
Flexible open-source automation for robotic bioengineering 

Emma J Chory1,2,3 *, Dana W Gretton1 *✝ , Erika A DeBenedictis1,4, Kevin M Esvelt1 
1Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
2Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
3Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 
4Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
 
* Designates equal-contribution 
✝ Designates primary correspondence for software development 
 
INTRODUCTION  
Liquid handling robots have become a biotechnology staple1,2, allowing laborious or repetitive protocols to be executed in high-
throughput. However, software narrowly designed to automate traditional hand-pipetting protocols often struggles to harness the full 
capabilities of robotic manipulation. Here we present Pyhamilton, an open-source Python package that eliminates these constraints, 
enabling experiments that could never be done by hand. We used Pyhamilton to double the speed of automated bacterial assays over 
current software and execute complex pipetting patterns to simulate population dynamics. Next, we incorporated feedback-control to 
maintain hundreds of remotely monitored bacterial cultures in log-phase growth without user intervention. Finally, we applied these 
capabilities to comprehensively optimize bioreactor protein production by maintaining and monitoring fluorescent protein expression of 
nearly 500 different continuous cultures to explore the carbon, nitrogen, and phosphorus fitness landscape. Our results demonstrate 
Pyhamilton’s empowerment of existing hardware to new applications ranging from biomanufacturing to fundamental biology. 
 
MAIN TEXT 
Automation has been widely implemented in biotechnology3 to 
facilitate routine tasks involved in DNA sequencing4, chemical 
synthesis5, drug discovery6, and molecular biology7. In principle, 
flexibly programmable robots could enable diverse experiments 
beyond the capabilities of human researchers, across  a range of 
disciples within the sciences. Existing robotic software easily 
automates protocols designed for hand pipettes, but struggles to 
enable more specialized or sophisticated methods. As such, truly 
custom robot manipulation remains out of reach for most 
laboratories2, even those with well-established automation 
infrastructures. 
 
Bioautomation lags behind the rapidly advancing field of 
manufacturing, where robots are expected to be task-flexible, 
responsive to new situations, and interactive with humans or 
remote management systems when ambiguous situations or 
errors arise2. A key limitation is the lack of a comprehensive, 
suitably abstract, and accessible software ecosystem8–10. 
Though bioinformatics is becoming increasingly open-
sourced11,12, bioautomation has been slow to adopt key practices 
such as modularity, version control, and asynchronous 
programming. 
 
To address these issues, we developed Pyhamilton, a Python 
package that not only facilitates high-throughput operations 
within the laboratory, but also allows liquid-handling robots to 
execute previously unimaginable and increasingly impressive 
methods. With this package, users can use process scheduling, 
run simulations for experimental planning, implement error 
handling for straightforward troubleshooting, and easily integrate 
robots with external laboratory equipment.  
 
 

 
Design of Pyhamilton Software 
Pyhamilton enables Hamilton STAR and STARlet liquid handling 
robots to be programmed using standard Python. This allows for 
robotic method development to benefit from standard software 
paradigms, including exception handling, version control, object-
oriented programming, and other cornerstone computer science 
principles (Supplementary Table 1). Pyhamilton seamlessly 
connects with Hamilton robots, can interface with custom 
peripherals (Fig. 1A), and contains unique Python classes 
corresponding to robotic actions (i.e. aspirate and dispense) and 
consumables (i.e. plates and pipette tips). To enable method 
troubleshooting, Pyhamilton can also simulate methods through 
Hamilton run control software and incorporate any Python 
package (i.e. enabling error notifications via push, text message, 
or Slack). Finally, in addition to the functionalities we present,  
researchers can now also develop their own flexible code that 
may be useful for increasingly specialized applications.  
 
Enabling improved throughput of laboratory assays 
Standard liquid-handling software limits access to the full 
physical capabilities of a pipetting robot. For example, an 8-
channel head cannot be readily programmed to pipette into two 
24-well plates simultaneously although doing so is physically 
possible (Fig. 1B). This limits the ability to automate many 
laboratory assays in higher throughput: automation of methods 
involving 24-well plates is no faster than hand-pipetting, since 
both a robot and researcher can only pipette a single plate at a 
time. Thus, we first used Pyhamilton to develop a method which 
pipettes liquids over two 24-well plates simultaneously (Fig. 1C), 
doubling the speed. This can be critical for bacterial assays 
involving heated liquid agar which solidifies quickly. This simple 
example demonstrates the advantages of making full use of the 
robot’s mechanical capabilities, freed from software constraints.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Figure 1: Example Pyhamilton Applications. (a) Generalizable Python outline for writing custom Pyhamilton code to interface with robot and 
integrated equipment such as plate readers (e.g., ClarioStar) and custom pump arrays. (b) Expanded robot capabilities allow for improved throughput 
of laboratory across 24-well plates. (c) Example code required to run a bacterial assay across multiple simultaneous plates. Code for bacteriophage 
plaque assay show (see supplemental methods). (d) Implementing complex and arbitrary bi-directional liquid handling to simulate experiments such as 
unbounded (left) or bounded (right) population flow across a geographic region, such as a river. (e) Geographic “barriers” described in matrix format (f) 
Simulation of bounded and unbounded migration (top), and visualization of the liquid patterns executed by the robot each iteration (bottom). Solid box 
designates “high” geographic barrier, dashed box designates a “medium” geographic barrier. (g) Example code required to run population dynamics 
simulations, using a sparse matrix to assign source wells, destination wells, and volume transfer fractions. (h) Real-time monitoring of on-deck 
turbidostats enables feedback control to equilibrate cultures to a set density. (i) Plate reader measurements for OD (top), and respective estimated 
growth estimates (bottom) obtained from data from 24 replicates. Data are smoothed with rolling mean and outlier points are excluded. OD set-point 
shown in red. (j) Example code required to maintain on-deck turbidostats using a transfer function to calculate k-estimates and volume transfer rates. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


