional relevance and can contribute to optimizing the functional benefits of neu-
rorehabilitation interventions.

Retrospectively registered: clinicaltrials.gov/ct2/show/NCT03135093
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1 Introduction

Stroke is a leading cause of acquired adult disability [1]. The incident commonly causes chronic sen-
sorimotor deficits in arm and hand (impairments) [2,3]. Impairments that are functionally relevant
are especially critical for affected individuals, as these impairments reduce the spectrum of activ-
ities that an individual can perform (activity limitations) and determine the level of dependence
on caregivers. Neurorehabilitation attempts to decrease the level of disability through physical
therapy [4,5]. Achieving successful rehabilitation, with clear benefits for the independence of indi-
viduals, typically requires the identification and therapy of functionally relevant impairments [6-8].

Conventional clinical scales are the standard to evaluate upper limb sensorimotor impairments
in research studies and the described impairments mostly show strong links to activity limitations
(i.e., functional relevance) [9-13]. However, conventional assessments commonly rely on subjectively
rated ordinal scales with ceiling effects that are not sensitive enough to detect fine changes in
impairments and even introduce bias when attempting to model sensorimotor recovery [14-16].
Hence, providing a more fine-grained and objective assessment of functionally relevant sensorimotor
impairments with sensitive scales should be of primary interest to neurorehabilitation researchers.

Digital health metrics extracted from technology-aided assessments can provide objective and
traceable descriptions of upper limb behaviour on sensitive, continuous scales without ceiling effects
[17-19]. However, the majority of instrumented assessments focuses on characterizing impairments
during isolated planar joint movements while supporting the arm against gravity [20-23]. This
neglects the importance of hand impairments and shadows the effect of certain deficits, such as
weakness [19], which are both fundamental when performing daily activities. This questions the
functional relevance of these assessments.

More recently, technology-aided approaches started emphasizing the importance of assessing
impairments during tasks involving arm movements and hand manipulations, without providing
arm weight support [24-27]. Such tasks are expected to provide crucial information on fine upper
limb impairments in individuals with mild to moderate disability levels and are promising to better
identify functionally relevant impairments. However, existing approaches typically rely on time-
consuming and complex measurement setups that reduces their clinical applicability. Further, they
mostly focus on kinematic metrics and do not quantify grip force control and its essential role in daily
life activities. Also, the clinimetric properties of such digital health metrics are often insufficiently
evaluated, thereby challenging their interpretability and acceptability as clinical endpoints [17,28].

The primary objective of this work was to evaluate the potential of digital health metrics, ex-
tracted from the Virtual Peg Insertion Test (VPIT) in chronic post-stroke individuals, to inform on
arm and hand sensorimotor impairments, and especially characterize the functional relevance of the
detected impairments. The VPIT addresses the limitations of existing technology-aided assessments
by recording movement and grip force patterns during a virtual goal-directed manipulation task
requiring coordinated arm and hand movements [29-33]. Previous research indicated the feasibility
of the approach in neurologic individuals with mild to moderate sensorimotor impairments. In
addition, ten digital health metrics capturing sensorimotor impairments have been established for
the VPIT and allowed accurately discriminating neurologically intact and affected individuals [33].
However, other clinimetric properties (reliability, measurement error, learning effects) have only
been evaluated in unaffected subjects. Hence, the secondary objective of this work was to char-
acterize the clinimetric properties of the VPIT metrics in chronic post-stroke subjects and ensure
their pathophysiological interpretation and robustness.

To achieve these objectives, we strived 1) to systematically characterize arm and hand sensori-
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motor impairments in 30 chronic stroke subjects using the digital health metrics of the VPIT and
conventional scales. In addition, we aimed 2) to characterize the functional relevance of the de-
tected impairments by correlating them to conventional assessments of activity limitations. Lastly,
we intended to 3) analyze test-retest reliability, measurement error, learning effects, and concurrent
validity of the VPIT metrics. We hypothesized that the technology-aided assessment with the VPIT
provides fine-grained and robust information about sensorimotor impairments in arm and hand that
are functionally relevant. This is expected to lead to high correlations between the digital health
metrics of sensorimotor impairments and conventional scales of activity limitations. This work
contributes to better linking the technology-aided assessment of impairments with activity limita-
tions, thereby opening new avenues to optimize the benefits of neurorehabilitation interventions by
identifying functionally relevant therapy targets.

2 Methods
2.1 Virtual Peg Insertion Test (VPIT)

The VPIT as an upper limb sensorimotor assessment has been described in detail in previous
work [29,30,33]. In short, it consists of a commercial haptic end-effector device (PhantomOmni
or Geomagic Touch, 3D Systems, USA), a rapid-prototyped grasping force sensing handle, and a
virtual reality environment on a personal computer (total material costs approximately 4000 USD).
The virtual reality environment displays a virtual pegboard task that requires the insertion of
nine virtual pegs into nine holes. More specifically, a virtual cursor can be controlled through the
coordination of end-effector movements and applied grasping force. To pick up a peg, the cursor
first needs to be spatially aligned with the peg. Subsequently, a grasping force of at least 2N has
to be maintained to transport the peg towards a hole. The peg can be released in a hole upon a
reduction of the grasping force below 2N.

