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 2 

Abstract 26 

Bioactive molecule library screening strategies may empirically identify effective combination therapies. 27 

However, without a systems theory to interrogate synergistic responses, the molecular mechanisms 28 

underlying favorable drug-drug interactions remain unclear, precluding rational design of combination 29 

therapies. Here, we introduce Omics-Based Interaction Framework (OBIF) to reveal molecular drivers 30 

of synergy through integration of statistical and biological interactions in supra-additive biological 31 

responses. OBIF performs full factorial analysis of feature expression data from single vs. dual factor 32 

exposures to identify molecular clusters that reveal synergy-mediating pathways, functions and 33 

regulators. As a practical demonstration, OBIF analyzed a therapeutic dyad of immunostimulatory small 34 

molecules that induces synergistic protection against influenza A pneumonia. OBIF analysis of 35 

transcriptomic and proteomic data identified biologically relevant, unanticipated cooperation between 36 

RelA and cJun that we subsequently confirmed to be required for the synergistic antiviral protection. To 37 

demonstrate generalizability, OBIF was applied to data from a diverse array of Omics platforms and 38 

experimental conditions, successfully identifying the molecular clusters driving their synergistic 39 

responses. Hence, OBIF is a phenotype-driven systems model that supports multiplatform exploration 40 

of synergy mechanisms. 41 

 42 
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Introduction 49 

Superior treatment outcomes are achieved for many disease states when more than one therapeutic 50 

agent is administered (Chen et al, 2015; Zappasodi et al, 2018; Ronzitti et al, 2018; Han et al, 2019). 51 

Indeed, there are many well documented instances when the therapeutic benefit of two agents 52 

administered together substantially exceeds the benefit that would be predicted by the additive effects 53 

of the agents administered individually. Widespread availability of high throughput technologies has 54 

allowed multi-level study of complex biological responses from genome to phenome (Hasin et al, 2017). 55 

Yet, there remains lack of consensus regarding the appropriate analysis of statistical and biological 56 

interactions found in non-additive (i.e., antagonistic or synergistic) responses (Wei et al, 2018). 57 

Moreover, previously proposed strategies to analyze non-additive interactions frequently lack sufficient 58 

generalizability to study these processes outside of their home Omics platforms (Chen et al, 2015). 59 

Thus, while synergistic therapeutic combinations may be empirically derived from fortuitous clinical 60 

experiences or through screening of bioactive small molecule libraries, the absence of an established 61 

means to investigate these favorable drug-drug interactions ultimately precludes understanding of their 62 

underlying mechanisms. Consequently, development of a methodology to integrate the statistical and 63 

biological components of synergistic interactions in diverse Omics settings can advance the rational 64 

design of combination therapies while affording understanding of their molecular mechanisms against 65 

diseases. 66 

 67 

Pneumonia is a major worldwide cause of death and frequently requires combination therapies 68 

(Troeger et al, 2017; Metlay et al, 2019). We have previously reported that a therapeutic dyad of 69 

immunostimulatory small molecules induces synergistic protection against a broad range of 70 

pneumonia-causing pathogens (Duggan et al, 2011, Cleaver et al, 2014, Kirkpatrick et al, 2018; Ware 71 

et al, 2019). This combination (hereafter, “Pam2-ODN”) is comprised of a Toll-like receptor (TLR) 2/6 72 

agonist, Pam2CSK4 (“Pam2”), and a TLR 9 agonist, ODN M362 (“ODN”), that stimulate protective 73 

responses from lung epithelial cells (Cleaver et al, 2014). This biological response, termed inducible 74 
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epithelial resistance, promotes survival benefits and microbicidal effects that significantly exceed the 75 

additive effects of the individual ligands (Duggan et al, 2011; Tuvim et al, 2012). Thus, understanding 76 

the molecular mechanisms underlying this unanticipated synergy may allow optimized manipulation of 77 

epithelial antimicrobial responses and support new generations of host-based therapeutics against 78 

infections.  79 

 80 

In the absence of a systems theory to interrogate synergistic mechanisms (Wei et al, 2018), we 81 

introduce Omics-Based Interaction Framework (OBIF) to identify molecular drivers of synergy through 82 

integration of statistical and biological interactions in supra-additive biological responses. Unlike 83 

exploratory synergy models (Chen et al, 2015), OBIF is a phenotype-driven model (Hasin et al, 2017) 84 

that performs full factorial analysis (Li et al, 2009; Antony, 2014; Das et al, 2018) of feature expression 85 

data from single vs. dual factor exposures to identify molecular clusters that reveal synergy-mediating 86 

pathways, functions and regulators. To demonstrate the utility of OBIF, we applied this strategy to multi-87 

Omics experimental data from epithelial cells exposed to Pam2-ODN to identify biologically relevant, 88 

unanticipated cooperative signaling events that we subsequently confirmed to be required for the 89 

synergistic pneumonia protection. Then, to demonstrate generalizability, OBIF was applied to datasets 90 

from diverse types of Omics platforms and experimental models, successfully identifying molecular 91 

clusters driving their synergistic responses. 92 

 93 

Results 94 

Synergistic Pam2-ODN-induced epithelial resistance against pneumonia  95 

Our laboratory’s interest in synergistic interactions arises from our experience investigating single vs. 96 

dual immunostimulatory treatments to prevent pneumonia (Duggan et al, 2011; Tuvim et al, 2012; 97 

Cleaver et al, 2014; Kirkpatrick et al, 2018; Ware et al, 2019). As a demonstrative example, data are 98 

presented here from influenza A virus (IAV) challenges of different models following pretreatment with 99 

Pam2 alone, ODN alone or the Pam2-ODN combination. When mice are challenged with IAV 24 h after 100 
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the indicated inhaled treatments, we observed little increase in survival after the individual treatments 101 

compared to sham-treated control mice, whereas mice treated with the Pam2-ODN combination 102 

demonstrated profound antiviral protection (Figure 1A). Similarly, when isolated mouse lung epithelial 103 

(MLE-15) cells were challenged with IAV 4 h after pretreatment with the individual ligands, we observed 104 

no significant reductions in the viral burden relative to PBS treated cells. However, cells pretreated with 105 

Pam2-ODN showed a substantial reduction in viral nucleoprotein (NP) gene expression as assessed by 106 

qPCR relative to host 18s gene (Figure 1B). Comparing the effect of dual ligand treatment (EAB) to the 107 

expected response additivity of the individual ligand treatments (EA + EB) (Foucquier et al, 2015) 108 

reveals supra-additive effects on both in vivo survival benefits and in vitro viral clearance (Figure 1C). 109 

To better understand the molecular mechanisms driving such unanticipated synergy, we developed 110 

