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Abstract 
 

The genetic underpinning of sexual dimorphism is very poorly understood. 
The prevalence of many diseases differs between men and women, which could be in 
part caused by sex-specific genetic effects. Nevertheless, only a few published 
genome-wide association studies (GWAS) were performed separately in each sex. 
The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS–
associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific 
genetic mechanism underlying complex traits. 

To explore this scenario, we performed a genome-wide analysis of sex-
specific whole blood RNA-seq eQTLs from 3,447 individuals. Among 9 million SNP-
gene pairs showing sex-combined associations, we found 18 genes with significant 
sex-specific cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top 
sex-specific eQTLs on >700 traits unraveled that these eQTLs do not systematically 
translate into detectable sex-specific trait-associations. Power analyses using real 
eQTL- and causal effect sizes showed that millions of samples would be necessary to 
observe sex-specific trait associations that are fully driven by sex-specific cis-eQTLs. 
Compensatory effects may further hamper their detection. In line with this 
observation, we confirmed that the sex-specific trait-associations detected so far are 
not driven by sex-specific cis-eQTLs.  
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Introduction 
 

Men and women exhibit sexual dimorphism. Clear examples of sex-biased 
traits are anthropometric features. However, biological differences between sexes are 
not limited to physical traits: sex differences are also evident in incidence, prevalence 
and severity across diseases. For example, women are much more likely to develop 
autoimmune [1], while men are more likely to develop cardiovascular diseases [2]. 

Despite the widespread nature of these sexual differences and their noteworthy 
implications for medical research and treatments, little is known about their 
underlying biology in complex traits. While the sex chromosomes play key roles in 
sexual dimorphism, GWAS have identified dozens of autosomal genetic variants 
showing sex-specific effects [3-10], suggesting that part of the phenotypic differences 
might be due to accumulation of genetic variants present in both sexes at the same 
frequency [11], but acting in a different manner in males and females. 

The strong enrichment of expression quantitative trait loci (eQTLs) among 
complex trait-associated loci [12-15] suggests that gene expression might be an 
appealing intermediate phenotype for the understanding of the biological mechanism 
behind SNP-trait associations. Towards this goal, several transcriptome-wide 
association studies (TWASs) integrating GWAS and eQTLs were proposed to 
identify genes whose expression is significantly associated to complex traits [16-18]. 
As these studies pointed to many genetic loci where variants exert their effect on 
phenotypes through gene expression, it is reasonable to think that sex-specific 
associations found by GWAS could be driven by sexual dimorphism in gene 
expression regulation, meaning that sex differences in eQTL effects might underlie 
the sex-specific GWAS associations. To explore this hypothesis, we performed a 
genome-wide investigation of sex biases in cis-eQTL effects in human autosomal 
genes and assessed their potential contribution to sex differences in complex traits. 
  
 
 
Results 
 
Sex-specific eQTLs analyses  
 
 First, we performed a genome-wide analysis of whole blood RNA-seq eQTLs 
to identify autosomal sex-specific eQTLs, i.e. SNPs whose effect on expression 
differs in magnitude between men and women. We analyzed eQTLs separately for 
1,519 men and 1,928 women collected by the BIOS Consortium 
(http://www.bbmri.nl/acquisition-use-analyze/bios/). To reduce the number of tests, 
we restricted our analyses to autosomal variants previously detected as cis-eQTLs 
(FDR 5%) by the sex-combined analysis of the eQTLGen Consortium [19] and 
included in the UK10K reference panel [20]. 

To test the reliability of the BIOS data, we combined the results from the two 
sexes in a meta-analysis and compared them with those obtained by the eQTLGen 
Consortium (N=31,684, sex-combined results). We observed a high correlation 
between the betas obtained in the two studies (r2=0.9).  

