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Abstract  
 
What role do domain-general executive functions play in human language comprehension? To 
address this question, we examine the relationship between behavioral measures of 
comprehension and neural activity in the domain-general “multiple demand” (MD) network, 
which has been linked to constructs like attention, working memory, inhibitory control, and 
selection, and implicated in diverse goal-directed behaviors. Specifically, fMRI data collected 
during naturalistic story listening are compared to theory-neutral measures of online 
comprehension difficulty and incremental processing load (reading times and eye-fixation 
durations). Critically, to ensure that variance in these measures is driven by features of the 
linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging 
and behavioral datasets were collected in non-overlapping samples. We find no behavioral-
neural link in functionally localized MD regions; instead, this link is found in the domain-
specific, fronto-temporal “core language network”, in both left hemispheric areas and their right 
hemispheric homologues. These results argue against strong involvement of domain-general 
executive circuits in language comprehension. 
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Introduction 
Human language comprehension encompasses a host of complex computations, from perceptual 
(auditory, visual or, in the case of Braille, haptic) processing, to word recognition, to recovering 
the semantic and syntactic dependency structures linking words together, to constructing 
discourse-level representations, and making pragmatic inferences. A major goal of both 
behavioral psycholinguistics and cognitive neuroscience of language is to understand which 
cognitive mechanisms support language comprehension, and whether and how these mechanisms 
are shared with other (non-linguistic) cognitive functions. 
 Psycholinguists have long invoked domain-general constructs when discussing lexical 
access and syntactic/semantic dependency formation, from storage and retrieval of information 
from working memory, to updating focal attention, inhibiting irrelevant information, selecting an 
option among alternatives, and predictive processing (Abney & Johnson, 1991; Fedorenko, 
Gibson, & Rohde, 2006, 2007; Gernsbacher, 1993; E. Gibson, 1998, 2000; Gordon, Hendrick, & 
Levine, 2002; Johnson-Laird, 1983; King & Just, 1991; Lewis & Vasishth, 2005; Lewis, 
Vasishth, & Van Dyke, 2006; McElree, 2000, 2001; Novick, Kan, Trueswell, & Thompson-
Schill, 2009; Rasmussen & Schuler, 2018; Resnik, 1992; Rodd, Johnsrude, & Davis, 2010; 
Schuler, AbdelRahman, Miller, & Schwartz, 2010; van Schijndel, Exley, & Schuler, 2013; 
Vergauwe, Barrouillet, & Camos, 2010; Waters & Caplan, 1996, inter alia). If some linguistic 
processes require these or other domain-general operations, does it mean that language shares 
neural mechanisms with other domains? 
 It has long been known that language processing recruits particular neural circuitry (Broca, 
1861; Geschwind, 1970; Wernicke, 1874). However, prior cognitive neuroscience work has 
argued both (1) that some of this circuitry (e.g., “Broca’s area”) may not be specialized for 
language processing per se, but rather used for broader cognitive functions—like hierarchical 
syntactic structure building—that operate not only in language but also in other domains like 
music, mathematics, and action planning (Anderson, 2010; Fadiga, Craighero, & D’Ausilio, 
2009; Fitch & Martins, 2014; Friedrich & Friederici, 2009; Patel, 2003, 2012; Rodriguez & 
Granger, 2016; Slevc, Rosenberg, & Patel, 2009; Tettamanti & Weniger, 2006; inter alia, see 
Fedorenko & Blank, 2020 for a review); and (2) that language processing relies on a more 
spatially distributed network, extending beyond the “classic” language areas, that includes 
regions traditionally associated with domain-general executive control (Mesulam, 1998; Kaan 
and Swaab, 2002; Kuperberg et al., 2003; Novick et al., 2005; Rodd et al., 2005a; Thompson-
Schill et al., 2005; Novais-Santos et al., 2007; January et al., 2009b; Peelle et al., 2010; Rogalsky 
and Hickok, 2011; Wild et al., 2012; McMillan et al., 2012, 2013; Nieuwland et al., 2012; 
Blumstein and Amso, 2013; Hsu and Novick, 2016; inter alia). Hypotheses from 
psycholinguistics, cognitive science, and cognitive neuroscience therefore converge to predict a 
role for domain-general executive resources in human language comprehension. 
 Within the human brain, the most plausible place to look for domain-general recruitment is 
in the fronto-parietal / cingulo-opercular “multiple demand (MD)” network, which supports a 
broad range of executive functions, including inhibitory control, attentional selection, conflict 
resolution, and maintenance and manipulation of task sets (Duncan, 2010; Fedorenko, Duncan, 
& Kanwisher, 2013). Indeed, MD regions have been shown to be sensitive to linguistic 
processing difficulty (e.g., due to ambiguity or complexity) across diverse manipulations 
(Kuperberg et al., 2003; Rodd et al., 2005a; Novais-Santos et al., 2007; January et al., 2009b; 
Peelle et al., 2010; Nieuwland et al., 2012; McMillan et al., 2013 inter alia). Further, activity in 
this network has been shown to correlate positively with reaction times—a behavioral measure 
of processing difficulty—across tasks (Taylor, Rastle, & Davis, 2014; Yarkoni, Barch, Gray, 
Conturo, & Braver, 2009). If indeed MD regions register processing load during language 
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comprehension, this would support the hypothesis that domain-general resources are engaged in 
language comprehension. 
 The ability of prior work to bear on this hypothesis is limited by two factors. First, language 
comprehension effort has typically been studied by relating theory-driven linguistic variables 
(e.g., word frequency, word predictability, structural complexity, constituent length, etc.) to 
neural activity (Mazoyer et al., 1993; Stowe et al., 1998; Vandenberghe et al., 2002; Friederici et 
al., 2003; Dronkers et al., 2004; Humphries et al., 2006; Brennan et al., 2010, 2016; Pallier et al., 
2011; Rogalsky and Hickok, 2011; Brennan and Pylkkänen, 2012; Willems et al., 2016; 
Henderson et al., 2016; Lopopolo et al., 2017; Nelson et al., 2017; inter alia). Despite the critical 
role of theory in understanding human cognition, theory-driven variables are only as good as the 
underlying theory and can only be expected to capture a fraction of the language comprehension 
effort given the multi-faceted nature of language. Such variables may fail to characterize some 
components of language comprehension and thereby underestimate the extent to which some 
neural circuits are implicated in comprehension. Second, prior work, including many of the 
aforementioned studies purportedly showing MD involvement in language comprehension, has 
generally relied on language stimuli cleverly constructed to directly manipulate some aspect of 
language processing difficulty and has often included explicit tasks on top of language 
comprehension, like making judgments about sentences or deciding whether a sentence matches 
a picture (e.g. Friederici et al., 2003; Fiebach et al., 2004; Rodd et al., 2005a; Bilenko et al., 
2008; Kuperberg et al., 2008; Snijders et al., 2009; Blank et al., 2016). Such hand-constructed 
stimuli and tasks are very different from natural comprehension “in the wild”, and may 
inadvertently trigger recruitment of domain-general problem solving and task strategizing 
mechanisms due to their artificial nature and extraneous task demands (Campbell & Tyler, 2018; 
Diachek, Blank, Siegelman, Affourtit, & Fedorenko, in press; Hasson, Egidi, Marelli, & 
Willems, 2018; Hasson & Honey, 2012) . Such stimuli and tasks might thus overestimate MD 
involvement in language comprehension, especially given the sensitivity of MD regions to task 
demands (D’Esposito & Postle, 2015; Miller & Cohen, 2001; Sreenivasan, Curtis, & D’Esposito, 
2014). MD recruitment for language processing would therefore be better supported if an MD 
response to theory-neutral measures of comprehension difficulty could be shown under more 
naturalistic experimental conditions. 
 Therefore, in this study, to test the hypothesis of domain-general executive involvement in 
language comprehension, we use context-rich, naturalistic language stimuli presented without 
any extraneous tasks and correlate (1) experimentally-obtained behavioral reaction time 
measures of language processing difficulty during reading, with (2) fMRI measures of activity in 
the domain-general MD network. To increase the interpretability of such correlations, we 
compare them to brain-behavior correlations based on a different functional network: the 
domain-specific, fronto-temporal “core language network”. This network serves as a good 
comparison for the MD network because it robustly engages in comprehension (during both 
listening and reading) but shows little to no engagement in other high-level cognitive processes 
(Binder, 1997; Deniz, Nunez-Elizalde, Huth, & Gallant, 2019; Fedorenko, Behr, & Kanwisher, 
2011; Fedorenko & Blank, 2020; Fedorenko, Hsieh, Nieto-Castanon, Whitfield-Gabrieli, & 
Kanwisher, 2010; Fedorenko & Varley, 2016; Jung-Beeman, 2005). Below, we describe and 
justify the main design features of our experiment. 
 Our use of behavioral reading data as a global proxy for comprehension difficulty follows a 
standard psycholinguistic paradigm that investigates how reaction times vary in response to 
linguistic materials whose comprehension requires different kinds of (hypothesized) 
computations, in either experimentally constructed materials (e.g., Frazier and Rayner, 1987; 
Clifton and Frazier, 1989; Gibson, 1991, 1998; Grodner et al., 2002; Levy, 2008), or naturalistic 
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ones (e.g. Demberg and Keller, 2008; Smith and Levy, 2013). Although incremental reading data 
are known to have a complex relationship to mental states (Posner, 1980, 2016; Remington, 
1980; Klein and Farrell, 1989; Wright and Ward, 2008; inter alia) and be sensitive to non-
linguistic factors like general attention, sensory/perceptual processing, motor control, and task-
related strategizing (Kaakinen & Hyönä, 2010; Kennedy, 2000; Rayner, 1998; Schotter, Tran, & 
Rayner, 2014), a premise underlying most psycholinguistic work in this domain is that 
incremental behavioral measures of reading effort track language-related comprehension 
difficulty with sufficient reliability such that they can be used to validate theories of human 
sentence comprehension (M. A. Just & Carpenter, 1980; Lewis et al., 2006; Mitchell, 1984; 
Rayner, 1977, 1978, 1998). Furthermore, our experimental design reduces the influence of 
idiosyncratic processes such as attention fluctuations by (1) aggregating reading data from many 
participants; (2) separating the samples that provide behavioral data from the sample providing 
the neuroimaging data; and (3) using different presentation modalities across the behavioral 
(visual) and fMRI (auditory) paradigms (cf. Henderson et al., 2015). This design is intended to 
distill stimulus-related, generalizable variation in comprehension difficulty: because attention, 
sensory/perceptual, motor, and task variables are unlikely to co-vary between participants and 
presentation modalities, any correlation between behavioral and neural measures in this design is 
most plausibly due to the linguistic content of the stimuli themselves, and thus is most plausibly 
driven by language comprehension effort. 
 We consider two different behavioral responses—self-paced reading (SPR, Aaronson and 
Scarborough, 1977; Just et al., 1982) and eye-tracking during reading (ET, Rayner, 1998), from 
two large, existing datasets (Futrell et al., 2018 and von der Malsburg et al., unpublished). These 
measures of comprehension effort serve as theory-neutral, broad-coverage estimates of 
computational load during language comprehension, since they should permit detection of any 
mechanisms that contribute to processing latencies, even if their role is not yet captured by any 
existing theory. 
 When correlating these measures with neuroimaging data, we consider the detailed time-
course of activation during listening, rather than an aggregate measure averaging across the 
entire stimulus, or parts of the stimulus. The time-varying fMRI data enable us to exploit 
relatively fine-grained variation in incremental processing difficulty that may be attenuated in 
aggregate measures. In addition, we infer the hemodynamic response from the data, in order to 
address individual and regional variation in the underlying hemodynamic response (Handwerker, 
Ollinger, & D’Esposito, 2004). Finally, we employ non-parametric hypothesis tests on out-of-
sample data, in order to increase the statistical robustness of the results and reduce the risk of 
replication failure (Eklund, Andersson, Josephson, Johannesson, & Knutsson, 2012; Menke & 
Martinez, 2004). 
 To foreshadow our results, whereas we find that reading latencies predict neural activity in 
the core language network, we do not find that reading latencies predict neural activity in the 
MD network. This finding supports the hypothesis that incremental processing effort during 
naturalistic language comprehension is largely restricted to neural circuits (and, by extension, 
cognitive resources) that are specialized for language comprehension, with little role played by 
domain-general executive systems. 
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Materials and methods 
 
