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Abstract

Bioactive molecule library screening strategies may empirically identify effective combination therapies.
However, without a systems theory to interrogate synergistic responses, the molecular mechanisms
underlying favorable drug-drug interactions remain unclear, precluding rational design of combination
therapies. Here, we introduce Omics-Based Interaction Framework (OBIF) to reveal molecular drivers
of synergy through integration of statistical and biological interactions in supra-additive biological
responses. OBIF performs full factorial analysis of feature expression data from single vs. dual factor
exposures to identify molecular clusters that reveal synergy-mediating pathways, functions and
regulators. As a practical demonstration, OBIF analyzed a therapeutic dyad of immunostimulatory small
molecules that induces synergistic protection against influenza A pneumonia. OBIF analysis of
transcriptomic and proteomic data identified biologically relevant, unanticipated cooperation between
RelA and cJun that we subsequently confirmed to be required for the synergistic antiviral protection. To
demonstrate generalizability, OBIF was applied to data from a diverse array of Omics platforms and
experimental conditions, successfully identifying the molecular clusters driving their synergistic
responses. Hence, OBIF is a phenotype-driven systems model that supports multiplatform exploration

of synergy mechanisms.
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Introduction

Superior treatment outcomes are achieved for many disease states when more than one therapeutic
agent is administered (Chen et al, 2015; Zappasodi et al, 2018; Ronzitti et al, 2018; Han et al, 2019).
Indeed, there are many well documented instances when the therapeutic benefit of two agents
administered together substantially exceeds the benefit that would be predicted by the additive effects
of the agents administered individually. Widespread availability of high throughput technologies has
allowed multi-level study of complex biological responses from genome to phenome (Hasin et al, 2017).
Yet, there remains lack of consensus regarding the appropriate analysis of statistical and biological
interactions found in non-additive (i.e., antagonistic or synergistic) responses (Wei et al, 2018).
Moreover, previously proposed strategies to analyze non-additive interactions frequently lack sufficient
generalizability to study these processes outside of their home Omics platforms (Chen et al, 2015).
Thus, while synergistic therapeutic combinations may be empirically derived from fortuitous clinical
experiences or through screening of bioactive small molecule libraries, the absence of an established
means to investigate these favorable drug-drug interactions ultimately precludes understanding of their
underlying mechanisms. Consequently, development of a methodology to integrate the statistical and
biological components of synergistic interactions in diverse Omics settings can advance the rational
design of combination therapies while affording understanding of their molecular mechanisms against

diseases.

Pneumonia is a major worldwide cause of death and frequently requires combination therapies
(Troeger et al, 2017; Metlay et al, 2019). We have previously reported that a therapeutic dyad of
immunostimulatory small molecules induces synergistic protection against a broad range of
pneumonia-causing pathogens (Duggan et al, 2011, Cleaver et al, 2014, Kirkpatrick et al, 2018; Ware
et al, 2019). This combination (hereafter, “Pam2-ODN”) is comprised of a Toll-like receptor (TLR) 2/6
agonist, Pam2CSK4 (“Pam2”), and a TLR 9 agonist, ODN M362 (“ODN"), that stimulate protective

responses from lung epithelial cells (Cleaver et al, 2014). This biological response, termed inducible
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epithelial resistance, promotes survival benefits and microbicidal effects that significantly exceed the
additive effects of the individual ligands (Duggan et al, 2011; Tuvim et al, 2012). Thus, understanding
the molecular mechanisms underlying this unanticipated synergy may allow optimized manipulation of
epithelial antimicrobial responses and support new generations of host-based therapeutics against

infections.

In the absence of a systems theory to interrogate synergistic mechanisms (Wei et al, 2018), we
introduce Omics-Based Interaction Framework (OBIF) to identify molecular drivers of synergy through
integration of statistical and biological interactions in supra-additive biological responses. Unlike
exploratory synergy models (Chen et al, 2015), OBIF is a phenotype-driven model (Hasin et al, 2017)
that performs full factorial analysis (Li et al, 2009; Antony, 2014; Das et al, 2018) of feature expression
data from single vs. dual factor exposures to identify molecular clusters that reveal synergy-mediating
pathways, functions and regulators. To demonstrate the utility of OBIF, we applied this strategy to multi-
Omics experimental data from epithelial cells exposed to Pam2-ODN to identify biologically relevant,
unanticipated cooperative signaling events that we subsequently confirmed to be required for the
synergistic pneumonia protection. Then, to demonstrate generalizability, OBIF was applied to datasets
from diverse types of Omics platforms and experimental models, successfully identifying molecular

clusters driving their synergistic responses.

Results

Synergistic Pam2-ODN-induced epithelial resistance against pneumonia

Our laboratory’s interest in synergistic interactions arises from our experience investigating single vs.
dual immunostimulatory treatments to prevent pneumonia (Duggan et al, 2011; Tuvim et al, 2012;
Cleaver et al, 2014; Kirkpatrick et al, 2018; Ware et al, 2019). As a demonstrative example, data are
presented here from influenza A virus (IAV) challenges of different models following pretreatment with

Pamz2 alone, ODN alone or the Pam2-ODN combination. When mice are challenged with 1AV 24 h after
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the indicated inhaled treatments, we observed little increase in survival after the individual treatments
compared to sham-treated control mice, whereas mice treated with the Pam2-ODN combination
demonstrated profound antiviral protection (Figure 1A). Similarly, when isolated mouse lung epithelial
(MLE-15) cells were challenged with 1AV 4 h after pretreatment with the individual ligands, we observed
no significant reductions in the viral burden relative to PBS treated cells. However, cells pretreated with
Pam2-ODN showed a substantial reduction in viral nucleoprotein (NP) gene expression as assessed by
gPCR relative to host 18s gene (Figure 1B). Comparing the effect of dual ligand treatment (Eag) to the
expected response additivity of the individual ligand treatments (Ex + Eg) (Foucquier et al, 2015)
reveals supra-additive effects on both in vivo survival benefits and in vitro viral clearance (Figure 1C).
To better understand the molecular mechanisms driving such unanticipated synergy, we developed
OBIF as a phenotype-driven model (Hasin et al, 2017) to understand favorable drug-drug interactions

mediating synergistic responses and outcomes.

Development of a systems synergy model from experimental Omics data

To formally test whether the effect of dual factors (Fag: Pam2-ODN) is greater than the expected linear
sum of its individual factors (Fa: Pam2; Fg: ODN), an initial 2-level 2-factor (2%) factorial design is
required (Slinker, 1998; Foucquier et al, 2015) (Figure 1D). Our strategy adapts the traditional analysis
of variance (ANOVA) approach into a model that links the empirical analysis of synergy (Slinker, 1998;
Foucquier et al, 2015) with the high-throughput capacity and high-dimensionality of Omics datasets
(Coral et al, 2017; Bardini et al, 2017). As summarized in Figure 1E, OBIF integrates statistical and
biological interactions in Omics data matrices from single vs. dual factor exposures, leveraging Omics
screening to promote discovery of the molecular drivers of synergy, and facilitating the biological
validation of synergy regulators. The analytical pipeline is freely available as an R package at GitHub

(www.github.com/evanslaboratory/OBIF). Naturally, the experimental validation components must be

tailored to the individual tools and characteristics of the biological responses being studied.
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Differentially expressed molecules reveal synergy-specific pathways

To investigate the mechanisms underlying Pam2-ODN synergy, we used OBIF to re-analyze previously
published (Data Ref: Tuvim et al, 2014) lung homogenate transcriptomic data from mice inhalationally
treated with single vs. dual ligands (GSE28994). After model fitting for feature expression (Figure
EV1), this analysis identifies 3456 features as differentially expressed molecules (DEMs) 2 h after
treatment with Pam2, 2941 DEMs after ODN treatment, and 3138 DEMs after treatment with Pam2-
ODN (Figure 2A). Despite the fact that 52% (1617/3138) of DEMs were shared by Pam2-ODN and the
individual ligands, enrichment analysis using IPA software revealed an overrepresentation of 12
canonical cellular immune response and cytokine signaling pathways that were activated by Pam2-
ODN but not by either or both single ligands (Figure 2B). Of these, NF-kB signaling was the most
enriched signaling pathway by Pam2-ODN treatment. Although unsupervised hierarchical clustering
consistently segregated the treatment groups (Figure 2C), this approach alone did not reveal distinctive
gene clusters to explain the synergistic response, likely due to the 52% redundancy of DEMs between

groups.