In total, we tested 8,739,806 SNP-gene pairs (involving 3,142,796 SNPs and 
16,874 genes) for sex-interaction. We found 10,285 eGenes (genes with at least one 
cis-eQTL at Bonferroni adjusted P-value < 0.05) shared between the two sexes, while 
542 and 1,419 eGenes were detected only in men or women, respectively.  
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Identification of sex-specific cis-eQTLs 
 

To identify sex-specific eQTLs, we tested the difference in the effects 
calculated for the two sexes separately (see Methods). 

We identified 462 SNP-gene associations showing significantly different 
effects in men and women (FDR 5%, Pdiff<2.6x10-06). These sex-specific eQTLs 
cluster in 18 sex-specific eGenes (Figure 1 and Supplementary Table 1). By 
analyzing only cis-eQTLs with a significant sex-combined effect (in the eQTLGen 
Consortium) we favored eQTLs that show the same direction but different magnitude 
of effect in men and women, as we posit that significant eQTLs showing opposite 
direction of effects in the two sexes would not have been detected in sex-combined 
analyses. Consistent with this hypothesis all 462 sex-specific eQTLs show the same 
direction but different magnitude of effects in both sexes. 

Among the 18 sex-specific eGenes, 5 and 12 are men- and women-specific, 
respectively. One gene, ZNF718, contains eQTLs differently biased in both sexes 
(Supplementary Figure 1).  

Next, to assess whether sex-specific eGenes are enriched for sex-specific 
biological processes, we performed enrichment analyses using 139 sex-specific 
eGenes, selected using a less stringent threshold (Pdiff < 1x10-4). Although no GO 
term showed significant enrichment after FDR correction, we found response to 
glucagon (GO:0033762, P=1.59x10-03) and negative regulation of cytokine 
production (GO:1900016, P=2.43x10-03) as the two most enriched (top 50 GO terms 
are reported in Supplementary Table 2). These pathways are involved in two 
sexually dimorphic processes: glucose metabolism and inflammatory response, 
respectively [21] [22]. 

To determine if the difference of eQTL effects observed between men and 
women is driven by sex differences in gene expression distribution, we then compared 
the expression means and variances between sexes for the 18 sex-specific eGenes. 
While no eGene showed a significant difference in mean, we found 8 eGenes with 
sex-specific variance (based on Pdiff < 0.05/18) (Supplementary Table3). 
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Figure1. Manhattan plot of sex-specific eQTLs. 
The figure summarizes the results of our sex-specific eQTL discovery scan. SNP-gene pairs are plotted on the x-
axis according to the SNP position on each autosomal chromosome in alternating light and dark blue against the P-
values obtained upon testing for sex difference between effects in men and women (shown as –log10(Pdiff)). The 
red dotted line marks the 5% FDR threshold significance level (Pdiff=2.6×10−6), and SNPs in loci exceeding this 
threshold are highlighted in green. 
 
 
 
 
Sex-specific cis-eQTLs do not translate into sex-specific trait associations 
 

We then performed a phenome-wide association study (PheWAS) to test if 
eQTL SNPs with sex-specific effect on expression levels have an effect on human 
phenotypes and if so, whether sex biases in gene expression regulation translate to 
sex-specific effects on complex traits. For each sex-specific eGene we selected one 
representative eQTL with the strongest difference in effect between men and women 
and ran PheWAS analyses on more than 700 phenotypes from UK Biobank (UKBB) 
[23].  

We found that 7 of the 18 lead eQTLs were associated with 39 traits at 
genome-wide significant level (Supplementary Table 4). Interestingly all associated 
traits belong to two categories: either morphological (e.g.: height, weight and trunk fat 
mass) or hematological traits (e.g.: platelets, eosinophils and whole blood cells).  

