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Abstract (157/150)

The advent of single-cell RNA sequencing has provided illuminating information on complex
systems. However, large numbers of genes tend to be scarcely detected in common scRNASseq
approaches due to technical dropout. Although bioinformatics approaches have been devel oped
to approximate true expression profiles, assess the dropout events on single-cell transcriptomesis
still consequently challenging. In thisreport, we present a new plate-based method for
scRNAseq that relies on Tn5 transposase to tagment cDNA following second strand synthesis.
By utilizing pre-amplification tagmentation step, ScCSTATseq libraries are insulated against
technical dropout, allowing for detailed analysis of gene-gene co-expression relationships and
mapping of pathway trajectories. The entire sScCSTATseq library construction workflow can be
completed in 7 hours, and recover transcriptome information on up to 8,000 protein-coding
genes. Investigation of osteoclast differentiation using this workflow allowed us to identify novel
markers of interest such as Rab15. Overall, sScSTATseq is an efficient and economical method
for scRNAseq that compares favorably with existing workflows.
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Main (2,261/2,000)

Single cell RNAseq has become a highly useful tool for interrogating biological systems,
and permitting finer understanding of the transitory cellular states following stimulation in both
homogenous and heterogeneous populations. A number of different methods have been
developed to generate sScRNAseq libraries, each with distinctive advantages'. Droplet-based
approaches such as inDrop® and Microwell-seq® have emphasized capture of large amount of
cells at the expense of individual cell detail. In contrast, commonly used plate-based approaches,
such as SMARTseq2* and CEL-seq”, can generate highly detailed profiles of small numbers of
cells, including more information on splicing events and non-coding sequences.

However, despite their divergent protocols, all of these methods share a requirement for
an initial amplification of RNA content, either through whole transcriptome amplification (WTA)
or in vitro transcription (IVT), under the presumption that the initial cDNA quantity of any given
cell istoo minute to work with. However, biases in the transcriptome pool may result from the
initial amplification, as some cDNA evade amplification/mRNA capture®. These biases
contribute to technical dropout, wherein uneven and pseudo-random detection of medium- and
low-expressed genes significantly occludes scRNAseq results and has been recognized as a key
concern for single-cell experiments”®°. While a number of computational approaches have been
designed to help overcome dropout through imputation, such methods have difficulty in
recovering true gene-gene co-expression relationships and consequent co-expression
networks'%*,

In order to streamline sScCRNAseq library construction and lower technical dropout, we
hypothesized that early fragmentation of the cDNA prior to large-scale amplification would help
avoid transcript biases, akin to the RNA fragmentation approach used in some bulk protocols. As
such, in the scSTATseq workflow presented here (Fig 1A), sorted cells are rapidly lysed, and
subsequently reverse transcribed into cODNA with the use of conventional oligo-dT, together with
not-so-random hexamers (NSR) designed to help capture 5" information™. A rapid second-strand
synthesis step is used to generate paired cDNA strands, which are then immediately tagmented
viahomebrew Tnb5, such that cDNA amplification only occurs after fragmentation is completed.
Samples are only pooled together following the completion of sequencing index ligation, and
sample transfer steps were minimized, in order to prevent potential cross-contamination.

The entire workflow can be completed by hand in 7 hours, with favorable per-cell cost
compared to other common plate-based workflows (Table S1). From our initial applications of
SscSTATseq to the mouse RAW264.7 macrophage cell line, we could recover a median of just
under 9,000 protein coding genes per cell at a sequencing depth approaching 10million reads/cell
across 160 cdlls (Fig S1A) and with amajority of genes displaying medium expression levels
(Fig S1B). Similar numbers of genes were found in each batch of cells, with high genomic
mapping ratios and relatively low percentages of mitochondrial and rRNA reads (Fig S1C).
These cells could be stratified based on cell cycle stage, with both S phase and G2-M phase cells
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identifiable in each batch (Fig S2A-D). Information on other types of hon-coding sequences,
such as microRNA housing genes and INCRNAS, could also be recovered (Fig S2F-H). To assess
the robustness of scSTATseq, we then compared the RAW céll profiles obtained using our
approach with a publicly available dataset generated according to the SMARTseq2 protocol 3,
Analysis of saturation curves of both libraries showed that sScSTATseq could recover
transcriptome information on 3,000 more protein coding genes than SMARTseg2 on average, an
improvement independent of sequencing depth or cell count (Fig 1B-C). These uniquely detected
genes tended to have lower median expression than their SMARTseg2-shared counterparts (Fig
S3A). However, inspection of the genomic mapping revealed that these low-expressed genesin
the scSTATseq data still maintained a high rate of exon-intron and exon-exon spanning reads,
indicative of successful immature and mature mRNA detection (Fig 1G).