Recently, a processing pipeline has been defined to extract and normalize ten kinematic and
kinetic digital health metrics from VPIT data (position and grip force sampled at 1kHz, details
in [33]). For this purpose, data is low-pass filtered and temporally segmented into the transport
(gross movement from peg pickup until insertion), return (gross movement from peg insertion to
next pickup), and peg approach (fine movement after return and before transport), hole approach
(fine movement after transport and before return). Subsequently, metrics were defined for each of
these confined phases to quantify different aspects of upper limb sensorimotor impairments.

Smooth movements, represented through a bell-shaped velocity profile, are a hallmark of intact
motor control [34]. Movement smoothness was quantified using the normalized logarithmic jerk
metric (log jerk) calculated during transport and return as well as the spectral arc length metric
of the velocity signal during return (SPARC return) [35-37]. Similarly, ballistic movements of
unaffected individuals are efficient and tend to follow a trajectory close to the shortest path between
start and target. Movement efficiency was characterized using the path length ratio (shortest possible
distance divided by the actually covered distance) during transport and return [38]. Movement speed
was quantified using the maximum velocity during return (velocity maz. return) and the endpoint-
precision of the ballistic movement using the jerk metric calculated during the peg approach (jerk
peg approach). Further, three metrics describing the smoothness of grip force coordination during
different movement phases were defined. This included the number of peaks in the grip force
rate (first time-derivative of grip force) during transport (grip force rate num. peaks transport).
Additionally, the SPARC was applied to grip force rate data recorded during transport (grip force
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rate SPARC transport) and hole approach (grip force rate SPARC hole approach). The clinimetric
properties (test-retest reliability, measurement error, learning effects) of all ten metrics have been
positively evaluated in neurologically intact subjects [33]. In addition, all metrics indicated strong
discriminative ability between a normative reference population and a group of 89 neurologically
affected subjects, thereby demonstrating their ability to capture sensorimotor impairments.

For all metrics, mixed effect models were generated to compensate for confounding factors
such as age, gender, tested body side, and whether the test was performed with the dominant
body side or not. Further, the value of each metric was normalized with respect to the median
and variability of a reference population containing 120 unimpaired subjects (age 20-80 years, 60
female) that performed the VPIT. Lastly, each metric was additionally normalized with respect
to the neurologically affected subject in the VPIT database that showed worst performance in a
specific metric. This resulted in metrics being defined on an unbounded scale, theoretically ranging
from |—00%, +00%[, with 0% indicating median task performance of the reference population and
100% worst recorded task performance [33].

2.2 Conventional clinical assessments

A battery of conventional clinical assessments was performed to capture the heterogeneity of sen-
sorimotor impairments and activity limitations.

Sensorimotor impairments

Hand and wrist impairments as well as flexor/extensor synergies in shoulder, elbow, wrist, and hand
were described using the Fugl-Meyer assessment for the upper extremity (FMA-UE) [14]. It focuses
especially on abnormal muscle activation patterns that prohibit isolated joint movement of shoulder,
elbow, wrist, and hand. The assessment requires the subject to perform specific movements that are
known to elicit this coupling, which are subjectively scored on a ordinal scale (0: cannot perform,
1: performs partially, 2: performs fully), leading to a ceiling effect at score 66. The assessment
takes approximately 30 minutes to administer [14,39].

Cognitive impairments were rated with the Montreal cognitive assessment (MOCA), which con-
sists of simple tasks such as drawing, object naming, memory recall, reading, and mathematical
operations (0: worst score, 30: best score) [40].

Resistance against passive movements due to increased muscle tone (referred to as spasticity) in
shoulder internal rotators, biceps, triceps, wrist flexors and extensors, as well as finger flexors and
extensors were defined with the Modified Ashworth Scale (MAS) that involves the passive move-
ment of the respective joint [41]. Trained clinical personnel performed and rated each movement
subjectively (0 normal tone, 5 rigid), which takes in total up to 5 minutes time [39]. The ratings
were combined into a single score describing overall upper limb muscle tone with a ceiling effect at
value 35.

Somatosensory impairments of upper arm, lower arm, hand, and finger was measured based on
the Erasmus modified Nottingham sensory assessment (EmNSA) that focuses especially on tactile
sensation, sharp-blunt discrimination, two-point discrimination, and proprioception [42]. Therein,
the skin was stimulated with different objects and the subject had to define touch modality (e.g.,
light touch vs pressure) or location. Further, proprioception was evaluated by passively moving
the participants joints, by asking the subject to indicate the perceived direction of movement,
and by comparing the indicated with the actual direction. Each task was scored from zero (no
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proprioception) to two (normal), leading to a total combined upper limb score of maximal 40
points. The evaluation takes approximately 10-15 minutes to administer [42].

Activity limitations

The ability to coordinate precise object manipulations with gross arm movements was evaluated
with the Action Research Arm Test (ARAT), which requires the transfer of small and large items
with multiple handgrip types from the bottom to the top of a shelf [43,44]. Each subtask was
subjectively rated from zero (task not possible) to three (normal task performance), leading to a
maximal possible performance of 57 points.