OBIF as a phenotype-driven model (Hasin et al, 2017) to understand favorable drug-drug interactions 111 

mediating synergistic responses and outcomes. 112 

 113 

Development of a systems synergy model from experimental Omics data 114 

To formally test whether the effect of dual factors (FAB: Pam2-ODN) is greater than the expected linear 115 

sum of its individual factors (FA: Pam2; FB: ODN), an initial 2-level 2-factor (22) factorial design is 116 

required (Slinker, 1998; Foucquier et al, 2015) (Figure 1D). Our strategy adapts the traditional analysis 117 

of variance (ANOVA) approach into a model that links the empirical analysis of synergy (Slinker, 1998; 118 

Foucquier et al, 2015) with the high-throughput capacity and high-dimensionality of Omics datasets 119 

(Coral et al, 2017; Bardini et al, 2017). As summarized in Figure 1E, OBIF integrates statistical and 120 

biological interactions in Omics data matrices from single vs. dual factor exposures, leveraging Omics 121 

screening to promote discovery of the molecular drivers of synergy, and facilitating the biological 122 

validation of synergy regulators. The analytical pipeline is freely available as an R package at GitHub 123 

(www.github.com/evanslaboratory/OBIF). Naturally, the experimental validation components must be 124 

tailored to the individual tools and characteristics of the biological responses being studied. 125 

 126 
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 6 

Differentially expressed molecules reveal synergy-specific pathways 127 

To investigate the mechanisms underlying Pam2-ODN synergy, we used OBIF to re-analyze previously 128 

published (Data Ref: Tuvim et al, 2014) lung homogenate transcriptomic data from mice inhalationally 129 

treated with single vs. dual ligands (GSE28994).  After model fitting for feature expression (Figure 130 

EV1), this analysis identifies 3456 features as differentially expressed molecules (DEMs) 2 h after 131 

treatment with Pam2, 2941 DEMs after ODN treatment, and 3138 DEMs after treatment with Pam2-132 

ODN (Figure 2A). Despite the fact that 52% (1617/3138) of DEMs were shared by Pam2-ODN and the 133 

individual ligands, enrichment analysis using IPA software revealed an overrepresentation of 12 134 

canonical cellular immune response and cytokine signaling pathways that were activated by Pam2-135 

ODN but not by either or both single ligands (Figure 2B). Of these, NF-κB signaling was the most 136 

enriched signaling pathway by Pam2-ODN treatment. Although unsupervised hierarchical clustering 137 

consistently segregated the treatment groups (Figure 2C), this approach alone did not reveal distinctive 138 

gene clusters to explain the synergistic response, likely due to the 52% redundancy of DEMs between 139 

groups.   140 

 141 

Expression profiles summarize biological interactions and disentangle effectors of synergistic 142 

functions  143 

Rather than relying on potentially redundant DEM clusters, OBIF classifies dual factor-induced DEMs 144 

into eight expression profiles (EPs) that characterize cooperative and competitive biological interactions 145 

of individual factors (Table 1). EPs are defined by expression directionality (up- or down-regulation) of 146 

individual features and are not biased by the DEM expression analysis. Cooperative EPs have 147 

accordant expression directionality induced by FA and FB, while competitive EPs have opposite 148 

directionalities induced by FA and FB. Among the cooperative EPs, concordant profiles result when FAB 149 

directionality corresponds with the single factor effects (EPs I and II), and discordant profiles occur 150 

when FAB directionality opposes the single factors (III and IV). Alternatively, among the competitive EPs, 151 

factor-dominant profiles are defined by FAB directionality correspondence with one factor (FA dominant, 152 
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V and VI; FB dominant, VII and VIII). Principal component analysis (Figure 2D) demonstrates that 153 

concordant EPs (I and II) were the most abundant in our dataset, followed by Pam2-dominant profiles 154 

(V and VI). This abundance of EPs I and II better emphasizes the cooperative effects of both factors 155 

than does conventional DEM clustering alone. In particular, the contribution of ODN to the synergistic 156 

combination might otherwise be overlooked by DEM analysis, as it induces enrichment of far fewer 157 

signaling pathways (Figure 2B) and has a greater clustering distance from Pam2-ODN samples (Figure 158 

2C).  159 

 160 

Notably, enrichment analysis reveals that molecular effectors clustered by EPs correspond with Pam2-161 

ODN-induced functions (Figure 2E), suggesting a biological basis for the synergy. Specifically, we 162 

found that features in profiles I and V contributed to host survival functions, immune activity and 163 

microbicidal activity. Considered from an organizational perspective, induction of resistance to infection 164 

at the organismal level correlated with features in profile I, at the cellular level with profile II, and by 165 

leukocytes with profile V. 166 

 167 

Factorial effects analysis integrates biological and statistical interactions in EPs 168 

Analysis of factorial effects in a data matrix from single vs. dual factor exposures can statistically 169 

differentiate whether stochastic feature expression in a combination is correlated with the effect of an 170 

individual factor (simple main effect, SME) or their influence on each other (interaction effect) (Li et al, 171 

2013; Mihret et al, 2014; Zhang et al, 2017). Based on this principle, OBIF performs full factorial 172 

analysis through paired comparisons of calculated β coefficients in each condition to determine 173 

statistical relationships (Hassall et al, 2018) and discover significant main effects during expression 174 

analysis and multi-factor effects (SMEs and interaction effect) from contrast (Mee, 2009) analysis 175 

(Figure 3A). Using this approach, main effects determined significant DEMs per condition, while multi-176 

factor effects explained whether Pam2-ODN DEMs and EPs resulted from SMEs and/or an interaction 177 

of individual ligands (Figure 3B). This analysis showed that most features in concordant profiles (I and 178 
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II) are influenced by at least one multi-factor effect, while all features in discordant profiles (III and IV) 179 

are influenced by all multi-factor effects simultaneously. Not surprisingly, Pam2-dominant (V and VI) 180 

and ODN-dominant (VII and VIII) expression mainly results from their respective SMEs. This analysis 181 

also revealed that 67% (2116/3138) of Pam2-ODN DEMs are driven by the interaction effect of Pam2 182 

and ODN as interacting DEMs (iDEMs) (Figure 3C). Thus, OBIF reconciled the biological interactions 183 

from EPs with the statistical interactions from multi-factor effects of Pam2-ODN. 184 

 185 

SMEs accurately reproduce the regulatory network of combined exposures 186 

Downstream analyses of SMEs have the capacity to discern the contributing roles of individual factors 187 

to a combination treatment (Hassall et al, 2018). Hence, Pam2-ODN DEMs with significant SMEs were 188 

used for network analysis of upstream regulators that are activated (orange) or inhibited (blue) and up-189 

regulated (red) or down-regulated (green) (Figure 3D). Similar to our previous findings with DEMs 190 

(Figure 2B), transcription factors from many pathways were involved, though NF-κB family members 191 

remained central elements of this network. Demonstrating the cross-Omics function of OBIF, a parallel 192 

analysis of reverse-phase protein array (RPPA) data from single- or dual-treated human lung epithelial 193 

cells identified the top phospho-signaling DEMs (Figure EV2), and cross-validated STAT3, RelA and 194 

cJun as transcriptional units involved in the Pam2-ODN signaling network (Figure 3E). 195 