In order to assess the significance of the higher numbers of genes recovered, we then
inspected the detection rate and expression distributions of the two datasets. We observed that
genesin the scSTATseq data displayed a bimodal detection pattern that was influenced by
expression level (aprominent peak of genes broadly detected in >75% of cells and with high
average expression, with a sparser number of genes with detection rates between 25% and 75%),
while the peaks in the SMARTseg2 detection distribution were much less distinct (such that most
of the medium-expressed genes had dropout rates > 25%, with adense linear correlation between
expression level and detection rate) (Fig 1D). While the observation that low-expressing genes
are more prone to dropout is of itself unsurprising, the even linearity of the correlation in the
SMARTSseq?2 data suggests that a significant portion of the dropout is the product of technical
variation (which would be biased in favor of keeping more highly expressed genes), and not
transcriptional burst dynamics (which should be more random). As such, the distributional
difference suggested to us that scSTATseq libraries were able to more efficiently preserve higher
detection rates for medium and low expressing genes by diminishing some dropout caused by
technical variation. Cons stent with this expectation, we observed that genes with higher dropout
displayed higher degrees of extra-Poisson variation (EPV), and the sScSTATseq data
consequently had higher overall precision as aresult of having lowered dropout (Fig 1F, S3B-C).
Taken together, these results demonstrate that sScSTATseq libraries are significantly insulated
against zero-inflated dropout.

To further characterize the consequence of the reduction in dropout on downstream
analyses, we next performed co-expression analysis using both datasets to identify the genes with
the highest conservation. Although this type of analysisis commonly seen for bulk-sequencing
studies, high dropout rates and small dynamic ranges have made their single-cell implementation
difficult. Consistent with this understanding, the numbers of co-expressed pairs was quite low in
both types of single-cell libraries considered (Fig 2A). However, the scSTATseq data showed
significant numbers of gene pairs that had higher correlations (R > 0.4), with the background
correlation in both sets being below 0.2 (Fig S3D). In order to further clarify the contribution of
technical dropout to this divergence in co-expression, we then evaluated the dropout rate of the
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genes pairs which were coexpressed in one library but not the other. Interestingly, 78% of the
SCcSTATseq correlates were detected at similar levelsin both libraries (detection difference less
than 20%), while only 22% of the pairs showed heavy dropout in the SMARTseq2 data (Fig 2B).
Examination of the overall gene expression distribution of both libraries demonstrated that the
scSTATseq data was more platykurtic and was not noticeably skewed, while the SMARTseq2
data displayed arightward skew (Fig S3E). At the same time, the scSTATseq data showed
higher dispersion among genes at the lower and higher ends for expression, indicating insulation
against threshold effects (Fig S3F). Collectively, these results demonstrate that sScCSTATseq has
both alarger effective dynamic range for expression detection and lower rates of technical
dropout, rendering it more amenable for co-expression analysis.

In order to evaluate the functional importance of the genes found to be co-expressed in
the scSTATseq data, we next leveraged existing databases for protein-protein interaction
(CORUM) and functional pathways (KEGG) for further analyses. The scSTATseq data was able
to detect both larger numbers of genes in the CORUM database (Fig S3), and also detect high
levels of intercorrelation in alarger number of complexes (Fig 2C, Table S2). These complexes
include ones known to be critical for macrophage function, such as the immunoproteasome
complex responsible for enabling antigen presentation, as well as ones less well characterized,
such as one centered on the transcription factor Gatal (Fig 2D). Direct inspection of the highly
correlated Psmal-Psma2 immunoproteasome gene pair demonstrated that a positive correlation
in expression could be seen across al three replicates of the scSTATseq data, but was lost in the
SMARTseg2 data dueto its narrow detection of Psmal expression, even though it was positively
detected across all cellsin both libraries (Fig 2E). At the same time, no correlation in the
expression of Mta2-Rbbp7 could be found in the SMARTseq2 data due to heavy dropout in the
expression of Mta2 (Fig 2F). Similar results were obtained from analysis using KEGG pathways
(Fig $4, Table S3). These results thus informed us that the scSTATseq libraries preserved
significantly greater numbers of correlated gene pairs with known biological significance.