Fine manual dexterity was evaluated with the time to insert nine small physical pegs into nine
corresponding holes without requiring active lifting of the arm against gravity, as defined by the
Nine Hole Peg Test (NHPT) [45,46].

Lastly, gross manual dexterity was reported through the Box and Block Test (BBT), which
requires the transport of as many blocks as possible within one minute across a physical barrier
while actively lifting the arm against gravity [44,47]. For the BBT and NHPT, the outcome measure
was normalized with respect to the publicly available reference data to account for the influence of
age, gender, and tested body side.

2.3 Participants and procedures

Thirty post-stroke subjects were recruited at the University Hospital of Zurich (Zurich, Switzerland)
and the cereneo, Center for Neurology and Rehabilitation (Vitznau, Switzerland) as part of an
observational study (ClinicalTrials.gov Identifier: NCT03135093) that used the VPIT as a secondary
outcome next to a battery of clinical assessments focusing on sensorimotor impairments (FMA-
UE, MOCA, MAS, EmNSA). The VPIT protocol consisted of receiving standardized instructions,
familiarizing with the task by inserting all nine pegs once (data not analyzed), and subsequently
performing five repetitions (i.e., inserting all nine pegs five times). The protocol was performed
with the most affected and less affected body side, given that both of them might be affected by
sensorimotor impairments [48]. Further, the subjects were enrolled into a second measurement
session including a repetition of the VPIT protocol and further clinical assessments focusing on
activity limitations (BBT, NHPT, ARAT).

All participants gave written informed consent, and all procedures were approved by the local
Ethical Committees (ID 2016-02075 and BASEC:2017-00398). Recruited were subjects of at least 18
years age with chronic (i.e., at least 6 month ago) ischemic stroke with at least partial ability to lift
the arm against gravity and flex and extend the fingers. Exclusion criteria were other concomitant
diseases affecting the upper limb, severe sensory deficits, and severely increased muscle tone that
considerably limits range of motion.

Participants started the VPIT assessment with the most affected body side and were instructed
to perform the task as fast and precise as possible. The starting position was approximately 45°
shoulder abduction, 10° shoulder flexion, and 90° elbow flexion. Subjects received live feedback
about the duration of each VPIT repetition through a timer displayed on the computer screen.
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2.4 Data analysis
Characterization of upper limb sensorimotor impairments and activity limitations

The presence of upper limb impairments was quantified using the ten VPIT metrics and conven-
tional scales. For the VPIT, previously established cut-offs based on the 95!"-percentile of the
normative reference population were used to define individuals with abnormal behavior (binary
value) in each metric. Afterwards, one value per factor (i.e., physiological constructs previously
identified through an explanatory factor analysis) was generated by pooling the information about
the presence of abnormal behaviour across all metrics within this factor via the maximum (i.e.,
factor indicated as abnormal if at least one metric within this factor was abnormal). For the NHPT
and BBT, abnormal behaviour was defined if task performance was worse than 1.96 times the
standard deviation (corresponding to 95t"-percentile) of the publicly available normative reference
population [45,46]. According to the ARAT, activity limitations were present if the score was below
55 [13]. All other conventional scales indicated the presence of impairments if the full score was not
reached.

Correlation of upper limb sensorimotor impairments with activity limitations

To analyze how both VPIT metrics and conventional impairment scales relate to conventional
assessments of activity limitations, Spearman correlation coefficients (p) were calculated. For the
correlation analysis, only data from the most affected side (p,,,) and the first testing session was
included to avoid the influence of ceiling effects in the conventional scales for the less affected body
side and learning effects across sessions, respectively. Bonferroni correction was applied for each
tested hypothesis to account for multiple comparisons. The intervals suggested by Hinkle et al.
were used for interpreting the correlation coefficients: very high: p,,, >0.9; high: 0.7< p,,, <0.9;
moderate: 0.5< ppq <0.7; low: 0.3< ppe <0.5; very low: ppe <0.3 [49].

Test-retest reliability, measurement error, learning effects, and concurrent validity of
VPIT metrics

The evaluation of the clinimetric properties was guided through a previously defined framework for
the selection and validation of digital health metrics [33]. More specifically, the repeatability of the
VPIT metrics was quantified by their ability to discriminate different subjects across measurement
sessions (test-retest reliability) and the measurement error of the task and assessment platform
[33,50,51]. The former was defined using the intra-class correlation coefficient (ICC A k). Metrics
with an ICC>0.7 passed the evaluation. The latter was characterized using the smallest real
difference (SRD), which defines a range of values for that the assessment cannot distinguish between
measurement noise and an actual change in the underlying physiological construct. The SRD was
defined as 1.96 - v/2 - v/1 —ICC [52,53]. The SRD was further normalized (SRD%) with respect
to the range of observed values of a metric to enable a comparison across metrics. A cut-off
of SRD<30.3% was applied to define metrics that have highest potential to sensitively measure
sensorimotor recovery [33]. As the smallest real difference and thereby the responsiveness of a metric
strongly depends on the intra-subject variability, the standard deviation across all repetitions of
the VPIT was visualized. In addition, Bland-Altman plots were constructed to inspect systematic
errors across test-retest sessions that depend on the range of each metric [54].

