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Abstract: 
 

Precise splice junction calls are currently unavailable in scRNA-seq pipelines 
such as the 10x Chromium platform but are critical for understanding single-cell biology. 
Here, we introduce SICILIAN, a new method that assigns statistical confidence to splice 
junctions from a spliced aligner to improve precision. SICILIAN’s precise splice 
detection achieves high accuracy on simulated data, improves concordance between 
matched single-cell and bulk datasets, increases agreement between biological 
replicates, and reliably detects un-annotated splicing in single cells, enabling the 
discovery of novel splicing regulation.  

 
Main text: 
 

Alternative splicing is essential for the specialized functions of eukaryotic cells, 
necessary for development​1​, and a greater contributor to genetic disease burden than 
mutations ​2​. Despite the importance of splicing and massive RNA-seq data generated on 
single cells, the extent to which the diversity of RNA splicing in single cells is regulated 
and functional versus transcriptional noise remains contentious​3​. 

 
 Given the resolution and massive number of available single-cell RNA-seq 

(scRNA-seq) datasets, precise quantification of splicing in single cells has great promise 
for discovering regulatory and functional splicing biology. While there are a number of 
methods developed for isoform quantification at the single-cell level​4,5​, a problem that 
has not been addressed is the precise discovery of splice junctions. There is a great 
need for precise junction detection: spliced aligners are designed for bulk RNA-seq and, 
in addition, generate many artifacts​6–10​, which will be referred to in this paper as “false 
positives”. The problem is exacerbated in scRNA-seq analysis due to the high-level and 
single-cell-specific biochemical noise and multiple testing errors arising from the 
analysis of thousands of cells. This problem is typically addressed through the use of 
simple filters on junction calls, which remove many true positives, especially when the 
data is sparse such as scRNA-seq. Because of these challenges, there is debate 
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regarding whether 10x Chromium (10x) could be used for reliable de novo splice 
junction detection​11,12​, despite the presence of a large number of junctional reads in the 
datasets generated by 10x protocol (Figure 2A). Overall, existing approaches to splicing 
analysis in the scRNA-seq data either lack sufficient sensitivity to identify splice 
junctions or specificity to identify false positives.  

 
In this paper, we introduce SICILIAN (​SIngle Cell precIse spLice estImAtioN​), a 

statistical wrapper for precise splice junction quantification in single cells. SICILIAN 
deconvolves biochemical noise, generated during library preparation, and computational 
noise, generated by the spliced aligner while mapping reads to the genome, which are 
both highly prevalent in scRNA-seq and can lead to false-positive junctions. To identify 
spliced alignments that are erroneously reported by the aligner due to this combined 
noise, SICILIAN employs generalized linear statistical modeling, with predictors being 
read mapping features. In this paper, we use STAR​13​ as the spliced aligner in SICILIAN, 
though the general statistical framework can be applied to refine the splice junction calls 
from any spliced aligner generating a BAM file. 
 

The SICILIAN workflow has three main steps: (1) Assign a statistical score to 
each junctional read’s alignment to quantify the likelihood that the read alignment is truly 
from RNA expression rather than artifacts;​ (2) Aggregate read scores to summarize the 
likelihood that a given junction is a true positive; (3) Report single-cell resolved junction 
expression quantification, corrected for multiple hypotheses testing (Methods, Figure 
1A,B). 

 
The goal of step (1) above is to statistically evaluate the confidence of the 

alignment for each junctional read. To do this, SICILIAN fits a penalized generalized 
linear model​14​ on the input RNA-seq data, where positive and negative training classes 
are defined based on whether each junctional read also has a genomic alignment. 
Training a new model for each input dataset allows SICILIAN to adapt to batch effects. 
The model uses the following predictors: ​the number of alignments for the read, the 
number of bases in the longer and shorter read overhangs on each side of the junction, 
the alignment score adjusted by the read length​,​ the number of mismatches, the 
number of soft-clipped bases, and read entropy. Read entropy is not generally 
appreciated as an important variable in scRNA-seq reads even though it is 
characteristic of technical artifacts​15​, underlining its importance in the SICILIAN model. 
For example, in the 10x data from a human lung study​16​, the average read entropy in 
20% of cells is < 4 (Supplementary Figure 1A), which is much more than the fraction of 
low-entropy reads in bulk RNA-seq datasets, e.g., the entropy is < 4 in only 0.09% and 
0.4% of reads in one simulated​9​ and five bulk cell lines, respectively (Supplementary 
Figure 1B,C). In step (2), the statistical scores assigned to each junction’s aligned reads 
are aggregated using a Bayesian hypothesis testing framework to obtain aggregated 
junction-level scores. SICILIAN subsequently uses the distribution of aggregated scores 
for likely false positive junctions to predict an empirical p-value for each junction. Finally, 
in step (3), SICILIAN corrects for multiple hypotheses by taking the median of the 
empirical p-values for each junction across samples and reports it as the final “SICILIAN 
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score” for the junction (Figure 1B). User-defined thresholding on this score allows for a 
junction to be either called or thrown out consistently across all samples. In this paper, 
we used a threshold of 0.15, which was selected to maximize the sum of sensitivity and 
specificity on the benchmarking datasets with known ground truth (Methods). 

