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Abstract

What role do domain-general executive functions play in human language comprehension? To
address this question, we examine the relationship between behavioral measures of
comprehension and neural activity in the domain-general “multiple demand” (MD) network,
which has been linked to constructs like attention, working memory, inhibitory control, and
selection, and implicated in diverse goal-directed behaviors. Specifically, fMRI data collected
during naturalistic story listening are compared to theory-neutral measures of online
comprehension difficulty and incremental processing load (reading times and eye-fixation
durations). Critically, to ensure that variance in these measures is driven by features of the
linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging
and behavioral datasets were collected in non-overlapping samples. We find no behavioral-
neural link in functionally localized MD regions; instead, this link is found in the domain-
specific, fronto-temporal “core language network”, in both left hemispheric areas and their right
hemispheric homologues. These results argue against strong involvement of domain-general
executive circuits in language comprehension.
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Introduction

Human language comprehension encompasses a host of complex computations, from perceptual
(auditory, visual or, in the case of Braille, haptic) processing, to word recognition, to recovering
the semantic and syntactic dependency structures linking words together, to constructing
discourse-level representations, and making pragmatic inferences. A major goal of both
behavioral psycholinguistics and cognitive neuroscience of language is to understand which
cognitive mechanisms support language comprehension, and whether and how these mechanisms
are shared with other (non-linguistic) cognitive functions.

Psycholinguists have long invoked domain-general constructs when discussing lexical
access and syntactic/semantic dependency formation, from storage and retrieval of information
from working memory, to updating focal attention, inhibiting irrelevant information, selecting an
option among alternatives, and predictive processing (Abney & Johnson, 1991; Fedorenko,
Gibson, & Rohde, 2006, 2007; Gernsbacher, 1993; E. Gibson, 1998, 2000; Gordon, Hendrick, &
Levine, 2002; Johnson-Laird, 1983; King & Just, 1991; Lewis & Vasishth, 2005; Lewis,
Vasishth, & Van Dyke, 2006; McElree, 2000, 2001; Novick, Kan, Trueswell, & Thompson-
Schill, 2009; Rasmussen & Schuler, 2018; Resnik, 1992; Rodd, Johnsrude, & Davis, 2010;
Schuler, AbdelRahman, Miller, & Schwartz, 2010; van Schijndel, Exley, & Schuler, 2013;
Vergauwe, Barrouillet, & Camos, 2010; Waters & Caplan, 1996, inter alia). If some linguistic
processes require these or other domain-general operations, does it mean that language shares
neural mechanisms with other domains?

It has long been known that language processing recruits particular neural circuitry (Broca,
1861; Geschwind, 1970; Wernicke, 1874). However, prior cognitive neuroscience work has
argued both (1) that some of this circuitry (e.g., “Broca’s area”) may not be specialized for
language processing per se, but rather used for broader cognitive functions—Ilike hierarchical
syntactic structure building—that operate not only in language but also in other domains like
music, mathematics, and action planning (Anderson, 2010; Fadiga, Craighero, & D’Ausilio,
2009; Fitch & Martins, 2014; Friedrich & Friederici, 2009; Patel, 2003, 2012; Rodriguez &
Granger, 2016; Slevc, Rosenberg, & Patel, 2009; Tettamanti & Weniger, 2006; inter alia, see
Fedorenko & Blank, 2020 for a review); and (2) that language processing relies on a more
spatially distributed network, extending beyond the “classic” language areas, that includes
regions traditionally associated with domain-general executive control (Mesulam, 1998; Kaan
and Swaab, 2002; Kuperberg et al., 2003; Novick et al., 2005; Rodd et al., 2005a; Thompson-
Schill et al., 2005; Novais-Santos et al., 2007; January et al., 2009b; Peelle et al., 2010; Rogalsky
and Hickok, 2011; Wild et al., 2012; McMillan et al., 2012, 2013; Nieuwland et al., 2012;
Blumstein and Amso, 2013; Hsu and Novick, 2016; inter alia). Hypotheses from
psycholinguistics, cognitive science, and cognitive neuroscience therefore converge to predict a
role for domain-general executive resources in human language comprehension.

Within the human brain, the most plausible place to look for domain-general recruitment is
in the fronto-parietal / cingulo-opercular “multiple demand (MD)” network, which supports a
broad range of executive functions, including inhibitory control, attentional selection, conflict
resolution, and maintenance and manipulation of task sets (Duncan, 2010; Fedorenko, Duncan,
& Kanwisher, 2013). Indeed, MD regions have been shown to be sensitive to linguistic
processing difficulty (e.g., due to ambiguity or complexity) across diverse manipulations
(Kuperberg et al., 2003; Rodd et al., 2005a; Novais-Santos et al., 2007; January et al., 2009b;
Peelle et al., 2010; Nieuwland et al., 2012; McMillan et al., 2013 inter alia). Further, activity in
this network has been shown to correlate positively with reaction times—a behavioral measure
of processing difficulty—across tasks (Taylor, Rastle, & Davis, 2014; Yarkoni, Barch, Gray,
Conturo, & Braver, 2009). If indeed MD regions register processing load during language
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comprehension, this would support the hypothesis that domain-general resources are engaged in
language comprehension.

The ability of prior work to bear on this hypothesis is limited by two factors. First, language
comprehension effort has typically been studied by relating theory-driven linguistic variables
(e.g., word frequency, word predictability, structural complexity, constituent length, etc.) to
neural activity (Mazoyer et al., 1993; Stowe et al., 1998; Vandenberghe et al., 2002; Friederici et
al., 2003; Dronkers et al., 2004; Humphries et al., 2006; Brennan et al., 2010, 2016; Pallier et al.,
2011; Rogalsky and Hickok, 2011; Brennan and Pylkkénen, 2012; Willems et al., 2016;
Henderson et al., 2016; Lopopolo et al., 2017; Nelson et al., 2017; inter alia). Despite the critical
role of theory in understanding human cognition, theory-driven variables are only as good as the
underlying theory and can only be expected to capture a fraction of the language comprehension
effort given the multi-faceted nature of language. Such variables may fail to characterize some
components of language comprehension and thereby underestimate the extent to which some
neural circuits are implicated in comprehension. Second, prior work, including many of the
aforementioned studies purportedly showing MD involvement in language comprehension, has
generally relied on language stimuli cleverly constructed to directly manipulate some aspect of
language processing difficulty and has often included explicit tasks on top of language
comprehension, like making judgments about sentences or deciding whether a sentence matches
a picture (e.g. Friederici et al., 2003; Fiebach et al., 2004; Rodd et al., 2005a; Bilenko et al.,
2008; Kuperberg et al., 2008; Snijders et al., 2009; Blank et al., 2016). Such hand-constructed
stimuli and tasks are very different from natural comprehension “in the wild”, and may
inadvertently trigger recruitment of domain-general problem solving and task strategizing
mechanisms due to their artificial nature and extraneous task demands (Campbell & Tyler, 2018;
Diachek, Blank, Siegelman, Affourtit, & Fedorenko, in press; Hasson, Egidi, Marelli, &
Willems, 2018; Hasson & Honey, 2012) . Such stimuli and tasks might thus overestimate MD
involvement in language comprehension, especially given the sensitivity of MD regions to task
demands (D’Esposito & Postle, 2015; Miller & Cohen, 2001; Sreenivasan, Curtis, & D’Esposito,
2014). MD recruitment for language processing would therefore be better supported if an MD
response to theory-neutral measures of comprehension difficulty could be shown under more
naturalistic experimental conditions.