Systematic learning effects within and across testing sessions were identified. This is important
to distinguish between task-related motor learning and behavioural recovery when using the VPIT
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to analyze the effect of interventions. In more detail, metrics were visualized for each of the five
repetitions at test and retest. In addition, the slope (1) between test and retest for the median
across all five repetitions was estimated and normalized with respect to the range of observed values.
Strong learning effects were present if a paired t-test indicated significant differences between test
and retest and n was below or equal -6.35 [33].

Lastly, the correlations between conventional impairment scales and the VPIT metrics were
calculated, for the most affected body side (pmq), to advance the pathophysiological interpretation
of the digital health metrics.

3 Results

Out of the 30 post-stroke subjects, the VPIT protocol on the first testing day was completed by
23 and 27 individuals with the most affected and less affected body side, respectively. The reason
for subjects not completing the protocol were: inability to understand the task (1 subject), severe
visual deficits (1 subject), severe sensorimotor impairments (less affected side: 1 subject; most
affected side: 5 subjects). The age of the included subjects was 59 [40, 53, 69, 88| years (median
[minimum, 25%-percentile, 75¢"-percentile, maximum]) with 14 of them being female. FMA-UE
scores for the most affected and less affected sides were 49 [32, 40, 57, 61] and 65 [56, 63, 66, 66],
respectively. ARAT scores for the most affected and less affected sides were 47 [30, 39, 55, 57] and
57 [45, 57, 57, 57], respectively. Detailed subject characteristics can be found in Table SM4.

Twenty-one subjects also participated in the retest protocol, with 18 and 21 successfully com-
pleting it with the most affected and less affected side, respectively. The time between test- and
retest was 7.88 [2.86, 5.22, 16.13, 46.96] days. The time to administer the VPIT protocol (instruc-
tions, familiarization, and five repetitions) was 16.66 [8.95, 12.34, 26.04, 37.84] min and 9.99 [6.27,
7.85, 16, 37.46] min for the most affected and less affected side, respectively, during the first testing
session.

3.1 Characterization of sensorimotor impairments and activity limita-
tions

The presence of sensorimotor impairments and activity limitations on a population level can be
found in Table 1. According to the defined criteria, the percentage of subjects with sensorimotor
impairments on the most affected and less affected sides varied between 70.0%-100.0% and 9.1%-
50.0%, respectively, depending on the conventional scale. Similarly, the percentage with activity
limitations ranged from 65.0%-90.0% and 4.5%-54.5% for the most affected and less affected side,
respectively. Depending on the metric, the VPIT indicated sensorimotor impairments in 10.0%-
50.0% and 0.0%-31.8% of all individuals with the most affected and less affected side, respectively.
In total, 90% and 50% of all individuals showed impairment in at least one VPIT metric with the
most affected and less affected side, respectively.

Examples for the relationship between the VPIT metrics and conventional scales are visual-
ized in Figure 1 (all correlations in Table 2, confidence intervals in Table SM5). The following
correlations were significant after Bonferroni correction: force rate SPARC transport with MOCA
(Pma=-0.61**); jerk peg approach with BBT (p;q=-0.73**), ARAT (p;ma=-0.65**), and NHPT
(pma= 0.64**). Further, the correlations of the following conventional scales of impairments with
the activity domain were significant after Bonferroni correction: FMA-UE with BT (pj,,= 0.66™*);
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Table 1: Characterization of impairments and activity limitations. Conventional assess-
ments and the VPIT were used to define the presence of sensorimotor impairments and activity
limitations. For the VPIT, NHPT, and BBT, abnormal behaviour was defined if task performance
was outside the 95"-percentile of a normative reference population. According to the ARAT, ac-
tivity limitations were present if the score was below 55. All other conventional scales indicated
the presence of impairments if the full score was not reached. Only participants with all conven-
tional scales available were used. In total, 90% and 50% of all individuals showed impairment in at
least one VPIT metric with the most affected and less affected side, respectively. MAS: Modified
Ashworth Scale; NHPT: Nine Hole Peg Test; EmNSA: Erasmus modifications to the Nottingham
Sensory Assessment; BBT: Box and Block Test; ARAT: Action Research Arm Test; FMA-UE:
Fugl-Meyer Assessment Upper Extremity.