Having confirmed the robustness of co-expression pairing on the scSTATseq data, we
then sought to identify the core transcriptome of RAW cells on asingle-cell level by screening
for the genes that had high detection, high expression, low variability, and which were highly
inter-correlated with other genes. Comprehensive screening and network generation based on
these parameters yielded a pool of 3,675 genes, representing just over 10% of all features
detected (Fig SbA, Table $4). Each of these genes was significantly correlated with over 180
other genes on average (Fig S5B), and community clustering identified 5 primary clusters of
genes (Fig S5C-D). These clusters were enriched for genes with distinct annotated biological
functions (Fig S5E, Table S5). Interestingly, one of these clusters displayed prominent
enrichment of immune-related pathways (Fig S6A). Direct inspection of the cluster demonstrated
that a number of genes with well-characterized immune functions (such as Ptprc, Lyz2, and Tir2)
could be found within, while other genes with less established roles were found to be
significantly linked (Fig S6E). The identification of this core transcriptome may be useful asa
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background reference list of essential macrophage genes and for screening novel molecular
mechanismsinvolved in macrophage function.

We next sought to exploit these advantages of sScSTATseq to investigate a dynamic
process that could be modeled using RAW cells, namely osteoclast differentiation. Although
osteoclasts are a primary pathogenic cell type contributing to osteoporosis, the molecular
mechanisms underlying their differentiation remain incompletely understood, and may be of
interest for therapeutic devel opment**>*°. Sequencing of RANK L-stimulated RAW cells at 4
time points revealed a similar set of genes recovered and low dropout rates across al samples
(Fig S7), with clear time-dependent changes in the expression of a number of factors previously
associated with osteoclast differentiation (Fig 3A). In order to map out the trajectory of
osteoclast differentiation, we first constructed a baseline pseudotime trajectory (Fig 3B), wherein
the 48 and 72 hr cells had the highest pseudotime progression (Fig 3B) following progression
through some minor intermediate states (Fig S8). We then computed trajectories and assigned
pseudotime values for progression along 2,263 curated pathways from Reactome. Via correlation
analysis of pathway-specific pseudotime values against the baseline pseudotime values, we could
then infer the association of the pathway with the overall progression trgjectory. From this
analysis, we recovered 26 pathways with high absolute correlation, including vesicular transport
and interleukin signaling (Fig 3C, Table S5).

Since the general importance of vesicular transport to osteoclast differentiation has been
previously demonstrated in the context of enzymes such as CTSK and ACP5Y, we were
unsurprised to see it correlate with the overall pseudotime progression. However, the
contribution of individual proteins responsible for transporting these vesicles remain
incompletely understood. As such, we then searched for gene-switching events within the
trafficking-associated pathways to identify the key moleculesinvolved (Fig S9, Table S6). From
this analysis, we found that the ras-related protein Rab15 was switched on in the 48-72hr
samples (Fig 3D), and traditional correlation analysis confirmed that Rab15 expression was also
significantly correlated with overall trajectory progression (Fig 3E). While Rab15 was not
previously identified in screens of progenitor cells'™®, careful inspection of the reads mapping to
Rab15 confirmed a strong positive signal on the last exon (Fig S10E), and its expression could
also be validated viagPCR (Fig 3G) and immunofluorescence (Fig 3H). As such, we then used
overexpression and knockdown experiments to assess its influence. Surprisingly, overexpression
of Rab15 drove a significant decrease in mature osteoclast formation (Fig 3I). At the same time,
Rab15 depletion led to an increase in osteoclast differentiation, with asharp increase in large,
TRAP+ fused osteoclasts (Fig 3J).

Given that Rab15 has been previously demonstrated to influence trafficking from early
endosomes, this behavior suggests that osteoclasts may also negatively regulate their own
function through differential processing of newly endocytosed receptors™. Although the exact
identity of the cargo remains unclear, it nonetheless validates the importance of the vesicular
transport pathway identified through our analyses. Furthermore, while many positive regulators
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of osteoclast differentiation have been previously identified, clear negative regulators are much
less commonly observed®. Identification of these negative regulators as a result of the increased
clarity offered by scRNAseq may thus expand our understanding of the entire process and
uncover new therapeutic targets.

By streamlining a sScRNAseq workflow and performing cDNA fragmentation prior to
amplification, we were able to observe a clear improvement in both protein-coding gene count
and detection rate. While concerns regarding the minute amount of starting material have led
most workflows to develop early amplification steps, we found that second-strand synthesis
alone could provide a sufficient base for later enrichment, especially since we maintained each
reaction in individual wells and only added new reagents. Indeed, our initial concerns about
potentially high amounts of contaminating gDNA being amplified by this process proved to be
unfounded, as the majority of reads consistently mapped to exon regions even in genes with
relatively low expression. Instead, rapid tagmentation of the transcribed cDNA seemed to expand
the dynamic range for expression detection. The consequent improvement in data resolution
permits enhanced interrogation of true gene co-expression relationshipsin single-cell data and
more detailed investigation of transcriptional regulation patterns. Use of the scSTATseq
workflow also greatly improves the resolution of trajectory mapping analysis and may help
illuminate studies of complex cellular differentiation mechanisms.
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Figure 1- scSTATseq workflow enhances transcriptome recovery