Expression profiles summarize biological interactions and disentangle effectors of synergistic
functions

Rather than relying on potentially redundant DEM clusters, OBIF classifies dual factor-induced DEMs
into eight expression profiles (EPs) that characterize cooperative and competitive biological interactions
of individual factors (Table 1). EPs are defined by expression directionality (up- or down-regulation) of
individual features and are not biased by the DEM expression analysis. Cooperative EPs have
accordant expression directionality induced by F, and Fg, while competitive EPs have opposite
directionalities induced by F, and Fg. Among the cooperative EPs, concordant profiles result when Fag
directionality corresponds with the single factor effects (EPs | and Il), and discordant profiles occur
when Fg directionality opposes the single factors (Il and V). Alternatively, among the competitive EPs,

factor-dominant profiles are defined by Fag directionality correspondence with one factor (Fx dominant,
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V and VI; Fg dominant, VII and VIII). Principal component analysis (Figure 2D) demonstrates that
concordant EPs (I and II) were the most abundant in our dataset, followed by Pam2-dominant profiles
(V and VI). This abundance of EPs | and Il better emphasizes the cooperative effects of both factors
than does conventional DEM clustering alone. In particular, the contribution of ODN to the synergistic
combination might otherwise be overlooked by DEM analysis, as it induces enrichment of far fewer
signaling pathways (Figure 2B) and has a greater clustering distance from Pam2-ODN samples (Figure

2C).

Notably, enrichment analysis reveals that molecular effectors clustered by EPs correspond with Pam2-
ODN-induced functions (Figure 2E), suggesting a biological basis for the synergy. Specifically, we
found that features in profiles | and V contributed to host survival functions, immune activity and
microbicidal activity. Considered from an organizational perspective, induction of resistance to infection
at the organismal level correlated with features in profile I, at the cellular level with profile 1l, and by

leukocytes with profile V.

Factorial effects analysis integrates biological and statistical interactions in EPs

Analysis of factorial effects in a data matrix from single vs. dual factor exposures can statistically
differentiate whether stochastic feature expression in a combination is correlated with the effect of an
individual factor (simple main effect, SME) or their influence on each other (interaction effect) (Li et al,
2013; Mihret et al, 2014; Zhang et al, 2017). Based on this principle, OBIF performs full factorial
analysis through paired comparisons of calculated B coefficients in each condition to determine
statistical relationships (Hassall et al, 2018) and discover significant main effects during expression
analysis and multi-factor effects (SMEs and interaction effect) from contrast (Mee, 2009) analysis
(Figure 3A). Using this approach, main effects determined significant DEMs per condition, while multi-
factor effects explained whether Pam2-ODN DEMs and EPs resulted from SMEs and/or an interaction

of individual ligands (Figure 3B). This analysis showed that most features in concordant profiles (I and
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II) are influenced by at least one multi-factor effect, while all features in discordant profiles (lll and V)
are influenced by all multi-factor effects simultaneously. Not surprisingly, Pam2-dominant (V and VI)
and ODN-dominant (VII and VIII) expression mainly results from their respective SMEs. This analysis
also revealed that 67% (2116/3138) of Pam2-ODN DEMs are driven by the interaction effect of Pam2
and ODN as interacting DEMs (iDEMs) (Figure 3C). Thus, OBIF reconciled the biological interactions

from EPs with the statistical interactions from multi-factor effects of Pam2-ODN.

SMEs accurately reproduce the regulatory network of combined exposures

Downstream analyses of SMEs have the capacity to discern the contributing roles of individual factors
to a combination treatment (Hassall et al, 2018). Hence, Pam2-ODN DEMs with significant SMEs were
used for network analysis of upstream regulators that are activated (orange) or inhibited (blue) and up-
regulated (red) or down-regulated (green) (Figure 3D). Similar to our previous findings with DEMs
(Figure 2B), transcription factors from many pathways were involved, though NF-kB family members
remained central elements of this network. Demonstrating the cross-Omics function of OBIF, a parallel
analysis of reverse-phase protein array (RPPA) data from single- or dual-treated human lung epithelial
cells identified the top phospho-signaling DEMs (Figure EV2), and cross-validated STAT3, RelA and

cJun as transcriptional units involved in the Pam2-ODN signaling network (Figure 3E).

iDEMs identify non-additive features and synergy regulators

Non-additivity results from strong interaction effects between two factors in a combination and gives
rise to synergistic or antagonistic responses (Slinker et al, 1998; Geary et al, 2013). iDEMs integrate
this principle during feature selection based on significant interaction effects between factors, allowing
guantification of synergistic and antagonistic expression in a narrower set of differentially expressed
features. OBIF builds on previous definitions of the combination index (Cl) (Foucquier et al, 2015;
Goldstein et al, 2017) to fit the values of feature expression:

Cl = | (LogzFC Fag) / (L0g2FC Fa + LogzFC Fg) |
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where CI is the absolute ratio of the log2 fold change of Pam-ODN-induced DEMs (Fag) and the
additivity threshold of Pam2 (F,) and ODN (Fg), allowing identification of both antagonistic (Cl < 1) or
synergistic (Cl > 1) features (Figure 3F). A log2 transformation of the ClI then yields an interaction score
(IS) that quantifies the effect size of non-additive expression relative to the additivity threshold, and can
be applied to both antagonistic (IS < 0) and synergistic (IS > 0) iDEMs (Figure 3G). This allows more
focused enrichment analysis, in this case supporting NF-kB/RelA and AP-1/cJun as key transcriptional

upstream regulators of Pam2-ODN'’s interaction effect and synergistic expression (Figure 3H).

Experimental validation of molecular regulators of Pam2-ODN synergy

Prompted by the foregoing results, we tested whether RelA and cJun were biologically relevant synergy
regulators of Pam2-ODN-induced epithelial resistance. The DNA-binding activity of NF-kB and AP-1
subunits in isolated human bronchial epithelial cells (HBEC-3kt) after stimulation with Pam2-ODN
confirmed that RelA and cJun activation was strongly increased after 15 minutes of treatment without
significant contribution of other family members (Figure 4A, Figure EV3A). Indeed, RelA and cJun
exhibited surprisingly similar activation kinetics after Pam2-ODN treatment, further supporting
cooperation or coordination (Figure 4B). Investigating this co-activation of non-redundant transcriptional
families, single-cell nuclear translocation of canonical p50/RelA and cFos/cJun dimers in HBEC-3kt was
assessed by imaging flow cytometry. We found that all transcriptional subunits exhibited an increased
nuclear translocation (similarity score > 2) after 15 minutes of Pam2-ODN treatment relative to the
PBS-treated cells (Figure 4C). However, neither Pam2 nor ODN alone induced the same magnitude of
nuclear translocation, whether assessed by similarity scores (Rd value) or by the percentage of

translocated cells (Figure 4D) relative to PBS treated cells.