We then asked if the other 290 non-lead sex-specific eQTLs of the 7 eGenes 
found by PheWAS showed also a sex-specific effect on the 39 pre-selected traits (we 
set a Bonferroni threshold of Pdiff<0.05/(20*7), where 20 is the effective number of 
independent phenotypes among the 39). For each trait, we used the sex-specific 
UKBB-GWAS summary statistics and observed no enrichment for the sex-specific 
eQTLs among the sex-specific GWAS signals and found only one eGene, PSMD5, 
for which sex-specific eQTLs are likely to translate to sex-specific associations with 
several obesity traits (Figure 2).  
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Figure2. Heatmap of sex-specific trait-associated SNPs. 
The figure summarizes the results of sex-specific trait-associations driven by sex-specific eQTLs. For each sex-
specific eGenes and for each phenotype, we plotted the minimum Pdiff obtained testing for sex-difference between 
GWAS-effects in men and women (shown as –log10(Pdiff)). 
 
 
 
Sex-specific complex trait associations are not driven by sex-specific eQTLs 
 
Next we tested whether sex-specific SNP-trait associations are driven by sex-specific 
gene expression regulation. For this we looked at the two most sexually dimorphic 
traits, waist-to-hip ratio (WHR) and testosterone levels. We identified 803 and 266 
independent SNPs showing a P-value < 1x10-05 in the sex-combined GWAS for WHR 
and testosterone, respectively. Among those, 121 (32 for WHR and 89 for 
testosterone) have a significant sex-difference in the effect on the two sexes (Pdiff 
<0.05/(803+266)), but none of the SNPs included in the BIOS Consortium dataset 
(58/121) show any sex-specific eQTL effect on genes in cis (Pdiff<0.05/58) 
(Supplementary Tables 5 and 6). 
                                        
 
Sex-specific causal effects 
 

Next, to explore the presence of sex-specific causal effect of gene expression 
on complex traits, we performed sex-specific transcriptome-wide Mendelian 
Randomization (TWMR) analyses [18] combining sex-specific eQTLs and sex-
specific GWAS results. We applied such approach – as above – to testosterone levels 
and WHR.  

We found 17 and 6 genes showing a significantly different causal effect 
between the two sexes in testosterone and WHR, respectively (Supplementary 
Figure 2 and 3 and Supplementary Table 7). While the sex-specific associations 
with WHR were all female-specific, among the 17 sex-specific genes associated with 
testosterone, 8 were female- and 9 male-specific, respectively.  

Of note, the positive association of IFT27 with testosterone levels observed 
only in men (PTWMR-men=2.55x10-08) and not in women (PTWMR-women=0.99) is 
supported by its association with Bardet-Biedl syndrome (OMIM: # 615996), for 
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which it has been reported that most affected males produce reduced amounts of sex 
hormones (hypogonadism). Among the genes associated with WHR, CCDC92 has a 
significant effect only in women (PTWMR-women=2.70x10-23) and not in men (PTWMR-

men=0.09). Interestingly, diseases associated with CCDC92 include lipodystrophy 
[24], which is known to affect more women than men [25].  

As a negative control, we applied TWMR to a trait not showing sexual 
dimorphism, such as educational attainment, and did not observe any sex-specific 
gene association (Supplementary Figure 4).  

Finally, we tested whether sex-specific causal effects are driven by sex-
specific gene expression regulation and observed that none of the SNPs used as 
instrumental variables in TWMR showed a sex-specific effect on gene expression. In 
addition, we ran TWMR using sex-specific WHR GWAS and sex-combined eQTLs 
data and found a high correlation between the causal effects (r2=0.79 in females and 
r2=0.77 in males) (Supplementary Figure 5), which suggests that different effects 
observed by TWMR are driven by sex-specific SNP-trait associations. 
 
 
Power to detect sex-specific trait-associations 
 
Since the observed sex-specific SNP-trait associations do not seem to be driven by 
sex-specific eQTL effects in our data, we performed power analyses using eQTL-
effect differences observed in the data of the BIOS Consortium, which represents the 
largest biologically plausible sex-differences. 