 
We benchmarked SICILIAN using three different types of data: matched bulk and 

scRNA-seq data from five human lung adenocarcinoma cell lines​17​, simulated data with 
known grown truth​9,18​, and real scRNA-seq data, where we​ ran SICILIAN on 36,583 lung 
cells from two individuals from the human lung cell atlas (HLCA)​16​ and 16,755 lung cells 
from two individuals from the mouse lemur cell atlas (MLCA) studies, all sequenced 
using the 10x platform. ​We compared SICILIAN to commonly used filtering criteria in the 
field: all junction calls based on STAR​13​ raw alignments, the junctions supported only by 
uniquely mapping reads​19​, and calling junctions based on read counts ​20,21​. 

 
First, we show that SICILIAN increases the concordance of junction calls on 

matched single-cell and bulk datasets​17​. We define “concordance” to be the fraction of 
junctions detected in the single cells from each cell line that are also present in the bulk 
data from the same cell line. SICILIAN increases the concordance between the 
detected junctions from 10x and bulk RNA-seq regardless of the pairs’ cells of origin, 
which is consistent with SICILIAN identifying and removing scRNA-seq specific artifacts. 
SICILIAN improves the concordance for all cell lines (Figure 2B), e.g., for cell line 
HCC827, the concordance based on raw STAR calls is 0.54 and SICILIAN increases it 
to 0.75, while calling junctions based on a 10-read filter only increases the concordance 
to 0.66.  
 

Second, SICILIAN increases prediction accuracy on four bulk simulated datasets 
with known ground truth​9,18​. As there is no single-cell dataset with fully known ground 
truth, we resorted to bulk-level simulated datasets but ran the identical SICILIAN model 
on them. For these datasets, SICILIAN uniformly achieves AUCs of ~0.94, a significant 
increase over the AUCs of 0.66-0.89 based on the read count criterion (Figure 2C).  

 
Third, SICILIAN increases the proportion of annotated to unannotated junctions 

in all four human and mouse individuals compared to the original STAR calls. We 
expect an algorithm that correctly identifies false positives to enrich for annotated 
junctions, particularly for organisms with extensive annotation (e.g., human)​22​. Because 
transcript annotations are not part of the SICILIAN model, this serves as an orthogonal 
measure for performance evaluation. In all four individuals, SICILIAN calls a higher 
proportion of annotated junctions (83.6% on average) than unannotated junctions 
(29.2% on average), and a higher proportion of annotated junctional reads (87.6% on 
average) than unannotated junctional reads (23.9% on average), excluding junctions 
that only appear once in the dataset (Figure 3A,B; Supplementary Figure 2). 
Considering annotated and unannotated junctions as surrogates for true positive and 
false positive junctions in human lung data, respectively, SICILIAN achieves an AUC of 
0.74, while that of the read-count-based approach is 0.5 (Figure 3C).  
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Fourth, SICILIAN increases the agreement of splicing calls between individuals. 
SICILIAN calls 117,684 shared junctions between individuals in HLCA, while a 10-read 
cutoff calls only 80,292. SICILIAN makes a consistent call (either calls or rejects the 
junction in both) for 83.0% of junctions. Similarly, in MLCA, SICILIAN calls 36,446 
shared junctions in both individuals, while a 10-read cutoff calls only 17,798. SICILIAN 
consistently calls 69.9% of junctions across mouse lemur individuals. At almost all fixed 
junction expression levels, SICILIAN makes more consistent calls than inconsistent 
calls at both human and mouse lemur, emphasizing the robustness of SICILIAN across 
datasets (Figure 3D,E).  