Therefore, in this study, to test the hypothesis of domain-general executive involvement in
language comprehension, we use context-rich, naturalistic language stimuli presented without
any extraneous tasks and correlate (1) experimentally-obtained behavioral reaction time
measures of language processing difficulty during reading, with (2) fMRI measures of activity in
the domain-general MD network. To increase the interpretability of such correlations, we
compare them to brain-behavior correlations based on a different functional network: the
domain-specific, fronto-temporal “core language network”. This network serves as a good
comparison for the MD network because it robustly engages in comprehension (during both
listening and reading) but shows little to no engagement in other high-level cognitive processes
(Binder, 1997; Deniz, Nunez-Elizalde, Huth, & Gallant, 2019; Fedorenko, Behr, & Kanwisher,
2011; Fedorenko & Blank, 2020; Fedorenko, Hsieh, Nieto-Castanon, Whitfield-Gabrieli, &
Kanwisher, 2010; Fedorenko & Varley, 2016; Jung-Beeman, 2005). Below, we describe and
justify the main design features of our experiment.

Our use of behavioral reading data as a global proxy for comprehension difficulty follows a
standard psycholinguistic paradigm that investigates how reaction times vary in response to
linguistic materials whose comprehension requires different kinds of (hypothesized)
computations, in either experimentally constructed materials (e.g., Frazier and Rayner, 1987,
Clifton and Frazier, 1989; Gibson, 1991, 1998; Grodner et al., 2002; Levy, 2008), or naturalistic

4


https://doi.org/10.1101/2020.04.15.043844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.043844; this version posted April 17, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ones (e.g. Demberg and Keller, 2008; Smith and Levy, 2013). Although incremental reading data
are known to have a complex relationship to mental states (Posner, 1980, 2016; Remington,
1980; Klein and Farrell, 1989; Wright and Ward, 2008; inter alia) and be sensitive to non-
linguistic factors like general attention, sensory/perceptual processing, motor control, and task-
related strategizing (Kaakinen & Hyoni, 2010; Kennedy, 2000; Rayner, 1998; Schotter, Tran, &
Rayner, 2014), a premise underlying most psycholinguistic work in this domain is that
incremental behavioral measures of reading effort track language-related comprehension
difficulty with sufficient reliability such that they can be used to validate theories of human
sentence comprehension (M. A. Just & Carpenter, 1980; Lewis et al., 2006; Mitchell, 1984;
Rayner, 1977, 1978, 1998). Furthermore, our experimental design reduces the influence of
idiosyncratic processes such as attention fluctuations by (1) aggregating reading data from many
participants; (2) separating the samples that provide behavioral data from the sample providing
the neuroimaging data; and (3) using different presentation modalities across the behavioral
(visual) and fMRI (auditory) paradigms (cf. Henderson et al., 2015). This design is intended to
distill stimulus-related, generalizable variation in comprehension difficulty: because attention,
sensory/perceptual, motor, and task variables are unlikely to co-vary between participants and
presentation modalities, any correlation between behavioral and neural measures in this design is
most plausibly due to the linguistic content of the stimuli themselves, and thus is most plausibly
driven by language comprehension effort.

We consider two different behavioral responses—self-paced reading (SPR, Aaronson and
Scarborough, 1977; Just et al., 1982) and eye-tracking during reading (ET, Rayner, 1998), from
two large, existing datasets (Futrell et al., 2018 and von der Malsburg et al., unpublished). These
measures of comprehension effort serve as theory-neutral, broad-coverage estimates of
computational load during language comprehension, since they should permit detection of any
mechanisms that contribute to processing latencies, even if their role is not yet captured by any
existing theory.

When correlating these measures with neuroimaging data, we consider the detailed time-
course of activation during listening, rather than an aggregate measure averaging across the
entire stimulus, or parts of the stimulus. The time-varying fMRI data enable us to exploit
relatively fine-grained variation in incremental processing difficulty that may be attenuated in
aggregate measures. In addition, we infer the hemodynamic response from the data, in order to
address individual and regional variation in the underlying hemodynamic response (Handwerker,
Ollinger, & D’Esposito, 2004). Finally, we employ non-parametric hypothesis tests on out-of-
sample data, in order to increase the statistical robustness of the results and reduce the risk of
replication failure (Eklund, Andersson, Josephson, Johannesson, & Knutsson, 2012; Menke &
Martinez, 2004).

To foreshadow our results, whereas we find that reading latencies predict neural activity in
the core language network, we do not find that reading latencies predict neural activity in the
MD network. This finding supports the hypothesis that incremental processing effort during
naturalistic language comprehension is largely restricted to neural circuits (and, by extension,
cognitive resources) that are specialized for language comprehension, with little role played by
domain-general executive systems.
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Materials and methods

Short stories. We use the Natural Stories Corpus (Futrell et al., 2018; data downloaded from
https://github.com/languageMIT/naturalstories.git), which contains ten stories that were
constructed from existing, publicly available texts (fairy tales, short stories, and Wikipedia
articles) but edited so as to make comprehension difficulty more variable than in fully natural
texts. The dataset includes recordings of these stories by two native English speakers (one male,
E.G., and one female).

Behavioral self-paced reading data. The Natural Stories Corpus includes self-paced reading
data from 181 native English speaking participants recruited through Amazon.com’s Mechanical
Turk. Participants gave informed consent in accordance with the Internal Review Board at the
Massachusetts Institute of Technology (MIT) and were paid for their participation. Participants
read stories in a moving-window self-paced word-by-word reading paradigm, where a button has
to be pressed to reveal each subsequent word. The time spent on each word provides an overall
estimate of processing difficulty at that point in the sentence/story. Each story was followed by 6
multiple-choice comprehension questions and if a participant answered fewer than 5 questions
correctly, their reading time data for that story were excluded. Outlier reading times of less than
100ms or more than 3,000ms were also excluded. These exclusion criteria were the ones
followed by Futrell et al. (2018). Reading times were aggregated across participants for each
word. As a result, for each word in each story, we have a single (average) reading time.

Behavioral eye-tracking study. Forty native English speaking participants recruited from the
University of California, San Diego (UCSD) undergraduate population gave informed consent in
accordance with the Internal Review Board at UCSD and were paid for their participation. They
read the stories in an eye-tracking paradigm. A tower-mounted EyeLink 1000 eye-tracker
recorded eye movements as participants read the stories presented a few sentences at a time (the
boundaries among the story fragments and lines within fragments differed across participants so
as to vary the words that span the screen-change and line boundaries). Each story was followed
by two true/false comprehension questions. Software for automatic correction of eye fixations
was used to repair data recorded with imperfect eye-tracker calibration (A. L. Cohen, 2013). A
set of heuristics were used to detect and remove episodes of track loss, poor-quality data, and
episodes where reader merely skimmed the text. In particular, fixations were removed when 1)
the previous and/or subsequent fixations were five or more words away which is indicative of
skimming (all the skipped words were also removed from the subject’s data in this case), 2)
initial fixations on a new page of text occurred on words that were not at the beginning of the
text, 3) the fixations could not be mapped to any word, or 4) consecutive fixations were moved
in different directions by Cohen correction (J. Cohen, Cohen, West, & Aiken, 2013).! For each
word, four canonical eye-tracking measures were calculated (first pass regression, regression
path duration, first pass reading time, and first fixation progressive) which are believed to index
different perceptual and linguistic processes involved in reading, ranging from word recognition
to high-level discourse integration (Rayner, 1998; Vasishth et al., 2013). Eye-tracking measures
were aggregated across participants for each word. As a result, for each word in each story, we
have four (average) eye-tracking measures.