Short stories. We use the Natural Stories Corpus (Futrell et al., 2018; data downloaded from 
https://github.com/languageMIT/naturalstories.git), which contains ten stories that were 
constructed from existing, publicly available texts (fairy tales, short stories, and Wikipedia 
articles) but edited so as to make comprehension difficulty more variable than in fully natural 
texts. The dataset includes recordings of these stories by two native English speakers (one male, 
E.G., and one female). 
 
Behavioral self-paced reading data. The Natural Stories Corpus includes self-paced reading 
data from 181 native English speaking participants recruited through Amazon.com’s Mechanical 
Turk. Participants gave informed consent in accordance with the Internal Review Board at the 
Massachusetts Institute of Technology (MIT) and were paid for their participation. Participants 
read stories in a moving-window self-paced word-by-word reading paradigm, where a button has 
to be pressed to reveal each subsequent word. The time spent on each word provides an overall 
estimate of processing difficulty at that point in the sentence/story. Each story was followed by 6 
multiple-choice comprehension questions and if a participant answered fewer than 5 questions 
correctly, their reading time data for that story were excluded. Outlier reading times of less than 
100ms or more than 3,000ms were also excluded. These exclusion criteria were the ones 
followed by Futrell et al. (2018). Reading times were aggregated across participants for each 
word. As a result, for each word in each story, we have a single (average) reading time. 
 
Behavioral eye-tracking study. Forty native English speaking participants recruited from the 
University of California, San Diego (UCSD) undergraduate population gave informed consent in 
accordance with the Internal Review Board at UCSD and were paid for their participation. They 
read the stories in an eye-tracking paradigm. A tower-mounted EyeLink 1000 eye-tracker 
recorded eye movements as participants read the stories presented a few sentences at a time (the 
boundaries among the story fragments and lines within fragments differed across participants so 
as to vary the words that span the screen-change and line boundaries). Each story was followed 
by two true/false comprehension questions. Software for automatic correction of eye fixations 
was used to repair data recorded with imperfect eye-tracker calibration (A. L. Cohen, 2013). A 
set of heuristics were used to detect and remove episodes of track loss, poor-quality data, and 
episodes where reader merely skimmed the text. In particular, fixations were removed when 1) 
the previous and/or subsequent fixations were five or more words away which is indicative of 
skimming (all the skipped words were also removed from the subject’s data in this case), 2) 
initial fixations on a new page of text occurred on words that were not at the beginning of the 
text, 3) the fixations could not be mapped to any word, or 4) consecutive fixations were moved 
in different directions by Cohen correction (J. Cohen, Cohen, West, & Aiken, 2013).1 For each 
word, four canonical eye-tracking measures were calculated (first pass regression, regression 
path duration, first pass reading time, and first fixation progressive) which are believed to index 
different perceptual and linguistic processes involved in reading, ranging from word recognition 
to high-level discourse integration (Rayner, 1998; Vasishth et al., 2013). Eye-tracking measures 
were aggregated across participants for each word. As a result, for each word in each story, we 
have four (average) eye-tracking measures. 
 