 
To further identify whether SICILIAN enriches for known junctions, we compared 

the junctions called by SICILIAN in HLCA with two of the most recent and precise 
databases of human splice junctions: CHESS​23​ and the ​ Genotype-Tissue Expression 
(GTEx) project​24​. Only 8% and 7% of raw STAR calls are present in CHESS and GTEx, 
respectively, but SICILIAN increases these percentages to 48.8% and 45.4%, 
respectively (Figure 3F). We also looked at the junctions within each lung cell type and 
found that the fraction of junctions that are not present in CHESS or GTEx varies 
substantially across different cell types, even those with similar sequencing depth, 
indicating that the rate of novel splicing may vary between cell types (Supplementary 
Figure 3). 
 

Finally, mouse lemur calls by SICILIAN are enriched in ​having annotated 
orthologous junctions (obtained via the LiftOver tool​25​) in the human transcriptome, 
which is much more complete than the mouse ​lemur transcriptome​26​ (Methods). 
Strikingly, more than 48.4% of un-annotated junctions called by SICILIAN are annotated 
in the human transcriptome, compared to only 11.2% of unfiltered STAR calls, which 
supports the claim that SICILIAN filtering enriches for true positive junctions. We also 
compare the detected junctions in MLCA and HLCA datasets: applying SICILIAN 
increases the fraction of junctions in mouse lemur that have been also detected in 
HLCA from 15% to 54% (Figure 3G). 

 
Taken together, our results demonstrate that the SICILIAN method enables a 

new level of precision in spliced junction detection from single-cell platforms such as 
10x. SICILIAN allows automatic junction discovery even for poorly annotated splicing 
programs such as rare cell types or in new model organisms. The conceptual models 
used in SICILIAN are also applicable to other data types such as emerging single-cell 
sequencing technologies and bulk and long-read sequencing.  
 
METHODS: 
 
Alignment of scRNA-seq data. ​FASTQ files were aligned using STAR with 
chimSegmentMin = 10 and chimJunctionOverhangMin = 10 and the rest of the 
parameters were set to their defaults. Every spliced alignment (defined as a read with 
an “N” in its cigar string that was not chimeric) was parsed from the STAR BAM files. By 
collapsing spliced alignments based on their mapping positions, we obtain the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.14.041905doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=6082934&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=530302&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4944414&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4526902&pre=&suf=&sa=0
https://doi.org/10.1101/2020.04.14.041905
http://creativecommons.org/licenses/by-nc-nd/4.0/


“unfiltered STAR calls.” If a read had multiple spliced alignments, we only included the 
spliced alignment with the lowest value of the HI BAM flag to avoid double-counting 
reads. We also kept track of which reads had genomic alignments as needed for 
selecting our training datasets. 
 
Statistical detection of splice junctions in single-cell data. ​SICILIAN extracts all 
relevant information for the spliced alignments from the BAM file and utilizes that 
information to build a statistical model to distinguish truly expressed junctions from false 
positives due to biochemical and computational noise (Figure 1A). ​To build the model, 
SICILIAN takes advantage of the information across thousands of cells in a 10x sample 
to train a logistic regression model and thereby assigns a single statistical score to each 
extracted spliced alignment.​ Therefore, for each sample that SICILIAN is run on, a new 
model is built, allowing the model to specifically adapt to the experimental conditions of 
the given sequencing run. For the data analyzed in this paper, each 10x lane was 
modeled separately to allow the modeling of lane-specific batch effects. The statistical 
framework in SICILIAN can be divided into three main steps: (1) Statistical read 
alignment evaluation step, (2) Junction-level statistical evidence collection, and (3) 
Multiple hypothesis testing correction. 
 
Statistical read alignment evaluation.​ SICILIAN trains a different model for every 
dataset. To train the regression model, we define negative training reads as the reads 
that have both spliced and genomic (i.e., a contiguous mapping to a genomic region) 
alignments and positive training reads as the junctional reads without a genomic 
alignment. Our choice of negative training reads reflects the mapping profile of 
erroneous alignments as the vast majority of junctional reads with genomic alignments 
are not due to the real splice junction expression, but rather confounding factors such 
as genome homology and other biochemical and sequencing errors. Another advantage 
is that our selection criterion for training reads is independent of the predictors in the 
regression (because whether a spliced read also has a genomic alignment is not 
included as a feature in the model). Therefore, the training reads would not give too 
much weight to any predictor in the fitted regression model. Each positive and negative 
training set can have at most 10,000 junctional reads, chosen randomly among the set 
of reads satisfying the training reads criterion. 
 