! The Cohen correction is designed to correct for poor eye-tracker calibration. However, poor calibration is
reflected in fixation offsets in the same direction, and variable correction vectors therefore indicate that the
Cohen correction failed.
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fMRI experiment

Participants. 42 right-handed native English speakers (average age 22.7, SD = 3.3; 24
females) from the MIT community gave informed consent in accordance with the Internal
Review Board at MIT and were paid for their participation. (Subsets of this dataset were used by
Blank & Fedorenko (2017), Blank, Kanwisher, & Fedorenko (2014) and Shain, Blank, van
Schijndel, Schuler, & Fedorenko, 2020).

General approach. Each participant listened to a subset of the stories from Futrell et al.
(2018) and performed one or more “localizer” tasks (e.g. Saxe et al., 2006) used to identify the
brain networks of interest.

Critical task. Participants listened to the recordings of the spoken stories. Each story
corresponded to one fMRI run. Eight of the ten stories were used, and any given participant
heard between 2 and 8 stories (average=4; two stories: n=12, three stories: n=13, four stories:
n=2, five stories: n=4, six stories: n=5, seven stories: n=1, eight stories, n=5). Each story lasted
between 4.5 and 6 min. Participants were asked to listen attentively. At the end of each story, a
set of six two-alternative forced-choice comprehension questions appeared one by one, and
participants answered by pressing one of two buttons. These questions were designed to be
challenging and required attentive listening and the ability to respond quickly. On average,
participants failed to provide an answer to 11.5% of the questions (SD = 15.2%) and, on the
remaining questions, their mean accuracy was 83.5% (SD = 10.1%). (Comprehension data were
available for 33 participants: they were lost for 2 participants, not recorded for 3 participants due
to a script error, and not collected for 4 participants who listened to the stories as part of a larger
experiment for which the design did not include comprehension questions). A binomial test for
each participant (uncorrected across participants) showed that all but one participant
demonstrated above-chance accuracy (p < 0.01). (In the supplementary materials, we report our
main analysis restricted to participants with very good performance, which revealed the same
general pattern of results (compare Figure 3b and Supplementary Figure 3.)

Localizer tasks. All participants also performed an independent localizer task. This task was
used to functionally identify the two networks of interest: the MD network, and the language
network. We use the task described in detail in Fedorenko et al. (2010). Briefly, we used a
reading task that contrasted sentences and lists of unconnected, pronounceable nonwords in a
standard blocked design with a counterbalanced order across runs. Stimuli were presented one
word / nonword at a time (for timing parameters, see Table 1). Eighteen participants read the
materials passively (a button-press task at the end of each trial was included in order to maintain
alertness); for the remaining 24 participants, each trial ended with a memory probe, i.e., a word /
nonword, and they had to indicate (via a button press) whether or not this probe had appeared in
the preceding sentence / nonword sequence. Each participant completed 2-4 runs of the localizer
task. (A version of this localizer is available from https://evlab.mit.edu/funcloc/download-
paradigms.) Because this localizer was originally designed to identify the core language network,
we begin by describing how it was used to localize this network; we turn to the MD network
next.
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The Sentences > Nonwords localizer contrast targets brain regions that support high-level
language comprehension. This contrast generalizes across tasks (Fedorenko et al., 2010; Scott,
Gallée, & Fedorenko, 2017) and presentation modalities (reading vs. listening; e.g., Fedorenko et
al., 2010; Braze et al., 2011; Vagharchakian et al., 2012; Scott et al., 2017; Deniz et al., 2019).
All the regions identified by this contrast show sensitivity to lexico-semantic processing (e.g.,
stronger responses to real words than nonwords) and combinatorial syntactic and semantic
processing (e.g., stronger responses to sentences and Jabberwocky sentences than to unstructured
word and nonword sequences) (Bautista & Wilson, 2016; Blank et al., 2016; Fedorenko et al.,
2010; E Fedorenko, Nieto-Castanon, & Kanwisher, 2012; Fedorenko, Blank, Siegelman, &
Mineroff, 2020; Fedorenko et al., 2016; Heim, Eickhoff, & Amunts, 2008; Keller, Carpenter, &
Just, 2001; Mineroff, Blank, Mahowald, & Fedorenko, 2018; Mollica et al., 2020; Rodd et al.,
2005a). The Sentences > Nonwords contrast encompasses all of these processes, but narrower
contrasts that target a subset of them identify the same cortical network (e.g. Fedorenko et al.,
2010), suggesting that all the regions in the fronto-temporal language network support all of
these high-level linguistic processes (for discussion, see Fedorenko, (in press) and Fedorenko,
Mineroff, Siegelman, & Blank, (2018). In addition, the same network is identified by broader
contrasts that do not subtract out phonological processing and also include pragmatic and
discourse-level processes (e.g., a contrast between natural spoken paragraphs and their
acoustically degraded versions or paragraphs in an unfamiliar language; (Ayyash, D.*, Malik
Moraleda, Galleé, J., Z., Jouravlev, & Fedorenko, in prep.; Scott et al., 2017)). Finally, this
localizer also identifies right-hemisphere homologues of the classic, left-hemisphere language
regions (e.g., Mahowald and Fedorenko, 2016), which we included here because our other

Version
I Il 1] \Y;
Number of participants 24 7 6 5
Task: passive reading / memory probe? PR MP MP MP
. Sentences Senten_ces, Sentences Senten_ces,
Conditions N d " Word lists, N d * Word lists,
onwords onwords
Nonwords Nonwords
Words / nonwords per trial 12 12 12 8
Trial duration (ms) 6000 6000 6000 4800
Fixation 100 300 300 300
Presentation of each word / nonword 450 350 350 350
Memory probe 1000 1000 1350
Fixation 500 500 500 350
Trials per block 3 3 3 5
Block duration (s) 18 18 18 24
Blocks per condition per run 8 6 8 4
Fixation block duration (s) 14 18 18 16
Number of fixation blocks per run 5 4 5 3
Total run time (s) 358 396 378 336
Number of runs 2 2-3 2 3-4

Table 1: Summary of the procedural and timing details for the different versions of the
language localizer used in the current study.
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network of interest (the MD network) is bilateral and because right-hemisphere language regions
have been previously implicated in several aspects of language comprehension (Deniz et al.,
2019; Huth et al., 2016; Jung-Beeman, 2005; Wehbe et al., 2014).