If the SNP-trait association is fully mediated by gene expression, then in 
females (F) and males (M) 

𝛽!"#$(!) = α!"#$(!) ∗  𝛽!"#$%(!) 
and 

𝛽!"#$(!) = α!"#$(!) ∗  𝛽!"#$% !  
where 𝛽!"#$ and 𝛽!"#$%  indicate the effect of the SNP on the trait and on gene 
expression, respectively, and α!"#$ is the causal effect of the gene expression on the 
trait. 
Assuming the same effect of the gene expression on the trait in both sexes (i.e.: 
α!"#$(!) = α!"#$(!) = α!"#$), the difference of SNP effect on the trait should be 

𝛽!"#$(!) − 𝛽!"#$(!) = α!"#$ ∗ (𝛽!"#$% ! − 𝛽!"#$% ! ) 
 
Using the differences observed by the BIOS Consortium and the causal effects 
estimated for a large number of complex traits by TWMR [18], we observed that the 
power to detect sex-specific trait-associations driven by sex-specific eQTLs is null, 
with an exception in the case when the largest causal effect of the gene expression on 
the trait observed in TWMR (100th percentile) is coupled with the largest differences 
in eQTL-effects observed in BIOS Consortium (Figure 3a). We also estimated the 
GWAS sample size required to reach 80% power to detect differences in sex-specific 
GWAS. We found that, using the subset of unrelated British individuals from UKBB 
(N=380K) we do not have the power to detect sex-differences driven by SNPs being 
eQTLs for causal. Indeed, our results show that even when we used the 80th percentile 
of the distribution of the significant causal effects of the gene expression on the trait, 
we need one to five million individuals to detect the different effect driven by sex-
specific eQTLs (Figure 3b). 
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Figure 3a. Heatmap showing the power to detect significantly different effect in sex-specific GWAS collecting 
190,000 females and 170,000 males 

 
 
Figure 3b. Heatmap showing the total sample size (females + males) needed to detect significantly different effect 
in sex-specific GWAS at power > 80%. 

 
 
 
Discussion 
 

Notwithstanding the prominent differences in traits observed between men and 
women, there is little known about the role of sex-specific genetic effects. Several 
sex-stratified GWASs identified sex-specific genetic variants on autosomal 
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chromosomes, which highlights the fact that not all differences are located on the sex 
chromosomes [3-10]. Since many genetic variants exert their effect on complex traits 
through gene expression [17, 18], sex differences in eQTL effects might underlie such 
sex-specific GWAS associations.  

In this study, we used large sex-specific eQTL data and sex-specific GWAS 
results to investigate the role of gene expression on the sexual dimorphism of several 
human phenotypes. 

We identified 18 sex-specific eGenes and 7 of them were associated with traits 
known to exhibit sex differences. Furthermore we found that the sex-specific eGenes 
are nominally enriched in GO biological processes linked to sex-specific processes.  

Our results suggest that sex-specific eQTLs in whole blood do not translate to 
detectable sex-specific trait associations, and vice versa that the observed sex-specific 
trait associations cannot be explained by sex-specific eQTLs. While a recent work 
revealed that ~11% of trait heritability could be explained by cis-eQTL regulation 
[26], our findings show that the sex-specific heritability is not detectably mediated by 
sex-specific gene expression regulation. Our extensive power analyses, performed 
using a range of realistic effect sizes, confirmed these observations. Indeed we proved 
that with the current sample size used in sex-specific GWAS, we do not have the 
power to detect differences in sex-specific trait-associations driven by sex-specific 
eQTLs. Our results suggest that we will be able to explore how sex-specific gene 
expression regulation translates to complex traits only when GWAS will be 
performed on millions of individuals. It is only then that we will be able to test the 
existence of potential compensatory mechanisms via negative feedback loops 
dampening such signal propagation. 

 There are some limitations to this study. Firstly, although the BIOS RNA-seq 
dataset is relatively large (including 1,918 women and 1,519 men), it is limited to 
whole blood. Since it is known that the effect of causal genes on diseases typically act 
in a tissue-specific manner [27-29], the investigation of other, more relevant, tissues 
could be crucial to estimate larger causal effects and unravel the sex-specific 
associations found by the GWAS. Moreover, although we used the biggest sex-
specific GWAS results, we convincingly show that the currently available sample size 
is too small to reach the statistical power necessary for detecting sex-specific trait-
association mediated by sex-specific blood eQTLs.  