Discovery of novel NF-kB and AP-1 cooperation required for antiviral protection
To differentiate transcriptional cooperation from coincidental transcription factor activation after Pam2-

ODN treatment, we assessed the Pam2-ODN-induced nuclear co-translocation of NF-kB and AP-1
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complexes in the presence or absence of NF-kB inhibitor IMD-0354 (IMD). As expected, pre-treatment
with IMD alone reduced the Rd Value and percentage of translocated cells for RelA and p50 without
significantly modifying the percentage of translocation for cJun and cFos. However, NF-kB inhibition
with IMD also unexpectedly reduced the Pam2-ODN-induced similarity score shifts and nuclear
translocation of AP-1 subunits, particularly of cFos (Figure 4E). This indicates that NF-kB inhibition
impaired Pam2-ODN-induced AP-1 nuclear translocation, confirming the cooperative regulation of
these two non-overlapping signaling pathways. Representative images shown in Figure 4F
demonstrate that inhibition with IMD reduced Pam2-ODN-induced heterodimerization and nuclear
translocation of NF-kB and AP-1 complexes. Further, we confirmed that disruption of this transcriptional
cooperation was sufficient to impair the inducible viral burden reduction seen with Pam2-ODN (Figure

4G).

Application of OBIF across multiple platforms and conditions

To demonstrate its generalizability, we used OBIF to analyze synergistic regulators in datasets derived
from microarray, RNA-seq, RPPA and mass spectrometry-based metabolomics investigations of
diverse factor classes and biological systems that demonstrate synergistic biological outcomes (Data
Ref: Tuvim et al, 2014; Data Ref: Caetano et al, 2018; Data Ref: Singh et al, 2019; Data Ref: Han et al,
2019). As a preliminary step before full factorial analysis of individual features, OBIF performs an
interaction analysis between the two factors of interest using a two-way ANOVA model to represent the

1

impact of factorial effects at the whole “-ome” level. This statistical summary shows the effects of
individual factors and interactions through interaction plots and statistical significance calculations
(Figure 5A). This provides adjusted R? and F-statistic p-values of the two-way ANOVA that allow
evaluation of improved model fitness (Figure EV4 A) and detection of interaction terms (Figure EV4 B)
within a dataset. After confirming adequate model fitness (i.e. adjusted R?> > 0.5, F-test < 0.05), full

factorial analysis on scaled data from targeted or non-targeted platforms identifies DEMs (Figure 5B)

from individual features with an increased discriminatory power for interaction effects (Figure EV4C).

10
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EPs then represent the biological interactions of dual factor DEMs regardless of their factor classes
(Figure 5C). Contrast analysis is then applied to more adequately retrieve and classify iDEMs (Figure
EV4D) and interaction scores are calculated in a uniform scale whether the original data contained
continuous or count-based expression values (Figure 5D). Finally, OBIF visually summarizes the
results of full factorial analysis in a Circos plot to easily identify molecular drivers of synergy from the
co-expressed features, DEMs, log,FC, EPs, multi-factor effects and iDEMs with their interaction score

(Figure 5E).

Discussion

Synergistic and antagonistic interactions are common in nature and frequently promote efficacy of
therapeutic interventions (Chen et al, 2015; Ronzitti et al, 2018; Wei et al, 2018; Zappasodi et al, 2018;
Han et al, 2019). While synergy quantification methods from dose-response data, combinatorial
screening of molecule libraries, and other predictive exploration models may suggest potentially
synergistic conditions or treatments, they do not provide substantive insights into the molecular
mechanisms underlying synergy (Chen et al, 2015). Thus, synergy-mediating pathways cannot be

strategically targeted in rational drug development.

Our interest in synergy arose from our observations of the strikingly synergistic interactions of one such
empirically derived combination, Pam2-ODN. While we could easily quantify the superiority of
protection conferred by the dual treatment, in the absence of a systems theory to interrogate synergistic
mechanisms (Chen et al, 2015; Wei et al, 2018), we were limited in our capacity to use available Omics
datasets to deduce the mechanisms mediating the synergy. This is important because, although this
lack of mechanistic understanding does not limit the utility of the current combination, it precludes
development of next generation interventions that more precisely (perhaps, more efficaciously) target
the synergy-driving pathways with fewer off-target (potentially toxic) effects. In contrast to models that

predict possible synergy, OBIF was developed with the explicit intent to investigate established

11
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synergistic events. As such, it is inherently a phenotype-driven model that performs full factorial
analysis on feature expression data from single vs. dual factor exposures to identify molecular clusters

that reveal synergy-mediating pathways, functions and regulators.

Using Pam2-ODN datasets as demonstrative examples, OBIF identified unanticipated transcriptional
cooperation between non-redundant transcription factors, RelA and cJun, as a molecular mechanism of
inducible synergistic protection against IAV. Thus, by facilitating understanding of combined factor
exposures in terms of the individual components, a computational discovery facilitated experimental
validation of a discrete, novel mediator of a non-additive biological response. Perhaps as importantly,
the computational analyses were accomplished by integration of data from different Omics platforms,

different specimen types, and even different host species.

Unlike most 22 designs, OBIF dissects factorial effects of dual factor exposures through full factorial
analysis of feature expression data in a single unsupervised step. This allows simultaneous
identification of DEMs directly from main effects of single or dual factors, overcoming pairwise
comparisons to control and repetitive analysis of each condition. While this simultaneous identification
of DEMs can be performed also with a mixed-effect model, we showed how this approach is suboptimal
to detect interaction effects at the level of individual features and iDEM selection when compared with
full factorial analysis. Additionally, clustering by DEMs, EPs and iDEMs improves the specificity of
enrichment analysis to disentangle the signaling pathways, functions and regulators of this synergistic
combination and to capture their specific driving features. Further, quantification of multi-factor effects
(SMEs and interaction effects) reveals whether particular features, molecular clusters or functions

enriched by synergistic combinations are the result of individual factors or their crosstalk.

These statistical relationships have biological analogues that are integrated by OBIF in the EP

definitions. In fact, profiles | and Il rescued the underrepresentation of ODN observed in distance-based
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clustering and enrichment analysis. Further, iDEMs derived from features with significant interaction
effects allow focusing discovery on synergy regulators and the calculation of interaction scores allows
quantification of their non-additive expression. Thus, unlike most systems models of synergy, OBIF
facilitates integrative analyses of biological and statistical interactions that are easily discoverable and
interpretable through molecular clusters representing the complex dynamics of synergistic

combinations.

OBIF is available as an open-source R package with a semi-automated pipeline to facilitate its broad
application to unscaled original data from various Omics platforms, factor classes and biological
systems. We have shown that OBIF can be fitted to perform full factorial analysis and that it adequately
identifies DEMs, EPs, iDEMs and their attendant values and scores to promote discovery of molecular

drivers of synergy in multiple, diverse datasets.

In summary, OBIF provides a phenotype-driven systems biology model that allows multiplatform
dissection of molecular drivers of synergy. And, we encourage the application of OBIF to provide
holistic understanding in research fields where greater-than-additive beneficial combinations remain

understudied.

Materials and Methods

Reagents and Tools Table

Reagent/Resource Reference or Source Identifier or Catalog Number
Experimental Models

C57BL/6J (M. musculus)  Jackson Lab B6.129P2Gpr37tm1Dgen/J
Immortalized human Dr. John Minna Authenticated by the MD Anderson
bronchial epithelial Characterized Cell Line Core Facility
(HBEC-3kt) cells

Murine lung epithelial Dr. Jeffrey Whitsett Authenticated by the MD Anderson
(MLE-15) cells Characterized Cell Line Core Facility
Antibodies
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NFkB p50 (E-10) Alexa
Fluor® 647

NFkB p65 (F-6) Alexa
Fluor® 488

c-Jun (G-4) Alexa Fluor®
594

c-Fos Antibody (D-1)
Alexa Fluor® 546

Santa Cruz Biotechnology, Inc.
Santa Cruz Biotechnology, Inc.
Santa Cruz Biotechnology, Inc.

Santa Cruz Biotechnology, Inc.