 
1 The Cohen correction is designed to correct for poor eye-tracker calibration. However, poor calibration is 
reflected in fixation offsets in the same direction, and variable correction vectors therefore indicate that the 
Cohen correction failed. 
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fMRI experiment 
 Participants. 42 right-handed native English speakers (average age 22.7, SD = 3.3; 24 
females) from the MIT community gave informed consent in accordance with the Internal 
Review Board at MIT and were paid for their participation. (Subsets of this dataset were used by 
Blank & Fedorenko (2017), Blank, Kanwisher, & Fedorenko (2014) and Shain, Blank, van 
Schijndel, Schuler, & Fedorenko, 2020). 
 General approach. Each participant listened to a subset of the stories from Futrell et al. 
(2018) and performed one or more “localizer” tasks (e.g. Saxe et al., 2006) used to identify the 
brain networks of interest. 
 Critical task. Participants listened to the recordings of the spoken stories. Each story 
corresponded to one fMRI run. Eight of the ten stories were used, and any given participant 
heard between 2 and 8 stories (average=4; two stories: n=12, three stories: n=13, four stories: 
n=2, five stories: n=4, six stories: n=5, seven stories: n=1, eight stories, n=5). Each story lasted 
between 4.5 and 6 min. Participants were asked to listen attentively. At the end of each story, a 
set of six two-alternative forced-choice comprehension questions appeared one by one, and 
participants answered by pressing one of two buttons. These questions were designed to be 
challenging and required attentive listening and the ability to respond quickly. On average, 
participants failed to provide an answer to 11.5% of the questions (SD = 15.2%) and, on the 
remaining questions, their mean accuracy was 83.5% (SD = 10.1%). (Comprehension data were 
available for 33 participants: they were lost for 2 participants, not recorded for 3 participants due 
to a script error, and not collected for 4 participants who listened to the stories as part of a larger 
experiment for which the design did not include comprehension questions). A binomial test for 
each participant (uncorrected across participants) showed that all but one participant 
demonstrated above-chance accuracy (p < 0.01). (In the supplementary materials, we report our 
main analysis restricted to participants with very good performance, which revealed the same 
general pattern of results (compare Figure 3b and Supplementary Figure 3.) 
 Localizer tasks. All participants also performed an independent localizer task. This task was 
used to functionally identify the two networks of interest: the MD network, and the language 
network. We use the task described in detail in Fedorenko et al. (2010). Briefly, we used a 
reading task that contrasted sentences and lists of unconnected, pronounceable nonwords in a 
standard blocked design with a counterbalanced order across runs. Stimuli were presented one 
word / nonword at a time (for timing parameters, see Table 1). Eighteen participants read the 
materials passively (a button-press task at the end of each trial was included in order to maintain 
alertness); for the remaining 24 participants, each trial ended with a memory probe, i.e., a word / 
nonword, and they had to indicate (via a button press) whether or not this probe had appeared in 
the preceding sentence / nonword sequence. Each participant completed 2-4 runs of the localizer 
task. (A version of this localizer is available from https://evlab.mit.edu/funcloc/download-
paradigms.) Because this localizer was originally designed to identify the core language network, 
we begin by describing how it was used to localize this network; we turn to the MD network 
next. 
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The Sentences > Nonwords localizer contrast targets brain regions that support high-level 
language comprehension.  This contrast generalizes across tasks (Fedorenko et al., 2010; Scott, 
Gallée, & Fedorenko, 2017) and presentation modalities (reading vs. listening; e.g., Fedorenko et 
al., 2010; Braze et al., 2011; Vagharchakian et al., 2012; Scott et al., 2017; Deniz et al., 2019). 
All the regions identified by this contrast show sensitivity to lexico-semantic processing (e.g., 
stronger responses to real words than nonwords) and combinatorial syntactic and semantic 
processing (e.g., stronger responses to sentences and Jabberwocky sentences than to unstructured 
word and nonword sequences) (Bautista & Wilson, 2016; Blank et al., 2016; Fedorenko et al., 
2010; E Fedorenko, Nieto-Castanon, & Kanwisher, 2012; Fedorenko, Blank, Siegelman, & 
Mineroff, 2020; Fedorenko et al., 2016; Heim, Eickhoff, & Amunts, 2008; Keller, Carpenter, & 
Just, 2001; Mineroff, Blank, Mahowald, & Fedorenko, 2018; Mollica et al., 2020; Rodd et al., 
2005a). The Sentences > Nonwords contrast encompasses all of these processes, but narrower 
contrasts that target a subset of them identify the same cortical network (e.g. Fedorenko et al., 
2010), suggesting that all the regions in the fronto-temporal language network support all of 
these high-level linguistic processes (for discussion, see Fedorenko, (in press) and Fedorenko, 
Mineroff, Siegelman, & Blank, (2018). In addition, the same network is identified by broader 
contrasts that do not subtract out phonological processing and also include pragmatic and 
discourse-level processes (e.g., a contrast between natural spoken paragraphs and their 
acoustically degraded versions or paragraphs in an unfamiliar language; (Ayyash, D.*, Malik 
Moraleda, Galleé, J., Z., Jouravlev, & Fedorenko, in prep.; Scott et al., 2017)). Finally, this 
localizer also identifies right-hemisphere homologues of the classic, left-hemisphere language 
regions (e.g., Mahowald and Fedorenko, 2016), which we included here because our other 

 
 

 Version 
I II III IV 

Number of participants 24 7 6 5 
Task: passive reading / memory probe? PR MP MP MP 

Conditions Sentences, 
Nonwords 

Sentences, 
Word lists, 
Nonwords 

Sentences, 
Nonwords 

Sentences, 
Word lists, 
Nonwords 

Words / nonwords per trial 12 12 12 8 
Trial duration (ms) 6000 6000 6000 4800 
     Fixation 100 300 300 300 
     Presentation of each word / nonword 450 350 350 350 
     Memory probe --- 1000 1000 1350 
     Fixation 500 500 500 350 
Trials per block 3 3 3 5 
Block duration (s) 18 18 18 24 
Blocks per condition per run 8 6 8 4 
Fixation block duration (s) 14 18 18 16 
Number of fixation blocks per run 5 4 5 3 
Total run time (s) 358 396 378 336 
Number of runs 2 2-3 2 3-4 

 
Table 1: Summary of the procedural and timing details for the different versions of the 
language localizer used in the current study. 
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network of interest (the MD network) is bilateral and because right-hemisphere language regions 
have been previously implicated in several aspects of language comprehension (Deniz et al., 
2019; Huth et al., 2016; Jung-Beeman, 2005; Wehbe et al., 2014). 
 To identify MD regions, we used the reverse, Nonwords > Sentences, contrast, which 
targets regions that increase their response during the more effortful reading of nonwords 
compared to that of sentences. This “cognitive effort” contrast robustly engages the MD 
network, can reliably localize it, and generalizes across a wide array of stimuli and tasks, both 
linguistic and non-linguistic (Fedorenko et al., 2013; Mineroff et al., 2018). We verified that the 
MD regions thus localized robustly respond to a difficulty (memory load) manipulation in a non-
linguistic, visuo-spatial working-memory task, for a subset of 36 participants for whom data for 
this task had been collected: all regions showed a stronger response to a harder condition than to 
an easier condition (dependent samples t(35)>3.84, p<10-6, false discovery rate corrected for the 
number of regions; Cohen’s d>0.30, computed based on an independent samples formula, see 
Supplementary Figure 1). (In the supplementary materials, we additionally report our main 
analysis restricted to the 36 participants for whom the visuo-spatial working memory task data 
had been collected using the Hard > Easy contrast in that task to localize the MD regions. This 
analysis revealed the same pattern of results as in the main analysis where the Nonwords > 
Sentences contrast was used (compare Figure 3b and Supplementary Figure 2).) 