To identify MD regions, we used the reverse, Nonwords > Sentences, contrast, which
targets regions that increase their response during the more effortful reading of nonwords
compared to that of sentences. This “cognitive effort” contrast robustly engages the MD
network, can reliably localize it, and generalizes across a wide array of stimuli and tasks, both
linguistic and non-linguistic (Fedorenko et al., 2013; Mineroff et al., 2018). We verified that the
MD regions thus localized robustly respond to a difficulty (memory load) manipulation in a non-
linguistic, visuo-spatial working-memory task, for a subset of 36 participants for whom data for
this task had been collected: all regions showed a stronger response to a harder condition than to
an easier condition (dependent samples f35>3.84, p<10, false discovery rate corrected for the
number of regions; Cohen’s @>0.30, computed based on an independent samples formula, see
Supplementary Figure 1). (In the supplementary materials, we additionally report our main
analysis restricted to the 36 participants for whom the visuo-spatial working memory task data
had been collected using the Hard > Easy contrast in that task to localize the MD regions. This
analysis revealed the same pattern of results as in the main analysis where the Nonwords >
Sentences contrast was used (compare Figure 3b and Supplementary Figure 2).)

fMRI data acquisition. Structural and functional data were collected on the whole-body 3-Tesla
Siemens Trio scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center
at the McGovern Institute for Brain Research at MIT. T1-weighted structural images were
collected in 176 sagittal slices [ mm isotropic voxels; repetition time (TR): 2,530 ms; echo time
(TE): 3.48 ms]. Functional BOLD data were acquired using an echo planar imaging sequence
with a flip angle of 90° and applying generalized autocalibrating partially parallel acquisition
with an acceleration factor of two. Images were collected in 31 near-axial slices, acquired in an
interleaved order with a 10% distance factor [in-plane resolution: 2.1x2.1 mm; slice thickness: 4
mm; field of view: 200 mm in the phase encoding anterior to posterior (A >> P) direction; matrix
size: 96x96; TR: 2,000 ms; TE: 30 ms]. Prospective acquisition correction (Thesen, Heid,
Mueller, & Schad, 2000) was used to adjust the positions of the gradients based on the subject’s
head motion one TR back. The first 10 s of each run was excluded to allow for steady-state
magnetization.

fMRI data preprocessing.

Spatial preprocessing. Data preprocessing was carried out with SPMS5 and custom
MATLAB scripts. (Note that SPM was only used for preprocessing and basic first-level
modeling of the localizer data, aspects that have not changed much in later versions; we used an
older version of SPM because data for this study are used across other projects spanning many
years and hundreds of participants, and we wanted to keep the SPM version the same across all
the participants.) Preprocessing of anatomical data included normalization into a common space
(Montreal Neurological Institute (MNI) template, resampling into 2 mm isotropic voxels, and
segmentation into probabilistic maps of the gray matter, white matter (WM) and cerebrospinal
fluid (CSF). Preprocessing of functional data included motion correction, normalization,
resampling into 2 mm isotropic voxels, smoothing with a 4 mm FWHM Gaussian kernel and
high-pass filtering at 200s.

Temporal preprocessing. Additional preprocessing of data from the resting state and story
comprehension runs was carried out using the CONN toolbox (Whitfield-Gabrieli & Nieto-
Castanon, 2012) with default parameters, unless specified otherwise. Five temporal principal
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components of the BOLD signal time-courses extracted from the WM were regressed out of each
voxel’s time-course; signal originating in the CSF was similarly regressed out. Six principal
components corresponding to the six motion parameters estimated during offline motion
correction were also regressed out, as well as their first time derivative. No low-pass filtering
was applied.

Modeling localizer data. For each localizer task, a general linear model estimated the effect size
of each condition in each experimental run in each voxel. These effects were each modeled with
a boxcar function (representing entire blocks) convolved with the canonical Hemodynamic
Response Function (HRF). The model also included first-order temporal derivatives of these
effects, as well as nuisance regressors representing entire experimental runs and offline-
estimated motion parameters. The obtained beta weights were then used to compute the
functional contrast of interest: Nonwords > Sentences for the MD localizer, and Sentences >
Nonwords for the language localizer.

Defining functional regions of interest (fROIs). For each participant, functional ROIs were
defined by combining two sources of information (following Fedorenko et al., 2010; Julian et al.,
2012): (1) the participant’s activation map for the relevant localizer contrast, and (2) group-level
spatial constraints (“masks”). The latter demarcated brain areas within which most or all
individuals in prior studies showed activity for the localizer contrasts (Figure 1).

For the MD fROIs, we used masks derived from a group-level probabilistic
representation of data from a previously validated MD-localizer task in a set of 197 participants.
The task, described in detail in Fedorenko et al. (2011), contrasted hard and easy versions of a
visuo-spatial working memory task (we did not use masks based on the Nonwords > Sentences
contrast in order to maintain consistency with other current projects in our lab; prior work has
established the similarity of the activation landscapes for these two contrasts, and the masks are
sufficiently large such that slight differences in the activation landscapes, if they exist, wouldn’t
affect our analyses; Fedorenko et al., 2013). These masks were constrained to be bilaterally
symmetric by averaging individual Hard > Easy contrast maps across the two hemispheres prior
to generating the group-level representation. The topography of these masks (available for
download from http://web.mit.edu/evelina9/www/funcloc/funcloc_parcels.html) largely
overlapped with anatomically based masks that were used in some prior studies (e.g. Fedorenko
et al., 2013; Blank et al., 2014; Paunov et al., 2019). In particular, 10 masks were used in each
hemisphere: in the posterior (PostPar), middle (MidPar), and anterior (AntPar) parietal cortex,
precentral gyrus (PrecG), superior frontal gyrus (SFG), middle frontal gyrus (MFG) and its
orbital part (MFGorb), opercular part of the inferior frontal gyrus (IFGop), the anterior cingulate
cortex and pre-supplementary motor cortex (ACC/pSMA), and the insula (Insula).

For the language fROIs, we used masks derived from a group-level probabilistic
representation for the Sentences > Nonwords contrast in a set of 220 participants. These masks
(available for download from http://web.mit.edu/evelina9/www/funcloc/funcloc_parcels.html)
were similar to the masks derived from 25 participants, as originally reported in Fedorenko et al.
(2010), and covered extensive portions of the left lateral frontal and temporal cortex. In
particular, six masks were used: three in the frontal lobe (in the inferior frontal gyrus (IFG), and
its orbital part (IFGorb), and in the middle frontal gyrus (MFG)), and three in the temporal and
parietal cortex (in the anterior temporal cortex (AntTemp), posterior temporal cortex
(PostTemp), and in the angular gyrus (Ang(G)). We additionally defined the right hemisphere
(RH) homologues of the language network regions. To do so, the left hemisphere (LH) masks
were mirror-projected onto the RH to create six homologous masks.
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Figure 1: Defining participant-specific fROIs in the language (top) and MD (bottom) networks
(only the left-hemisphere is shown). All images show approximated projections from functional
volumes onto the surface of an inflated brain in common space. (A) Group-based masks used to
constrain the location of fROIs. Contours of these masks are depicted in white on all brains in
(B)-(D). (B) Overlap maps of localizer contrast effects (Sentence > Nonwords for the language
network, Nonwords > Sentences for the MD network) across the 42 participants in the current
sample (these maps were not used in the process of defining fROIs and are shown for
illustration purposes). Each non gray-scale coordinate is colored according to the percentage of
participants for whom that coordinate was among the top 10% of voxels showing the strongest
localizer contrast effects across the nerocortical gray matter. (C) Overlap map of fROI
locations. Each non gray-scale coordinate is colored according to the number of participants for
whom that coordinate was included within their individual fROIs. (D) Example fROIs of three
participants. Apparent overlap across language and MD fROIs within an individual is illusory
and due to projection onto the cortical surface. Note that, because data were analyzed in volume
(not surface) form, some parts of a given fROI that appear discontinuous in the figure (e.g.,
separated by a sulcus) are contiguous in volumetric space.