Cat # sc-8414 AF647

Cat # sc-8008 AF488

Cat # sc-74543 AF594

Cat # sc-8047 AF546

Oligonucleotides and
sequence-based

reagents

Mc_)use 18s - Forward Sigma-Aldrich 5'-CTCATCCTTTATGACAAAGAAG-3'
hPAré)rS:é 18s - Reverse Sigma-Aldrich 5-AGATCATCATGTGAGTCAGAC-3'
:Tl?lzlsgza NP - Forward Sigma-Aldrich 5'-GTAACCCGTTGAACCCCATT-3'
::r)]rfIIrLTJ]eerrlza NP - Reverse Sigma-Aldrich 5-CCATCCAATCGGTAGTAGCG-3'

Primer

Chemicals, enzymes
and other reagents

eBioscience™ Foxp3/
Transcription Factor
Staining Buffer Set
LIVE/DEAD™ Fixable
Near-IR Dead Cell Stain
Kit

Power SYBR Green PCR
Master Mix

UltraComp eBeads™
Compensation Beads

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Cat # 00-5523-00

Cat # L34975

Cat # 4368702

Cat # 01-2222-42

RNAlater Sigma-Aldrich Cat # R0901-500ML
Accutase solution Sigma-Aldrich Cat # A6964-500ML
IMD-0354 Sigma-Aldrich Cat # 13159-5MG
iScript™ cDNA Synthesis  Bio-Rad Cat # 1708891BUN
Kit

Software

Rstudio RStudio, Inc. Version 1.2.5033

R www.R-project.org Version 3.6.3

Prism 8 GraphPad Software, LLC. Version 8.4.2
Amnis® IDEAS® Luminex Corporation Version 6.1

INSPIRE ImageStreamX
KCJunior

Luminex Corporation
Bio-Tek Instruments, Inc.

System Version
System Version

CFX Maestro™ Software  Bio-Rad Cat # #12004110
Other

TransAM NFkB Family Active Motif Cat # 43296
TransAM AP-1 Family Active Motif Cat # 44296

14
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TransAM STAT Family Active Motif Cat # 42296
RNeasy Mini Kit Qiagen Cat # 74106
QIlAshredder Qiagen Cat # 79656
CFX Connect Real-Time Bio-Rad Cat # 1855201

PCR Detection System
uQuant Universal

Bio-Tek Instruments, Inc.

Cat # MQX200

Microplate
Spectrophotometer
TProfessional TRIO
combi PCR Thermocycler

Biometra Cat # 070-724

NanoDrop™ Thermo Fisher Scientific Cat # ND-ONE-W
One Microvolume UV-Vis

Spectrophotometer

Amnis® Luminex Corporation Serial # 1SX325
ImageStream®XMK ||

Methods and Protocols

Experimental Models

Animals

All mouse experiments were performed with 6-10 week old C57BL/6J mice of a single sex in
accordance with the Institutional Animal Care and Use of Committee of The University of Texas MD

Anderson Cancer Center, protocol 00000907-RNO1.

Cell culture

Immortalized human bronchial epithelial (HBEC-3kt) cells were kindly provided by Dr. John Minna.
HBEC-3kt cells were cultured in keratinocyte serum-free media (KSFM) supplemented with human
epidermal growth factor and bovine pituitary extract. Murine lung epithelial (MLE-15) cells were kindly
provided by Dr. Jeffrey Whitsett. The cell lines used were authenticated by the MD Anderson
Characterized Cell Line Core Facility. MLE-15 cells were cultured in RPMI supplemented with 10% fetal

bovine serum. Cultures were maintained in the presence of penicillin and streptomycin.

Exposure to TLR ligands

15
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S-[2,3-bis(palmitoyloxy)-propyl]-(R)-cysteinyl-(lysyl) 3-lysine (Pam2 CSK4) and ODN M362 were
reconstituted in endotoxin-free water, then diluted to the desired concentration in sterile PBS. For in
vivo experiments, as previously described (Kirkpatrick et al, 2018; Ware et al, 2019), the indicated
ligands were placed in an Aerotech Il nebulizer driven by 10L/min air supplemented with 5% CO2 for 20
min. The nebulizer was connected by polyethylene tubing to a polyethylene exposure chamber. 24 h
prior to infections, 10 ml of Pam2 (4 uM) and/or ODN (1 uM) was delivered via nebulization to
unrestrained mice for 20 minutes, and then mice were returned to normal housing. For in vitro

experiments, Pam2-ODN was added to the culture media 4 h prior to inoculation with virus.

Reverse-Phase Protein Array

To simultaneously evaluate the expression of 161 regulatory proteins and phospho-proteins in HBEC-
3kt cells after exposure to either PBS, Pam2, ODN or Pam2-ODN, a targeted high-throughput
screening proteomic assay was performed by the Reverse Phase Protein Array Core Facility at The
University of Texas MD Anderson Cancer Center (Tibes et al, 2006; Hennessy et al, 2010). The RPPA
included 4 biological replicates per treatment condition, and data is available at GitHub

(www.qgithub.com/evanslaboratory/OBIF).

Infection Models

For in vivo infections, frozen stock (2.8 x 107 50% tissue culture infective doses [TCID50] ml-1) of
influenza A H3N2, virus was diluted 1:250 in 0.05% gelatin in Eagle’s minimal essential medium and
delivered by aerosolization for 20 min to achieve a 90% lethal dose (LD90) to LD100 (~100 TCID50 per
mouse). Mouse health was followed for 21 d post infection. n = 15 mice per condition. Animals were
weighed daily and sacrificed if they met euthanasia criteria, including signs of distress or loss of 20%
pre-infection body weight. For in vitro infections, 1AV (multiplicity of infection [MOI] of 1.0) was added to

cells in submerged monolayer and viral burden was assessed 24 hours post infection.
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Pathogen burden quantification

To measure transcript levels of IAV nucleoprotein (NP) gene, samples were harvested in RNAlater and
RNA was extracted using the RNeasy extraction kit. 500 ng total RNA was reverse transcribed to cDNA
by using an iScript cDNA synthesis kit and submitted to quantitative reverse transcription-PCR (RT-
PCR) analysis with SYBR green PCR master mix on an Bio-Rad CFX Connect Real-Time PCR
Detection System. Host 18S rRNA was similarly probed to determine relative expression of viral

transcripts.

Omics Dataset Formatting
OBIF’s input in R requires an analysis-ready data matrix m with expression values and of dimensions f
x n, where f is the number of features as rows and n is the number of samples S as columns. The
appropriate sample order in dimensions n of m is:

N=Spo + ...+ S0 + Sao’ + ... + Suo + Sy + ... +Soy +Swy * ... +Suy
The subscripts denote the condition of the samples: exposed to neither factor (0,0), exposed to factor A
alone (1,0), exposed to factor B alone (0,1) or exposed to both factors A and B (1,1). The superscripts

represent the sample replicates from 1 to i within each of the four conditions.

To improve detection of interaction effects, OBIF allows sequential transformation of an unscaled
original data matrix with background correction, log2-transformation, quantile normalization or a
combination of these if needed. Background correction reduces noise to signal ratio at the lower limits
of detection and methods vary per platform with code extensions are available at GitHub for microarray
data using the lumi package, and for count-based sequencing data using rpm, rpkm, fpkm and tpm
thresholds. Log2-transformation of continuous and count-base data is incorporated to provide a
Gaussian-like data distribution, and quantile normalization is used to minimize the variance between

samples during data scaling (Lo et al, 2015; Abrams et al, 2019) with OBIF to meet the statistical
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assumptions needed for two-way ANOVA analysis of interaction terms in a dataset (Slinker, 1998;

Foucquier et al, 2015).