A) Overview of the scSTATseq workflow (a detailed protocol isincluded in the methods
section). B) Saturation curves of the number of protein-coding genes found from 80 scSTATseq
libraries or a publicly available dataset of SMARTseq2 libraries (80 control RAW cells) asa
function of sequencing depth. Although scSTATseq libraries were sequenced to a greater depth
than the SMARTseg2 sets, the SMARTseq2 set appeared to have reached saturation at around
0.5 million reads/cell, while the scSTATseg2 libraries detected an average of over 2,000 more
genes at the same depth. C) Saturation curves for the amount of genes detected as a function of
increasing numbers of cells sequenced. Since both datasets were generated using a stable cell
line, the genes detected in any given cell are highly similar, with sequencing of 40 cells being
sufficient to reach saturation for commonly expressed genes. D) Examination of the genomic
mapping of the raw scSTATseq and SMARTseg2 libraries binned into quantiles based on
expression level (1 lowest, 10 highest). While a steady increase in the proportion of intronic
reads can be found in the lower bins of both sScSTATseq and SMARTseg2 libraries, indicative of
potential genomic DNA contamination among rarer transcripts, SCSTATseq maintains much
higher rates of exon-exon spanning reads throughout. E) Scatterplot comparison of detection rate
of scSTATseqg and SMARTseg2 libraries, downsampled to 0.5 million reads/cell as a function of
gene expression level. Although both scSTATseq and SMARTseqg2 libraries include a substantial
number of low-expressed genes that are found in only a small portion of cells, the sScSTATseq
libraries had a much lower proportion of cells with intermediate expression and detection (~50%
non-zero detection). The preservation of expression information for these genes reflects a
lowered rate of technical dropout. F) Summary of dropout rates in the downsampled libraries (as
in D) ranked from highest (feature found in every cell) to lowest (feature uncommonly found in
cells). While the technical dropout rate in the SMARTseq2 data exhibited a sharp linear decrease,
with only a small pool of 796 features being found in every cell and 3,299 features found in >75%
of cells, scSTATseq recovered 2,781 features across all cells. 577 of the 796 features found in
each of the SMARTseg2 cells were also found in each scSTATseq cell, while 180 of the
remainder were found in >90% of the sScSTATseq cdlls. At the same time, 839 other common
featuresin scSTATseq cdlls could be found in >90% of the SMARTseg2 cells. This high overall
similarity in features suggests that the difference in detection rate is the product of technical
dropout, and not likely the result of sharp differences between the RAW cell starting material
used. G) Scatterplot of the extra-Poisson variation for each given gene in the SMARTseg2 and
scSTATseq libraries as afunction of its detection rate. Genes detected in less than 25% of the
cellsin either library were excluded. SMARTseq2 has higher levels of EPV overall as aresult of
along tail of geneswith low expression, despite having low levels of variation in genes with
high detection. See also Fig S3B-C.
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Figure 2- Identification of a stable transcriptome through co-expression analysis

A) Pairwise absolute Pearson correlation of 10,000 randomly selected pairs of genes plotted
against the averaged detection rates for each gene pair. Genes detected in less than 10% of either
library type were excluded to permit a more direct examination of the most conserved genes. A
total of 269 pairsin the sScSTATseq libraries had significant correlations (R > 0.4) and the
minimum average detection rate for these pairs was 75%, while 23 pairs could be found in the
SMARTseq2 datawith minimum average detection rate of 20%. B) Expanded pairwise
correlation analysis of 100,000 gene pairsin both SMARTseq2 and scSTATseq libraries.
Absolute Pearson correlation values for a given gene pair in sScSTATseq (x-axis) and
SMARTseq2 (y-axis) libraries are plotted together to characterize the differences in correlation.
Of note, the distribution of the scCSTATseg-unique correlates (2.59% of the pairs seen in quadrant
V) are skewed towards a SMARTseg2-correlation of 0 and not towards a SMART seq2-
correlation close to 0.4 (overall skew of 0.91 and kurtosis of 0.28), demondtrating that the
difference was not due a multitude of pairs being on the edge of the threshold in the
SMARTseq2 data. Each pair is colored based on absolute detection differences between the two
libraries. 22% of the correlates found in the sScSTATseq libraries showed significantly lower
detection rates in the SMARTseq2 data, and their lack of detection may be directly attributable to
technical dropout in SMARTseg2 (see also SF3D). C) Dotplot of the number of unique elements
of murine protein complexes (from the CORUM database) with significant expression
correlation in either sScSTATseq or SMARTseq2 libraries. The smallest complexes (< 5 elements)
were excluded from the plot to prevent overrepresentation, but a full table summarizing the
resultsisincluded as Table S). D) Correlation heatmaps for the elementsin the
immunoproteasome complex in both sScSTATseq and SMARTseqg2 data. While 8 elements are
strongly correlated in the sScCSTATseq data, only scattered pairwise correlations can be seen in the
SMARTseq2 data. E) Closer examination of the correlation between the immunoproteasome
components Psmal and Psma2 in the scSTATseq data demonstrates that the correlation between
these two proteinsis gatistically significant across three independent batches of cells. F) Similar
examination of Psmal and Psma2 in the SMARTseq?2 data failsto recover a significant
correlation in expression. Notably, neither gene had heavy dropout in the SMARTseq2 data,
suggesting that the lack of correlation was independent of dropout and more likely a product of
variance in signal range. G) The Gatal-complex members Mta2 and Rbbp7 are significantly co-
expressed across all three batches of the scSTATseq data. H) No correlation can be seen between
these two genes in the SMARTseq2 data, as aresult of heavy dropout in the detection of Mta2
(missing values in 46% of the cells). Thisis a representative demonstration of the loss of co-
expression as adirect result of technical dropout.
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Figure 3- scSTATseg analysis of osteoclast differentiation