As several studies have shown that eQTL effects can be cell type-specific [30, 
31], upcoming single-cell eQTL datasets [32] might be essential in identifying sex- 
and cell-type specific effects and unravel the biological mechanism behind sexual 
dimorphism. Alternatively, if sexual dimorphism of complex traits is not driven by 
gene expression changes we might need to explore other types of omics data to gain a 
deeper insight into the molecular underpinnings of sex-differences in complex 
diseases. 

 
 
 
Methods 
 
Study sample 
 

The Biobank-based Integrative Omics Study (BIOS, 
http://www.bbmri.nl/acquisition-use- analyze/bios/) Consortium has been set up in an 
effort of several Dutch biobanks to create a homogenized dataset with different levels 
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of ‘omics’ data layers. Genotyping was performed in each cohort separately, as 
described before: LifeLines DEEP [33], Leiden Longevity Study [34, 35], 
Netherlands Twin Registry [36]; Rotterdam Study [37, 38], Prospective ALS Study 
Netherlands [39]. All genotypes were imputed to the Haplotype Reference 
Consortium [40] using the Michigan imputation server [41]. 

RNA-seq gene expression data was generated in The Human Genotyping 
facility (HugeF, Erasmus MC, Rotterdam, the Netherlands, http://www.blimdna.org). 
RNA-seq extraction and processing has been described before for a subset of the data 
[42]. Briefly, RNA was extracted from whole blood and paired-end sequenced using 
Illumina HiSeq 2000. Reads were aligned using STAR 2.3.0e [43] while masking 
common (MAF > 0.01) SNPs from the Genome of the Netherlands [44]. Gene-level 
expression was quantified using HTseq [45]. FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check 
quality metrics, and we removed individuals with < 70% of reads mapping to exons 
(exon mapped / genome). We included only unrelated individuals in this analysis and 
removed population outliers by filtering out samples with >3 standard deviations from 
the average heterogeneity score. We removed 25 PCs, from the expression matrix 
with all cohorts combined, to account for unmeasured variation. 

We stratified the samples by sex and performed the cis-eQTL mapping using a 
pipeline described previously [46]. In brief, the pipeline takes a window of 1Mb 
upstream and 1Mb downstream around each SNP to select genes or expression probes 
to test, based on the center position of the gene or probe. The association between 
these SNP-gene combinations was calculated using a Spearman correlation in each 
sex separately. 
 
 
Differential gene expression and variance analysis 
 

Differential expression analysis was preformed without considering 
genotypes, to identify genes with sex-specific expression (FDR 5%). For each gene, 
to test the difference in mean in the two sexes – calculated before any normalization 
but after quality check on samples – we used the t statistics 

𝑡 =
𝜇! − 𝜇!
𝜎!! +  𝜎!!

 

where 𝜇 and 𝜎 are the mean and the standard error, respectively. 
To detect genes with sex-specific expression variance, we used normalized 

data and we applied two different strategies. First, we tested for difference in variance 
between females and males using an F-test, i.e.: 

𝐹 =
𝜎!!

𝜎!!
 ~ 𝐹(𝑁! ,𝑁!) 

Second we used the t statistic 

𝑡 =
𝜎!! −  𝜎!!

𝑣𝑎𝑟(𝜎!!)+  𝑣𝑎𝑟(𝜎!! )
 

Genes showing significant P-values (FDR 5%) in both tests, were used for 
pathways analyses. 
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Sex-specific eQTLs effects 
 

To identify SNP-gene pairs with sex-difference, we computed P-values (Pdiff) 
testing for difference between the standardized men-specific and women-specific 
𝛽!"#$%-estimates, with corresponding standard errors and using the t statistic 

𝑡 =
𝛽!"#$% ! − 𝛽!"#$% !

1
𝑁!"#$% !

+ 1
𝑁!"#$% !