Let ​y ​ be a binary variable, where  indicates a true spliced alignment and 
 indicates a false alignment. We model , the likelihood of a true spliced 

alignment, with the logistic regression with penalized maximum likelihood​14​. The 
predictors in the regression comprise: number of reported alignments for the read 
obtained from the NH tag in the BAM file (​NH​), number of mismatches obtained from 
the NM tag in BAM file ( ​nmm​), length-adjusted alignment score obtained by normalizing 
the alignment score from AS tag to the read length (​AS ​), length of the shorter read 
overhang flanking the junction (​overlap​), length of the longer read overhang flanking the 
junction ( ​max_overlap​), number of the soft-clipped bases given by the S segment of the 
CIGAR string (​S ​), and entropy of the read sequence (​entropy​): 
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By adopting this regression model, SICILIAN evaluates spliced alignments for all 
cells within a 10x sample, even for those cells with low read coverage. We fitted the 
regression using the GLMnet R package​14​. The fitted model is then applied to each 
junctional read to estimate a read-level score , the estimated likelihood that the 
spliced alignment is true.  

 
Junction-level statistical evidence collection.​ ​The list of extracted junctions from the 
BAM file with their aligned reads is obtained by collapsing the spliced alignments based 
on their mapping position. For each junction, which corresponds to N aligned reads, the 
read-level scores are aggregated under a Bayesian hypothesis testing framework to 
obtain an aggregated junction-level score: 

 

 
 

Since read-level scores are always between 0 and 1, the aggregated score 
would be biased against junctions with many reads even when the read alignments 
have high confidence. To correct this bias, for each number N of aligned reads, we build 
a null distribution of random aggregated scores by randomly sampling N aligned reads 
across all read alignments. We then compute a junction cumulative score  for each 
aggregated score ​P​ by comparing it against the null distribution. For junctions with 

 reads, we build the empirical null distribution by computing 10,000 random 
aggregated scores; for junctions with  reads, we deploy the central limit theorem 
to model the null distribution as a Gaussian distribution and use it to compute the 
cumulative score . 
 

 To develop a systematic approach for estimating the SICILIAN’s false discovery 
rate, we further computed an empirical p-value ( ) for each junction. To do so, we 
built a null distribution of the cumulative scores  of the junctions in which at least 
10% of the aligned reads have also a genomic alignment. Since a spliced read with a 
genomic alignment could be also explained by a contiguous genomic region and its 
reported spliced alignment is most likely due to the artifacts, we used the spliced 
junctions with a considerable fraction of aligned reads (at least 10%) being also 
genomically aligned as surrogates for false-positive junctions and used the distribution 
of their cumulative scores  as the null distribution to compute an empirical p-value 

 for each junction. When SICILIAN is applied to a single sample (one 10x 
sample),  is the SICILIAN’s final score for each junction and junctions with  
less than a threshold (e.g. 0.1) are called by SICILIAN.  
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Multiple hypothesis testing correction.​ When analyzing multiple 10x samples (which 
is typical in single-cell studies), merely using empirical p-values for detecting junctions 
might result in an increased false discovery rate due to multiple hypothesis testing, 
where each junction is tested multiple times across samples. To address this issue, 
SICILIAN adopts a multiple hypothesis testing correction strategy where for each 
junction, it collects the empirical p-values ( ) across all samples and then 
computes their median (or the “SICILIAN score”) as a unified criterion to decide whether 
the junction should be called across all 10x samples (Figure 1B). We used median 
because as the number of random variables increases, their median converges to their 
expectation; therefore, the median can be used as a consistent statistical measure that 
controls for multiple hypothesis tests of a junction being an artifact across samples. With 
this approach, if a junction possesses a significant  in one sample just by chance 
but there is enough evidence in other samples that the junction is a false positive, 
SICILIAN would be able to correct the call by considering the junction’s ’s in other 
samples, which would lead to a large median and consequently the removal of the 
junction. ​Using this system, each junction will be called consistently across all samples. 
For this paper, we used a cutoff of 0.15 for the ​SICILIAN score (or the ​median of ) 
as this value optimized the Youden's index (​sensitivity - specificity - 1 ​) on the 
benchmarking datasets with known ground truth. 
 