 
fMRI data acquisition. Structural and functional data were collected on the whole-body 3-Tesla 
Siemens Trio scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center 
at the McGovern Institute for Brain Research at MIT. T1-weighted structural images were 
collected in 176 sagittal slices [1 mm isotropic voxels; repetition time (TR): 2,530 ms; echo time 
(TE): 3.48 ms]. Functional BOLD data were acquired using an echo planar imaging sequence 
with a flip angle of 90° and applying generalized autocalibrating partially parallel acquisition 
with an acceleration factor of two. Images were collected in 31 near-axial slices, acquired in an 
interleaved order with a 10% distance factor [in-plane resolution: 2.1×2.1 mm; slice thickness: 4 
mm; field of view: 200 mm in the phase encoding anterior to posterior (A >> P) direction; matrix 
size: 96×96; TR: 2,000 ms; TE: 30 ms]. Prospective acquisition correction (Thesen, Heid, 
Mueller, & Schad, 2000) was used to adjust the positions of the gradients based on the subject’s 
head motion one TR back. The first 10 s of each run was excluded to allow for steady-state 
magnetization. 
 
fMRI data preprocessing. 
 Spatial preprocessing. Data preprocessing was carried out with SPM5 and custom 
MATLAB scripts. (Note that SPM was only used for preprocessing and basic first-level 
modeling of the localizer data, aspects that have not changed much in later versions; we used an 
older version of SPM because data for this study are used across other projects spanning many 
years and hundreds of participants, and we wanted to keep the SPM version the same across all 
the participants.) Preprocessing of anatomical data included normalization into a common space 
(Montreal Neurological Institute (MNI) template, resampling into 2 mm isotropic voxels, and 
segmentation into probabilistic maps of the gray matter, white matter (WM) and cerebrospinal 
fluid (CSF). Preprocessing of functional data included motion correction, normalization, 
resampling into 2 mm isotropic voxels, smoothing with a 4 mm FWHM Gaussian kernel and 
high-pass filtering at 200s. 
 Temporal preprocessing. Additional preprocessing of data from the resting state and story 
comprehension runs was carried out using the CONN toolbox (Whitfield-Gabrieli & Nieto-
Castanon, 2012) with default parameters, unless specified otherwise. Five temporal principal 
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components of the BOLD signal time-courses extracted from the WM were regressed out of each 
voxel’s time-course; signal originating in the CSF was similarly regressed out. Six principal 
components corresponding to the six motion parameters estimated during offline motion 
correction were also regressed out, as well as their first time derivative. No low-pass filtering 
was applied. 
 
Modeling localizer data. For each localizer task, a general linear model estimated the effect size 
of each condition in each experimental run in each voxel. These effects were each modeled with 
a boxcar function (representing entire blocks) convolved with the canonical Hemodynamic 
Response Function (HRF). The model also included first-order temporal derivatives of these 
effects, as well as nuisance regressors representing entire experimental runs and offline-
estimated motion parameters. The obtained beta weights were then used to compute the 
functional contrast of interest: Nonwords > Sentences for the MD localizer, and Sentences > 
Nonwords for the language localizer. 
 
Defining functional regions of interest (fROIs). For each participant, functional ROIs were 
defined by combining two sources of information (following Fedorenko et al., 2010; Julian et al., 
2012): (1) the participant’s activation map for the relevant localizer contrast, and (2) group-level 
spatial constraints (“masks”). The latter demarcated brain areas within which most or all 
individuals in prior studies showed activity for the localizer contrasts (Figure 1). 

For the MD fROIs, we used masks derived from a group-level probabilistic 
representation of data from a previously validated MD-localizer task in a set of 197 participants. 
The task, described in detail in Fedorenko et al. (2011), contrasted hard and easy versions of a 
visuo-spatial working memory task (we did not use masks based on the Nonwords > Sentences 
contrast in order to maintain consistency with other current projects in our lab; prior work has 
established the similarity of the activation landscapes for these two contrasts, and the masks are 
sufficiently large such that slight differences in the activation landscapes, if they exist, wouldn’t 
affect our analyses; Fedorenko et al., 2013). These masks were constrained to be bilaterally 
symmetric by averaging individual Hard > Easy contrast maps across the two hemispheres prior 
to generating the group-level representation. The topography of these masks (available for 
download from http://web.mit.edu/evelina9/www/funcloc/funcloc_parcels.html) largely 
overlapped with anatomically based masks that were used in some prior studies (e.g. Fedorenko 
et al., 2013; Blank et al., 2014; Paunov et al., 2019). In particular, 10 masks were used in each 
hemisphere: in the posterior (PostPar), middle (MidPar), and anterior (AntPar) parietal cortex, 
precentral gyrus (PrecG), superior frontal gyrus (SFG), middle frontal gyrus (MFG) and its 
orbital part (MFGorb), opercular part of the inferior frontal gyrus (IFGop), the anterior cingulate 
cortex and pre-supplementary motor cortex (ACC/pSMA), and the insula (Insula). 

For the language fROIs, we used masks derived from a group-level probabilistic 
representation for the Sentences > Nonwords contrast in a set of 220 participants. These masks 
(available for download from http://web.mit.edu/evelina9/www/funcloc/funcloc_parcels.html) 
were similar to the masks derived from 25 participants, as originally reported in Fedorenko et al. 
(2010), and covered extensive portions of the left lateral frontal and temporal cortex. In 
particular, six masks were used: three in the frontal lobe (in the inferior frontal gyrus (IFG), and 
its orbital part (IFGorb), and in the middle frontal gyrus (MFG)), and three in the temporal and 
parietal cortex (in the anterior temporal cortex (AntTemp), posterior temporal cortex 
(PostTemp), and in the angular gyrus (AngG)). We additionally defined the right hemisphere 
(RH) homologues of the language network regions. To do so, the left hemisphere (LH) masks 
were mirror-projected onto the RH to create six homologous masks. 
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The group-level masks, in the form of binary maps, were used to constrain the selection 
of subject-specific fROIs in each network. In particular, for each participant, 20 MD fROIs were 
created by intersecting each MD mask with that participant’s unthresholded t-map for the 
Nonwords > Sentences contrast; the 10% of voxels with the highest t values in the intersection 
image were then chosen as the fROI. In a parallel fashion, 12 language fROIs were created for 
each participant by intersecting each language mask with that participant’s unthresholded t-map 
for the Sentences > Nonwords contrast and selecting the 10% of voxels with the highest t values 
in the intersection image. A BOLD signal time-course for each story in the story listening task 
was then extracted from each voxel in each fROI of each participant. 

We note that, for both the MD and language networks, only the group-based masks—
which cover large swaths of cortex—were symmetric across hemispheres; the fROIs themselves 
were free to vary in their location between the two hemispheres, within the borders of these 
masks. 