Percentage of subjects with disability

Most affected side Less affected side

n =20 n =22
Conventional scales: impairments
FMA-UE 100.0% 50.0%
MAS 75.0% 9.1%
EmNSA 70.0% 18.2%
Conventional scales: activity
BBT 90.0% 54.5%
ARAT 70.0% 4.5%
NHPT 70.0% 9.1%
VPIT: impairments in activity context
Log jerk transport 45.0% 8.2%
Log jerk return 35.0% 9.1%
SPARC return 30.0% 9.1%
Path length ratio transport 45.0% 4.5%
Path length ratio return 35.0% 13.6%
Velocity max. return 50.0% 31.8%
Jerk peg approach 30.0% 0.0%
Grip force rate num. peaks transport 50.0% 22.7%
Grip force rate SPARC transport 10.0% 9.1%
Grip force rate SPARC hole approach 45.0% 4.5%
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Figure 1: Example correlations between impairments (VPIT, Fugl-Meyer Upper Ex-
tremity) and activity limitations (Box and Block Test). The relationship of impairments
and activity limitations was analyzed with Spearman correlations (p). Two pairs (a-b) were chosen
for visualization purposes (all results in Table 2). Only data from the most affected side (pma)
and the first testing session was used for the correlation analysis. For both VPIT and conventional
scales, triangles represent a cut-offs indicating the presence of sensorimotor impairments (VPIT,
Fugl-Meyer Upper Extremity) and activity limitations (Box and Block Test). A slightly stronger
relationship was observed between impairments and activity limitations for the VPIT metric than
the Fugl-Meyer assessment. **indicates p-value below the Bonferonni corrected significance level.
VPIT: Virtual Peg Insertion Test.

MAS with BBT (pymq=-0.65**); FMA-UE with ARAT (pmq= 0.82**); MAS with ARAT (ppa=-
0.62%%).

3.2 Test-retest reliability, measurement error, and learning effects of the
VPIT metrics

Example visualization of the analyzed clinimetric properties can be found in Figure 2 (all metrics
in Figure SM3, SM4, and SMT7). The test-retest reliability and measurement error of all metrics
are summarized in Table 3. The metrics fullfilling all criteria for the quality of the clinimetric
properties were the log jerk transport (ICC 0.89, SRD% 23.31, 1 -1.65), log jerk return (ICC 0.84,
SRD% 28.56, i -4.85) and force rate SPARC transport (ICC 0.90, SRD% 20.49, n -5.02).

The metrics having insufficient (ICC<0.7) test-retest reliability were path length ratio trans-
port/return and jerk peg approach for the most affected side and path length ratio transport for
the less affected side. Systematic bias across test-retest session according to Bland-Altman plots
was visible especially for path length ratio transport/return and jerk peg approach. The metrics
SPARC return, path length ratio transport/return, jerk peg approach, and grip force rate SPARC
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Table 3: Test-retest reliability: intra-class correlation (ICC) coefficients and smallest
real differences (SRD). The ICC (optimum at 1) describes the ability of a metric to discriminate
between subjects across measurement sessions. The SRD% (optimum at 0%) describes a range of
values for that the assessment cannot distinguish between measurement noise and an actual change
in the underlying physiological construct. Bold ICC values represent acceptable test-retest reliability
(i.e., above or equal 0.7). Bold SRD% indicate least strong measurement error (SRD%<30.3).

Sensor-based metric Test-retest reliability

Most affected side Less affected side

n =18 n=21

1CC [C1] SRD% 1CC [C1] SRD%
Log jerk transport 0.89 [0.83, 0.92] 23.31 0.79 [0.69, 0.86]  30.79
Log jerk return 0.84 [0.75,0.89] 28.55  0.89 [0.84, 0.93] 25.31
SPARC return 0.81 [0.72, 0.88]  34.70 0.87 [0.81, 0.91] 27.91
Path length ratio transport 0.58 [0.36, 0.72]  54.05 0.66 [0.50, 0.77]  52.38
Path length ratio return 0.49 [0.24, 0.66]  52.24 0.84 [0.76, 0.89]  29.09
Velocity max return 0.95 [0.92, 0.97] 16.88 0.97 [0.93, 0.98] 13.05
Jerk peg approach 0.48 [0.22, 0.65]  94.55 0.92 [0.88, 0.95] 19.75
Grip force rate num. peaks transport  0.87 [0.80, 0.91] 24.58 0.90 [0.84, 0.93] 21.70
Grip force rate SPARC transport 0.90 [0.85, 0.94] 20.49 0.89 [0.84, 0.93] 21.43
Grip force rate SPARC hole approach  0.85 [0.72, 0.91]  34.20 0.78 [0.67, 0.85]  41.39

hole approach for the most affected side as well as log jerk transport, path length ratio transport,
and grip force rate SPARC hole approach for the less affected side did not pass the measurement
error evaluation (SRD%>30.3).

On the most affected side, learning effects across test-retest were strong (p-value<0.05 and n >-
6.35) for path length ratio transport, velocity max. return, force rate num. peaks transport, and force
rate SPARC hole approach (Table SM6, Figure SM5). For the less affected side, learning effects
were strong for velocity maz. return and force rate num. peaks transport (Table SM6, Figure SM6).

4 Discussion

The aim of this work was to evaluate the potential of digital health metrics, extracted from a
technology-aided assessment (VPIT), in chronic post-stroke individuals, to inform on arm and hand
sensorimotor impairments and especially characterize their functional relevance. In addition, the
objective was to establish the interpretation and robustness of the metrics in this population to pave
the way for their integration into clinical trials. The novelty of this work lies in the application
and evaluation of a technology-aided assessment that has high clinical applicability and allows
rapidly capturing movement and grip force patterns during a goal-directed, functionally relevant
manipulation task without providing arm weight support. Hence, we expected that the metrics
provide a fine-grained, robust, and clinically applicable assessment of sensorimotor impairments in
arm and hand with functional relevance. This hypothesis was evaluated in 30 chronic post-stroke
subjects. Twenty-three of these, the ones with mild to moderate sensorimotor impairments and
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without strong cognitive deficits, were able to successfully complete the goal-directed manipulation
task protocol with their most affected body side, thereby confirming previous reports about the
feasibility of such tasks in individuals with mild to moderate neurological deficits [30, 32, 55].