A) Heatmap of the 55 genes from the KEGG curated osteoclast differentiation pathway with
significant changes in expression between Ohr and 72hr samples across the 122 cells sequenced.
Cdls were collected simultaneously to limit batch effects, with cells of two timepoints paired
onto the same plate to further rule out the possibility of high levels of similarity being driven by
cross-contamination. B) Pseudotime trgjectory of osteoclast differentiation computed using
DDRTree dimension reduction within Monocle using 823 highly-variable genes. While median
pseudotime values for the 48 and 72 hour cells were indistinguishable, the 24 hour cells showed
significant progression from baseline controls. C) Dot plot of the pathway trajectories most
highly correlated with the overall osteoclast differentiation trajectory. Correlations are given as
absolute Pearson’s R since the actual directionality of pseudotime assignment is not necessarily
significant. D) Heatmap of the top10 most positively and negatively correlated genes with the
pseudotime trgjectory defined in (B). Notably, while 4 of these factors were contained in the
variable gene list used to construct the trgjectory, the other factors were not, demonstrating that
the trajectory analysis could recover information on co-expressed genes. E) Expression level of
the vesicle-transport genes displaying switch-like behavior over the primary pseudotime
trajectory. While a number of these factors display their switch early on in the pseudotime
trgjectory, Rab15 and Pafah1b3 switch at the boundary of the change between 24 to 48/72hr
samples. F) Heatmap of the correlations between proteins involved in vesicular trafficking and
the overall pseudotime trajectory and vesicular trafficking trgectory. Notably, while a number of
genes display a statitically significant level of correlation, the relationship with Rab15 stands
out. G) qPCR of the expression of Ctsk and Rab15in RAW cells stimulated for 0O, 48, and 96
hours confirms that Rab15 mMRNA expression appreciably increases at 48hr and peaks at 96hr. H)
TRAP stain of 96hr-stimulated Raw cells identifies larger numbers of fused mature osteoclasts
following Rab15 depletion through SIRNA transfection. |) Depletion of Rab15 causes alarger
proportion of large osteoclasts to form, leading to an emergence of a population of giant
osteoclasts with >50 nuclei. J) Transfection of a Rab15-GFP fusion plasmid in RAW cdlls
allows for selection of an overexpressing population. K) A portion of the overexpressed Rab15
appears to localize in the endoplasmic reticulum. L-M) TRAP stain of 96hr-stimulated RAW
cells demonstrates that Rab15 overexpression greatly suppresses the differentiation of mature
osteoclasts.

Figure S1- scSTATseq quality control and clustering

A) Three batches of RAW cells were prepared separately and merged together for the analysesin
Fig 1 had similar median protein coding gene and pseudogene counts. Outlier cells with over
12,000 protein coding genes were excluded as potential doublets/dead cell artifacts. B)
Histogram of gene count ordered by expression level (log2 transcripts per million reads) shows a
peak of genes between 3 and 8 TPM comprise the magority of the features detected in the
libraries (complementing Fig 1D). C) Transcript mapping ratio to mouse genome across all three
batches showed low rates of primer dimers or other contaminating sequences. Cells with
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mapping rates below 75% were excluded due to possible contamination. While mitochondrial
RNA ratio is often used as a quality control for droplet-based datasets, we elected not to apply it
asadtrict filter for scSTATseq libraries due to the differences in method. Instead, an upper
threshold of 20% mitochondrial RNA was set in the interest of excluding cells that would
otherwise have too little transcript information. Similarly, we applied arRNA ratio filter of 30%
to exclude cells dominated by rRNA reads.