The group-level masks, in the form of binary maps, were used to constrain the selection
of subject-specific fROIs in each network. In particular, for each participant, 20 MD fROIs were
created by intersecting each MD mask with that participant’s unthresholded #-map for the
Nonwords > Sentences contrast; the 10% of voxels with the highest # values in the intersection
image were then chosen as the fROL. In a parallel fashion, 12 language fROIs were created for
each participant by intersecting each language mask with that participant’s unthresholded #~-map
for the Sentences > Nonwords contrast and selecting the 10% of voxels with the highest # values
in the intersection image. A BOLD signal time-course for each story in the story listening task
was then extracted from each voxel in each fROI of each participant.

We note that, for both the MD and language networks, only the group-based masks—
which cover large swaths of cortex—were symmetric across hemispheres; the fROIs themselves
were free to vary in their location between the two hemispheres, within the borders of these
masks.
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Model of comprehension difficulty using self-paced reading times. To verify that self-paced
reading times (SPRTs) reflect stimulus-related processing (following the logic in Hasson, Yang,
Vallines, Heeger, & Rubin, 2008; Lerner, Honey, Silbert, & Hasson, 2011), we first computed
inter-subject correlations among the time-series of per-word SPRTs for each story: each
individual’s time-series was correlated with the average time-series of the rest of the participants.
The average correlations varied between r=0.38 and r=0.59 across the stories and were all
reliably above chance (all ps<102°). As mentioned above, we used the default exclusion criteria
used by (Futrell et al., 2018): we excluded data for a story if a participant answered less than 5
out of 6 questions wrong and outlier reading times of less than 100ms or more than 3,000ms
were also excluded.

Mean reading times per word from the self-paced reading experiment (n=181) were
temporally aligned with their corresponding word onsets in the auditory stimulus. Then, we
obtained a per-TR time-series of SPRTs by averaging the reading times for the words that
occurred within each TR (corresponding to 2 s) when the recorded stories were played in the
fMRI experiment. Words that overlapped with two TRs were assigned to the TR with greater
overlap. We then computed the average (across participants) per-TR SPRT, arriving at a final
measure of comprehension difficulty at each TR.

Model of comprehension difficulty using eye-tracking measures. We used four eye-tracking
measures for participants in the eye-tracking study (n=40): (1) first pass regression (FPR), a
variable indicating for each word whether or not a regressive eye-movement occurred from that
word in the first pass; (2) regression path duration (RPD) or go-past time, the duration of the
period between the onset of the first fixation on a word and the first fixation on anything to the
right of it (RPD thus includes time spent on regressive fixations); (3) first pass reading time
(FPRT) or gaze duration, the summed duration of all first-pass fixation durations on a word
before any other word (left or right) is fixated; and (4) first fixation progressive (FFP), a variable
indicating whether the first fixation on a word took place before any downstream words were
viewed. To verify that eye-tracking measures reflect stimulus-related processing, we follow the
same procedure as used for SPRTs, and compute inter-subject correlations among the time-series
of per-word FPRs, RPDs, FPRTs and FFPs for each story. The average correlations varied
between r=0.13 and r=0.17 across the stories for FPRs, between r=0.27 and r=0.42 across the
stories for RPDs, between r=0.38 and r=0.53 across the stories for FPRTs, and between r=0.37
and 1=0.53 across the stories for FFPs (all correlations higher than chance, all ps<10%).

Mean eye-tracking measures per word were temporally aligned with their corresponding
word onsets in the auditory stimulus. Then, we obtained a per-TR average measure of FPR,
RPD, FPRT and FFP by averaging each of the four eye-tracking measures across the words that
occurred within each 2s TR following the same procedure as used for SPRTs.

Critical analysis using self-paced reading times and eye-tracking measures. Our analysis is
summarized in Figure 2. As described above, for each TR ¢z, we obtained SPRT, FPR, RPD,
FPRT and FFP measures. We construct a design matrix for the experiment in which each row ¢
corresponds to the concatenated five measures for a TR ¢. To account for the hemodynamic
response, we model its effect as a fourth order finite impulse response (FIR) filter. We perform a
simple linear regression: for each of the five variables, we estimate four weights that correspond
to TRs #+1, t+2, t+3 and ¢+4 after onset and time ¢. Effectively, this corresponds to concatenating
delayed versions of the design matrix so that each row ¢ in the final design matrix contains the
five measures for TRs #-4, #-3, t-2 and #-1. This is a common approach for accounting for the
hemodynamic response (Huth et al., 2016; Wehbe et al., 2014), and the choice of an 8s window
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is typically used to capture the effect of stimulus features on the fMRI response. This encoding
model analysis (Huth et al., 2016; Wehbe et al., 2014) differs from the typical GLM analysis in
two ways. First, instead of assuming a fixed hemodynamic response function that is constant
across the brain, this approach allows for variability in the hemodynamic response by implicitly
estimating it at each voxel. And second, instead of running a significance test on the regression
weights, we run a more stringent test: we assess the generalization and stability of the learned
weights by using them to predict held-out fMRI data unseen in training.

In particular, for each participant, we estimated generalization via a cross-validation scheme
in which we iteratively held out one story and learned the regression weights on the remaining
stories. We then predicted BOLD activity for the held-out story using the (delayed) design
matrix for that story and the learned regression weights. This procedure resulted in a predicted
time series of BOLD activity in each voxel in each fROI of each participant during the held-out
story. We then measured how closely these predictions correspond to the real data via Pearson’s

| | 1
180 participants read the 40 participants read the v
stories in a self-paced stories in an eye-tracking
reading paradigm reading paradigm SPRT FPR RPD FPRT FFP

(Futrell et al. 2018) (Anonymized paper in prep)

l I

A set of 8 natural stories

ldownsample to fMRI TRs

Delayed matrix
accounting for
BOLD response: 3 E
row t corresponds

Design matrix with
row t corresponding
to comprehension
difficulty measures

If you were to journey to the north of

England, you would come to... TRt to measures t-4,
t-3,t-2and t-1 T
1 — |
42 participants listened to For each participant and each story:
the stories in fMRI - Hold out data and design matrix for that story

- Fit a predictive model of brain activity on remaining stories

TRt TR t+1

% B P DD
BOOOOND

QOO0VY - Test model on held out story by computing correlation of
pdseresessa... predicted and real data by fROI

Fit and evaluate model by cross-validation for each participant
(return one correlation score per fROI per participant)
Combine results over subjects through a bootstrap test

Figure 2: Diagram of approach detailing the combination of data from three experiments
(fMRI, self-paced reading, and eye-tracking) with an encoding model approach.
Comprehension difficulty measures are subsampled to the timing of the fMRI TRs and delayed
to account for the BOLD response. For each subject, a cross-validation procedure is used where
a story is held-out and a predictive model of brain activity as a linear combination of the
comprehension difficulty measures is learned. The model is tested on the held-out story.
Correlation of predicted and real data is computed for the held-out story; these value are then
averaged across all cross-validation folds, resulting in an average correlation by subject and
fROI (as well as fROI group). The cross-subjects results are combined using a bootstrap test.
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correlation. This correlation was computed between the average (across voxels) fROI activity
predicted by the model and the corresponding average fROI activity in the real data to obtain
summary statistics for the fROIs. Finally, we averaged the correlation values across all cross-
validation folds to obtain a single correlation value per fROI per participant (i.e., 42 mean
correlation values for each fROI, one for each participant).