4.1 Assessment of functionally relevant sensorimotor impairments with
a technology-aided goal-directed manipulation task

The digital health metrics allowed identifying a high amount of individuals with impairments in
the most affected (90%) and less affected (50%) side. This could only be achieved by considering
multiple kinematic and kinetic metrics, thereby providing the envisioned fine-grained assessment of
arm and hand sensorimotor deficits. Nevertheless, conventional assessments detected sensorimotor
impairments (FMA-UE 100% for most affected side) in more post-stroke individuals than the digital
health metrics, even though the latter have a more sensitive scale without ceiling effects. We argue
that the reduced rate of detected impairments with the digital health metrics is because individuals
can compensate for certain impairments through the redundancy of the human motor apparatus
and therefore still achieve normal performance during the goal-directed tasks [13,38,56].

Moreover, the digital health metrics showed high significant correlations with the BBT and
moderate significant correlations with the ARAT and NHPT. This suggests that the goal-directed
manipulation task is able to describe sensorimotor impairments that are functionally relevant and
especially related to the ability to repeatedly grasp and transport lightweight objects as well as
dexterous finger manipulations. Indeed, it is intuitive that the goal-directed manipulation task is
especially related to the BBT, given the similar movements that are required to complete the two
tests. In addition, the correlations of the digital health metrics with the BBT and NHPT were
slightly higher than the ones observed between conventional assessment of sensorimotor impair-
ments (FMA-UE, MAS, EmNSA) and BBT and NHPT. We speculate that this slightly stronger
relationship results from the digital health metrics being recorded during a functional task, whereas
conventional assessments of impairments describe them in the absence of a functional context. For
the ARAT, the correlations were considerably higher with the FMA-UE than with the digital health
metrics. Compared to the technology-aided task, the FMA-UE and ARAT emphasize more the abil-
ity to flex the shoulder, thereby explaining their strong relationship that has also been extensively
reported in literature [11-13].

When relating these insights to the state of the art, it becomes apparent that only few technology-
aided approaches quantify movements without arm weight support and also include object manip-
ulations with the hand, which are especially important to linking impairments and activity limi-
tations [24-27]. For example, Alt Murphy et al. showed similar correlation, as reported herein,
between movement smoothness and the ARAT for post-stroke subjects that performed a drink-
ing task recorded with an optical motion capture system [24,25]. Similarly, Johansson and Hager
used an optical motion capture system for characterizing kinematics during a modified version of
the NHPT and found high correlations between movement smoothness and the task completion
time [27]. While these approaches are promising to relate sensorimotor impairments and activity
limitations and further also allow to study compensatory trunk movements, the solutions rely on
a costly and time-consuming measurement setup with an optical motion capture system, thereby
having limited clinical applicability. Research towards more rapidly applicable approaches has also
been proposed, for example relying on the same robotic end-effector as the VPIT [57,58]. However,
the presented task did not require any precise object manipulations and relied on the regular handle
of the end-effector that cannot record grip forces. Unsurprisingly, the correlations with the activity
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domain were considerably lower (multiple regression R? up to 13% for ARAT, which would corre-
spond to a Pearson correlation of 36% for the univariate case). Lastly, it is important to emphasize
that such approaches are especially tailored for individuals with mild to moderate neurological
deficits, and diverging results can be observed in subjects with more severe impairments [59-62].
This stems from such individuals typically having only limited residual ability to use the hand,
which makes the assessment of arm impairments sufficient to establish a link between impairments
and activity limitations. Also, severely impaired individuals typically require arm weight support,
thereby shadowing the influence of functionally relevant impairments such as weakness [19].
Hence, the proposed technology-aided assessment crystallizes as an interesting solution allowing
a rapid (median 16.6 min with most affected side including instructions) and, relative to optical
motion capture systems or exoskeletons, inexpensive (approx. 4000 USD hardware costs) assess-
ment of sensorimotor impairments in arm and hand in individuals with mild to moderate disability.
Moreover, the impairments detected with the technology-aided approach showed relevance for per-
forming activities similar to the NHPT and BBT, which was enabled by the task involving precise
manipulations, the absence of arm weight support, and the quantification of grip forces.