 
 
Figure 1: Defining participant-specific fROIs in the language (top) and MD (bottom) networks 
(only the left-hemisphere is shown). All images show approximated projections from functional 
volumes onto the surface of an inflated brain in common space. (A) Group-based masks used to 
constrain the location of fROIs. Contours of these masks are depicted in white on all brains in 
(B)-(D). (B) Overlap maps of localizer contrast effects (Sentence > Nonwords for the language 
network, Nonwords > Sentences for the MD network) across the 42 participants in the current 
sample (these maps were not used in the process of defining fROIs and are shown for 
illustration purposes). Each non gray-scale coordinate is colored according to the percentage of 
participants for whom that coordinate was among the top 10% of voxels showing the strongest 
localizer contrast effects across the nerocortical gray matter. (C) Overlap map of fROI 
locations. Each non gray-scale coordinate is colored according to the number of participants for 
whom that coordinate was included within their individual fROIs. (D) Example fROIs of three 
participants. Apparent overlap across language and MD fROIs within an individual is illusory 
and due to projection onto the cortical surface. Note that, because data were analyzed in volume 
(not surface) form, some parts of a given fROI that appear discontinuous in the figure (e.g., 
separated by a sulcus) are contiguous in volumetric space. 
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Model of comprehension difficulty using self-paced reading times. To verify that self-paced 
reading times (SPRTs) reflect stimulus-related processing (following the logic in Hasson, Yang, 
Vallines, Heeger, & Rubin, 2008; Lerner, Honey, Silbert, & Hasson, 2011), we first computed 
inter-subject correlations among the time-series of per-word SPRTs for each story: each 
individual’s time-series was correlated with the average time-series of the rest of the participants. 
The average correlations varied between r=0.38 and r=0.59 across the stories and were all 
reliably above chance (all ps<10-25). As mentioned above, we used the default exclusion criteria 
used by (Futrell et al., 2018): we excluded data for a story if a participant answered less than 5 
out of 6 questions wrong and  outlier reading times of less than 100ms or more than 3,000ms 
were also excluded. 
 Mean reading times per word from the self-paced reading experiment (n=181) were 
temporally aligned with their corresponding word onsets in the auditory stimulus. Then, we 
obtained a per-TR time-series of SPRTs by averaging the reading times for the words that 
occurred within each TR (corresponding to 2 s) when the recorded stories were played in the 
fMRI experiment. Words that overlapped with two TRs were assigned to the TR with greater 
overlap. We then computed the average (across participants) per-TR SPRT, arriving at a final 
measure of comprehension difficulty at each TR. 
 
Model of comprehension difficulty using eye-tracking measures. We used four eye-tracking 
measures for participants in the eye-tracking study (n=40): (1) first pass regression (FPR), a 
variable indicating for each word whether or not a regressive eye-movement occurred from that 
word in the first pass; (2) regression path duration (RPD) or go-past time, the duration of the 
period between the onset of the first fixation on a word and the first fixation on anything to the 
right of it (RPD thus includes time spent on regressive fixations); (3) first pass reading time 
(FPRT) or gaze duration, the summed duration of all first-pass fixation durations on a word 
before any other word (left or right) is fixated; and (4) first fixation progressive (FFP), a variable 
indicating whether the first fixation on a word took place before any downstream words were 
viewed. To verify that eye-tracking measures reflect stimulus-related processing, we follow the 
same procedure as used for SPRTs, and compute inter-subject correlations among the time-series 
of per-word FPRs, RPDs, FPRTs and FFPs for each story. The average correlations varied 
between r=0.13 and r=0.17 across the stories for FPRs, between r=0.27 and r=0.42 across the 
stories for RPDs, between r=0.38 and r=0.53 across the stories for FPRTs, and between r=0.37 
and r=0.53 across the stories for FFPs (all correlations higher than chance, all ps<10-4). 
 Mean eye-tracking measures per word were temporally aligned with their corresponding 
word onsets in the auditory stimulus. Then, we obtained a per-TR average measure of FPR, 
RPD, FPRT and FFP by averaging each of the four eye-tracking measures across the words that 
occurred within each 2s TR following the same procedure as used for SPRTs. 
 
Critical analysis using self-paced reading times and eye-tracking measures. Our analysis is 
summarized in Figure 2. As described above, for each TR t, we obtained SPRT, FPR, RPD, 
FPRT and FFP measures. We construct a design matrix for the experiment in which each row t 
corresponds to the concatenated five measures for a TR t. To account for the hemodynamic 
response, we model its effect as a fourth order finite impulse response (FIR) filter. We perform a 
simple linear regression: for each of the five variables, we estimate four weights that correspond 
to TRs t+1, t+2, t+3 and t+4 after onset and time t. Effectively, this corresponds to concatenating 
delayed versions of the design matrix so that each row t in the final design matrix contains the 
five measures for TRs t-4, t-3, t-2 and t-1. This is a common approach for accounting for the 
hemodynamic response (Huth et al., 2016; Wehbe et al., 2014), and the choice of an 8s window 
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is typically used to capture the effect of stimulus features on the fMRI response. This encoding 
model analysis (Huth et al., 2016; Wehbe et al., 2014) differs from the typical GLM analysis in 
two ways. First, instead of assuming a fixed hemodynamic response function that is constant 
across the brain, this approach allows for variability in the hemodynamic response by implicitly 
estimating it at each voxel. And second, instead of running a significance test on the regression 
weights, we run a more stringent test: we assess the generalization and stability of the learned 
weights by using them to predict held-out fMRI data unseen in training. 
 In particular, for each participant, we estimated generalization via a cross-validation scheme 
in which we iteratively held out one story and learned the regression weights on the remaining 
stories. We then predicted BOLD activity for the held-out story using the (delayed) design 
matrix for that story and the learned regression weights. This procedure resulted in a predicted 
time series of BOLD activity in each voxel in each fROI of each participant during the held-out 
story. We then measured how closely these predictions correspond to the real data via Pearson’s 

 
 
Figure 2: Diagram of approach detailing the combination of data from three experiments 
(fMRI, self-paced reading, and eye-tracking) with an encoding model approach. 
Comprehension difficulty measures are subsampled to the timing of the fMRI TRs and delayed 
to account for the BOLD response. For each subject, a cross-validation procedure is used where 
a story is held-out and a predictive model of brain activity as a linear combination of the 
comprehension difficulty measures is learned. The model is tested on the held-out story. 
Correlation of predicted and real data is computed for the held-out story; these value are then 
averaged across all cross-validation folds, resulting in an average correlation by subject and 
fROI (as well as fROI group). The cross-subjects results are combined using a bootstrap test.  
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correlation. This correlation was computed between the average (across voxels) fROI activity 
predicted by the model and the corresponding average fROI activity in the real data to obtain 
summary statistics for the fROIs. Finally, we averaged the correlation values across all cross-
validation folds to obtain a single correlation value per fROI per participant (i.e., 42 mean 
correlation values for each fROI, one for each participant). 
 To better characterize the findings at the level of the networks of interest, the above analysis 
was repeated, but this time, predicted and actual BOLD time series were grouped into four sets: 
Left Hemisphere (LH) Language fROIs, Right Hemisphere (RH) Language fROIs, LH MD 
fROIs, and RH MD fROIs. 

It is worth mentioning that the direction of prediction we used here (predicting brain 
activity from comprehension difficulty measures instead of the other way around) was in keeping 
with the encoding model approach (Huth et al., 2016; Naselaris, Kay, Nishimoto, & Gallant, 
2011; Wehbe et al., 2014) and does not imply that brain activity is caused by comprehension 
difficulty measures. Typically, when using encoding models with stimulus features to predict 
brain activity, one can state causal statements unambiguously (Weichwald et al., 2015). 
However, here we use the encoding approach as a way to only measure correlation between two 
effects (fMRI activity and reading times) of the same cause (comprehension difficulty). 
 