Interaction analysis

To evaluate significant interaction terms between factors at the whole “-ome” level, OBIF performs a
multiple linear regression across the expression values in a dataset:

Eo~O0+Fa+Fg+Fus-Fp

where the interaction analysis of the Omics expression levels (Eo) is equivalent to a two-way ANOVA
analysis where the intercept is referenced to the control samples (0) and returns a statistical summary
of terms for the individual factor A (F,), factor B (Fg) and their interaction (Fa - Fg). Goodness of fit is
calculated from the adjusted R? values, and overall significance is determined by the p-values of F-
statistics of the regression. Unscaled original data and scaled data with OBIF are compared to evaluate

improvement in detection of significant interaction terms in a given dataset.

Full Factorial Analysis
Expression Analysis
To perform differential expression analysis for detection of DEMs, OBIF fits a fixed-effects model to the
expression data of each feature:

Er=Bo+B1-Fa+PB2-Fs+ B3 Fas
where the expression level of features (E) is a function of the estimated B coefficients for the main
effects of individual factor A (F,) and factor B (Fg) and their combination (Fag). After regression,
empirical Bayesian shrinkage of the standard errors is used to stabilize inferences of t-statistics, F-
statistics, and log-odds used for differential expression analysis. Q-values are then calculated using the
Benjamini and Hochberg method to reduce the false discovery rate (FDR). Alternatively, code
extensions for are available at GitHub to perform Bonferroni corrections or calculate Tukey Honest

Significant Differences adjustment for multiple testing instead of FDR.
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Contrast analysis
To analyze the remaining factorial effects in the fitted linear model of feature expression, the
coefficients and standard errors will be estimated typical of a two-way ANOVA from a set of contrasts
that define the SMEs of each factor and their interaction effect:

SME of FA =3 Fag — B2 Fg

SME of Fg =83 Fag — 81 Fa

Interaction effect of Fa - Fg (Bs) =Bs- Fag —B2- Fs — B1- Fa

The standard errors calculated use a significance threshold (p-value < 0.05) to determine if DEMs with
Fae (Pam2-ODN) are susceptible to SME or interaction effects. Selection of iIDEMs is based on DEMs

of Fag With a significant interaction effect.

Mixed-effects model

To evaluate performance of full factorial analysis with OBIF, detection of interaction effects at the level
of individual features is compared to a mixed-effect model (Caetano et al, 2018):

Etmix =Bo +Br- Fa+ B2+ Fe + Ba- Fa- Fg + (1]S)

where the expression level of features in a mixed-effect model (Ervix) is a function of the estimated 3
coefficients for the fixed effects of individual factor A (F,) and factor B (Fg) and their interaction (Fa - Fg)
with a random effect (1|S) for all sample conditions (S, S0 S(0.1), Sqa.1))- After regression, empirical
Bayesian shrinkage of the standard errors is used to stabilize inferences of t-statistics and F-statistics.
The standard errors calculated from the interaction term use a significance threshold (p-value < 0.05) to

determine significant interaction effects.

Beta-uniform mixture model
Interaction p-values are extracted from the interaction term of mixed-effects model and from the

interaction effect contrast of full factorial analysis. Independently, a beta-uniform mixture model is fitted
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to these sets of p-values (Pounds et al, 2003; Ji et al, 2005) to compare their discrimination ability using
their receiver operating characteristic area under the curve (ROC AUC). Using the beta-uniform mixture
models, we calculated the number of true positives (TP), false positive (FP) and false negatives (FN)
detections (Pounds et al, 2003; Zhang et al, 2012) at the threshold level of IDEM selection (interaction
p-value = 0.05) to estimate their precision and recall proportion:

Precision=TP /(TP + FP)

Recall=TP /(TP + FN)

Unsupervised clustering of features with OBIF

Hierarchical clustering and heatmaps of DEMs

All DEMs were represented in heatmaps after hierarchically clustering using Ward’s minimum variance
method with Euclidean distances of log,FC values to compute dissimilarity by rows (features) and by
columns (samples). Column dendrograms were plotted to represent the distance between samples,
vertical side bar colors summarize DEMs according to their and horizontal side bars colors represent
sample types by factors. Color scale keys indicate the levels of feature expression with upregulation in

red and downregulation in green.

Principal component analysis of expression profiles

DEMs with Fag (Pam2-ODN) were clustered by principal component analysis based on the mean linear
fold change difference to reveal the expression patterns biologically present across all factors FA, FB
and FAB. Principal components 1 and 2 were used for plotting DEMs with FAB and the variability
between features is marked in each axis. EPs were identified in the clusters for each individual feature

according to Table 1.

Enrichment analysis
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To provide biological interpretation of the full factorial analysis and classification of features, enrichment
analysis was integrated in the pipeline to determine candidate effectors and regulators of synergy,
biological pathways and functional processes. Sets for DEMs, EPs, DEMs with SMEs and iDEMs are
uploaded independently, and enrichment analysis is performed with IPA software (QIAGEN, Hilden,
Germany) for core analysis using the expression levels of features. Both gene and chemical Ingenuity
Knowledge Base modules are used as enrichment reference, considering only experimentally observed
confidence levels for identification of direct and indirect relationships. The thresholds of significance for
canonical pathways, upstream analysis, diseases & functions, regulator effects and network analysis

are = 2 for activation z-score and < 5% false discovery rates for all predictions.

DNA-binding ELISA

HBEC-3kt were grown to 80-100% confluence in 24-well plates and treated with PBS, Pam2, ODN, or
Pam2-ODN for the indicated durations. Measurements of DNA-binding of members of NF-kB and AP-1
transcription factor members from whole cell lysates were made using their respective TransAM Kit
according to product directions. For signal detection, samples were read immediately for absorbance at
450 nm with reference wavelength at 655 nm on a microplate reader. Experiments were repeated in
triplicate and statistical analysis was performed with unpaired student’s t test using GraphPad Prism 8.0

with a significance threshold of p-value <0.05.

Detection of Nuclear Translocation

Transcription factor staining and image acquisition

HBEC-3kt were grown to 80-100% confluence in 100mm dishes and treated for 30 min with PBS,
Pam2, ODN or Pam2-ODN with or without pretreatment with NF-kB inhibitor IMD-0354 at 25 ng/uL for
16 h. Cells were detached from the plate with a 5 min incubation at 37 °C degrees with 3 ml of
Accutase to prevent additional activation of transcriptional activity. Cells were pelleted in individual 15

ml tubes at 500 g for 5 min and suspended in 500 UL of eBioscience FOXP3 fixation/permeabilization
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buffer for 15 min at room temperature. Cells were stained with a LIVE/DEAD Fixable Near IR Dead Cell
Dye and with a 1:1000 dilution of NF-kB p50 (E-10) Alexa Fluor 647, NF-kB p65 (F-6) Alexa Fluor 488,
c-Jun (G-4) Alexa Fluor 594 and c-Fos (D-1) Alexa Fluor 546 conjugated antibodies for 1 h on ice and
protected from light. After incubation, cells were pelleted and washed with 200 uL of sterile PBS 4
times, then resuspended in 100 pL sterile PBS. After the last wash, cells were pelleted and
resuspended in 50 pL of sterile PBS and nuclear DAPI staining at 0.5 pg/mL was performed just prior to

data acquisition on ImageStreamX MII.

Data acquisition with ImageStreamX MKI|

HBEC-3kt images were acquired using INSPIRE software on the ImagestreamX Mark Il imaging flow
cytometer (Amnis Corporation) at 40x magnification, with lasers 405nm (85.00 mW), 488 nm
(200.00 mW), and side scatter (782nm) (1.14 mW). 10,000 images per sample acquired include a
brightfield image (Channel 1 and 9), p65 Alexa Fluor 488 (Channel 2), c-Fos Alexa Fluor 546 (Channel
3), c-Fos Alexa Fluor 594 (Channel 4), side scatter (Channel 6), DAPI (Channel 7), and p50 Alexa Fluor
647 (Channel 3). The laser outputs prevented saturation of pixels in the relevant detection channels as
monitored by the corresponding Raw Max Pixel features during acquisition. For image compensation,
single color controls were stained with all fluorochromes and 500 events were recorded with each laser
for individual controls. Fluorescent images were taken in all channels with brightfield LEDs and scatter
lasers turned off to accurately capture fluorescence. Individual single-color control file was then merged

to generate a compensation matrix and all sample files were processed with this matrix applied.