 

We selected 462 sex-specific SNP-gene pairs at an FDR of 5% across all the 
pairs tested. 
 
 
Sex-specific GWAS effects 
 

To identify SNPs with sex-difference in the 39 associated phenotypes, we 
downloaded the summary statistics of the sex-stratified GWAS available 
at http://www.nealelab.is/uk-biobank/ 

We computed P-values (Pdiff) testing for a difference between the men-
specific and women-specific 𝛽!"#$-estimates, with corresponding standard errors and 
using the t statistic 
 

𝑡 =
𝛽!"#$ ! − 𝛽!"#$ !

𝑆𝐸(!)! +  𝑆𝐸(!)!
 

 
 
 
 
Pathway analyses 
 

In order to explore whether certain pathways are enriched among the genes 
containing eQTLs with evidence for sex-difference, we applied topGO. We tested the 
enrichment of GO terms with regard to the list of sex-specific eGenes at Pdiff<1x10-4 
(list of genes including at least one eQTL showing Pdiff<1x10-4).  
 
 
Power analyses 
 

We performed power analyses to calculate the probability that sex-specific 
SNPs found by GWAS are driven by sex-specific eQTLs. Using real observed data, 
we tested the power to detect a significant difference in βGWAS in males and females 
starting from the difference observed in βeQTLs and the causal effect of the gene 
expression on the phenotype calculated by TWMR (αTWMR). 
If the association of a SNP in a given phenotype is driven by eQTLs, then we have 
 

𝛽!"#$(!"#$%"&) = 𝛼!"#$ !"#$%"&  × 𝛽!"#$%(!"#$%"&) 
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𝛽!"#$(!"#$%) = 𝛼!"#$ !"#$%  × 𝛽!"#$%(!"#$%) 

Let’s suppose that the effect of the gene expression on the phenotype is the same in 
the two sexes 

𝛼!!"# ! = 𝛼!"#$ ! =  𝛼!"#$ 
Then 

𝛽!"#$(!) − 𝛽!"#$ ! = 𝛼!"#$  ×  𝛽!"#$% ! −  𝛽!"#$% ! . 
 
Since 𝛽!"#$(!) ∼ 𝑁(𝛽!"#$ ! ,

!
!!"#$ !

) and 𝛽!"#$(!) ∼ 𝑁(𝛽!"#$ ! , !
!!"#$ !

), our 

statistics 𝑡 follows a normal distribution when N is large, 

𝑡 =
𝛽!"#$ ! − 𝛽!"#$ !

1
𝑁!"#$ !

+ 1
𝑁!"#$ !

∼ 𝑁(
𝛽!"#$ ! − 𝛽!"#$ !

1
𝑁!"#$ !

+ 1
𝑁!"#$ !

, 1) 

We tested the hypothesis 𝐻!: 𝜗 = 𝛽!"#$ ! − 𝛽!"#$ ! = 0  against 𝐻!: 𝜗 =
𝛽!"#$ ! − 𝛽!"#$ ! ≠ 0. 
Using the genome-wide significance threshold, 𝐻! will be rejected if  

|𝑡| >  Φ!! 2.5 × 10!! . 
Then, the power to detect 𝛽!"#$ ! − 𝛽!"#$ ! = 𝜗 is 

𝑃
𝛼!"#$  ×  𝛽!"#$% ! −  𝛽!"#$% !

1
𝑁!"#$ !

+ 1
𝑁!"#$ !

> 5.43

=  2 ×  1 –  Φ 5.43 −  
𝛼!"#$ ×  𝛽!"#$% ! −  𝛽!"#$% !

1
𝑁!"#$ !

+ 1
𝑁!"#$ !

  

 
We performed the power analyses using the difference of 𝛽!"#$% observed in the 18 
top sex-specific eQTLs and in 6 quantiles extracted from the distribution of 
significant causal effects estimated by TWMR for WHR. 
Using the same statistics, we calculated the sample size to observe 𝛽!"#$ ! −
𝛽!"#$ ! = 𝜗 with power >0.8. 
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