Noise ceiling correction. To help with interpreting prediction performance, we provide 
measures of prediction performance that are corrected by the estimated noise ceiling for each 
fROI and fROI group. The noise ceiling is an approximation of the maximum possible 
performance. fMRI stimuli engage brain regions to a different extent, and regions have different 
physiological characteristics, both of which affect the signal-to-noise ratio. We estimate the noise 
ceiling for each fROI (and fROI group) across participants by adapting the method proposed by 
Hsu et al. (2004) to be used for multiple participants. To evaluate the noise ceiling, Hsu et al. 
(2004) consider different repeats of the same stimulus that is seen by multiple participants. We 
treat the average fROI activity for the subjects listening to the same story as different repeats of 
the same story. For each story and each fROI, we evaluate the noise ceiling by first computing 
the average time-course of this fROI for each of the k subjects that have listened to this story. 

We then compute the correlation of each of the      pairs of time series. We then average all 
these pairwise correlations, and further average these estimates for all the stories. We end up 
with a measure of noise ceiling for each fROI. We repeat this approach for fROI groups. 
Following previous work (A. Hsu et al., 2004; Lescroart & Gallant, 2019; Lescroart, Stansbury, 
& Gallant, 2015), we normalize the average prediction performance by the square-root of the 
noise-ceiling, yielding normalized correlation values. 
 
Computing confidence intervals. The participant-specific (unnormalized and normalized) 
correlation values were averaged across participants, and empirical confidence intervals were 
estimated for the mean prediction in each fROI, by running a bootstrap test. Here are the details: 
the following was repeated 50,000 times: a set of 42 participants was sampled with replacement 
from the original 42 participants, and correlation values of the sampled 42 participants were 
averaged for each fROI. 90, 95, 98, and 99% confidence intervals were constructed from the 
50,000 samples. Finally, for each fROI, the smallest confidence interval containing 0 was 
transformed into a p-value and the Holm-Bonferroni method was applied to correct for multiple 
hypothesis testing (Holm, 1979). In this context where we have a relatively low number of 
hypotheses, controlling for the family-wise error rate (e.g. by using Holm-Bonferroni) is more 
appropriate than controlling the false discovery rate. Since normalized correlations are a 
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rescaling of the unnormalized correlations, we apply a single test for the unnormalized 
correlations (with the results of the normalized correlations being the same).Comparing the two 
networks. To evaluate whether the average correlation across participants is higher in the 
Language network than in the MD network we again ran a bootstrap test. First, we computed for 
each subject the difference between the average correlation in the LH Language and MD fROI 
group. This resulted in 42 values. We then repeated the following 50,000 times: a set of 42 
participants was sampled with replacement from the original 42 participants, and the LH 
difference for the 42 sampled participants is averaged. This set of 50,000 samples yielded an 
empirical distribution from which we computed a p-value. We repeated this test to obtain a p-
value for the difference between the RH Language and MD fROI group. We included these two 
p-values in the multiple testing correction mentioned in the previous section. 
 
 
 
 
Results 
 
The effect size of the unnormalized correlations between online comprehension difficulty and 
BOLD activity in the networks of interest is small, in part because of the low signal-to-noise 
ratio of fMRI. For this reason, we interpreted the size of this effect by taking into account a 
metric measure of signal reliability based on inter-subject correlation of the fMRI signals, 
effectively performing a noise ceiling correction (see Methods) (Blank & Fedorenko, 2017; A. 
Hsu et al., 2004; Lescroart & Gallant, 2019; Lescroart et al., 2015). This choice of a ceiling 
metric leads to conservative normalized correlations: Blank and Fedorenko (2017) show that 
within-subject correlations are lower than cross-subject correlations on this task, and would 
consequently lead to larger normalized correlations. 
 Self-paced reading times and eye-tracking measures predicted BOLD activity in the 
language network, based on either unnormalized or normalized correlations. Average 
(normalized) prediction performance is significantly greater than chance (false discovery rate 
controlled at 0.01) in both the LH and RH language network (Figure 3a), including in most 
individual fROIs (the bilateral IFGorb, IFG, MFG, AntTemp, and PostTemp fROIs, and the left 
AngG fROI; Figure 3b). In contrast, comprehension difficulty measures did not significantly 
predict activity in the MD network, either when averaging across fROIs within the LH or RH, or 
in any individual MD fROI. (It is worth noting that we chose to run the significance tests on the 
unnormalized correlations but running it on the normalized correlations, shown in Figure 3c-d, 
would lead to a similar result since the intervals are normalized by a constant, as can be judged 
by the similarity of the confidence intervals.) 
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Figure 3: Average (unnormalized and normalized) correlation between activity predicted 
as a function of comprehension difficulty (estimated using a combination of self-paced 
reading times and eye-tracking measures) and real held-out activity, normalized by the 
estimated reliability of the signal for each fROI group ([a] unnormalized and [c] 
normalized) and each fROI ([b] unnormalized and [d] normalized). Performance was 
averaged across the 42 participants and bootstrap confidence intervals were constructed. 
Reading times predict the activity in left and right language fROIs, but not in MD fROIs. 
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  Main  
analysis  

Analysis with only 
high-performing 

participants 
(Supplementary  

Figure 2) 

Analysis with the 
spatial WM MD 

localizer 
(Supplementary  

Figure 3) 
Network effects LH Language X X X 

RH Language X X X 
LH MD    
RH MD    

Effects for 
individual 
language fROIs 

LH PostTemp X X X 
LH AntTemp X X X 
LH IFG X X X 
LH IFGorb X X X 
LH MFG X X X 
LH AngG X X X 
RH PostTemp X X X 
RH AntTemp X X X 
RH IFG X   
RH IFGorb X X X 
RH MFG X X X 
RH AngG    

Effects for 
individual MD 
fROIs 

LH postParietal    
LH midParietal    
LH antParietal    
LH supFrontal    
LH Precentral A 
PrecG 

   

LH Precental B 
IFGop 

   

LH midFrontal    
LH midFrontalOrb    
LH insula    
LH medialFrontal    
RH postParietal    
RH midParietal    
RH antParietal    
RH supFrontal    
RH Precentral A 
PrecG 

   

RH Precental B 
IFGop 

   

RH midFrontal    
RH midFrontalOrb    
RH insula    
RH medialFrontal    

 
Table 2: Summary of results across fROI groups (bolded) and fROIs, for the main analysis and the two 
additional supplementary analyses. X marks a significantly higher than 0 correlation. The three sets of 
results are extremely similar, except for a small variation in one fROI in the last set.  
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 To directly compare between the language and the MD network, we estimated a p-value for 
a two-sample test by first computing the difference between the prediction performance in the 
language and MD networks for each subject and then using a bootstrap procedure. We find that 
the average unnormalized correlation for the language network in each hemisphere is 
significantly larger than the unnormalized correlation for the MD network (p= 2x10-5 for LH and 
p=2x10-5 for RH). False discovery rate was controlled at 0.01. 
 As described in the Methods, we additionally performed two other versions of this analysis: 
one, where we only included participants with near-perfect accuracies on the comprehension 
questions for the story listening task, and one, where we used a visuo-spatial working memory 
task to localizer the MD regions (which also corresponded to a smaller set of participants). The 
results of both of these additional analyses mirrored the results of the main analysis (with a small 
exception for the correlation in the RH IFG not being significantly higher than zero), where the 
original study included all participants and used the Nonwords > Sentences contrast to localize 
the MD regions (see Table 3 and Supplementary Figures 2 and 3). 
 