Enabling liquid transfers requiring complex calculations 
Despite having far greater physical capabilities than a fixed-
volume multi-channel pipette, it is difficult to implement complex 
liquid transfer patterns on a robot because programming using 
standard software is prohibitively monotonous. The ability to 
faithfully execute experiments involving hundreds of different 
pipetting volumes could enable new types of applications such as 
evolutionary dynamics experiments examining gene flow13, 
population symbiosis14, sources and sinks15, genetic drift16,17, 
and the spread of gene drive systems18,19 (Fig. 1D). We 
accordingly used Pyhamilton to enable the flexible transfer of 
organisms between populations in a 96-well plate, using pre-
programmed migration rates to simulate geographic barriers (Fig. 
1E).  
 
A human would have great difficulty performing or programming 
hundreds of variable pipetting actions in many directions, in any 
reasonable time frame, without errors. With Pyhamilton, simple 
abstractions and data structures make this task straightforward. 
Instead of exhaustively specifying each pipetting step, we 
specified liquid transfer patterns as matrices, and allowed the 
software to compile the requisite steps. We demonstrate liquid 
transfer to nearby plates and between adjacent wells to model 
“flow” or “diffusion” across the miniaturized landscape of a 96-
well plate. We then simulate genetic flow by visualizing the point 
spread of a drop of dye near the center of a plate (Fig. 1F). The 
amount of liquid exchanged and the number of wells is arbitrary, 
defined as a sparse matrix where the rows are source wells, the 
columns are destination wells, and the values are the fraction of 
liquid transferred (Supplementary Figure 2). Each iteration, the 
robot performs several hundred bi-directional liquid transfers to 
apply the matrix operations. Succinct code (Fig. 1G) can 
generate both symmetric and asymmetric diffusion patterns, 
which could be combined with a phenotypic reporter to 
experimentally simulate arbitrarily directionally bounded or 
unbounded migration (Fig. 1D) with many model organisms such 
as E. coli, yeast, or even nematodes. 
 
Enabling feedback control to maintain turbidostats 
Though most liquid handling robots are used to execute a list of 
precompiled instructions (e.g., assembling reagents for many 
PCRs), many potential applications require making real-time 
modifications. For example, a turbidostat is a culture of cells that 

is maintained at a constant density by making real-time 
adjustments to the flow rate of media in response to turbidity 
sensing. In practice, this is accomplished with process controls 
which measure the optical density (OD) of a culture in situ. 
However, turbidity probes are both costly and not amenable to 
high throughput20,21. Thus, we sought to leverage the flexibility of 
Pyhamilton to multiplex the maintenance of many bacterial 
turbidostats by adjusting the volume of liquid transfers in 
response to real-time density measurements obtained using an 
integrated plate-reader (Fig. 1H). The method equilibrates each 
culture, growing in a multi-well microplate, to a set point (Fig. 1I) 
in response to these measurements by applying a transfer 
function to calculate the growth rate (k-value) and adjustment 
volume for each individual well over time (Fig. 1J). 
 