To better characterize the findings at the level of the networks of interest, the above analysis
was repeated, but this time, predicted and actual BOLD time series were grouped into four sets:
Left Hemisphere (LH) Language fROIs, Right Hemisphere (RH) Language fROIs, LH MD
fROIs, and RH MD fROlIs.

It is worth mentioning that the direction of prediction we used here (predicting brain
activity from comprehension difficulty measures instead of the other way around) was in keeping
with the encoding model approach (Huth et al., 2016; Naselaris, Kay, Nishimoto, & Gallant,
2011; Wehbe et al., 2014) and does not imply that brain activity is caused by comprehension
difficulty measures. Typically, when using encoding models with stimulus features to predict
brain activity, one can state causal statements unambiguously (Weichwald et al., 2015).
However, here we use the encoding approach as a way to only measure correlation between two
effects (fMRI activity and reading times) of the same cause (comprehension difficulty).

Noise ceiling correction. To help with interpreting prediction performance, we provide
measures of prediction performance that are corrected by the estimated noise ceiling for each
fROI and fROI group. The noise ceiling is an approximation of the maximum possible
performance. fMRI stimuli engage brain regions to a different extent, and regions have different
physiological characteristics, both of which affect the signal-to-noise ratio. We estimate the noise
ceiling for each fROI (and fROI group) across participants by adapting the method proposed by
Hsu et al. (2004) to be used for multiple participants. To evaluate the noise ceiling, Hsu et al.
(2004) consider different repeats of the same stimulus that is seen by multiple participants. We
treat the average fROI activity for the subjects listening to the same story as different repeats of
the same story. For each story and each fROI, we evaluate the noise ceiling by first computing

the average time-course of this fROI for each of the k subjects that have listened to this story.
k

We then compute the correlation of each of the (2) pairs of time series. We then average all
these pairwise correlations, and further average these estimates for all the stories. We end up
with a measure of noise ceiling for each fROI. We repeat this approach for fROI groups.
Following previous work (A. Hsu et al., 2004; Lescroart & Gallant, 2019; Lescroart, Stansbury,
& Gallant, 2015), we normalize the average prediction performance by the square-root of the
noise-ceiling, yielding normalized correlation values.

Computing confidence intervals. The participant-specific (unnormalized and normalized)
correlation values were averaged across participants, and empirical confidence intervals were
estimated for the mean prediction in each fROI, by running a bootstrap test. Here are the details:
the following was repeated 50,000 times: a set of 42 participants was sampled with replacement
from the original 42 participants, and correlation values of the sampled 42 participants were
averaged for each fROI. 90, 95, 98, and 99% confidence intervals were constructed from the
50,000 samples. Finally, for each fROI, the smallest confidence interval containing 0 was
transformed into a p-value and the Holm-Bonferroni method was applied to correct for multiple
hypothesis testing (Holm, 1979). In this context where we have a relatively low number of
hypotheses, controlling for the family-wise error rate (e.g. by using Holm-Bonferroni) is more
appropriate than controlling the false discovery rate. Since normalized correlations are a
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rescaling of the unnormalized correlations, we apply a single test for the unnormalized
correlations (with the results of the normalized correlations being the same).Comparing the two
networks. To evaluate whether the average correlation across participants is higher in the
Language network than in the MD network we again ran a bootstrap test. First, we computed for
each subject the difference between the average correlation in the LH Language and MD fROI
group. This resulted in 42 values. We then repeated the following 50,000 times: a set of 42
participants was sampled with replacement from the original 42 participants, and the LH
difference for the 42 sampled participants is averaged. This set of 50,000 samples yielded an
empirical distribution from which we computed a p-value. We repeated this test to obtain a p-
value for the difference between the RH Language and MD fROI group. We included these two
p-values in the multiple testing correction mentioned in the previous section.

Results

The effect size of the unnormalized correlations between online comprehension difficulty and
BOLD activity in the networks of interest is small, in part because of the low signal-to-noise
ratio of fMRI. For this reason, we interpreted the size of this effect by taking into account a
metric measure of signal reliability based on inter-subject correlation of the fMRI signals,
effectively performing a noise ceiling correction (see Methods) (Blank & Fedorenko, 2017; A.
Hsu et al., 2004; Lescroart & Gallant, 2019; Lescroart et al., 2015). This choice of a ceiling
metric leads to conservative normalized correlations: Blank and Fedorenko (2017) show that
within-subject correlations are lower than cross-subject correlations on this task, and would
consequently lead to larger normalized correlations.

Self-paced reading times and eye-tracking measures predicted BOLD activity in the
language network, based on either unnormalized or normalized correlations. Average
(normalized) prediction performance is significantly greater than chance (false discovery rate
controlled at 0.01) in both the LH and RH language network (Figure 3a), including in most
individual fROIs (the bilateral IFGorb, IFG, MFG, AntTemp, and PostTemp fROIs, and the left
AngG fROI; Figure 3b). In contrast, comprehension difficulty measures did not significantly
predict activity in the MD network, either when averaging across fROIs within the LH or RH, or
in any individual MD fROI. (It is worth noting that we chose to run the significance tests on the
unnormalized correlations but running it on the normalized correlations, shown in Figure 3c-d,
would lead to a similar result since the intervals are normalized by a constant, as can be judged
by the similarity of the confidence intervals.)
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Figure 3: Average (unnormalized and normalized) correlation between activity predicted
as a function of comprehension difficulty (estimated using a combination of self-paced
reading times and eye-tracking measures) and real held-out activity, normalized by the
estimated reliability of the signal for each fROI group ([a] unnormalized and [c]
normalized) and each fROI ([b] unnormalized and [d] normalized). Performance was
averaged across the 42 participants and bootstrap confidence intervals were constructed.
Reading times predict the activity in left and right language fROIs, but not in MD fROlIs.
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Main Analysis with only Analysis with the
analysis high-performing spatial WM MD
participants localizer
(Supplementary (Supplementary
Figure 2) Figure 3)
Network effects LH Language X X X
RH Language X X X
LH MD
RH MD
Effects for LH PostTemp X X X
individual LH AntTemp X X X
language fROIs LH IFG X X X
LH IFGorb X X X
LH MFG X X X
LH AngG X X X
RH PostTemp X X X
RH AntTemp X X X
RH IFG X
RH IFGorb X X X
RH MFG X X X
RH AngG

Effects for
individual MD
fROIs

LH postParietal

LH midParietal

LH antParietal

LH supFrontal

LH Precentral A
PrecG

LH Precental B
IFGop

LH midFrontal

LH midFrontalOrb

LH insula

LH medialFrontal

RH postParietal

RH midParietal

RH antParietal

RH supFrontal

RH Precentral A
PrecG

RH Precental B
IFGop

RH midFrontal

RH midFrontalOrb

RH insula

RH medialFrontal

Table 2: Summary of results across fROI groups (bolded) and fROIs, for the main analysis and the two
additional supplementary analyses. X marks a significantly higher than 0 correlation. The three sets of

results are extremely similar, except for a small variation in one fROI in the last set.
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To directly compare between the language and the MD network, we estimated a p-value for
a two-sample test by first computing the difference between the prediction performance in the
language and MD networks for each subject and then using a bootstrap procedure. We find that
the average unnormalized correlation for the language network in each hemisphere is
significantly larger than the unnormalized correlation for the MD network (p=2x10 for LH and
p=2x10" for RH). False discovery rate was controlled at 0.01.