 196 

iDEMs identify non-additive features and synergy regulators 197 

Non-additivity results from strong interaction effects between two factors in a combination and gives 198 

rise to synergistic or antagonistic responses (Slinker et al, 1998; Geary et al, 2013). iDEMs integrate 199 

this principle during feature selection based on significant interaction effects between factors, allowing 200 

quantification of synergistic and antagonistic expression in a narrower set of differentially expressed 201 

features. OBIF builds on previous definitions of the combination index (CI) (Foucquier et al, 2015; 202 

Goldstein et al, 2017) to fit the values of feature expression: 203 

CI = | (Log2FC FAB) / (Log2FC FA + Log2FC FB) | 204 
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where CI is the absolute ratio of the log2 fold change of Pam-ODN-induced DEMs (FAB) and the 205 

additivity threshold of Pam2 (FA) and ODN (FB), allowing identification of both antagonistic (CI < 1) or 206 

synergistic (CI > 1) features (Figure 3F). A log2 transformation of the CI then yields an interaction score 207 

(IS) that quantifies the effect size of non-additive expression relative to the additivity threshold, and can 208 

be applied to both antagonistic (IS < 0) and synergistic (IS > 0) iDEMs (Figure 3G). This allows more 209 

focused enrichment analysis, in this case supporting NF-κB/RelA and AP-1/cJun as key transcriptional 210 

upstream regulators of Pam2-ODN’s interaction effect and synergistic expression (Figure 3H). 211 

 212 

Experimental validation of molecular regulators of Pam2-ODN synergy 213 

Prompted by the foregoing results, we tested whether RelA and cJun were biologically relevant synergy 214 

regulators of Pam2-ODN-induced epithelial resistance. The DNA-binding activity of NF-κB and AP-1 215 

subunits in isolated human bronchial epithelial cells (HBEC-3kt) after stimulation with Pam2-ODN 216 

confirmed that RelA and cJun activation was strongly increased after 15 minutes of treatment without 217 

significant contribution of other family members (Figure 4A, Figure EV3A). Indeed, RelA and cJun 218 

exhibited surprisingly similar activation kinetics after Pam2-ODN treatment, further supporting 219 

cooperation or coordination (Figure 4B). Investigating this co-activation of non-redundant transcriptional 220 

families, single-cell nuclear translocation of canonical p50/RelA and cFos/cJun dimers in HBEC-3kt was 221 

assessed by imaging flow cytometry. We found that all transcriptional subunits exhibited an increased 222 

nuclear translocation (similarity score > 2) after 15 minutes of Pam2-ODN treatment relative to the 223 

PBS-treated cells (Figure 4C). However, neither Pam2 nor ODN alone induced the same magnitude of 224 

nuclear translocation, whether assessed by similarity scores (Rd value) or by the percentage of 225 

translocated cells (Figure 4D) relative to PBS treated cells. 226 

 227 

Discovery of novel NF-κB and AP-1 cooperation required for antiviral protection 228 

To differentiate transcriptional cooperation from coincidental transcription factor activation after Pam2-229 

ODN treatment, we assessed the Pam2-ODN-induced nuclear co-translocation of NF-κB and AP-1 230 
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complexes in the presence or absence of NF-κB inhibitor IMD-0354 (IMD). As expected, pre-treatment 231 

with IMD alone reduced the Rd Value and percentage of translocated cells for RelA and p50 without 232 

significantly modifying the percentage of translocation for cJun and cFos. However, NF-κB inhibition 233 

with IMD also unexpectedly reduced the Pam2-ODN-induced similarity score shifts and nuclear 234 

translocation of AP-1 subunits, particularly of cFos (Figure 4E). This indicates that NF-κB inhibition 235 

impaired Pam2-ODN-induced AP-1 nuclear translocation, confirming the cooperative regulation of 236 

these two non-overlapping signaling pathways. Representative images shown in Figure 4F 237 

demonstrate that inhibition with IMD reduced Pam2-ODN-induced heterodimerization and nuclear 238 

translocation of NF-κB and AP-1 complexes. Further, we confirmed that disruption of this transcriptional 239 

cooperation was sufficient to impair the inducible viral burden reduction seen with Pam2-ODN (Figure 240 

4G).  241 

 242 

Application of OBIF across multiple platforms and conditions 243 

To demonstrate its generalizability, we used OBIF to analyze synergistic regulators in datasets derived 244 

from microarray, RNA-seq, RPPA and mass spectrometry-based metabolomics investigations of 245 

diverse factor classes and biological systems that demonstrate synergistic biological outcomes (Data 246 

Ref: Tuvim et al, 2014; Data Ref: Caetano et al, 2018; Data Ref: Singh et al, 2019; Data Ref: Han et al, 247 

2019). As a preliminary step before full factorial analysis of individual features, OBIF performs an 248 

interaction analysis between the two factors of interest using a two-way ANOVA model to represent the 249 

impact of factorial effects at the whole “-ome” level. This statistical summary shows the effects of 250 

individual factors and interactions through interaction plots and statistical significance calculations 251 

(Figure 5A). This provides adjusted R2 and F-statistic p-values of the two-way ANOVA that allow 252 

evaluation of improved model fitness (Figure EV4 A) and detection of interaction terms (Figure EV4 B) 253 

within a dataset. After confirming adequate model fitness (i.e. adjusted R2 > 0.5, F-test < 0.05), full 254 

factorial analysis on scaled data from targeted or non-targeted platforms identifies DEMs (Figure 5B) 255 

from individual features with an increased discriminatory power for interaction effects (Figure EV4C). 256 
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EPs then represent the biological interactions of dual factor DEMs regardless of their factor classes 257 

(Figure 5C). Contrast analysis is then applied to more adequately retrieve and classify iDEMs (Figure 258 

EV4D) and interaction scores are calculated in a uniform scale whether the original data contained 259 

continuous or count-based expression values (Figure 5D). Finally, OBIF visually summarizes the 260 

results of full factorial analysis in a Circos plot to easily identify molecular drivers of synergy from the 261 

co-expressed features, DEMs, log2FC, EPs, multi-factor effects and iDEMs with their interaction score 262 

(Figure 5E). 263 

 264 

Discussion 265 

Synergistic and antagonistic interactions are common in nature and frequently promote efficacy of 266 

therapeutic interventions (Chen et al, 2015; Ronzitti et al, 2018; Wei et al, 2018; Zappasodi et al, 2018; 267 