Asynchrony enables high-throughput turbidostats 
To maximize the number of turbidostats that can be maintained, 
we next developed a more complex method which uses 
asynchronous programming to execute multiple robotic steps 
simultaneously— in this case plate reading and pipetting (Supp 
Fig. 1). This allows for nearly 500 cultures to be maintained with 
real-time fluorescent reporter monitoring on a single robot. In this 
method, bacterial cultures are inoculated into 96-well clear-
bottom plates and their ODs and fluorescence levels are 
measured with an integrated plate reader (Fig. 2A). To minimize 
waste, consumables, and prevent media contamination, we also 
implemented a cleaning process (Fig. 2A): after each media 
transfer, each tip is sterilized with 1% bleach, rinsed in water, and 
returned to its housing unit (Fig. 2A). To further minimize the 
possibility of cross-contamination between wells, each culture is 
assigned its own tip and media reservoir by housing replenishing 
media within high-volume 96-well plates. We confirmed that this 
method introduces no measurable cross contamination by 
inoculating 96 turbidostats with four different bacterial cultures 
expressing RFP, YFP, CFP, or no fluorescent protein in a grid-
like pattern with no-bacteria controls (Fig. 2C). We then 
monitored the absorbance and fluorescence levels in real-time, 
and maintained the cultures at OD 0.8 for 24 hours. We observed 
no cross-contamination and no growth in the no-bacteria controls 
(Fig. 2C). We also inoculated the same bacterial strains at 6 
different starting densities (OD=0.0-0.8) and demonstrated that 
irrespective of initial conditions, the feedback control algorithm 
equilibrates each culture to its set point within 12 hours (Fig. 2D).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Figure 2: High-throughput turbidostats. (a) High-throughput turbidostat summary for up to 480 simultaneous evolutions. Bacterial populations are 
housed in 96-well clear-bottom plates on the deck of a liquid handling robot. Liquid handling is used to create a turbidostat in every well, continuously 
refreshing each population by diluting the bacterial culture from a respective deep-well media reservoir on deck. An integrated plate reader is used to 
monitor absorbance, luminescence, or fluorescence readouts for each culture. Movements by robotic pipette (blue arrow) and plate reader (red arrow) are 
shown. Dotted lines indicate tasks that are executed asynchronously, and require 10 minutes per plate. (b) Step-by-step summary of high-throughput 
turbidostat method. (c) Plate layout of real-time absorbance, CFP, RFP, and YFP fluorescence readings of 96 simultaneous cultures inoculated with either 
no bacteria, FP-null bacteria, and CFP, RFP, or YFP-expressing bacteria. Data shown from 24 representative wells. (d) Real-time absorbance 
measurements of 96 cultures inoculated at ODs of 0, 0.1, 0.2 0.4, 0.6, 0.8, which equilibrate to a set point of 0.8 within 12 hours, consistent with simulation 
(Supplemental Figure 3). 
 
 
High-throughput perturbation analysis of metabolites 
We next sought to use high-throughput turbidostat tracking to 
address an outstanding question in metabolic engineering by 
systematically mapping the chemical landscape that supports 
bacterial growth and protein expression. To do this, we surveyed 
the contributions of carbon, nitrogen, and phosphorus on growth 
and recombinant protein production by permuting chemical 
gradients for these metabolites in high-throughput. This effort, 
while seemingly well-studied, is difficult to accomplish without the 
proper number of replicates, experimental controls, long-term 
maintenance of log phase growth, and real-time monitoring, each 
of which are trivial to implement with Pyhamilton.  
 
It has traditionally been thought that cells regulate protein 
production by allocating their resources to optimize for both 
expression and growth22,23. However, it has recently been shown 
that in either carbon-, nitrogen- or phosphorus-limiting conditions, 
cells are able to fine-tune their ribosomal usage to maintain equal 
levels of protein24. Thus, we hypothesized that exploration of the 
entire metabolite landscape (Fig. 3A) could more rigorously 
identify bacterial growth conditions optimized for recombinant 
protein production. To do this, we inoculated cultures with E.coli 
BL21, a strain commonly used for recombinant protein production 
in metabolic engineering or biomanufacturing, engineered for high 
constitutive expression of a fluorescent protein (CFP)25.  

In a single experiment spanning 36 hours with no user 
intervention, we simultaneously quantified the equilibrium log-
phase growth rates and respective fluorescence levels of 300 
individual turbidostats, representing 100 different media 
compositions in triplicate (Figure 3B). Cells were grown in 
modified M9 media containing 100 different ratios of carbon, 
nitrogen, and phosphorus and the cultures were maintained in log 
phase growth for 36 hours with feedback control (Supplemental 
methods). All cultures grew within +/- 20% of M9 media growth 
rate, with the exception of cultures that were starved of both 
carbon and phosphorus (Fig. 3C). We observed that increases in 
growth rate are primarily correlated with increases in phosphorus 
(independent of nitrogen or carbon levels), which is likely a result 
of increased DNA synthesis. Further, in phosphorus-limiting 
conditions, we find that the depressed growth rate can be rescued 
by supplementing carbon, but not nitrogen, suggesting that 
carbon precursors are a more limiting reagent than amino acids 
in metabolism (Fig. 3C).  
 