As described in the Methods, we additionally performed two other versions of this analysis:
one, where we only included participants with near-perfect accuracies on the comprehension
questions for the story listening task, and one, where we used a visuo-spatial working memory
task to localizer the MD regions (which also corresponded to a smaller set of participants). The
results of both of these additional analyses mirrored the results of the main analysis (with a small
exception for the correlation in the RH IFG not being significantly higher than zero), where the
original study included all participants and used the Nonwords > Sentences contrast to localize
the MD regions (see Table 3 and Supplementary Figures 2 and 3).

Discussion

In this study, we tested whether language comprehension—in addition to language-specific
resources—recruits domain-general executive mechanisms. To this end, we examined the
relationship between behavioral and neural measures of incremental comprehension difficulty
during naturalistic language processing: behavioral comprehension difficulty was estimated with
two commonly used approaches (self-paced reading times and eye-tracking fixation durations);
and neural recruitment was quantified from fMRI BOLD activity in domain-general and
language-specific functional networks that have been previously implicated in language
comprehension. We found that, whereas neural activity in the fronto-temporal, language-
selective network (Braga, DiNicola, & Buckner, 2019; Fedorenko et al., 2011; Fedorenko &
Thompson-Schill, 2014) was predicted by behavioral measures of incremental comprehension
difficulty, activity in the domain-general MD network (Duncan, 2010) was not predicted by
these measures. Furthermore, this difference between networks was reliable: the mean prediction
performance was significantly higher in the LH or RH language network than in the LH and RH
MD network, respectively. The lack of a reliable correlation between behavioral comprehension
difficulty and neural activity in the MD network conflicts with previous studies reporting MD
activity during some language tasks and its sensitivity to linguistic manipulations of processing
difficulty (January, Trueswell, & Thompson-schill, 2009; Kuperberg et al., 2003; McMillan et
al., 2013; Nieuwland et al., 2012; Novais-Santos et al., 2007; Peelle et al., 2010; Rodd et al.,
2005).

Our investigation complements a prior study, Henderson et al. (2015), which related
behavioral and neural measures of language comprehension by co-registering eye-tracking and
fMRI data during naturalistic reading, using fixation durations to predict neural activity. Because
behavioral and neural measures were obtained from the same participants, an experimental
control (a pseudo-reading task) was used in order to isolate linguistic components of the signal.
Activity in parts of the left middle and superior temporal gyri was found to correlate more
strongly with fixation durations during the reading of natural text compared to a perceptually
matched meaningless control materials, suggesting that longer fixations were at least partially
driven by effort related to linguistic processing in brain areas commonly associated with
language comprehension, i.e., putative parts of the “core language network™. Similar to our
study, Henderson et al. (2015) did not observe a correlation between their comprehension
difficulty measure and activity in the fronto-parietal MD regions. However, they adopt a
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traditional group-based analytic approach, which relies on voxel-wise correspondence across
individuals and does not take into account the well-known inter-individual variation in the
precise locations of functional areas in the association cortex (e.g. Fischl et al., 2008; Frost &
Goebel, 2012; Tahmasebi et al., 2012; Vazquez-Rodriguez et al., 2019). Because of the resulting
low sensitivity of such analyses (e.g. Nieto-Castanon & Fedorenko, 2012), Henderson et al.
(2015) may have missed the effects within the MD network. In the current study, to maximize
the probability of detecting a relationship between behavioral measures and MD activity, we
functionally localized MD areas (as well as core language areas) in each individual participant
(Fedorenko et al., 2010). This strategy reduces the risk of obtaining a false negative for the MD
network.

Our use of separate participant pools in the behavioral studies vs. the fMRI study further
eliminates many non-linguistic confounds (such as attention and motor control processes related
to eye-movements or button presses) that are difficult to avoid when the behavioral and neural
measures come from the same individuals (e.g., Henderson et al., 2015). The observed
relationship between reading latencies and brain activity is thus most plausibly due to linguistic
properties of the story stimuli. These findings support the hypotheses that (1) behavioral
responses to language stimuli reflect computational load in language comprehension mechanisms
(Just & Carpenter, 1980); (2) language comprehension difficulty generalizes across participants,
task demands, and modality of presentation (Hasson et al., 2008); and (3) processing
mechanisms that give rise to measurable reading delays reside in a language-selective cortical
network, rather than in a domain-general executive control network. In this way, our results
reinforce those of Henderson et al. (2015): we replicate their finding of a relationship between
reading latencies and neural activity in the left-hemisphere middle and superior temporal lobe,
and extend it to other parts of the language network, including the language-responsive areas in
the left inferior frontal cortex and, to a lesser extent, the left angular gyrus, as well as the right-
hemisphere homologs of the left-hemisphere language regions. These more widespread effects
across the language network are plausibly due to increased sensitivity resulting from participant-
specific functional localization.

At present, much behavioral language research is disconnected from cognitive neuroscience
efforts to understand the architecture of language comprehension, despite (1) the fact that these
two enterprises share the same goal—to understand the computations that support language
comprehension, and (2) the fact that a link between behavioral measures of language
comprehension, or the mental states they correspond to, and neural correlates of language
comprehension is a fundamental assumption of psycholinguistics (e.g. Just & Carpenter, 1980).
Indeed, except for Henderson et al. (2015) and the current paper, cognitive neuroscientists have
not typically used direct and continuous behavioral measures to model brain activity during
language comprehension (see e.g., Supplementary Table 1 for fMRI studies that have used
naturalistic linguistic materials and which have typically used linguistic features as predictors of
neural activity, often without first establishing a link between those features and behavioral
measures). The current paper connects the psycholinguistic and cognitive neuroscience
literatures, and in so doing contributes to both fields. For psycholinguistics, our results validate
widely used behavioral measures as indeed revealing the underlying activity of language
comprehension mechanisms. For cognitive neuroscience, our results indicate that, even using a
broad (all-encompassing) and theory-neutral estimate of comprehension difficulty, language
processing recruits primarily cortical circuits that specialize for this purpose, and that domain-
general executive mechanisms are generally not recruited during naturalistic sentence
comprehension.
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This work thus sheds new light on the role of the domain-general MD network in language
comprehension, and on the division of labor between these domain-general mechanisms and the
language-selective ones. In particular, regions of the MD network have been shown to be
sensitive to linguistic difficulty across diverse manipulations (see Fedorenko (2014), for a
review). However, almost all prior evidence has come from traditional, task-based experimental
paradigms that present participants with linguistic manipulations that do not commonly occur in
real-life comprehension scenarios (like ambiguous words that are not disambiguated by the
context, or non-local dependencies; e.g., January, Trueswell, & Thompson-Schill, 2009; Novais-
Santos et al., 2007; Peelle, Troiani, Wingfield, & Grossman, 2010; Rodd et al., 2005) and ask
them to solve “artificial” tasks, such as making similarity judgments or deciding whether a
sentence matches a picture. Although the stories used in the current study were modified to
include challenging linguistic phenomena in order to increase variability in processing demands
and increase the chances of engaging executive resources, the only “task” required of
participants was naturalistic comprehension of the narratives. The fact that we do not find a
relationship between comprehension difficulty and the MD network’s activity in our study
suggests that the MD network’s contribution to language comprehension may be restricted to
artificial scenarios, where language is effectively turned into problem solving (Diachek et al., in
press; P. Wright, Randall, Marslen-Wilson, & Tyler, 2011). In line with this conjecture, Blank
and Fedorenko (2017) showed that MD regions do not strongly track language stimuli during
comprehension, and Shain and colleagues (2019) showed that activity in the MD regions during
comprehension does not correlate with the psycholinguistic construct of “surprisal”, the moment-
by-moment unpredictability of linguistic input (see also Blanco-Elorrieta & Pylkkinen, 2017, for
evidence of less MD engagement during a more naturalistic production paradigm). Whereas the
MD network may play some role during language processing (perhaps modulating overall
alertness or attention) our results as well as others mentioned above suggest that this system is
not directly involved in linguistic computations.