4.2 Pathophysiological correlates of VPIT metrics and functional rele-
vance of impairments

While conventional assessments (FMA-UE, MAS, EmNSA) capture sensorimotor impairments with-
out functional context, it was still expected to observe moderate correlations between functionally
relevant impairments and VPIT metrics. These correlated with the MAS and FMA-UE, which sug-
gests that the metrics are sensitive to increased muscle tone and abnormal coupling of the shoulder,
arm, and hand. While trends were visible for many metrics, the strongest ones were found for the
metric jerk peg approach, which was also correlated most strongly to conventional scales of activ-
ity. This metric describes especially the precise coordination of movements and the release of grip
forces that is required to insert a peg, which might be modulated by the integrity of the corticospinal
tract [33,63]. This idea is supported by the correlation with the FMA-UE and MAS, given that the
abnormal coupling of joints is expected to be driven by corticospinal tract integrity, which can also
contribute to increased muscle tone, depending on lesion location and severity [64-67]. However,
these speculative statements require further validation, given that the correlations with the FMA-
UE and MAS were not significant after Bonferroni correction, and that neurophysiological markers
would be required for making strong conclusions. Also, a clear correlation of the FMA-UE with
NHPT (not significant after Bonferroni), BBT, and ARAT was observed, which suggests either the
functional relevance of the ability to perform fractionated movements with single joints, expected to
be driven by corticospinal tract integrity, or the co-occurrence of other impairments when the main
neural transmission pathway is disrupted. Given that subjects often perform compensatory move-
ments allowing to improve task performance in the presence of abnormal joint couplings [13,38],
we speculate that the latter option is not unlikely.

Although the clinical importance of spasticity post-stroke is subject to critical discussions, the
results indicating a reduced ability to perform goal-directed activities in individuals with increased
muscle tone are in line with previous literature [68,69].

Somatosensory impairments, as assessed by the EmNSA, were not significantly correlated to
any VPIT metrics and did not contribute to functional task performance in the conventional scales.
Interestingly though, moderate correlations (significant before Bonferroni) were found for the force
rate SPARC hole approach metric and the BBT and ARAT. Given that this metric characterizes
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grip force coordination and is expected to be influenced by sensory deficits [33], we speculate that
these deficits might have not been captured by the clinical scale of sensory impairments that is well
known to lack sensitivity [70].

The only VPIT metric being significantly correlated to the MOCA as a general descriptor of
cognitive impairments was the force rate SPARC transport. This might result from a misunder-
standing of the visual feedback provided by the task and the subsequent uncoordinated application
of grip forces. However, as only one metric was affected, this also indicates only a minor influence
of cognitive deficits on the perception of the virtual environment or understanding of the VPIT
task.

These results showing moderate correlations between conventional impairment scales and digital
health metrics are in general in line with literature, even though the relationships are strongly
context-dependent [17,71-73].

4.3 Clinimetric properties of the VPIT metrics

The clinimetric properties of the ten VPIT core metrics were previously positively evaluated in
unaffected subjects [33]. Also, a first preliminary evaluation of the VPIT was done in post-stroke
subjects [32]. However, this evaluation relied on a different measurement protocol and did not yet
consider the recently introduced ten core metrics, which were selected by applying conservative
and objective selection criteria [33]. Herein, we confirm the robustness of three VPIT core metrics,
log jerk transport (ICC 0.89, SRD% 23.31, n -1.65), log jerk return (ICC 0.84, SRD% 28.56, n
-4.85), and force rate SPARC transport (ICC 0.90, SRD% 20.49,  -5.02) in the most affected side
of chronic post-stroke subjects. This implies that these metrics are highly reliable, have no strong
measurement error, and are not showing strong learning effects. This is expected to make the metrics
suitable for assessing sensorimotor impairments in a longitudinal manner. Given the previous
validation, all ten metrics can still be used to detect the presence of sensorimotor impairments
in cross-sectional studies [33]. Reasons why the metrics were more robust in neurologically intact
than affected subjects might be the smaller sample size used for the analysis in this work as well
as higher intra-subject variability in post-stroke subjects (Figure 2 and SM7). This rather high
variability might be because the VPIT allows heterogeneous task completion strategies and the
haptic device being able to render only up to 3.3 N of haptic feedback, which can lead to an unstable
haptic rendering of the virtual reality environment. Also, the variability might be influenced by a
visuomotor transformation from the end-effector to the virtual reality environment that has to be
learned throughout multiple repetitions of the task (Figure SM5), as also observed in other virtual
reality-based assessments [74].

It is challenging to compare the clinimetric properties of the VPIT metrics to the ones extracted
from other technology-aided assessments due to the context-dependence of metrics [17,73]. More-
over, there is a lack of quality in the evaluation of technology-aided assessments and in-depth and
thorough validation is only rarely implemented [17]. In the few cases where measurement error has
been reported, its magnitude was again dependent on the assessment metric and platform, with over-
all mostly similar ranges (e.g., SRD of 13.2% to 95.0%) to the VPIT metrics [62,75-79]. Compared
to conventional assessments (e.g., FMA-UE measurement error of 7.9%; ARAT of 6.1%) [76,80], the
measurement errors of most technology-aided assessment metrics seem consistently elevated, even
though comparisons are also challenged by the use of different SRD implementations. Nevertheless,
we argue that this results from technology-aided assessments providing a fine-grained picture of the
behavioural components underlying task performance, which makes them more susceptible to be-
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havioural variability compared to the often ordinal outcome measures of conventional scales. Hence,
we recommend researchers to thoroughly evaluate the clinimetric properties of technology-aided as-
sessments and especially consider intra-subject variability as an important factor when designing
assessment tasks. This is fundamental to fulfil the high expectations of the research community
about technology-aided assessments providing more sensitive outcome measures than conventional
scales.