Consistent with previously published results24, we observe that 
the total amount of protein is generally not affected by limiting 
carbon or nitrogen, nor by supplementing the cells with excess of 
either nutrient. However, perhaps most interestingly, we 
additionally find that when phosphorus is limited (0.25X), excess 
carbon  supplementation  not  only  rescues the growth rate of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Figure 3: Metabolic profiling of protein production. (a) Schematic flow of carbon, nitrogen and phosphorus nutrients in protein and nucleotide 
production. (b) Real-time absorbance and fluorescent reporter monitoring for 100 various M9 media compositions (n=3 per condition). Real-time 
calculations of volumes/hr and estimates for k-value convergence shown. c) (left) Average growth rate for each media composition plotted as a 2-
dimensional fitness landscape of carbon and nitrogen, for four concentrations of phosphorus. (right) Summary of all 100 conditions shown as 3D fitness 
landscape colored by growth rate (blue = low, red = high). Size of dot indicates absolute deviation from average 1X M9 media composition. d) (left) 
Average amount of protein expression (measured by fluorescence) of each media composition plotted as a 2-dimensional fitness landscape of carbon 
and nitrogen, for four concentrations of phosphorus. (right) 3D protein-production landscape of all 100 conditions colored by amount of fluorescence (blue 
= low, red = high). Size of dot indicates absolute deviation from average 1X M9 media composition. 
 
 

culture (Fig. 3C), but also results in an increase in total 
fluorescence (Fig. 3D). Since we observe minimal growth defects 
in these conditions, this finding suggests that on a per-cell basis, 
supplementing carbon in phosphorus-limiting conditions (such as 
in the soil26,27 or P-limited lakes28) can shunt bacterial metabolism 
from DNA/mRNA synthesis to protein translation without 
sacrificing growth. Collectively, these findings demonstrate that 
Pyhamilton enables researchers to answer rigorous metabolic 
engineering questions by enabling facile, low-consumable, yet 
rich hypothesis-generating experiments. 
 

DISCUSSION 
Liquid handling robots have traditionally automated workflows that 
were explicitly designed for human researchers. Future methods 
enable experiments that could never be done by hand, such as 
protocols that must pipette continuously for multiple days, that 
perform complex calculations about future steps based on real-
time data, or that make use of hardware that is more sophisticated 
than any hand-held multichannel pipette. Pyhamilton is an open-
source Python framework which enables these types of 
experiments.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


We showcase these improved capabilities by simultaneously 
quantifying the metabolic fitness landscape of 100 different 
bacterial growth conditions to identify ideal conditions for 
recombinant protein production. Though recent fluidic advances 
have enabled the maintenance of many continuous cultures20, the 
incorporation of real-time reporter monitoring vastly expands the 
types of questions that can be approached with facile, multiplex 
solutions. For example, one could maintain cultures of, and 
accurately quantify any reporter output for massively-parallel 
experiments including genetic knockout or CRISPR 
collections29,30, mutagenesis variants31, or even small-molecule 
compound libraries32. With high accuracy, any suspension culture 
of mixed populations could be maintained in log phase growth for 
days in order to study transient invaders into microbial 
communities33 or even microbiome system dynamics34. The 
advent of small molecule fluorescent reporters for metabolic 
fitness35, pH36,37, and CO238, in addition to the hundreds of 
fluorescent protein sensors available to the synthetic biology 
community at large39,40, also impresses the seemingly unlimited 
potential of being able to multiplex and quantify changes in 
growth, gene expression, and the environment in real-time. 
 
As such, Pyhamilton is a small part of an ongoing transition to a 
paradigm which leverages insights from computer science8 and 
applies them to biology. Similar to how Bioconductor11 and The 
Biopython project12 have revolutionized computational biology, 
bioinformatics, and genomics, our hope is that by making this 
software open-source and freely available, a community of 
scientists and developers could begin to similarly transform 
bioautomation. The experiments we have described represent 
only a small sampling of many possible Pyhamilton applications. 
Collectively, they highlight the potential of high-throughput robotic 
systems to transcend the repetitive processes for which they were 
conceived and directly address broad questions in microbiology, 
genetics, and evolution that are beyond the physical capabilities 
of human researchers.  
 
ACKNOWLEDGEMENTS 
We would like to acknowledge Alvaro Cuevas of Hamilton 
Robotics for his examples, guidance, and assistance in making 
use of the Original Equipment Manufacturer (OEM) interface, 
along with the rest of Hamilton Robotics. We thank Jason Yang, 
Stephen Von Stetina, Ethan Alley, Brian Wang, Samantha 
Shepherd, and Timothy Erps for thoughtful comments and 
discussion. 
 
FUNDING 
EAD was supported by the National Institute for Allergy and 
Infectious Diseases (F31 AI145181-01). EJC was supported by 
the Ruth L. Kirschstein NRSA fellowship from the National Cancer 
Institute (F32 CA247274-01). This work was supported by the MIT 
Media Lab, an Alfred P. Sloan Research Fellowship (to KME), 
gifts from the Open Philanthropy Project and the Reid Hoffman 
Foundation (to K.M.E.), the National Institute of Digestive and 
Kidney Diseases (R00 DK102669-01 to KME) and the DARPA 
Safe Genes Program (N66001-17-2-4054 to KME). The findings, 
views, and/or opinions expressed are those of the authors and 
should not be interpreted as representing the official views or 
policies of the Department of Defense or the U.S. Government.  