Figure S2- Cdll cycle clustering of RAW cells

A) UMAP reduction of three batches of RAW cells based on alist of known cell cycle genes
(from Tirosh et al. 2016). Cells from all three batches are generally admixed, suggesting an
overall similarity in expression profile for these genes across the three batches. B) UMAP
visualization of the expression of several prominent cell cycle markers showing differential
expression across the UM AP space (Mki67 expression is higher in the upper |€eft cells, while
Pcna expression is higher in the lower right). C) Overall cell cycle scoring for each cell
demonstrates that the cells in the lower right are predominantly in S phase, while those in the
upper left arein G2-M phases. D) Frequency of the cells belonging to each cell cycle stage
across the three batches. Cells with score > 10 for either G2-M or S phase were scored as
belonging to those phases, while cells with >10 score for both scores were deemed as
intermediates. Cells with <10 score for both were labeled as quiescent. While there is substantial
variability in cell cycle across the three batches, cellsin each class can be found in every batch. E)
Expression of four functional molecules commonly found on macrophages (and the lack thereof)
suggests that the RAW cells were resting and had not undergone activation (Cd69- across all
cells, and rare expression of Pd-11 and Cd86). F) Since the libraries contained large amounts of
pseudogenes, we further investigated if sScSTATseq may provide some information on long non-
coding sequences. UMAP visualization of two commonly expressed InNcRNAs (Malat1 and
Neat1) showed that both had relatively high expression, with some enrichment for these two
IncRNAs in the cluster of cells with higher S phase scores. G) At the same time, while
microRNAS are too short to be successfully sequenced by scSTATseq, we observed that the
expression of several microRNA housing genes could be recovered from the libraries, and may
provide some insight into mature microRNA expression. H) We further examined the well
characterized INCRNAs in the X-inactivation system as an additional check. Neither the primary
chromosome-coating Xist nor its antisense transcript Tsix were found to be significantly
expressed. On the other hand, some expression of known escape genes Jpx and Ftx could be
found, albeit at relatively low levels. Since RAW 264.7 cells are derived from amale BALB/c
mouse, this pattern is consistent with our expectations.

Figure S3- Broad correlation and distribution comparison

A) Histogram visualization of the median expression levels of the 577 featuresin sScSTATseq
datathat are either shared between the two datasets (blue) or those uniquely found at high rates
in scSTATseq libraries (salmon) shows that the uniquely detected features are of significantly
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lower median expression level. B) Comparison of the extra-Poisson variation in the sScCSTATseq
and SMARTseg2 libraries for a given gene. Genes found in less than 25% of the cellsin either
library type were excluded. Most of the high-EPV genesin the SMARTseg2 datafell into a
narrow EPV digtribution in the scSTATseq data, albeit with a dlight rightwards skew. C)
Summary of the EPV distribution of the scSTATseq and SMARTseq2 libraries. The ScCSTATseq
EPVsfél into a narrow, leptokurtic distribution while the SMARTseq2 distribution is much
broader, suggesting that the technical precision of sScSTATseq is significantly higher for alarge
number of genes. D) Summary of the summed expression of each gene in the two libraries, post-
scaling. The expression in the SMARTseg2 is noticeably flatter and slightly skewed to the l€ft,
while scSTATseq pattern is more balanced and features a slightly longer linear range. E)
Scatterplot of standard deviation in relation to gene expression. While the SMARTseq2 data
displays prominent decreases in SD at both lower and upper expression thresholds (suggesting
strong influence of upper and lower bounds of detection), this decrease is more subtle in the
ScSTATseq data due to its wider dynamic range. F) The number of gene pairsidentified in either
ScSTATseq or SMARTseq2 data at different correlation thresholds (100* Pearson’sR). A
thousand lists of 100 randomly selected genes chosen from the pool of common genes between
the two methods was used for calculation, allowing for a maximum of 4950 unigue pairs.
Notably, at a correlation level of R > 0.4, amedian of 124 genes were found, representing 2.7%
of all possible pairs. This proportion of correlated pairsis essentially identical to our observation
in Fig 2B, consistent with our expectations from a random selection. We thus established aR >
0.4 as the threshold and representation of 2.7% for the lower baseline to determine whether a
given gene set displayed true overrepresentation of correlated pairs. G) Comparison of the
number of el ements from a given CORUM complex that can be found in either library type. H)
Average detection rates for all of the detected elementsin a CORUM complex in either library
type. Detection values tend to be much higher in the sScSTATseq data, with a large patch of
complexes showing >20% higher mean detection rate. 1) scSTATseq data allows for observation
of correlations in some cases where no correlates are found in SMARTseg2. In the PY R complex
example shown, the SMARTseg2 data has no pairwise correlations >0.4, and only scattered
correlations >0.2. However, the scSTATseq data shows 12 pairs of correlates >0.4.