Han et al, 2019). While synergy quantification methods from dose-response data, combinatorial 268 

screening of molecule libraries, and other predictive exploration models may suggest potentially 269 

synergistic conditions or treatments, they do not provide substantive insights into the molecular 270 

mechanisms underlying synergy (Chen et al, 2015). Thus, synergy-mediating pathways cannot be 271 

strategically targeted in rational drug development.  272 

 273 

Our interest in synergy arose from our observations of the strikingly synergistic interactions of one such 274 

empirically derived combination, Pam2-ODN. While we could easily quantify the superiority of 275 

protection conferred by the dual treatment, in the absence of a systems theory to interrogate synergistic 276 

mechanisms (Chen et al, 2015; Wei et al, 2018), we were limited in our capacity to use available Omics 277 

datasets to deduce the mechanisms mediating the synergy. This is important because, although this 278 

lack of mechanistic understanding does not limit the utility of the current combination, it precludes 279 

development of next generation interventions that more precisely (perhaps, more efficaciously) target 280 

the synergy-driving pathways with fewer off-target (potentially toxic) effects. In contrast to models that 281 

predict possible synergy, OBIF was developed with the explicit intent to investigate established 282 
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synergistic events. As such, it is inherently a phenotype-driven model that performs full factorial 283 

analysis on feature expression data from single vs. dual factor exposures to identify molecular clusters 284 

that reveal synergy-mediating pathways, functions and regulators.  285 

 286 

Using Pam2-ODN datasets as demonstrative examples, OBIF identified unanticipated transcriptional 287 

cooperation between non-redundant transcription factors, RelA and cJun, as a molecular mechanism of 288 

inducible synergistic protection against IAV. Thus, by facilitating understanding of combined factor 289 

exposures in terms of the individual components, a computational discovery facilitated experimental 290 

validation of a discrete, novel mediator of a non-additive biological response. Perhaps as importantly, 291 

the computational analyses were accomplished by integration of data from different Omics platforms, 292 

different specimen types, and even different host species.    293 

 294 

Unlike most 22 designs, OBIF dissects factorial effects of dual factor exposures through full factorial 295 

analysis of feature expression data in a single unsupervised step. This allows simultaneous 296 

identification of DEMs directly from main effects of single or dual factors, overcoming pairwise 297 

comparisons to control and repetitive analysis of each condition. While this simultaneous identification 298 

of DEMs can be performed also with a mixed-effect model, we showed how this approach is suboptimal 299 

to detect interaction effects at the level of individual features and iDEM selection when compared with 300 

full factorial analysis. Additionally, clustering by DEMs, EPs and iDEMs improves the specificity of 301 

enrichment analysis to disentangle the signaling pathways, functions and regulators of this synergistic 302 

combination and to capture their specific driving features. Further, quantification of multi-factor effects 303 

(SMEs and interaction effects) reveals whether particular features, molecular clusters or functions 304 

enriched by synergistic combinations are the result of individual factors or their crosstalk.  305 

 306 

These statistical relationships have biological analogues that are integrated by OBIF in the EP 307 

definitions. In fact, profiles I and II rescued the underrepresentation of ODN observed in distance-based 308 
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clustering and enrichment analysis. Further, iDEMs derived from features with significant interaction 309 

effects allow focusing discovery on synergy regulators and the calculation of interaction scores allows 310 

quantification of their non-additive expression. Thus, unlike most systems models of synergy, OBIF 311 

facilitates integrative analyses of biological and statistical interactions that are easily discoverable and 312 

interpretable through molecular clusters representing the complex dynamics of synergistic 313 

combinations. 314 

 315 

OBIF is available as an open-source R package with a semi-automated pipeline to facilitate its broad 316 

application to unscaled original data from various Omics platforms, factor classes and biological 317 

systems. We have shown that OBIF can be fitted to perform full factorial analysis and that it adequately 318 

identifies DEMs, EPs, iDEMs and their attendant values and scores to promote discovery of molecular 319 

drivers of synergy in multiple, diverse datasets.  320 

 321 

In summary, OBIF provides a phenotype-driven systems biology model that allows multiplatform 322 

dissection of molecular drivers of synergy. And, we encourage the application of OBIF to provide 323 

holistic understanding in research fields where greater-than-additive beneficial combinations remain 324 

understudied. 325 

 326 

Materials and Methods 327 

Reagents and Tools Table 328 

Reagent/Resource Reference or Source                            Identifier or Catalog Number 

Experimental Models      

C57BL/6J (M. musculus) Jackson Lab B6.129P2Gpr37tm1Dgen/J 

Immortalized human 
bronchial epithelial 
(HBEC-3kt) cells 

Dr. John Minna Authenticated by the MD Anderson 
Characterized Cell Line Core Facility 

Murine lung epithelial 
(MLE-15) cells 

Dr. Jeffrey Whitsett Authenticated by the MD Anderson 
Characterized Cell Line Core Facility 

Antibodies      
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NFκB p50 (E-10) Alexa 
Fluor® 647 

Santa Cruz Biotechnology, Inc. Cat # sc-8414 AF647 

NFκB p65 (F-6) Alexa 
Fluor® 488 

Santa Cruz Biotechnology, Inc. Cat # sc-8008 AF488 

c-Jun (G-4) Alexa Fluor® 
594 

Santa Cruz Biotechnology, Inc. Cat # sc-74543 AF594 

c-Fos Antibody (D-1) 
Alexa Fluor® 546 

Santa Cruz Biotechnology, Inc. Cat # sc-8047 AF546 

Oligonucleotides and 
sequence-based 
reagents  

    

Mouse 18s - Forward 
Primer 

Sigma-Aldrich 5'-CTCATCCTTTATGACAAAGAAG-3' 

Mouse 18s - Reverse 
Primer 

Sigma-Aldrich 5'-AGATCATCATGTGAGTCAGAC-3' 

Influenza NP - Forward 
Primer 

Sigma-Aldrich 5'-GTAACCCGTTGAACCCCATT-3' 

Influenza NP - Reverse 
Primer 

Sigma-Aldrich 5'-CCATCCAATCGGTAGTAGCG-3' 

Chemicals, enzymes 
and other reagents 

    

eBioscience™ Foxp3 / 
Transcription Factor 
Staining Buffer Set 

Thermo Fisher Scientific Cat # 00-5523-00 

LIVE/DEAD™ Fixable 
Near-IR Dead Cell Stain 
Kit 

Thermo Fisher Scientific Cat # L34975 

Power SYBR Green PCR 
Master Mix 

Thermo Fisher Scientific Cat # 4368702 

UltraComp eBeads™ 
Compensation Beads 

Thermo Fisher Scientific Cat # 01-2222-42 

RNAlater Sigma-Aldrich Cat # R0901-500ML 

Accutase solution Sigma-Aldrich Cat # A6964-500ML 

IMD-0354 Sigma-Aldrich Cat # I3159-5MG   

iScript™ cDNA Synthesis 
Kit 

Bio-Rad Cat # 1708891BUN 

Software      

Rstudio RStudio, Inc. Version 1.2.5033 

R www.R-project.org Version 3.6.3 

Prism 8 GraphPad Software, LLC. Version 8.4.2 

Amnis® IDEAS® Luminex Corporation Version 6.1 

INSPIRE ImageStreamX  Luminex Corporation System Version 

KCJunior Bio-Tek Instruments, Inc. System Version 

CFX Maestro™ Software Bio-Rad Cat # #12004110 

Other     

TransAM NFκB Family Active Motif Cat # 43296 

TransAM AP-1 Family Active Motif Cat # 44296 
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TransAM STAT Family Active Motif Cat # 42296 