AUTHOR CONTRIBUTIONS 
Software: DWG*. Conceptualization: EJC, DWG, EAD, and KME. 
Methodology: EJC, DWG, EAD. Validation: EJC, DWG, EAD. 
Formal Analysis: EJC. Investigation: EJC, DWG. Writing – 
Original Draft: EJC. Writing – Review & Editing: EJC, DWG, EAD, 
and KME. Visualization: EJC. Funding Acquisition: KME. 
 
*All correspondence regarding Pyhamilton software development 
should be directed to DWG: 
(dgretton@mit.edu, https://github.com/dgretton/).  
 
REFERENCES 

1. Sparkes, A. et al. Towards Robot Scientists for autonomous scientific 
discovery. Autom. Exp. 2, 1 (2010). 

2. Appleton, E., Densmore, D., Madsen, C. & Roehner, N. Needs and 
opportunities in bio-design automation: four areas for focus. Curr. Opin. 
Chem. Biol. 40, 111–118 (2017). 

3. Freemont, P. S. Synthetic biology industry: data-driven design is creating 
new opportunities in biotechnology. Emerging Topics in Life Sciences 3, 
651–657 (2019). 

4. Meldrum, D. Automation for genomics, part one: preparation for 
sequencing. Genome Res. 10, 1081–1092 (2000). 

5. Ley, S. V., Fitzpatrick, D. E., Ingham, R. J. & Myers, R. M. Organic 
synthesis: march of the machines. Angew. Chem. Int. Ed Engl. 54, 3449–
3464 (2015). 

6. Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–
113 (2018). 

7. Smanski, M. J. et al. Functional optimization of gene clusters by 
combinatorial design and assembly. Nat. Biotechnol. 32, 1241–1249 
(2014). 

8. Bär, H., Hochstrasser, R. & Papenfub, B. SiLA: Basic standards for rapid 
integration in laboratory automation. J. Lab. Autom. 17, 86–95 (2012). 

9. Walsh, D. I., 3rd et al. Standardizing Automated DNA Assembly: Best 
Practices, Metrics, and Protocols Using Robots. SLAS Technol 24, 282–
290 (2019). 

10. Linshiz, G. et al. PR-PR: cross-platform laboratory automation system. 
ACS Synth. Biol. 3, 515–524 (2014). 

11. Gentleman, R. C. et al. Bioconductor: open software development for 
computational biology and bioinformatics. Genome Biol. 5, R80 (2004). 

12. Cock, P. J. A. et al. Biopython: freely available Python tools for 
computational molecular biology and bioinformatics. Bioinformatics 25, 
1422–1423 (2009). 

13. Slatkin, M. Gene flow and the geographic structure of natural populations. 
Science 236, 787–792 (1987). 

14. Kaneko, K. & Ikegami, T. Homeochaos: dynamics stability of a symbiotic 
network with population dynamics and evolving mutation rates. Physica 
D 56, 406–429 (1992). 

15. Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol. 
11, 326–330 (1996). 

16. Lande, R. NATURAL SELECTION AND RANDOM GENETIC DRIFT IN 
PHENOTYPIC EVOLUTION. Evolution 30, 314–334 (1976). 

17. Gillespie, J. H. Genetic drift in an infinite population. The 
pseudohitchhiking model. Genetics 155, 909–919 (2000). 

18. Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Emerging 
technology: concerning RNA-guided gene drives for the alteration of wild 
populations. Elife 3, e03401 (2014). 

19. Noble, C., Olejarz, J., Esvelt, K. M., Church, G. M. & Nowak, M. A. 
Evolutionary dynamics of CRISPR gene drives. doi:10.1101/057281. 

20. Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. 
Precise, automated control of conditions for high-throughput growth of 
yeast and bacteria with eVOLVER. Nat. Biotechnol. 36, 614–623 (2018). 

21. Hemmerich, J., Noack, S., Wiechert, W. & Oldiges, M. Microbioreactor 
Systems for Accelerated Bioprocess Development. Biotechnol. J. 13, 
e1700141 (2018). 

22. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying 
Absolute Protein Synthesis Rates Reveals Principles Underlying 
Allocation of Cellular Resources. Cell vol. 157 624–635 (2014). 

23. Mori, M., Schink, S., Erickson, D. W., Gerland, U. & Hwa, T. Quantifying 
the benefit of a proteome reserve in fluctuating environments. Nature 
Communications vol. 8 (2017). 

24. Li, S. H.-J. et al. Escherichia coli translation strategies differ across 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


carbon, nitrogen and phosphorus limitation conditions. Nat Microbiol 3, 
939–947 (2018). 

25. Sarabipour, S., King, C. & Hristova, K. Uninduced high-yield bacterial 
expression of fluorescent proteins. Anal. Biochem. 449, 155–157 (2014). 

26. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial 
phosphorus limitation: mechanisms, implications, and nitrogen–
phosphorus interactions. Ecol. Appl. 20, 5–15 (2010). 