4.4 Limitations

The major limitation of this work is the rather small amount of post-stroke participants included
in the analysis, which limits the generalizability of the results to other individuals that potentially
show different impairment phenotypes. This also led to rather high confidence intervals (Table SM5)
for the correlation analysis and emphasizes the need for further validation. Further, compensatory
movements, for example by the trunk, were not captured by the end-effector based approach,
but might be important to fully understand the relationship between impairments and activity
limitations.

5 Conclusions

This work provides evidence about the importance of technology-aided assessments that are con-
sidering precise goal-directed manipulations and grip forces without arm weight support, such as
the VPIT. These approaches can enable a robust, sensitive, and objective way to assess arm and
hand sensorimotor impairments that are functionally relevant in chronic post-stroke individuals
with mild to moderate deficits. Further, the VPIT allowed implementing such an approach in a
highly clinically applicable manner, by being rapidly applicable and, for a technology-aided assess-
ment, inexpensive. This promises to better identifying impairments with high functional relevance
as therapy targets in clinical research and practice, which might ultimately contribute to optimizing
the functional benefits of neurorehabilitation interventions.

In the future, it should be explored whether the assessment with the VPIT provides clinical
benefits when used as a complementary source of information in clinical practice. Further, the pre-
sented results should be confirmed within large-scale trials, where structural neuroimaging markers
together with clustering approaches should be used to fully unravel the pathophysiological correlates
of digital health metrics.
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Figure 2: Clinimetric evaluation of the VPIT metrics: example log jerk transport. a)
shows the behaviour of all subjects across five repetitions of test and retest to visualize potential
learning effects. b) informs on test-retest reliability by visualizing the median across those five
repetitions for test and retest. The red line indicates the population median for the most affected
side, the triangle corresponds to the 95t"-percentile of the normative reference population, and
shaded gray lines connect data from one subject. ¢) systematic bias was evaluated using a Bland-
Altman plot (start and end of gray bars on the right indicate the 5t~ and 95""-percentile). d) intra-
subject variability was displayed through the standard deviation (std) within all ten repetitions of
each subject. The example metric log jerk transport did not show strong learning effects, had high
test-retest reliability, no systematic bias, and low intra-subject variability, therefore being defined
as robust. TP: transport.
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Table SM6: Quantification of learning effects. A linear regression model was used to test, per
metric, whether a systematic improvement, indicative of learning effects, between test and retest
was present. The slope 1 was normalized relative to the range of observed values. Bold entries
indicate metrics without strong learning effects (effect non-significant or n >-6.35).

Sensor-based metric Learning effects (n)
Most affected side Less affected side

n=18 n =21
Log jerk transport -1.65 -4.00
Log jerk return -4.85 -6.67
SPARC return -8.10 -6.67
Path length ratio transport -7.68 0.80
Path length ratio return -13.28 -4.23
Velocity max. return -8.86 -8.90
Jerk peg approach -9.92 3.21
Grip force rate num. peaks transport -10.16 -7.16
Grip force rate SPARC transport -5.02 -4.64
Grip force rate SPARC hole approach -18.90 -5.46
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Figure SM3: Test and retest scores for all VPIT metrics. The task performance level
decreases with increasing VPIT scores. Additionally, 0% represents the median of an unimpaired
reference population and 100% the task performance of the worst neurological subject in the VPIT
database. The long red horizontal bar indicates the population median for the most affected side.
The shorter red horizontal bars represent the 25t"- and 75"-percentile. The black triangle represents
the 95t"-percentile of the unimpaired reference population. Pre- and post-measurements of a single

subject and body side are connected with a gray line.
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Figure SM4: Bland-Altman plots for the sensor-based metrics of the VPIT. The vertical
axis represents the difference between the test and retest measurement, whereas the horizontal
axis represents their average. The dashed horizontal line represents ideal behaviour (i.e., zero
difference between measurements). Further, the solid black horizontal bars and the shaded gray
areas represent the median, 5* and 95"-percentile, respectively, for subjects tested on the most
and less affected side. TP: transport. RT: return.
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Figure SM5: Learning effects in the VPIT metrics for the most affected side. The
behaviour of all subjects across five repetitions of test and retest is visualized to identify potential
learning effects. Gray horizontal lines connect the data of one individual. The red line indicates
the median across subjects. TP: transport. RT: return. SPARC: spectral arc length.
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Figure SM5: Continued.
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Figure SM6: Learning effects in the VPIT metrics for the less affected side. The
behaviour of all subjects across five repetitions of test and retest is visualized to identify potential
learning effects. Gray horizontal lines connect the data of one individual. The red line indicates
the median across subjects. TP: transport. RT: return. SPARC: spectral arc length.
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Figure SM6: Continued.
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Figure SMT:

Intra-subject variability of the VPIT metrics. The standard deviation within

the ten repetitions of the VPIT of each subjects was visualized. The longest red line indicates
the population median, whereas the shorter red lines indicate the 25! and 75t"-percentiles. TP:
transport. RT: return. SPARC: spectral arc length.
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Figure SM7: Continued.
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