RNeasy Mini Kit Qiagen Cat # 74106 

QIAshredder Qiagen Cat # 79656 

CFX Connect Real-Time 
PCR Detection System 

Bio-Rad Cat # 1855201 

uQuant Universal 
Microplate 
Spectrophotometer 

Bio-Tek Instruments, Inc. Cat # MQX200 

TProfessional TRIO 
combi PCR Thermocycler 

Biometra Cat # 070-724 

NanoDrop™ 
One Microvolume UV-Vis 
Spectrophotometer 

Thermo Fisher Scientific Cat # ND-ONE-W 

Amnis® 
ImageStream®XMk II 

Luminex Corporation Serial # ISX325 

 329 

Methods and Protocols 330 

Experimental Models 331 

Animals 332 

All mouse experiments were performed with 6-10 week old C57BL/6J mice of a single sex in 333 

accordance with the Institutional Animal Care and Use of Committee of The University of Texas MD 334 

Anderson Cancer Center, protocol 00000907-RN01. 335 

 336 

Cell culture 337 

Immortalized human bronchial epithelial (HBEC-3kt) cells were kindly provided by Dr. John Minna. 338 

HBEC-3kt cells were cultured in keratinocyte serum-free media (KSFM) supplemented with human 339 

epidermal growth factor and bovine pituitary extract. Murine lung epithelial (MLE-15) cells were kindly 340 

provided by Dr. Jeffrey Whitsett. The cell lines used were authenticated by the MD Anderson 341 

Characterized Cell Line Core Facility. MLE-15 cells were cultured in RPMI supplemented with 10% fetal 342 

bovine serum. Cultures were maintained in the presence of penicillin and streptomycin. 343 

 344 

Exposure to TLR ligands 345 
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S-[2,3-bis(palmitoyloxy)-propyl]-(R)-cysteinyl-(lysyl) 3-lysine (Pam2 CSK4) and ODN M362 were 346 

reconstituted in endotoxin-free water, then diluted to the desired concentration in sterile PBS. For in 347 

vivo experiments, as previously described (Kirkpatrick et al, 2018; Ware et al, 2019), the indicated 348 

ligands were placed in an Aerotech II nebulizer driven by 10L/min air supplemented with 5% CO2 for 20 349 

min. The nebulizer was connected by polyethylene tubing to a polyethylene exposure chamber. 24 h 350 

prior to infections, 10 ml of Pam2 (4 µM) and/or ODN (1 µM) was delivered via nebulization to 351 

unrestrained mice for 20 minutes, and then mice were returned to normal housing. For in vitro 352 

experiments, Pam2-ODN was added to the culture media 4 h prior to inoculation with virus. 353 

 354 

Reverse-Phase Protein Array 355 

To simultaneously evaluate the expression of 161 regulatory proteins and phospho-proteins in HBEC-356 

3kt cells after exposure to either PBS, Pam2, ODN or Pam2-ODN, a targeted high-throughput 357 

screening proteomic assay was performed by the Reverse Phase Protein Array Core Facility at The 358 

University of Texas MD Anderson Cancer Center (Tibes et al, 2006; Hennessy et al, 2010). The RPPA 359 

included 4 biological replicates per treatment condition, and data is available at GitHub 360 

(www.github.com/evanslaboratory/OBIF). 361 

 362 

Infection Models 363 

For in vivo infections, frozen stock (2.8 × 107 50% tissue culture infective doses [TCID50] ml−1) of 364 

influenza A H3N2, virus was diluted 1:250 in 0.05% gelatin in Eagle’s minimal essential medium and 365 

delivered by aerosolization for 20 min to achieve a 90% lethal dose (LD90) to LD100 (~100 TCID50 per 366 

mouse). Mouse health was followed for 21 d post infection. n = 15 mice per condition. Animals were 367 

weighed daily and sacrificed if they met euthanasia criteria, including signs of distress or loss of 20% 368 

pre-infection body weight. For in vitro infections, IAV (multiplicity of infection [MOI] of 1.0) was added to 369 

cells in submerged monolayer and viral burden was assessed 24 hours post infection.   370 

 371 
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Pathogen burden quantification 372 

To measure transcript levels of IAV nucleoprotein (NP) gene, samples were harvested in RNAlater and 373 

RNA was extracted using the RNeasy extraction kit. 500 ng total RNA was reverse transcribed to cDNA 374 

by using an iScript cDNA synthesis kit and submitted to quantitative reverse transcription-PCR (RT-375 

PCR) analysis with SYBR green PCR master mix on an Bio-Rad CFX Connect Real-Time PCR 376 

Detection System. Host 18S rRNA was similarly probed to determine relative expression of viral 377 

transcripts.  378 

 379 

Omics Dataset Formatting  380 

OBIF’s input in R requires an analysis-ready data matrix m with expression values and of dimensions f 381 

x n, where f is the number of features as rows and n is the number of samples S as columns. The 382 

appropriate sample order in dimensions n of m is: 383 

n = S(0,0)
1 + … + S(0,0)

i + S(1,0)
1 + … + S(1,0)

i  + S(0,1)
1 + … + S(0,1)

i  + S(1,1)
1 + … + S(1,1)

i 384 

The subscripts denote the condition of the samples: exposed to neither factor (0,0), exposed to factor A 385 

alone (1,0), exposed to factor B alone (0,1) or exposed to both factors A and B (1,1). The superscripts 386 

represent the sample replicates from 1 to i within each of the four conditions.  387 

 388 

To improve detection of interaction effects, OBIF allows sequential transformation of an unscaled 389 

original data matrix with background correction, log2-transformation, quantile normalization or a 390 

combination of these if needed. Background correction reduces noise to signal ratio at the lower limits 391 

of detection and methods vary per platform with code extensions are available at GitHub for microarray 392 

data using the lumi package, and for count-based sequencing data using rpm, rpkm, fpkm and tpm 393 

thresholds. Log2-transformation of continuous and count-base data is incorporated to provide a 394 

Gaussian-like data distribution, and quantile normalization is used to minimize the variance between 395 

samples during data scaling (Lo et al, 2015; Abrams et al, 2019) with OBIF to meet the statistical 396 
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assumptions needed for two-way ANOVA analysis of interaction terms in a dataset (Slinker, 1998; 397 