27. Ostertag, R. Mechanisms to overcome ecosystem nitrogen and 
phosphorus limitation. Nature Precedings (2008) 
doi:10.1038/npre.2008.1993.1. 

28. Hessen, D. O. Dissolved organic carbon in a humic lake: effects on 
bacterial production and respiration. Hydrobiologia 229, 115–123 (1992). 

29. Peters, J. M. et al. A Comprehensive, CRISPR-based Functional Analysis 
of Essential Genes in Bacteria. Cell 165, 1493–1506 (2016). 

30. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene 
knockout mutants: the Keio collection. Mol. Syst. Biol. 2, (2006). 

31. Miyazaki, K. & Takenouchi, M. Creating random mutagenesis libraries 
using megaprimer PCR of whole plasmid. Biotechniques 33, 1033–4, 
1036–8 (2002). 

32. Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial 
compound libraries for drug discovery: an ongoing challenge. Nat. Rev. 
Drug Discov. 2, 222–230 (2003). 

33. Amor, D. R., Ratzke, C. & Gore, J. Transient invaders can induce shifts 
between alternative stable states of microbial communities. Sci Adv 6, 
eaay8676 (2020). 

34. Lloyd-Price, J. et al. Erratum: Strains, functions and dynamics in the 
expanded Human Microbiome Project. Nature 551, 256 (2017). 

35. Zhao, Y. & Yang, Y. Profiling metabolic states with genetically encoded 
fluorescent biosensors for NADH. Curr. Opin. Biotechnol. 31, 86–92 
(2015). 

36. Zhang, L. et al. Ratiometric fluorescent pH-sensitive polymers for high-
throughput monitoring of extracellular pH. RSC Adv. 6, 46134–46142 
(2016). 

37. Si, Y. et al. Rapid and accurate detection of Escherichia coli growth by 
fluorescent pH-sensitive organic nanoparticles for high-throughput 
screening applications. Biosens. Bioelectron. 75, 320–327 (2016). 

38. Zhujun, Z. & Seitz, W. R. A carbon dioxide sensor based on fluorescence. 
Anal. Chim. Acta 160, 305–309 (1984). 

39. Hu, H. et al. Glucose monitoring in living cells with single fluorescent 
protein-based sensors. RSC Adv. 8, 2485–2489 (2018). 

40. Palmer, A. E., Qin, Y., Park, J. G. & McCombs, J. E. Design and 
application of genetically encoded biosensors. Trends Biotechnol. 29, 
144–152 (2011). 

 
METHODS 
 
Robotic Equipment set-up and interfacing. A Hamilton 
Microlab STARlet 8-channel base model was augmented with a 
Hamilton CO-RE 96 Probe Head and a Hamilton iSWAP Robotic 
Transport Arm. Air filtration was provided by an overhead HEPA 
filter fan module integrated into the robot enclosure. A BMG 
CLARIOstar luminescence multi-mode microplate reader was 
positioned inside the enclosure, within reach of the transport arm. 
Software. A general-purpose driver method was created using 
MicroLab STAR VENUS ONE software and compiled to Hamilton 
Scripting Language (hsl) format. Instantiation of this method and 
management of its local network connection was handled in 
Python. The Pyhamilton Python package provided an overlying 
control layer interface to the CLARIOstar plate reader in 
supporting Python packages. We used Git to develop and version 
control the packages and the specific Python methods used for 
each experiment; our software implementation can be found on 
github at https://github.com/dgretton/pyhamilton. 
 
Bacterial assays. For bacterial assay validation, bacterial plaque 
assays were used to confirm dilutions and agar solidification. 
Briefly, overnight cultures of S2060 cells were grown in 2XYT 

media supplemented with maintenance antibiotics were diluted 
1,000-fold into fresh 2XYT media with maintenance antibiotics 
and grown at 37 °C with shaking at 230 rpm to OD600 ~0.6–0.8 
before use. M13 bacteriophage were serially diluted 100-fold (4 
dilutions total) in H2O. 20 μL of bacterial were added to 100 μL of 
each phage dilution, and to this 200 μL of liquid (70 °C) “soft” agar 
(2XYT media + 0.6% agar) supplemented with 2% Bluo-Gal was 
added onto a well of a 24-well plate already containing 235 μL of 
hard agar per well (2XYT media + 1.5% agar, no antibiotics). To 
prevent premature cooling of soft agar, the soft agar was placed 
on the robot deck in a 70 °C heat block. After solidification of the 
top agar, plates were incubated at 37 °C for 16–18 h. Source code 
from our implementation can be found at: 
 https://github.com/dgretton/roboplaque 
 
Population Dynamics Experiments. Briefly, 96-well clear-
bottom plates were filled with 100 uL of water in each well. 
Nucleation was initiated by adding colored dye to the first well, 
and liquid transfers were initiated and compiled by a Hamilton 
Microlab STARlet. Source code from our implementation can be 
found at: 
https://github.com/dgretton/pyhamilton_population_dynamics  
 