Discussion 
 
In this study, we tested whether language comprehension—in addition to language-specific 
resources—recruits domain-general executive mechanisms. To this end, we examined the 
relationship between behavioral and neural measures of incremental comprehension difficulty 
during naturalistic language processing: behavioral comprehension difficulty was estimated with 
two commonly used approaches (self-paced reading times and eye-tracking fixation durations); 
and neural recruitment was quantified from fMRI BOLD activity in domain-general and 
language-specific functional networks that have been previously implicated in language 
comprehension. We found that, whereas neural activity in the fronto-temporal, language-
selective network (Braga, DiNicola, & Buckner, 2019; Fedorenko et al., 2011; Fedorenko & 
Thompson-Schill, 2014) was predicted by behavioral measures of incremental comprehension 
difficulty, activity in the domain-general MD network (Duncan, 2010) was not predicted by 
these measures. Furthermore, this difference between networks was reliable: the mean prediction 
performance was significantly higher in the LH or RH language network than in the LH and RH 
MD network, respectively. The lack of a reliable correlation between behavioral comprehension 
difficulty and neural activity in the MD network conflicts with previous studies reporting MD 
activity during some language tasks and its sensitivity to linguistic manipulations of processing 
difficulty (January, Trueswell, & Thompson-schill, 2009; Kuperberg et al., 2003; McMillan et 
al., 2013; Nieuwland et al., 2012; Novais-Santos et al., 2007; Peelle et al., 2010; Rodd et al., 
2005). 
 Our investigation complements a prior study, Henderson et al. (2015), which related 
behavioral and neural measures of language comprehension by co-registering eye-tracking and 
fMRI data during naturalistic reading, using fixation durations to predict neural activity. Because 
behavioral and neural measures were obtained from the same participants, an experimental 
control (a pseudo-reading task) was used in order to isolate linguistic components of the signal. 
Activity in parts of the left middle and superior temporal gyri was found to correlate more 
strongly with fixation durations during the reading of natural text compared to a perceptually 
matched meaningless control materials, suggesting that longer fixations were at least partially 
driven by effort related to linguistic processing in brain areas commonly associated with 
language comprehension, i.e., putative parts of the “core language network”. Similar to our 
study, Henderson et al. (2015) did not observe a correlation between their comprehension 
difficulty measure and activity in the fronto-parietal MD regions. However, they adopt a 
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traditional group-based analytic approach, which relies on voxel-wise correspondence across 
individuals and does not take into account the well-known inter-individual variation in the 
precise locations of functional areas in the association cortex (e.g. Fischl et al., 2008; Frost & 
Goebel, 2012; Tahmasebi et al., 2012; Vázquez-Rodríguez et al., 2019). Because of the resulting 
low sensitivity of such analyses (e.g. Nieto-Castañón & Fedorenko, 2012), Henderson et al. 
(2015) may have missed the effects within the MD network. In the current study, to maximize 
the probability of detecting a relationship between behavioral measures and MD activity, we 
functionally localized MD areas (as well as core language areas) in each individual participant 
(Fedorenko et al., 2010). This strategy reduces the risk of obtaining a false negative for the MD 
network. 
 Our use of separate participant pools in the behavioral studies vs. the fMRI study further 
eliminates many non-linguistic confounds (such as attention and motor control processes related 
to eye-movements or button presses) that are difficult to avoid when the behavioral and neural 
measures come from the same individuals (e.g., Henderson et al., 2015). The observed 
relationship between reading latencies and brain activity is thus most plausibly due to linguistic 
properties of the story stimuli. These findings support the hypotheses that (1) behavioral 
responses to language stimuli reflect computational load in language comprehension mechanisms 
(Just & Carpenter, 1980); (2) language comprehension difficulty generalizes across participants, 
task demands, and modality of presentation (Hasson et al., 2008); and (3) processing 
mechanisms that give rise to measurable reading delays reside in a language-selective cortical 
network, rather than in a domain-general executive control network. In this way, our results 
reinforce those of Henderson et al. (2015): we replicate their finding of a relationship between 
reading latencies and neural activity in the left-hemisphere middle and superior temporal lobe, 
and extend it to other parts of the language network, including the language-responsive areas in 
the left inferior frontal cortex and, to a lesser extent, the left angular gyrus, as well as the right-
hemisphere homologs of the left-hemisphere language regions. These more widespread effects 
across the language network are plausibly due to increased sensitivity resulting from participant-
specific functional localization. 
 At present, much behavioral language research is disconnected from cognitive neuroscience 
efforts to understand the architecture of language comprehension, despite (1) the fact that these 
two enterprises share the same goal—to understand the computations that support language 
comprehension, and (2) the fact that a link between behavioral measures of language 
comprehension, or the mental states they correspond to, and neural correlates of language 
comprehension is a fundamental assumption of psycholinguistics (e.g. Just & Carpenter, 1980). 
Indeed, except for Henderson et al. (2015) and the current paper, cognitive neuroscientists have 
not typically used direct and continuous behavioral measures to model brain activity during 
language comprehension (see e.g., Supplementary Table 1 for fMRI studies that have used 
naturalistic linguistic materials and which have typically used linguistic features as predictors of 
neural activity, often without first establishing a link between those features and behavioral 
measures). The current paper connects the psycholinguistic and cognitive neuroscience 
literatures, and in so doing contributes to both fields. For psycholinguistics, our results validate 
widely used behavioral measures as indeed revealing the underlying activity of language 
comprehension mechanisms. For cognitive neuroscience, our results indicate that, even using a 
broad (all-encompassing) and theory-neutral estimate of comprehension difficulty, language 
processing recruits primarily cortical circuits that specialize for this purpose, and that domain-
general executive mechanisms are generally not recruited during naturalistic sentence 
comprehension. 
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 This work thus sheds new light on the role of the domain-general MD network in language 
comprehension, and on the division of labor between these domain-general mechanisms and the 
language-selective ones. In particular, regions of the MD network have been shown to be 
sensitive to linguistic difficulty across diverse manipulations (see Fedorenko (2014), for a 
review). However, almost all prior evidence has come from traditional, task-based experimental 
paradigms that present participants with linguistic manipulations that do not commonly occur in 
real-life comprehension scenarios (like ambiguous words that are not disambiguated by the 
context, or non-local dependencies; e.g., January, Trueswell, & Thompson-Schill, 2009; Novais-
Santos et al., 2007; Peelle, Troiani, Wingfield, & Grossman, 2010; Rodd et al., 2005) and ask 
them to solve “artificial” tasks, such as making similarity judgments or deciding whether a 
sentence matches a picture. Although the stories used in the current study were modified to 
include challenging linguistic phenomena in order to increase variability in processing demands 
and increase the chances of engaging executive resources, the only “task” required of 
participants was naturalistic comprehension of the narratives. The fact that we do not find a 
relationship between comprehension difficulty and the MD network’s activity in our study 
suggests that the MD network’s contribution to language comprehension may be restricted to 
artificial scenarios, where language is effectively turned into problem solving (Diachek et al., in 
press; P. Wright, Randall, Marslen-Wilson, & Tyler, 2011). In line with this conjecture, Blank 
and Fedorenko (2017) showed that MD regions do not strongly track language stimuli during 
comprehension, and Shain and colleagues (2019) showed that activity in the MD regions during 
comprehension does not correlate with the psycholinguistic construct of “surprisal”, the moment-
by-moment unpredictability of linguistic input (see also Blanco-Elorrieta & Pylkkänen, 2017, for 
evidence of less MD engagement during a more naturalistic production paradigm). Whereas the 
MD network may play some role during language processing (perhaps modulating overall 
alertness or attention) our results as well as others mentioned above suggest that this system is 
not directly involved in linguistic computations. 
 Our results also suggest that similarities between language processing and other kinds of 
processing (e.g., theoretical constructs in mathematics or music resembling those in natural 
language syntax) do not entail shared neural circuitry (see also Fedorenko & Blank, 2020, for a 
recent discussion). In particular, the fact that multiple domains require hierarchical combinatoric 
processing of symbols does not mean that the same circuits are engaged across these domains. 
Rather, constructing hierarchical sequences, predictive coding, working memory storage and 
retrieval of information, and other processes that may be necessary in multiple domains of 
cognition appear to be implemented within domain-specialized systems, including the language 
processing areas. 
 In conclusion, we found that whereas neural activity in the fronto-temporal language 
network is predicted by behavioral signatures of incremental comprehension difficulty, activity 
in in the domain-general fronto-parietal multiple demand network is not. 
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Author 
 