Foucquier et al, 2015). 398 

 399 

Interaction analysis 400 

To evaluate significant interaction terms between factors at the whole “-ome” level, OBIF performs a 401 

multiple linear regression across the expression values in a dataset:  402 

EO ~ 0 + FA + FB + FA · FB 403 

where the interaction analysis of the Omics expression levels (EO) is equivalent to a two-way ANOVA 404 

analysis where the intercept is referenced to the control samples (0) and returns a statistical summary 405 

of terms for the individual factor A (FA), factor B (FB) and their interaction (FA · FB). Goodness of fit is 406 

calculated from the adjusted R2 values, and overall significance is determined by the p-values of F-407 

statistics of the regression. Unscaled original data and scaled data with OBIF are compared to evaluate 408 

improvement in detection of significant interaction terms in a given dataset. 409 

 410 

Full Factorial Analysis  411 

Expression Analysis 412 

To perform differential expression analysis for detection of DEMs, OBIF fits a fixed-effects model to the 413 

expression data of each feature: 414 

Ef = β0 + β1 · FA + β2 · FB + β3 · FAB 415 

where the expression level of features (Ef) is a function of the estimated β coefficients for the main 416 

effects of individual factor A (FA) and factor B (FB) and their combination (FAB). After regression, 417 

empirical Bayesian shrinkage of the standard errors is used to stabilize inferences of t-statistics, F-418 

statistics, and log-odds used for differential expression analysis. Q-values are then calculated using the 419 

Benjamini and Hochberg method to reduce the false discovery rate (FDR). Alternatively, code 420 

extensions for are available at GitHub to perform Bonferroni corrections or calculate Tukey Honest 421 

Significant Differences adjustment for multiple testing instead of FDR. 422 
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 423 

Contrast analysis 424 

To analyze the remaining factorial effects in the fitted linear model of feature expression, the 425 

coefficients and standard errors will be estimated typical of a two-way ANOVA from a set of contrasts 426 

that define the SMEs of each factor and their interaction effect: 427 

SME of FA = β3 · FAB  – β2 · FB 428 

SME of FB = β3 · FAB – β1 · FA 429 

Interaction effect of FA · FB (β4) = β3 · FAB  – β2 · FB – β1 · FA 430 

The standard errors calculated use a significance threshold (p-value < 0.05) to determine if DEMs with 431 

FAB (Pam2-ODN) are susceptible to SME or interaction effects. Selection of iDEMs is based on DEMs 432 

of FAB with a significant interaction effect.  433 

 434 

Mixed-effects model 435 

To evaluate performance of full factorial analysis with OBIF, detection of interaction effects at the level 436 

of individual features is compared to a mixed-effect model (Caetano et al, 2018):  437 

Ef-Mix = β0 + β1 · FA + β2 · FB + β4 · FA · FB + (1|S) 438 

where the expression level of features in a mixed-effect model (Ef-Mix) is a function of the estimated β 439 

coefficients for the fixed effects of individual factor A (FA) and factor B (FB) and their interaction (FA · FB) 440 

with a random effect (1|S) for all sample conditions (S(0,0), S(1,0), S(0,1), S(1,1)). After regression, empirical 441 

Bayesian shrinkage of the standard errors is used to stabilize inferences of t-statistics and F-statistics. 442 

The standard errors calculated from the interaction term use a significance threshold (p-value < 0.05) to 443 

determine significant interaction effects. 444 

 445 

Beta-uniform mixture model 446 

Interaction p-values are extracted from the interaction term of mixed-effects model and from the 447 

interaction effect contrast of full factorial analysis. Independently, a beta-uniform mixture model is fitted 448 
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to these sets of p-values (Pounds et al, 2003; Ji et al, 2005) to compare their discrimination ability using 449 

their receiver operating characteristic area under the curve (ROC AUC). Using the beta-uniform mixture 450 

models, we calculated the number of true positives (TP), false positive (FP) and false negatives (FN) 451 

detections (Pounds et al, 2003; Zhang et al, 2012) at the threshold level of iDEM selection (interaction 452 

p-value = 0.05) to estimate their precision and recall proportion: 453 

Precision = TP / ( TP + FP ) 454 

Recall = TP / ( TP + FN ) 455 

 456 

Unsupervised clustering of features with OBIF 457 

Hierarchical clustering and heatmaps of DEMs 458 

All DEMs were represented in heatmaps after hierarchically clustering using Ward’s minimum variance 459 

method with Euclidean distances of log2FC values to compute dissimilarity by rows (features) and by 460 

columns (samples). Column dendrograms were plotted to represent the distance between samples, 461 

vertical side bar colors summarize DEMs according to their and horizontal side bars colors represent 462 

sample types by factors. Color scale keys indicate the levels of feature expression with upregulation in 463 

red and downregulation in green. 464 

 465 

Principal component analysis of expression profiles 466 

DEMs with FAB (Pam2-ODN) were clustered by principal component analysis based on the mean linear 467 

fold change difference to reveal the expression patterns biologically present across all factors FA, FB 468 

and FAB. Principal components 1 and 2 were used for plotting DEMs with FAB and the variability 469 

between features is marked in each axis. EPs were identified in the clusters for each individual feature 470 

according to Table 1. 471 

 472 

Enrichment analysis  473 
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To provide biological interpretation of the full factorial analysis and classification of features, enrichment 474 

analysis was integrated in the pipeline to determine candidate effectors and regulators of synergy, 475 

biological pathways and functional processes. Sets for DEMs, EPs, DEMs with SMEs and iDEMs are 476 

uploaded independently, and enrichment analysis is performed with IPA software (QIAGEN, Hilden, 477 

Germany) for core analysis using the expression levels of features. Both gene and chemical Ingenuity 478 

Knowledge Base modules are used as enrichment reference, considering only experimentally observed 479 

confidence levels for identification of direct and indirect relationships. The thresholds of significance for 480 

canonical pathways, upstream analysis, diseases & functions, regulator effects and network analysis 481 

are ≥ 2 for activation z-score and < 5% false discovery rates for all predictions.  482 

 483 

DNA-binding ELISA  484 

HBEC-3kt were grown to 80-100% confluence in 24-well plates and treated with PBS, Pam2, ODN, or 485 

Pam2-ODN for the indicated durations. Measurements of DNA-binding of members of NF-κB and AP-1 486 

transcription factor members from whole cell lysates were made using their respective TransAM Kit 487 

according to product directions. For signal detection, samples were read immediately for absorbance at 488 

450 nm with reference wavelength at 655 nm on a microplate reader. Experiments were repeated in 489 

triplicate and statistical analysis was performed with unpaired student’s t test using GraphPad Prism 8.0 490 

with a significance threshold of p-value <0.05.  491 

 492 
Detection of Nuclear Translocation  493 

Transcription factor staining and image acquisition 494 

HBEC-3kt were grown to 80-100% confluence in 100mm dishes and treated for 30 min with PBS, 495 

Pam2, ODN or Pam2-ODN with or without pretreatment with NF-κB inhibitor IMD-0354 at 25 ng/μL for 496 

16 h. Cells were detached from the plate with a 5 min incubation at 37 ºC degrees with 3 ml of 497 