Figure $S4- Correlated expression of KEGG pathwaysin scSTATseq data

A) Comparison of the number of elements from a given KEGG pathway that can be found in
either library type. Overall, the scSTATseq libraries showed much higher proportional
representation as a result of the higher numbers of gene detected. B) Median detection rates of
the elements recovered from a given pathway in either library type. Similar to the observation in
Fig S3H, scSTATseq featured higher pathway element detection rates. C) While the
SMARTseq2 data featured more ribosome elements that displayed pairwise correlation, the
SCcSTATseq data showed higher numbers of correlates in pathways critical for macrophage
function, such as proteasome, leukocyte transendothelial migration, and chemokine signaling. D)
Heatmaps showing correlations in both library types of elements in the antigen processing and
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presentation pathway. Since one of the key functions of macrophages is to act as professional
antigen-presenting cells, it is unsurprising that many of its elements may have highly similar
expression profiles. However, these relationships are not clearly captured in the SMARTseg2
data. E) Heatmap showing correlations in both library types of elementsin the larger lysosome
pathway. Similar to the resultsin the smaller sets, a clear cluster of highly correlated genes can
be found in the scSTATseq data, including an assortment of cathepsins (including Ctsa, Ctsb,
Ctsd, and Ctsz, among others), as well as the proton pump Atp6vOb and key marker Lampl.

Figure S5- Core transcriptome of RAW cells

A) Network visualization of the gene-gene correlationsin RAW cells. Pair-wise correlations of
R > 0.5 areretained as edges, with higher correlations matching to darker colors. Size of gene
name label corresponds to the degree of the given node (larger nodes are ones with more
correlation relationships). B) Distribution of the number of connections for each node. Median
degreefor al nodesis 181, demonstrating that the overall network is rather extensively
interconnected. C) Clustering of the network at resolution of 1 identifies 27 clusters, of which 5
(12, 23, 24, 25, and 26) include a larger number of genes. D) Edges recolored by their source to
demonstrate the spatial locations for each of the five larger clusters of genesidentified. E) Gene
set overrepresentation analysis to identify the prominent Reactome pathways that genes from
each of the clusters belong to. While cluster12 shows prominent enrichment for cell-cycle genes,
(foldenrich calculated as number of genes found over expectated based on gene set size),
cluster23 appears to include a number of genesinvolved inimmune cell function, such as TLR
recycling and free radical production.

Figure S6- Inspection of immune-related clsuter23

A) Close-up visualization of the genesin cluster23 shows clear inclusion of a number of factors
with known participation in immune function, such as the integrins Itgbh2 and Itgav, as well
assorted surface molecules such as Tfrc, Ptprc, and Srpa. Notably, a number of orange and pink-
colored genes can be discerned in the close-up. While it has been demonstrated that genes with
higher expression levelstend to have higher degrees of expression correlation, the inclusion of
these genes with lower expression levels suggests the network constructed is not entirely limited
by expression. B) Similar to the distribution in the overall network, gene nodesin cluster23 are
also highly interconnected. C) Violin plot of the number of connected nodes to each gene,
stratified based on expression level, offering a statistical demonstration of the observation
described in (A). D) Demonstration of the high degree of connectivity for nodes in the cluster23
network. Using two randomly selected points as the starting point, we could observe that the
majority of the other nodes were within a 2-neighbor distance of the starting point. E)
Clarification of the core transcriptome can help identify other genes that may be involved in
relevant biological processes using guilt-by-association. Genes which are correlated across
multiple batches as shown here may be promising candidates for further biological validation.


https://doi.org/10.1101/2020.04.15.042408
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042408; this version posted April 17, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S7- QC of osteoclast single cell sequencing

A) A consistent number of genes were found in the cells across all four timepoints. Rare doubl ets
with more than 15,000 genes and lower-quality cells with fewer than 5,000 genes were excluded
from further analysis. B) Evaluation of dropout rates across all four timepoints. As some factors
may be restricted to a particular timepoint, we did not rely on a shared pool of genes, but instead
considered each timepoint individually and ranked all genes found in a given timepoint by their
detection rate. C) Intersection analysis of the genes found across the four timepoints
demonstrates that alarger majority of genes (5,717) are found in all four timepoints, although a
number of unique factors (606) were found in the 48/72hr samples, suggesting that these may
encompass some osteoclast-specific inducible factors. D) Comparison of the number of elements
found in CORUM complexes between the 72hr and Ohr samples found asmall increasein
detection of two complexes. E) UMAP reduction of the osteoclast data based on all elements of
CORUM complexes shows that 48 and 72hr samples are largely intermixed, suggesting that
protein complexes have their expression levels set by 48hrs following stimulation. F) Some of
the CORUM complexes with significant numbers of correlated elements in the 48/72hr cells. G)
Cell-cycle scoring of the osteoclasts (similar to Fig S2C). While a higher proportion of the
0/24hr cdlls arein S phase, suggesting a higher rate of replication, a number of the 48/72hr cells
also appear to ill be actively transitioning through the cell cycle. H) Violin plot of the scoresin
(G). The presence of these potentially replicating cells following 72hr of stimulation suggests
that osteoclasts may not necessarily become quiescent during their differentiation.