For each sample in which junction ​i​ is originally present, the  is only 
considered in this step if it meets several criteria: the fraction of reads with a genomic 
alignment that are also mapped to this junction in the sample is < 0.1, the reads 
mapping to the junction in this sample have different starting points for their alignment 
(reads aligned to a junction have different overlaps), the average length of the longest 
stretch of either A’s, T’s, G’s, or C’s in the reads mapping to the junction is less than 11, 
and the average entropy of aligned reads to the junction is greater than 3. These filters 
are included because any of these individual criteria provides significant evidence on its 
own that the junction is a false positive. If a junction “fails” any of these criteria in one 
sample, the  from that sample will not be included in the set of used to find 
the median.  
 
Read sequence entropy.​ ​To further identify false positives by spliced aligner, the 
SICILIAN model also includes the entropy​27​ for the aligned reads, a quantitative 
measure of how repetitive a sequence is. For example, the entropy of sequence 
TCACTCTCCCACACTCTCTCTCTCTCACACACACACACACACACACACACACACAC
ACAC, which has many repeats of AC and TC is 2.1, while the entropy of sequence 
GAAAGTGTATAACTACAATCACCTAATGCCCACAAGGTACTCTGTGGATATCCCCT
TGGA is 4.0. Sequence entropy is expected to be a highly informative predictor of false 
positive spliced alignments for two reasons: (1) reverse transcriptase or PCR enzymes 
are known to generate sequences of low entropy (“PCR stutter”)​15​, and PCR crossover 
is common in these regions; (2) these low-entropy sequences typically map to many 
places in the genome​28​. Also, the entropy could be more informative and variable in 
scRNA-seq compared to bulk RNA-seq (Supplementary Figure 1).  
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We computed the entropy for a read sequence based on the distribution of 

overlapping 5-mers in the sequence. For example, for ACTCCGAGTCCTCCG the list of 
5-mers would be: ACTCC, CTCCG, TCCGA, CCGAG, CGAGT, GAGTC, AGTCC, 
GTCCT, TCCTC, CCTCC, and CTCCG. Let  be all the 5-mers in the read 
sequence and C denote the set of unique 5-mers in the read, then for any , let 

 be the number of times that kmer  appears in  (for example, 
CTCCG appears twice in ACTCCGAGTCCTCCG). We define the read entropy as 

. 
 
Mouse lemur liftover analysis. ​We used the UCSC LiftOver tool​25 
( ​https://genome.ucsc.edu/cgi-bin/hgLiftOver​) to convert the the coordinates of the 
junctions detected by SICILIAN in MLCA from mouse lemur (Mmur3) to human (hg38) 
genome assemblies and analyzed the annotation status of the orthologous junctions in 
the human transcriptome. We used the recommended settings for LiftOver and 
analyzed only those junctions that have been successfully and uniquely converted by 
the LiftOver tool. 
 
File downloads: 
 

- Human RefSeq hg38 annotation file was downloaded from: 
ftp://​ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_ide
ntifiers/GRCh38_latest_genomic.gff.gz 
 

- Mouse Lemur RefSeq Micmur3 assembly files were downloaded from: 
https://www.ncbi.nlm.nih.gov/assembly/GCF_000165445.2/ 
 

- The list of GTEx splice junctions was downloaded from GTEx Portal: 
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_
2017-06-05_v8_STARv2.5.3a_junctions.gct.gz  
 

Code availability. ​SICILIAN code is publicly available and can be accessed via a 
GitHuB repository: ​https://github.com/salzmanlab/SICILIAN​. All code used for 
benchmarking can be found at 
https://github.com/salzmanlab/SICILIAN/tree/master/benchmarking​.  
 
Data availability.​ The 10x benchmarking dataset​17​ is available on SRA database 
( ​GSM3618014). The corresponding cell lines (​HCC827, H1975, A549, H838, and 
H2228)​ for the benchmarking 10x dataset were downloaded from the NCI Genomic 
Data Commons (GDC) Legacy Archive (​https://portal.gdc.cancer.gov/legacy-archive​). 
The simulated benchmarking datasets​9​ were downloaded from ArrayExpress (accession 
number: E-MTAB-1728).The HISAT simulated datasets​18​ were downloaded from 
http://www.ccb.jhu.edu/software/hisat/downloads/hisat-suppl/reads_perfect.tar.gz​ and 
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http://www.ccb.jhu.edu/software/hisat/downloads/hisat-suppl/reads_mismatch.tar.gz​. 
The human lung scRNA-seq data used here was generated through the Human Lung 
Cell Atlas. ​29​ The mouse lemur single-cell RNA-seq data used in this study was 
generated as part of the Tabula Microcebus consortium.  
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List of Figures: 
 