Nuclear translocation analysis

After compensation for spectral overlap based on single color controls, analysis was performed and
individual cell images were created using IDEAS® software version 6.1. Cell populations were
hierarchically gated first by single cells, then cells in focus, then negative selected for live cells, and

finally as double positive for both DAPI and the transcription factor subunit of interest (Figure EV3B).
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The spatial relationship between the transcription factors and nuclear images was measured using the
‘Similarity’ feature in the IDEAS software to quantitate the mean similarity score in the cell populations
per sample. A similarity score >1 represents nuclear translocation, and the shift in distribution of
nuclear translocation between two samples was calculated using the Fisher's Discriminant ratio (Rd

value) (Maguire et al, 2015).

Statistical Analysis

Statistical analyses were performed using Prism 8 (GraphPad, San Diego, CA) and R. Kaplan-Meier
curves were used for survival analyses and logrank (Mantel-Cox test) was used for paired group
comparisons. Analysis of viral NP expression was performed using a two-way ANOVA with post hoc
Tukey analysis for paired comparisons that was adjusted for multiple testing. Analysis of DNA-binding
activity in vitro was performed using a student’s t test for comparisons between 2 groups, or using one-
way ANOVA for comparison between multiple groups. Grouped data is shown as means +/- standard
error of the mean, with experiments with n < 5 showing individual sample values. To verify the
statistical assumptions for each test, Gaussian distribution was evaluated with Saphiro-Wilk test, and
equal variance between two samples was evaluated with F-tests, or for more than two samples with
Barlett’'s or Levene’s test. Simultaneous multiple outlier detection was performed using the robust
regression and outlier removal (ROUT) method with a q value of 5% (maximum FDR). Treatment
allocation of animals was randomized in the experiments, though assessment could not be blinded. A
pre-specified minimum requirement of 3 biological replicates for in vitro studies and 10 for in vivo

studies.

Data Availability
The data and code in this study are available in the following databases:

o OBIF R Package: GitHub Evanslaboratory/OBIF (www.github.com/evanslaboratory/OBIF)

e OBIF R Code: GitHub Evanslaboratory/Extensions (www.github.com/evanslaboratory/Extensions)
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e Microarray data: Gene Expression Omnibus GSE28994

(https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE28994)

o RNA-seq data: Gene Expression Omnibus GSE109000

(https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE109000)

e Reverse-phase protein array data: GitHub Evanslaboratory/Datasource

(www.qgithub.com/evanslaboratory/Datasource)

e Reverse-phase protein array data: EMBO Molecular Medicine DOI:10.15252/emmm.201809960

(https://www.embopress.org/doi/abs/10.15252/emmm.201809960)

¢ Metabolomics data: Frontiers in Pharmacology DOI:10.3389/fphar.2019.00754

(https://www.frontiersin.org/articles/10.3389/fphar.2019.00754/full)

Acknowledgements

The research reported here was supported by The University of Texas System and Mexico’s Consejo
Nacional de Ciencia Y Tecnologia (CONACYT) through the ConTex Postdoctoral Fellowship Program
to J.P.G., by NIH grants RO1 HL117976, DP2 HL123229 and R35 HL144805 to S.E.E. and by
P30CA016672 to MD Anderson Cancer Center. The opinions expressed are those of the authors and
do not represent views of these funding agencies. The Functional Proteomics RPPA Core facility is
supported by MD Anderson Cancer Center Support Grant # 5 P30 CA016672-40. The Advanced
Cytometry & Sorting Core Facility is supported by NCI P30CA016672 and is equipped for Imaging Flow
Cytometry at MD Anderson Cancer Center. J.P.G. acknowledges and thanks the Methods in
Epidemiologic, Clinical and Operations Research (MECOR) Program from the American Thoracic
Society (ATS) and Asociacion Latinoamericana de Térax (ALAT) for their support and dedication in
building research capacity in Latin America and other countries around the globe, particularly to their

faculty Dr. Fernando Holguin and Dr. Altay Souza for their critical feedback.

24


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28994
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109000
http://www.github.com/evanslaboratory/Datasource
https://www.embopress.org/doi/abs/10.15252/emmm.201809960
https://www.frontiersin.org/articles/10.3389/fphar.2019.00754/full
https://doi.org/10.1101/2020.04.16.041350
http://creativecommons.org/licenses/by/4.0/

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.041350; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Author contributions

Conforming to the ICMJE criteria, all authors gave approval of the final version to be published and
contributed to writing or revising the article critically for important intellectual content. Conforming to the
CRediT criteria: J.P.G. and S.E.E. were involved in conceptualization of the project, visualization and
writing of original draft, review & editing, and funding acquisition; J.P.G. was involved in data curation,
formal analysis and methodology by conceiving, implementing and validating the systems model;
J.P.G., V.VK, T.C.R. and S.J.W. were involved in investigation by performing in vitro and in vivo
experiments; J.P.G., V.V.K,, T.C.R.,, SW., SJW,, J.Z, JW., Y.W. and S.E.E. were involved in
supervision by interpreting results; S.W., R.S., M.S.C., S.J.M., and F.M.J. were involved in providing
resources by generating datasets for analysis and validation of the model; J.PG., J.Z. and J.W. were
involved in formal analysis, software and validation by performing bioinformatics analyses; Y.W. and

S.E.E. were involved in supervision, project administration and validation of the project.

Conflict of interest
S.E.E. is an author on U.S. patent 8,883,174 “Stimulation of Innate Resistance of the Lungs to Infection
with Synthetic Ligands” and owns stock in Pulmotect Inc., which holds the commercial options on these

patent disclosures. All other authors declare that no conflict of interest exists.

References

Abrams ZB, Johnson TS, Huang K, Payne PRO, Coombes K (2019) A protocol to evaluate RNA
sequencing normalization methods. BMC Bioinformatics, 20(Suppl 24), 679

Antony J (2014). 6 - Full Factorial Designs. In Design of Experiments for Engineers and Scientists,
Antony J (ed) pp 63-85. Oxford: Elsevier

Bardini R, Politano G, Benso A, Di Carlo S (2017) Multi-level and hybrid modelling approaches for

systems biology. Computational and Structural Biotechnology Journal, 15, 396-402

25


https://doi.org/10.1101/2020.04.16.041350
http://creativecommons.org/licenses/by/4.0/

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.041350; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Caetano MS, Hassane M, Van HT, Bugarin E, Cumpian AM, McDowell CL, Cavazos CG, Zhang H,
Deng S, Diao L, et al (2018) Sex specific function of epithelial STAT3 signaling in pathogenesis of K-
ras mutant lung cancer. Nature communications, 9(1), 4589

Caetano MS, Hassane M, Van HT, Bugarin E, Cumpian AM, McDowell CL, Cavazos CG, Zhang H,
Deng S, Diao L, e al (2018) Gene Expression Omnibus GSE109000
(https:/lwww.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE109000) [DATASET)]

Chen D, Liu X, Yang Y, Yang H, Lu P (2015) Systematic synergy modeling: understanding drug
synergy from a systems biology perspective. BMC Syst Biol, 9, 56

Cleaver JO, You D, Michaud DR, Pruneda FA, Juarez MM, Zhang J, Weill PM, Adachi R, Gong L,
Moghaddam SJ, et al (2014) Lung epithelial cells are essential effectors of inducible resistance to
pneumonia. Mucosal Immunol, 7(1), 78-88

Collaborators GL (2017) Estimates of the global, regional, and national morbidity, mortality, and
aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global
Burden of Disease Study 2015. The Lancet. Infectious diseases, 17(11), 1133-1161

Coral C, Bokelmann W (2017) The Role of Analytical Frameworks for Systemic Research Design,
Explained in the Analysis of Drivers and Dynamics of Historic Land-Use Changes. Systems, 5(1)

Das AK, Dewanjee S (2018) Chapter 3 - Optimization of Extraction Using Mathematical Models and
Computation. In Computational Phytochemistry, Sarker SD, Nahar L (ed) pp 75-106. Elsevier.