Our results also suggest that similarities between language processing and other kinds of
processing (e.g., theoretical constructs in mathematics or music resembling those in natural
language syntax) do not entail shared neural circuitry (see also Fedorenko & Blank, 2020, for a
recent discussion). In particular, the fact that multiple domains require hierarchical combinatoric
processing of symbols does not mean that the same circuits are engaged across these domains.
Rather, constructing hierarchical sequences, predictive coding, working memory storage and
retrieval of information, and other processes that may be necessary in multiple domains of
cognition appear to be implemented within domain-specialized systems, including the language
processing areas.

In conclusion, we found that whereas neural activity in the fronto-temporal language
network is predicted by behavioral signatures of incremental comprehension difficulty, activity
in in the domain-general fronto-parietal multiple demand network is not.
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Author Description N Statistical Controls (not of Predictors of interest Held-Out
procedure interest) Evaluation
Bhattasali parser operations number, Is
etal., Evidence of brain areas engaged word-rate, unigram, Last Word of Multiword
(2018) in memory retrieval vs. parsing. 42  2-step GLM sound power, pitch Expression NO
Brennan et Evidence of structure building in word-rate, unigram,
al., (2012) Anterior Temporal Lobe. 9 2-step GLM sound power, pitch syntactic node count NO
prosodic-breaks,
Evidence of different types of head movement,
Brennan et structure building throughout the unigram, sound- syntactic node count, POS
al., (2016) language network. 26 LME/LRT power surprisal NO
Evidence of increasing layers of Ridge spectral features space,
de Heer et abstraction for linguistic regression + phonetic feature space,
al., (2017) processing. 7 held-out eval. semantic feature space YES
Evidence that story embeddings Ridge
can support story classification regression +
Dehghani et  during naturalistic reading, even decoder held-
al., (2017) across languages. 90 outeval narrative features YES
word-rate, visual,
Evidence that semantic selectivity Ridge syntactic and
(Deniz et is similar during listening and regression + phonetic feature
al., 2019) reading held-out eval. spaces semantic feature space YES
Linear fixation-duration, fixation to
Evidence that semantic regression + head movement, other words, word length, is
Desai etal.,, representations are grounded in generalized mean CSF and white  noun, noun-concreteness,
(2016) sensorimotor representations. 31 linear test matter signal noun manipulability, unigram NO
Mixed effect prosodic-breaks,
Evidence of different types of model, unigram, head
Hale et al., structure building throughout the likelihood ratio movement, heart syntactic node count, POS
(2015) language network. 13 test rate, lung action surprisal, PCFG surprisal NO
Evidence of association between
Henderson fixation duration and activity in
etal., the language network during head movement and  Fixation onset, fixation
(2015) reading and not pseudo-reading. 29  2-step GLM CSF signal duration, fixation number NO
Linear
Henderson Evidence of sensitivity to regression + CSF and white
etal., syntactic surprisal in IFG and generalized matter signal, head word-length, unigram, PCFG
(2016) AntTemp. 40  linear test movement surprisal NO
Ridge
Huth et al., Evidence of semantic selectivity regression + word-rate, phonetic
(2016) in patterns of cortical regions. 7 held-out eval. feature space, semantic feature space YES
Evidence for distinct brain
regions predicted by statistical word-rate, unigram,
Lopopolo et structure of lexical, syntactic, and POS frequency, POS surprisal, lexical surprisal,
al.,(2017) phonological information. 22  2-step GLM Phoneme Frequency  phonetic surprisal NO
Evidence for grammatical relation
processing in the superior and Logistic
Murphy et middle temporal gyrus, using regression
al., (2016) fMRI 22 classification narrative features YES
Evidence of different brain
regions tracking different
narrative features such as
Speer etal., character identity, goal changes, Hierarchical
(2009) location and time change etc. 28  regression narrative features NO
Evidence of sensitivity of a
Speer etal., number of brain regions to
(2007) narrative event boundaries. 28  GLM+ANOVA narrative features NO
Evidence that different areas in Ridge
the language system are involved regression + word-length, syntactic feature
Wehbe et in representing semantic, syntax, decoder held- space, semantic feature
al.,(2014) and discourse level features. 8 out eval. space, narrative feature space  YES
Evidence that the right precuneus
Whitney et and cingulate cortex are sensitive
al., (2009) for narrative shifts. 16 GLM+ANOVA narrative features NO
Evidence of sensitivity of brain
areas to entropy of next word
Willems et probability distribution and lexical surprisal, next word
al., (2016) surprisal. 24  2-step GLM word-rate, unigram entropy NO
Evidence that the language Ridge
Present network is predicted by measures regression + word and phoneme self-paced reading times, eye-
study of comprehension difficulty 42 held-out eval. rate tracking measures YES
Supplementary Table 1: Studies that used naturalistic linguistic materials with the goal
of relating brain responses to properties of the materials. 32


https://doi.org/10.1101/2020.04.15.043844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.043844; this version posted April 17, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Effect size

Effect size

available under aCC-BY-NC-ND 4.0 International license.

MD regions defined with the N>S contrast
(The H>E effect is significant for all 20 regions, p < 0.05, FDR-corrected)
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Supplementary Figure 1. Response of MD regions defined with the Nonwords > Sentences contrast to the
Hard and Easy conditions of the visuo-spatial working memory MD localizer.
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Supplementary Figure 2. Average (unnormalized and normalized) correlation between
activity predicted as a function of comprehension difficulty (estimated using self-paced
reading times and eye-tracking measures) and real held-out activity, normalized by the
estimated reliability of the signal for each fROI group ([a] unnormalized and [c]
normalized) and each fROI ([b] unnormalized and [d] normalized). Performance was
averaged across the 42 participants and bootstrap confidence intervals were constructed.
Reading times predict the activity in left and right language fROIs, but not in MD fROlIs.
Here the MD fROIs were defined using the spatial MD localizer and the results are
shown only for the subset of 35 subjects that underwent this task.
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Supplementary fig. 3. Average (unnormalized and normalized) correlation between
activity predicted as a function of comprehension difficulty (estimated using self-paced
reading times and eye-tracking measures) and real held-out activity, normalized by the
estimated reliability of the signal for each fROI group ([a] unnormalized and [c]
normalized) and each fROI ([b] unnormalized and [d] normalized). The analysis is
restricted here to the 24 subjects with the best performance. Performance was
averaged across these 24 participants and bootstrap confidence intervals were constructed.
Reading times predict the activity in left and right language fROIs, but not in MD fROlIs.
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