Figure 1: Overview of the SICILIAN statistical framework.​ (A) SICILIAN takes the 
alignment information file (usually in the form of a BAM file) from a spliced aligner such 
as STAR and then deploys its statistical modeling to assign a statistical score to each 
junction. (B) SICILIAN utilizes the cell-level statistical scores (empirical p-values) for 
each junction across 10x samples to correct for increased false discovery rates due to 
multiple hypothesis testing. The corrected score is called the “SICILIAN score” and can 
be used to consistently call junctions across cells.  
 
Figure 2: SICILIAN performance evaluation using benchmarking datasets.​ (A) High 
and variable fraction of junctional reads across diverse cell types in the HLCA dataset​16​. 
Each violin plot shows the fraction of mapped reads in each cell (within a cell type) that 
are junctional. (B) SICILIAN improves the concordance between detected splicing 
junctions in single cells and bulk cell lines. (C) ROC curves by SICILIAN and read count 
criteria for four simulated datasets​9,18​ (the top two based on data from ​9​ and the bottom 
two based on data from​18​). 
 
Figure 3: Splice junction discovery in human lung (HLCA) and mouse lemur lung 
(MLCA) cells.​ (A) SICILIAN filters out a higher proportion of unannotated junctions than 
annotated in all individuals from both human and mouse Lemur datasets [only junctions 
with at least two reads in the given dataset are plotted]. (B) Example of junctional reads 
identified by SICILIAN in the gene PGAM1P5 in human; annotated splicing was 
maintained and four new junctions were discovered (one of which was shared between 
individuals). (C) Better discrimination between annotated and unannotated junctions in 
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the HLCA dataset achieved by the SICILIAN statistical criterion. (D) The number of 
junctions found in both human individuals that are called consistently by SICILIAN is 
larger than the number that are called differently in almost every case, regardless of the 
number of junctional reads. (E) The number of junctions called consistently between the 
two mouse lemur individuals is also larger than the number called inconsistently at 
almost every read depth after SICILIAN filtering. (F) The fraction of HLCA junctions that 
are found in CHESS and GTEx databases before and after applying SICILIAN to STAR 
raw calls. (G) The number of mouse lemur junctions orthologous junctions (found by 
LiftOver from Mmur3 to hg38) that have been also detected in the HLCA dataset. 
Junctions have been further classified based on their annotation status in the mouse 
lemur and human transcriptomes.  
 
Supplementary Figure 1. ​(A) High variation of read sequence entropy in single-cell 
data. Each violin plot shows the distribution of average read entropy for the cells within 
a cell type in mouse lemur 10x data. (B) Simulated datasets do not model entropy 
variation in real data. The density plot shows the read entropy in a simulated dataset​9​. 
(C) Low entropy reads in real bulk RNA-seq datasets are less prevalent than single-cell 
data. The plot shows the read entropy distributions in five cell lines used for generating 
the benchmarking single-cell dataset​17​. 
 
Supplementary Figure 2.​ (A) Using a 10 read count threshold causes fewer annotated 
junctions to be called, and many more unannotated junctional reads to be called [only 
junctions with at least two reads in the given dataset are plotted]. (B) Including all 
junctions that have at least one read uniquely mapping to them causes a high fraction of 
unannotated junctions and unannotated junctional reads to be called [only junctions with 
at least two reads in the given dataset are plotted]. (C) The number of unannotated 
junctions is greater than the number of annotated junctions before filtering in all 
individuals. Lemur individuals have a higher proportion of junctions with one or both 
exons annotated but without the junction annotated. 
 
Supplementary Figure 3.​ Comparison of the HLCA junctions with two splicing 
databases: CHESS​23​ (A) and GTEx​24​ (B). For each cell type within the HLCA data, the 
plot shows the ratio of the number of junctions that are not found in the database 
(defined as new junctions) to the number of junctions that are found in the database 
(defined as found junctions). The green dots show the number of junctional sequencing 
reads (in the logarithmic scale) for each cell type.  
 
List of Supplemental Tables: 
Table 1 A-G: Breakdown of how many junctions are found in each individual without 
filtering, after SICILIAN, and after read thresholding. 
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Supplementary Figure 3
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