Accutase to prevent additional activation of transcriptional activity. Cells were pelleted in individual 15 498 

ml tubes at 500 g for 5 min and suspended in 500 μL of eBioscience FOXP3 fixation/permeabilization 499 
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buffer for 15 min at room temperature. Cells were stained with a LIVE/DEAD Fixable Near IR Dead Cell 500 

Dye and with a 1:1000 dilution of NF-κB p50 (E-10) Alexa Fluor 647, NF-κB p65 (F-6) Alexa Fluor 488, 501 

c-Jun (G-4) Alexa Fluor 594 and c-Fos (D-1) Alexa Fluor 546 conjugated antibodies for 1 h on ice and 502 

protected from light. After incubation, cells were pelleted and washed with 200 μL of sterile PBS 4 503 

times, then resuspended in 100 μL sterile PBS. After the last wash, cells were pelleted and 504 

resuspended in 50 μL of sterile PBS and nuclear DAPI staining at 0.5 μg/mL was performed just prior to 505 

data acquisition on ImageStreamX MII.  506 

 507 

Data acquisition with ImageStreamX MKII 508 

HBEC-3kt images were acquired using INSPIRE software on the ImagestreamX Mark II imaging flow 509 

cytometer (Amnis Corporation) at 40× magnification, with lasers 405 nm (85.00 mW), 488 nm 510 

(200.00 mW), and side scatter (782 nm) (1.14 mW). 10,000 images per sample acquired include a 511 

brightfield image (Channel 1 and 9), p65 Alexa Fluor 488 (Channel 2), c-Fos Alexa Fluor 546 (Channel 512 

3), c-Fos Alexa Fluor 594 (Channel 4), side scatter (Channel 6), DAPI (Channel 7), and p50 Alexa Fluor 513 

647 (Channel 3). The laser outputs prevented saturation of pixels in the relevant detection channels as 514 

monitored by the corresponding Raw Max Pixel features during acquisition. For image compensation, 515 

single color controls were stained with all fluorochromes and 500 events were recorded with each laser 516 

for individual controls. Fluorescent images were taken in all channels with brightfield LEDs and scatter 517 

lasers turned off to accurately capture fluorescence. Individual single-color control file was then merged 518 

to generate a compensation matrix and all sample files were processed with this matrix applied. 519 

 520 

Nuclear translocation analysis  521 

After compensation for spectral overlap based on single color controls, analysis was performed and 522 

individual cell images were created using IDEAS® software version 6.1. Cell populations were 523 

hierarchically gated first by single cells, then cells in focus, then negative selected for live cells, and 524 

finally as double positive for both DAPI and the transcription factor subunit of interest (Figure EV3B). 525 
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The spatial relationship between the transcription factors and nuclear images was measured using the 526 

‘Similarity’ feature in the IDEAS software to quantitate the mean similarity score in the cell populations 527 

per sample. A similarity score >1 represents nuclear translocation, and the shift in distribution of 528 

nuclear translocation between two samples was calculated using the Fisher's Discriminant ratio (Rd 529 

value) (Maguire et al, 2015).  530 

 531 

Statistical Analysis 532 

Statistical analyses were performed using Prism 8 (GraphPad, San Diego, CA) and R. Kaplan-Meier 533 

curves were used for survival analyses and logrank (Mantel-Cox test) was used for paired group 534 

comparisons. Analysis of viral NP expression was performed using a two-way ANOVA with post hoc 535 

Tukey analysis for paired comparisons that was adjusted for multiple testing.  Analysis of DNA-binding 536 

activity in vitro was performed using a student’s t test for comparisons between 2 groups, or using one-537 

way ANOVA for comparison between multiple groups. Grouped data is shown as means +/- standard 538 

error of the mean, with experiments with n < 5 showing individual sample values. To verify the 539 

statistical assumptions for each test, Gaussian distribution was evaluated with Saphiro-Wilk test, and 540 

equal variance between two samples was evaluated with F-tests, or for more than two samples with 541 

Barlett’s or Levene’s test. Simultaneous multiple outlier detection was performed using the robust 542 

regression and outlier removal (ROUT) method with a q value of 5% (maximum FDR). Treatment 543 

allocation of animals was randomized in the experiments, though assessment could not be blinded. A 544 

pre-specified minimum requirement of 3 biological replicates for in vitro studies and 10 for in vivo 545 

studies.  546 

 547 

Data Availability 548 

The data and code in this study are available in the following databases: 549 

 OBIF R Package: GitHub Evanslaboratory/OBIF (www.github.com/evanslaboratory/OBIF) 550 

 OBIF R Code: GitHub Evanslaboratory/Extensions (www.github.com/evanslaboratory/Extensions) 551 
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 Microarray data: Gene Expression Omnibus GSE28994 552 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28994) 553 

 RNA-seq data: Gene Expression Omnibus GSE109000 554 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109000) 555 

 Reverse-phase protein array data: GitHub Evanslaboratory/Datasource 556 

(www.github.com/evanslaboratory/Datasource) 557 

 Reverse-phase protein array data: EMBO Molecular Medicine DOI:10.15252/emmm.201809960 558 

(https://www.embopress.org/doi/abs/10.15252/emmm.201809960) 559 

 Metabolomics data: Frontiers in Pharmacology DOI:10.3389/fphar.2019.00754 560 

(https://www.frontiersin.org/articles/10.3389/fphar.2019.00754/full) 561 
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Figure legends 695 

 696 

Figure 1. Omics-Based Interaction Framework: phenotype-driven synergy modeling and 697 

framework overview. 698 

(A) Mouse survival of influenza A challenge following the indicated pretreatments. Dashed line indicates 699 

additive effect of single ligand treatments over PBS. n = 15 mice/condition. (B) Virus burden of isolated 700 

mouse lung epithelial cells after influenza A challenge following the indicated pretreatments. RQ, 701 

relative quantification of viral nucleoprotein (NP) expression to host 18s. n = 6 samples/condition. (C) 702 

Plot of response additivity from antiviral responses in panels A (left) and B (right). Synergistic effects 703 

are reflected by EAB greater than the expected linear sum (EA + EB, dashed line) of individual ligand 704 

effects, antagonistic effects are observed when EAB < EA + EB. (D) Generic Omics workflow for 705 

phenotype-driven synergy modeling using a 22 experimental design. (E) Overview of OBIF, including (i) 706 

Omics screening of features in a data matrix, (ii) discovery of feature clusters of molecular drivers, and 707 

(iii) experimental validation of biologically relevant synergy regulators. * P < 0.05 compared to either 708 

condition, *** P < 0.0005 compared to either condition. 709 

 710 

Figure 2. Differentially expressed molecules and expression profiles reveal synergy-mediating 711 

pathways and functions.    712 

(A) Euler diagram of differentially expressed molecules following single or dual treatment in mouse lung 713 

homogenates. (B) Most overrepresented activated canonical pathways after IPA enrichment of DEMs. 714 

(C) Heatmap of expression values of DEMs in A with expression profiles shown per feature (rows). (D) 715 

Principal component analysis of Pam2-ODN DEMs identified by expression profiles. (E) Top activated 716 