Duggan JM, You D, Cleaver JO, Larson DT, Garza RJ, Guzman Pruneda FA, Tuvim MJ, Zhang J,
Dickey BF, Evans SE (2011) Synergistic interactions of TLR2/6 and TLR9 induce a high level of
resistance to lung infection in mice. J Immunol, 186(10), 5916-5926

Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape.
Pharmacol Res Perspect, 3(3), e00149

Geary N (2012) Understanding synergy. American Journal of Physiology-Endocrinology and

Metabolism, 304(3), E237-E253

26


https://doi.org/10.1101/2020.04.16.041350
http://creativecommons.org/licenses/by/4.0/

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.041350; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Goldstein |, Paakinaho V, Baek S, Sung MH, Hager GL (2017) Synergistic gene expression during the
acute phase response is characterized by transcription factor assisted loading. Nature
Communications, 8(1), 1849

Han ML, Liu X, Velkov T, Lin YW, Zhu Y, Creek DJ, Barlow CK, Yu HH, Zhou Z, Zhang J, et al (2019)
Comparative Metabolomics Reveals Key Pathways Associated With the Synergistic Killing of Colistin
and Sulbactam Combination Against Multidrug-Resistant Acinetobacter baumannii. Frontiers in
Pharmacology, 10(754)

Han ML, Liu X, Velkov T, Lin YW, Zhu Y, Creek DJ, Barlow CK, Yu HH, Zhou Z, Zhang J, et al (2019)
Frontiers in Pharmacology DOI:10.3389/fphar.2019.00754
(https://www.frontiersin.org/articles/10.3389/fphar.2019.00754/full) [DATASET)]

Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol, 18(1), 83

Hassall KL, Mead A (2018) Beyond the one-way ANOVA for 'omics data. BMC Bioinformatics, 19(Suppl
7), 199

Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z, Davies MA, Liu W, Coombes K,
Meric-Bernstam F, et al (2010) A Technical Assessment of the Utility of Reverse Phase Protein
Arrays for the Study of the Functional Proteome in Non-microdissected Human Breast Cancers.
Clinical proteomics, 6(4), 129-151

Kirkpatrick CT, Wang Y, Leiva Juarez MM, Shivshankar P, Pantaleon Garcia J, Plumer AK, Kulkarni V,
Ware H, Martinez Zayes, G, Wali S, et al (2018) Inducible Lung Epithelial Resistance Requires
Multisource Reactive Oxygen Species Generation To Protect against Viral Infections. MBio, 9(3)

Li C, Shen W, Shen S, Ai Z (2013) Gene expression patterns combined with bioinformatics analysis
identify genes associated with cholangiocarcinoma. Comput Biol Chem, 47, 192-197

Li OTW, Chan MCW, Leung CSW, Chan RWY, Guan Y, Nicholls JM, Poon LLM (2009) Full factorial
analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient

polymerase for virus adaptation. PLOS ONE, 4(5), €5658-e5658

27


https://doi.org/10.1101/2020.04.16.041350
http://creativecommons.org/licenses/by/4.0/

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.041350; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Lo S, Andrews S (2015) To transform or not to transform: using generalized linear mixed models to
analyse reaction time data. Front Psychol, 6, 1171

Maguire O, O'Loughlin K, Minderman H (2015) Simultaneous assessment of NF-kB/p65
phosphorylation and nuclear localization using imaging flow cytometry. Journal of immunological
methods, 423, 3-11

Mee RW (2009) Analysis of Full Factorial Experiments. In A Comprehensive Guide to Factorial Two-
Level Experimentation, R. Mee (ed) pp 27-74. New York, NY: Springer New York

Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ,
Flanders SA, et al (2019) Diagnosis and Treatment of Adults with Community-acquired Pneumonia.
An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases
Society of America. American journal of respiratory and critical care medicine, 200(7), e45-e67

Mihret A, Loxton AG, Bekele Y, Kaufmann SHE, Kidd M, Haks MC, Ottenhoff THM, Aseffa A, Howe R,
Walzl G (2014) Combination of gene expression patterns in whole blood discriminate between
tuberculosis infection states. BMC Infectious Diseases, 14(1), 257

Ronzitti G, Mingozzi F (2018) Combination Therapy Is the New Gene Therapy? Molecular therapy : the
journal of the American Society of Gene Therapy, 26(1), 12-14

Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, Fang B, Wang J, Johnson FM (2019)
Non-canonical cMet regulation by vimentin mediates Plk1l inhibitor-induced apoptosis. EMBO
Molecular Medicine, 11(5), €9960

Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, Fang B, Wang J, Johnson FM (2019)
EMBO Molecular Medicine DOI:10.15252/emmm.201809960
(https://lwww.embopress.org/doi/full/10.15252/emmm.201809960) [DATASET]

Slinker BK (1998) The statistics of synergism. Journal of molecular and cellular cardiology, 30(4), 723-

731

28


https://doi.org/10.1101/2020.04.16.041350
http://creativecommons.org/licenses/by/4.0/

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.041350; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein
array: validation of a novel proteomic technology and utility for analysis of primary leukemia
specimens and hematopoietic stem cells. Molecular cancer therapeutics, 5(10), 2512—-2521

Tuvim MJ, Gilbert BE, Dickey BF, Evans SE (2012) Synergistic TLR2/6 and TLR9 activation protects
mice against lethal influenza pneumonia. PLOS ONE, 7(1), e30596-e30596

Tuvim MJ, Gilbert BE, Dickey BF, Evans SE (2012) Gene Expression Omnibus GSE28994
(https://lwww.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE28994) [DATASET)]

Ware HH, Kulkarni VV, Wang Y, Pantale6n Garcia J, Leiva Juarez M, Kirkpatrick CT, Wali S, Syed S,
Kontoyiannis AD, Sikkema WK, et al (2019) Inducible lung epithelial resistance requires multisource
reactive oxygen species generation to protect against bacterial infections. PLOS ONE, 14(2),
e0208216

Wei PL, Gu H, Liu J, Wang Z (2018) Development of Fangjiomics for Systems Elucidation of
Synergistic Mechanism Underlying Combination Therapy. Comput Struct Biotechnol J, 16, 565-572

Zappasodi R, Merghoub T, Wolchok JD (2018) Emerging Concepts for Immune Checkpoint Blockade-
Based Combination Therapies. Cancer Cell, 34(4), 690

Zhang J, Coombes KR (2012) Sources of variation in false discovery rate estimation include sample
size, correlation, and inherent differences between groups. BMC Bioinformatics, 13 Suppl 13, S1

Zhang X, Cha IH, Kim KY (2017) Use of a Combined Gene Expression Profile in Implementing a Drug

Sensitivity Predictive Model for Breast Cancer. Cancer Res Treat, 49(1), 116-128

29


https://doi.org/10.1101/2020.04.16.041350
http://creativecommons.org/licenses/by/4.0/

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.041350; this version posted April 21, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure legends

Figure 1. Omics-Based Interaction Framework: phenotype-driven synergy modeling and
framework overview.