Feedback controller algorithm. Bacteria optical density (OD) 
was modeled to evolve as: 

 
where  is the culture OD,  is the initial OD,  is the bacteria 
exponential growth constant (k-value) in reciprocal hours, and 
is elapsed time in hours. A media replacement cycle is modeled 
as dilution of a culture by instant uniform mixing with transparent 
media of a fraction  of its initial volume, which linearly scales its 
OD  to a new OD  (e.g. if a 100 μL culture is at OD 0.3 and 

, then the replacement is modeled as diluting with 50 μL 
transparent media, and the final OD  is 0.2), summarized as: 

  
The culture OD is to be maintained at a constant setpoint, . In 
each cycle , each representing a time interval , 
the turbidostat controller is responsible for producing an output 
command and state update according to a transfer function: 

 
where  is the new controller output command as a fraction of 
the turbidostat volume,  is the new controller internal state,   
is the present OD measurement, and   is the controller 
transfer function based on the OD measurement and the previous 
controller state . The controller state may depend on the 
history of prior OD measurements  and prior controller 
commands . 
Specific controller state. A feedback controller with a distinct state 
was created for each culture. The controller state is a triple 

: the present OD measurement, ; the current 
estimate of the culture’s growth k-value, ; and the output 
command, . 
Transfer function. The transfer function updates the three state 
variables and computes an output. Rearranging the model 
equations, we calculate the current k-value, given a new 
measurement  taken an interval after the previous 
replacement executed, as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
This  contributes to the state k-value estimate  through a first-
order linear filter to dampen the effect of measurement noise. The 
output to restore the turbidostat OD to the setpoint is 

 
where the final output  is subject to physical limits, being both 
nonnegative and not greater than the largest volume the robot can 
move with a pipette tip as a fraction of the turbidostat volume, 
appearing as . After output limiting,  is saved in the 
controller state. Controller was developed as an abstract Python 
class and tested in simulation with mechanical and measurement 
noise models before application in experiments (Supplemental 
Figure 3). Filtered k-value estimates were used to draw 
conclusions about bacterial growth rates. Source code for 
implementation can be found at: 
https://github.com/dgretton/many_basic_turbidostats/blob/master
/turb_control.py. 
 
On-deck Turbidostat cultures. Peristaltic pump array. To pump 
media onto the deck, up to seven miniature 12 volt, 60 mL/min 
peristaltic pumps (“fish tank pumps”) were actuated by custom 
motor drivers. A Raspberry Pi mini single-board computer 
received instructions over local IP and commanded the motor 
drivers via I2C (extended pump configuration details, see 
https://www.biorxiv.org/content/10.1101/2020.04.01.021022v1). 
Following each filling of the reservoir with fresh media, media was 
added to each bacterial turbidostat growing in a 24-well plate, 
based on OD and parameter estimation. Each turbidostat was 
then sampled by aspirating culture into a 96-well plate reader 
plate which was then read using an integrated ClarioStar plate 

reader. Remaining media was then drained from the reservoir and 
the system was rinsed 1X 5% bleach and 4X water between each 
iteration. S2060 bacterial strains were grown in 2XYT media 
supplemented with antibiotics. Source code for implementation 
can be found at: 
https://github.com/dgretton/many_basic_turbidostats. 
 
High-throughput Turbidostat cultures. Cell strains and growth 
conditions. To generate fluorescent reporter strains, plasmids 
pRSET-B YFP, pRSET-B mCherry, and pRSET-B mCherry were 
transformed into E. coli strain BL21(DE3) (New England Biolabs). 
Plasmids were a gift from Kalina Hristova (Addgene #108856, 
Addgene #108857, Addgene #108858). Bacteria cells were grown 
overnight in LB media, and the conditioned to grow in M9 Minimal 
Media: 33.7 mM Na2HPO4, 22.0mM KH3PO4, 8.5 mM NaCl, 9.35 
mM NH4Cl, 0.4% Glucose, 1 mM MgSO4, 0.3 mM CaCl2, 1 ug 
biotin, 1 ug thiamin, 1X trace elements. For modified M9 Media, 
Phosphorus, Carbon, and Nitrogen sources were increased or 
decreased by 2 or 4 fold. For turbidostat inoculations, starter 
cultures were grown overnight at 37 °C for 16–18 h, and then 
diluted 1:100, and then grown for another 4-8 hours until in log-
phase growth. When each strain reached log-phase growth (OD 
0.6-0.8), cultures were first diluted to an OD of 0.6 and then 
turbidostats were inoculated 1:100 into 175 uL in 96-well plate 
reader plates prior to initiation of the robotic method (Corning, 
Item#3631). Media for each well was aliquoted into a 96-deep well 
plate (Thomas Scientific, Item #1149J23). The robot deck was 
organized as described in Figure 2A. Antibiotics. Antibiotics (Gold 
Biotechnology) were used at the following working 
concentrations: carbenicillin, 50 μg/mL; chloramphenicol, 40 
μg/mL. Source code for implementation can be found at: 
https://github.com/dgretton/many_asynchronous_turbidostats. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figures 
 