Figure S8- Branching trajectory of osteoclast differentiation

A) Pseudotime trajectories generated using the list of KEGG curated osteoclast genes displayed
inpartin Fig 3E. A similar pattern can be seen where the Ohr samples mostly represent an earlier
progression state, while the 25hr, 48hr, and 72hr samples all have some cells with highly
advanced progression. B-C) Minimum spanning tree of the overall pseudotime trajectory
computed in Fig 3D. While atotal of 7 states can be seen within the tree, some states are minor
nodes with relatively few cells from the 24hr sample. The greatest difference from the initial
state in this context is state 4, comprised of the end-differentiated osteoclasts. D) Heatmap of the
top markers for each of theindividual states identified. Notably, the key osteoclast functional
molecule Ctsk is prominently enriched in state 4, but is not found in the earlier states. E) UMAP
dimension reduction of the osteoclast gene set (generated using the same list of highly variable
genes that were considered for the original tragjectory inference) shows clear separations between
cells from the four timepoints. F) Scatterplot demonstrating that the correlation between the
overall pseudotime trajectory and the vesicle-mediated transport trajectory isrelatively tight
across the range of values, and not driven by outliers. G) UMAP visualization of the expression
of Rab15 and the progression of the vesicle-mediated transport tragjectory show that Rab15
expression isrelatively evenly found in the 48/72hr samples, but may not necessarily be found in
every cell. H) Pseudotime trgjectory of the interleukin signaling pathway shows a relatively
simple path analogous to the main trgjectory seen in Fig 3D. 1) UMAP visualization of the
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expression of several key chemokine receptors and interleukin receptors confirms that most of
these genes are downregulated upon stimulation with RANKL.

Figure S9- Switched genes along the osteoclast differentiation traectory

A) Scatterplot mapping of all genesidentified to display switch behavior (k magnitude greater
than 1 and adjusted g-value < 0.05) along the overall pseudotime trgectory for osteoclast
differentiation displayed in Fig 3B (ordered ast0). High intensity switched genes are defined as
k >2, while low intensity switched genes have k <2. B) Histogram of the counts of switched
genes along the pseudotime. Three primary peaks of switched genes can be identified, with some
having switched almost immediately following stimulation, while others only shift at 5< t0 <10,
corresponding to the shift between 24hr stimulated and 48/72hr stimulated cells. C) Enrichment
dotplot showing the biological pathways (from Reactome) that the switched genes belong to.
Notably, a number of elements of the vesicle-mediated transport and associated pathways
displayed switch-like behavior. D) Focused analysis on the genes that switched in the window of
9< t0 <11, corresponding to the transition between 24hr-stimulated and 48/72hr stimulated cells,
demonstrates that Rab15 switches within thistimeframe. Interestingly, a number of
mitochondrial proteins also shift with high intensity during this period, suggesting that metabolic
changes may also occur at this timepoint.

Figure S10- Vesicular transport and osteoclast differentiation

A) Correlation network of the genes from the vesicular transport pathway generated using
unstimulated and 24hr stimulated cells. Correlations with R > 0.6 are shown. B) Correlation
network of the genes from the vesicular transport pathway generated using 48 and 72hr
stimulated cells. Correlations with R > 0.6 are shown. C) Coexpression network of the genes
most tightly co-expressed with Rab15. As expected, these include some of the genes found to be
tightly associated with the overall pseudotime trgjectory, such as Dap, Cry1, and Slc6a4.
However, other factors such asthe class | MHC invariant chain (Cd74) were also related and
may suggest additional functional rolesfor Rab15. D) IGV visualization of the summed reads
mapping to either Rab15 or Acp5 (encoding for Trap, akey enzyme for osteoclast function).
Most of the reads for Rab15 map onto exon 7, the last exon of the gene. This expression pattern
isacharacteristic result of polyA-based approaches for mRNA capture in genes with lower
absolute expression. (Genes with higher expression, such as Acp5, show additional reads that
map to additional exons closer tothe 5" end and also have a higher likelihood of those sections
being amplified by the NSRs.)
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