Description 
 

N 
 

Statistical 
procedure 

Controls (not of 
interest) 

Predictors of interest 
 

Held-Out 
Evaluation 

Bhattasali 
et al., 
(2018) 

Evidence of brain areas engaged 
in memory retrieval vs. parsing. 42 2-step GLM 

word-rate, unigram, 
sound power, pitch 

parser operations number, Is 
Last Word of Multiword 
Expression NO 

Brennan et 
al., (2012) 

Evidence of structure building in 
Anterior Temporal Lobe. 9 2-step GLM 

word-rate, unigram, 
sound power, pitch syntactic node count NO 

Brennan et 
al., (2016) 

Evidence of different types of 
structure building throughout the 
language network. 26 LME/LRT 

prosodic-breaks, 
head movement, 
unigram, sound-
power 

syntactic node count, POS 
surprisal NO 

de Heer et 
al., (2017) 

Evidence of increasing layers of 
abstraction for linguistic 
processing. 7 

Ridge 
regression + 
held-out eval.  

spectral features space, 
phonetic feature space, 
semantic feature space YES 

Dehghani et 
al., (2017) 

Evidence that story embeddings 
can support story classification 
during naturalistic reading, even 
across languages. 90 

Ridge 
regression + 
decoder held-
out eval.  narrative features YES 

(Deniz et 
al., 2019) 

Evidence that semantic selectivity 
is similar during listening and 
reading   

Ridge 
regression + 
held-out eval. 

word-rate, visual, 
syntactic and 
phonetic feature 
spaces semantic feature space YES 

Desai et al., 
(2016) 

Evidence that semantic 
representations are grounded in 
sensorimotor representations. 31 

Linear 
regression + 
generalized 
linear test 

head movement, 
mean CSF and white 
matter signal 

fixation-duration, fixation to 
other words, word length, is 
noun, noun-concreteness, 
noun manipulability, unigram  NO 

Hale et al., 
(2015) 

Evidence of different types of 
structure building throughout the 
language network. 13 

Mixed effect 
model, 
likelihood ratio 
test 

prosodic-breaks, 
unigram, head 
movement, heart 
rate, lung action 

syntactic node count, POS 
surprisal, PCFG surprisal NO 

Henderson 
et al., 
(2015) 

Evidence of association between 
fixation duration and activity in 
the language network during 
reading and not pseudo-reading. 29 2-step GLM 

head movement and 
CSF signal 

Fixation onset, fixation 
duration, fixation number  NO 

Henderson 
et al., 
(2016) 

Evidence of sensitivity to 
syntactic surprisal in IFG and 
AntTemp. 40 

Linear 
regression + 
generalized 
linear test 

CSF and white 
matter signal, head 
movement 

word-length, unigram, PCFG 
surprisal NO 

Huth et al., 
(2016) 

Evidence of semantic selectivity 
in patterns of cortical regions. 7 

Ridge 
regression + 
held-out eval. 

word-rate, phonetic 
feature space,  semantic feature space YES 

Lopopolo et 
al.,( 2017) 

Evidence for distinct brain 
regions predicted by statistical 
structure of lexical, syntactic, and 
phonological information. 22 2-step GLM 

word-rate, unigram, 
POS frequency, 
Phoneme Frequency 

POS surprisal, lexical surprisal, 
phonetic surprisal NO 

Murphy et 
al., (2016) 

Evidence for grammatical relation 
processing in the superior and 
middle temporal gyrus, using 
fMRI 22 

Logistic 
regression 
classification  narrative features YES 

Speer et al., 
(2009) 

Evidence of different brain 
regions tracking different 
narrative features such as 
character identity, goal changes, 
location and time change etc. 28 

Hierarchical 
regression  narrative features NO 

Speer et al., 
(2007) 

Evidence of sensitivity of a 
number of brain regions to 
narrative event boundaries. 28 GLM+ANOVA  narrative features NO 

Wehbe et 
al.,( 2014) 

Evidence that different areas in 
the language system are involved 
in representing semantic, syntax, 
and discourse level features. 8 

Ridge 
regression + 
decoder held-
out eval.  

word-length, syntactic feature 
space, semantic feature 
space, narrative feature space YES 

Whitney et 
al., (2009) 

Evidence that the right precuneus 
and cingulate cortex are sensitive 
for narrative shifts. 16 GLM+ANOVA  narrative features NO 

Willems et 
al., (2016) 

Evidence of sensitivity of brain 
areas to entropy of next word 
probability distribution and 
surprisal. 24 2-step GLM word-rate, unigram 

lexical surprisal, next word 
entropy NO 

Present 
study 

Evidence that the language 
network is predicted by measures 
of comprehension difficulty 42 

Ridge 
regression + 
held-out eval. 

word and phoneme 
rate 

self-paced reading times, eye-
tracking measures YES 

 
Supplementary Table 1: Studies that used naturalistic linguistic materials with the goal 
of relating brain responses to properties of the materials. 
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Supplementary Figure 1. Response of MD regions defined with the Nonwords > Sentences contrast to the 
Hard and Easy conditions of the visuo-spatial working memory MD localizer. 
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Supplementary Figure 2. Average (unnormalized and normalized) correlation between 
activity predicted as a function of comprehension difficulty (estimated using self-paced 
reading times and eye-tracking measures) and real held-out activity, normalized by the 
estimated reliability of the signal for each fROI group ([a] unnormalized and [c] 
normalized) and each fROI ([b] unnormalized and [d] normalized). Performance was 
averaged across the 42 participants and bootstrap confidence intervals were constructed. 
Reading times predict the activity in left and right language fROIs, but not in MD fROIs. 
Here the MD fROIs were defined using the spatial MD localizer and the results are 
shown only for the subset of 35 subjects that underwent this task. 
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Supplementary fig. 3. Average (unnormalized and normalized) correlation between 
activity predicted as a function of comprehension difficulty (estimated using self-paced 
reading times and eye-tracking measures) and real held-out activity, normalized by the 
estimated reliability of the signal for each fROI group ([a] unnormalized and [c] 
normalized) and each fROI ([b] unnormalized and [d] normalized). The analysis is 
restricted here to the 24 subjects with the best performance. Performance was 
averaged across these 24 participants and bootstrap confidence intervals were constructed. 
Reading times predict the activity in left and right language fROIs, but not in MD fROIs.  
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