(A) Mouse survival of influenza A challenge following the indicated pretreatments. Dashed line indicates
additive effect of single ligand treatments over PBS. n = 15 mice/condition. (B) Virus burden of isolated
mouse lung epithelial cells after influenza A challenge following the indicated pretreatments. RQ,
relative quantification of viral nucleoprotein (NP) expression to host 18s. n = 6 samples/condition. (C)
Plot of response additivity from antiviral responses in panels A (left) and B (right). Synergistic effects
are reflected by Eag greater than the expected linear sum (Ex + Eg, dashed line) of individual ligand
effects, antagonistic effects are observed when Exs < Ex + Eg. (D) Generic Omics workflow for
phenotype-driven synergy modeling using a 22 experimental design. (E) Overview of OBIF, including (i)
Omics screening of features in a data matrix, (ii) discovery of feature clusters of molecular drivers, and
(iii) experimental validation of biologically relevant synergy regulators. * P < 0.05 compared to either

condition, *** P < 0.0005 compared to either condition.

Figure 2. Differentially expressed molecules and expression profiles reveal synergy-mediating
pathways and functions.

(A) Euler diagram of differentially expressed molecules following single or dual treatment in mouse lung
homogenates. (B) Most overrepresented activated canonical pathways after IPA enrichment of DEMs.
(C) Heatmap of expression values of DEMs in A with expression profiles shown per feature (rows). (D)
Principal component analysis of Pam2-ODN DEMs identified by expression profiles. (E) Top activated
(orange) and inhibited (blue) diseases and functions after IPA enrichment of expression profiles. FC,

fold change.

Figure 3. Full factorial analysis reveals regulatory networks and molecular drivers of synergy.
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(A) Scheme of full factorial analysis performed by OBIF from (3 coefficients. (B) Venn diagram of Pam2-
ODN DEMs correlated by expression profiles classes and multi-factor effects. (C) Feature count and
percentage of Pam2-ODN iDEMs and non-iDEMs in B. (D) Network analysis of activated (orange) or
inhibited (blue), and up-regulated (red) or down-regulated (green) upstream regulators of Pam2-ODN
after IPA enrichment of SME. (E) Cross-Omics validation of regulators in D. Differentially expressed
phospho-signaling molecules were identified with OBIF from a reverse-phase protein array in human
lung epithelial cells. (F) Non-additive feature expression assessed by combination index (CI).
Representative genes and their ClI values are shown. (G) Interaction score (IS) of iDEMs, reflecting
antagonistic (IS < 0) and synergistic (IS > 0) features. (H) Top activated (orange) or inhibited (blue)
transcriptional regulators after IPA enrichment of iDEMs. DEMSs, differentially expressed molecules.

iDEMs, interacting DEMs. SME, simple-main effects.

Figure 4. Reqgulators identified with OBIF uncovered cooperation between RelA and cJun that is
required for synergistic antiviral protection.

(A) Transcription factor activity of NF-kB and AP-1 subunits 15 min after treatment of human lung
epithelial cells with Pam2-ODN. n = 3-6 samples/condition. (B) RelA and cJun activity at indicated times
after Pam2-ODN treatment. n = 6 samples/condition. (C) Nuclear translocation scores of NF-kB and
AP-1 heterodimers after Pam2-ODN treatment. Shown as normalized frequency of similarity score per
condition. (D) NF-kB and AP-1 subunit nuclear translocation in C (increased, red; decreased, blue) per
condition. (E) NF-kB and AP-1 subunit nuclear translocation with or without NF-kB inhibition by IMD-
0345. (F) Representative imaging flow cytometry images of hetero-dimerization and nuclear
translocation of NF-kB and AP-1 in D and E. (G) Virus burden of mouse lung epithelial cells challenged
with influenza A with or without NF-kB inhibition. n = 4 samples/condition. *, P < 0.05; **, P < 0.005; ***,

P < 0.0005 compared to baseline.
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Figure 5. OBIF reveals molecular drivers of synergy across platforms, factor classes and
experimental systems.

(A) Interaction analysis of factorial effects at the whole “-ome” level, demonstrating interaction plots,
coefficient significance and quality of model fithess per platform. (B) Euler diagram of DEMs identified
in A. (C) Principal component analysis of dual factor DEMs in B clustered by EPs. (D) Interaction
scores of iDEMs in C. (E) Visual summary of molecular drivers of synergy in B-D plotted including
DEMs, EPs and iDEMs. Eg, feature expression; F,, factor A; Fg, factor B; Fag, factor AB; FC, fold

change; DEMs, differentially expressed molecules; EPs, expression profiles; iDEMs, interacting DEMs.
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Tables and their legends

Expression Pattern Response

Fold Change

In single factor exposure | In dual factor exposure

Expression Profiles

Tttt I ®
Concordant
43 I
Cooperative
J 4|1 n @
Discordant
T 1T d v
Tyt v @
Factor A-Dominant
1|13 VI
Competitive
1t 1 Vi @
Factor B-Dominant
1t 411 Vil

Table 1. Expression profiles depict biological interactions during dual factor exposure.
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Expanded View Figure legends

Figure EV1. Overview of model fitting of Omics datasets during analysis with OBIF.

(A) Quality control plots assess data distribution of GSE28994 with violin plots (top) and detect potential
outliers by hierarchical clustering (bottom) in both the pre-processed original dataset (left) and the
analysis-ready dataset (right). (B) Interaction analysis of factorial effects at the whole transcriptome
level, demonstrating interaction plots, coefficient significance and goodness of fit per platform. (C)
Representative volcano plots of full factorial analysis from analysis ready data for each condition after
expression analysis (top) and Q-Q plots of moderated t-statistics for each multi-factor effect after
contrast analysis (bottom). (D) Visual summary of OBIF’s outputs including DEMs, EPs and iDEMs
(left) plotted into 3 rings (right): (i) DEMs, where inner links represent shared features between DEMs
followed by their log,FC values; (ii)) EPs, where inner sectors represent individual profiles (I to VIII)
followed by their of significant Fo-SME (green), Fg-SME (orange) or Fa-Fg interaction effect (pink); and
(iii) IDEMSs, represented by their synergistic or antagonistic interaction scores. FC, fold change; DEMSs,
differentially expressed molecules; EPs, expression profiles; iDEMs, interacting DEMs; SME, simple

main effect.

Figure EV2. OBIF analysis of RPPA data from HBEC-3kt treated with single or dual ligands.

(A) Interaction analysis of factorial effects at the whole proteome level, demonstrating interaction plots,
coefficient significance and quality of model fitness per platform. (B) Euler diagram of DEMs identified
in A. (C) Principal component analysis of dual factor DEMs in B clustered by EPs. (D) OBIF summary of
molecular drivers of synergy in B-C. (E) Heatmap of expression values of DEMs in B with expression
profiles shown per feature (rows). FC, fold change; DEMs, differentially expressed molecules; EPs,

expression profiles.
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Figure EV3. STAT family data and gating strategy for imaging flow cytometry.
(A) Transcription factor activity of STAT subunits 15 min after treatment of human lung epithelial cells
with Pam2-ODN. n = 3 samples/condition. (B) Gating strategy used during single cell imaging flow

cytometry for simultaneous assessment of all transcriptional subunits.

Figure EV4. OBIF improves detection of interaction effects across platforms and factor classes.

(A) Comparative performance of data scaling during interaction analysis at the whole “-ome” level
showing overall fitness and significance of two-way ANOVA. (B) Significance level of interaction term
between factors detected in A. (C) Comparative performance of statistical methods to detect interaction
effects at the individual feature level using a beta-uniform mixture model of interaction p-values. (D)

Precision and recall fractions at iDEM selection threshold calculated from C. OBIF, Omics-based

interaction framework; ROC, receiver operating characteristic; AUC, area under the curve.
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