(orange) and inhibited (blue) diseases and functions after IPA enrichment of expression profiles. FC, 717 

fold change. 718 

 719 

Figure 3. Full factorial analysis reveals regulatory networks and molecular drivers of synergy. 720 
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(A) Scheme of full factorial analysis performed by OBIF from β coefficients. (B) Venn diagram of Pam2-721 

ODN DEMs correlated by expression profiles classes and multi-factor effects. (C) Feature count and 722 

percentage of Pam2-ODN iDEMs and non-iDEMs in B. (D) Network analysis of activated (orange) or 723 

inhibited (blue), and up-regulated (red) or down-regulated (green) upstream regulators of Pam2-ODN 724 

after IPA enrichment of SME. (E) Cross-Omics validation of regulators in D. Differentially expressed 725 

phospho-signaling molecules were identified with OBIF from a reverse-phase protein array in human 726 

lung epithelial cells. (F) Non-additive feature expression assessed by combination index (CI). 727 

Representative genes and their CI values are shown. (G) Interaction score (IS) of iDEMs, reflecting 728 

antagonistic (IS < 0) and synergistic (IS > 0) features. (H) Top activated (orange) or inhibited (blue) 729 

transcriptional regulators after IPA enrichment of iDEMs. DEMs, differentially expressed molecules. 730 

iDEMs, interacting DEMs. SME, simple-main effects. 731 

 732 

Figure 4. Regulators identified with OBIF uncovered cooperation between RelA and cJun that is 733 

required for synergistic antiviral protection. 734 

(A) Transcription factor activity of NF-κB and AP-1 subunits 15 min after treatment of human lung 735 

epithelial cells with Pam2-ODN. n = 3-6 samples/condition. (B) RelA and cJun activity at indicated times 736 

after Pam2-ODN treatment. n = 6 samples/condition. (C) Nuclear translocation scores of NF-κB and 737 

AP-1 heterodimers after Pam2-ODN treatment. Shown as normalized frequency of similarity score per 738 

condition. (D) NF-κB and AP-1 subunit nuclear translocation in C (increased, red; decreased, blue) per 739 

condition. (E) NF-κB and AP-1 subunit nuclear translocation with or without NF-κB inhibition by IMD-740 

0345. (F) Representative imaging flow cytometry images of hetero-dimerization and nuclear 741 

translocation of NF-κB and AP-1 in D and E. (G) Virus burden of mouse lung epithelial cells challenged 742 

with influenza A with or without NF-κB inhibition. n = 4 samples/condition. *, P < 0.05; **, P < 0.005; ***, 743 

P < 0.0005 compared to baseline. 744 

 745 
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Figure 5. OBIF reveals molecular drivers of synergy across platforms, factor classes and 746 

experimental systems. 747 

(A) Interaction analysis of factorial effects at the whole “-ome” level, demonstrating interaction plots, 748 

coefficient significance and quality of model fitness per platform. (B) Euler diagram of DEMs identified 749 

in A. (C) Principal component analysis of dual factor DEMs in B clustered by EPs. (D) Interaction 750 

scores of iDEMs in C. (E) Visual summary of molecular drivers of synergy in B-D plotted including 751 

DEMs, EPs and iDEMs. EF, feature expression; FA, factor A; FB, factor B; FAB, factor AB; FC, fold 752 

change; DEMs, differentially expressed molecules; EPs, expression profiles; iDEMs, interacting DEMs.   753 
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Tables and their legends 754 

 755 

Expression Pattern Response Fold Change 

Expression Profiles 
In single factor exposure In dual factor exposure    

Cooperative 

Concordant 
   I    

   II    

Discordant 
   III    

   IV    

Competitive 

Factor A-Dominant 
   V    

   VI    

Factor B-Dominant 
   VII    

   VIII    

 756 

Table 1. Expression profiles depict biological interactions during dual factor exposure.  757 
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Expanded View Figure legends 758 

 759 

Figure EV1. Overview of model fitting of Omics datasets during analysis with OBIF. 760 

(A) Quality control plots assess data distribution of GSE28994 with violin plots (top) and detect potential 761 

outliers by hierarchical clustering (bottom) in both the pre-processed original dataset (left) and the 762 

analysis-ready dataset (right). (B) Interaction analysis of factorial effects at the whole transcriptome 763 

level, demonstrating interaction plots, coefficient significance and goodness of fit per platform. (C) 764 

Representative volcano plots of full factorial analysis from analysis ready data for each condition after 765 

expression analysis (top) and Q-Q plots of moderated t-statistics for each multi-factor effect after 766 

contrast analysis (bottom). (D) Visual summary of OBIF’s outputs including DEMs, EPs and iDEMs 767 

(left) plotted into 3 rings (right): (i) DEMs, where inner links represent shared features between DEMs 768 

followed by their log2FC values; (ii) EPs, where inner sectors represent individual profiles (I to VIII) 769 

followed by their of significant FA-SME (green), FB-SME (orange) or FA·FB interaction effect (pink); and 770 

(iii) iDEMs, represented by their synergistic or antagonistic interaction scores. FC, fold change; DEMs, 771 

differentially expressed molecules; EPs, expression profiles; iDEMs, interacting DEMs; SME, simple 772 

main effect.  773 

 774 

Figure EV2. OBIF analysis of RPPA data from HBEC-3kt treated with single or dual ligands. 775 

(A) Interaction analysis of factorial effects at the whole proteome level, demonstrating interaction plots, 776 

coefficient significance and quality of model fitness per platform. (B) Euler diagram of DEMs identified 777 

in A. (C) Principal component analysis of dual factor DEMs in B clustered by EPs. (D) OBIF summary of 778 

molecular drivers of synergy in B-C. (E) Heatmap of expression values of DEMs in B with expression 779 

profiles shown per feature (rows). FC, fold change; DEMs, differentially expressed molecules; EPs, 780 

expression profiles.  781 

 782 

 783 
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Figure EV3. STAT family data and gating strategy for imaging flow cytometry. 784 

(A) Transcription factor activity of STAT subunits 15 min after treatment of human lung epithelial cells 785 

with Pam2-ODN. n = 3 samples/condition. (B) Gating strategy used during single cell imaging flow 786 

cytometry for simultaneous assessment of all transcriptional subunits. 787 

 788 

Figure EV4. OBIF improves detection of interaction effects across platforms and factor classes. 789 

(A) Comparative performance of data scaling during interaction analysis at the whole “-ome” level 790 

showing overall fitness and significance of two-way ANOVA. (B) Significance level of interaction term 791 

between factors detected in A. (C) Comparative performance of statistical methods to detect interaction 792 

effects at the individual feature level using a beta-uniform mixture model of interaction p-values. (D) 793 

Precision and recall fractions at iDEM selection threshold calculated from C. OBIF, Omics-based 794 

interaction framework; ROC, receiver operating characteristic; AUC, area under the curve. 795 
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