Supplemental Figure 1: High-throughput turbidostats 
 
# define number of turbidostats (4 plates) 
num_turbs = 384 
 
def main(): 
    ## define required labware 
    labware = plates, tip_boxes, media_sources 
    ## define plate reader protocols 
    reader_protocols = ['absorbance', 'mCherry', 'YFP', 'CFP'] 
    while True: ## Maintain turbidostats indefinitely 
        ## Service each plate of turbidostats (in loop) 
        for turbs_for_plate, controllers_for_plate, labware_for_plate in turbidostat_details: 
            ## identify this plate’s materials 
            plate, tips, media_supply = labware_for_plate 
            ## Simultaneously read plate, and perform pipetting steps 
            platedatas = measure_plate(plate, reader_protocols, simultaneously_execute=service_prev_plate) 
            ## save plate reader data 
            record_readings(plate, turbs_for_plate, platedatas)              
            ## Calculate bacterial OD from optical density calibration curve 
            od_readings = convert_to_ods(platedatas) 
            ## calculate replacement volumes from transfer function 
            remember.replace_vols = transfer_function(controllers_for_plate, od_readings) 
            ## set up pipetting steps for next plate             
            def service_prev_plate(args=(plate, tips, media_supply)): 
                service(remember.replace_vols, *args) 
 
## load Hamilton and plate reader 
with HamiltonInterface() as ham_int, ClarioStar() as reader_int: 
     ## Define instruments used in experiment 
     sys_state.instruments = ham_int, reader_int 
     ## initialize robot   
     system_initialize() 
     ## Run method               
     main()                                      
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 2: Population Dynamics Diffusion Matrix 

 
Supplemental Figure 2: Population Dynamics Diffusion Matrix. Pyhamilton can be used in concert with all typical Python modules. The population 
dynamics application (Fig. 1D) makes use of matrix multiplication implemented by rectangular arrays from the scientific computing Python package NumPy.  
The diffusion matrix models arbitrary rates of flow from any of 96 wells in a microplate to all other wells. Gradient color scale represents fractional 
magnitudes of liquid transfers. Rows of the diffusion matrix sum to 1. Successive steps are computed by repeated multiplication of an initial 96-entry 
concentration vector by the 96x96 diffusion matrix. In this matrix, the dark main diagonal indicates that most of each population stays in its source well. 
Entries above and below the main diagonal by 1 and 8 rows represent transfers to vertical and horizontal neighbors respectively. All other entries are zero 
because population flow is not modeled to occur diagonally or beyond immediate neighbors. Obstacles to gene flow are captured by lighter colored areas 
in off-diagonal entries. Though this matrix is symmetric in that flows in both directions between each pair of wells are the same, matrix symmetry is not a 
requirement in general. The matrix construction facilitates offline analysis and visualization prior to robot execution. This construction would be difficult to 
implement in existing programming applications for Hamilton robots. Available online at: 
https://github.com/dgretton/pyhamilton_population_dynamics/blob/master/flow_matrix.csv.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 3: Turbidostat Controller Simulation 

 
Supplemental Figure 3: Turbidostat Controller Simulation. 24 simulated turbidostats using the same controllers as experiments with initial k-value 
estimate of 2.3 hr-1 (20-minute doubling time typical of E. Coli) and actual k-value 0.93 hr-1 (typical of metabolite-poor media) converge in 12 hours. Start 
conditions vary between OD 0.1 and OD 0.8. Simulation includes uniform pipetting volume noise model and power law measurement noise model (spurious 
peaks). Controllers initially over-replace media in higher density cultures due to growth rate overestimate, causing OD to drop temporarily, before 
recovering as the k-value estimate converges more closely to the actual k-value. This behavior is exactly recapitulated in the turbidostat convergence 
study (Fig. 2D), indicating good correspondence between model and system. The simulated turbidostat OD setpoint was adjusted ±0.1 at 20 hours and 
40 hours. Though the OD measurements and the controller’s transfer volume commands both change at these times, the inferred k-value stays constant. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Tables 
 
 Supplemental Table 1: Pyhamilton Design Principles & Features 

Modularity Use Pyhamilton alone as one complete package 
Compatible auxiliary instrument modules can be used in concert or independently 
Integratable as one part of a larger project 
Expandable vocabulary of commands 

Abstraction layers Common interface for Hamilton Run Control simulator integration and physical robot 
Independent of any particular robot model (STAR, STARlet, etc.) 
Hierarchical exception definitions 

Transparent connection management Locally hosted background server 
GUI-less launcher for background hsl executor 
One-line context managers launch and destroy background processes automatically 

Deployment readiness Predefined semantic errors 
Automatic command formatting with detailed defaults 
Idiomatic support for parallel commands 

Modern code practice Legible code 
Version control 

 
 
 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.041368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

