bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Flexible open-source automation for robotic bioengineering

Emma J Chory'-23* Dana W Gretton' **, Erika A DeBenedictis'#, Kevin M Esvelt’

"Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
ZInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

“Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

* Designates equal-contribution
t Designates primary correspondence for software development

INTRODUCTION

Liquid handling robots have become a biotechnology staple'?, allowing laborious or repetitive protocols to be executed in high-
throughput. However, software narrowly designed to automate traditional hand-pipetting protocols often struggles to harness the full
capabilities of robotic manipulation. Here we present Pyhamilton, an open-source Python package that eliminates these constraints,
enabling experiments that could never be done by hand. We used Pyhamilton to double the speed of automated bacterial assays over
current software and execute complex pipetting patterns to simulate population dynamics. Next, we incorporated feedback-control to
maintain hundreds of remotely monitored bacterial cultures in log-phase growth without user intervention. Finally, we applied these
capabilities to comprehensively optimize bioreactor protein production by maintaining and monitoring fluorescent protein expression of
nearly 500 different continuous cultures to explore the carbon, nitrogen, and phosphorus fithess landscape. Our results demonstrate
Pyhamilton’s empowerment of existing hardware to new applications ranging from biomanufacturing to fundamental biology.

MAIN TEXT

Automation has been widely implemented in biotechnology® to
facilitate routine tasks involved in DNA sequencing®, chemical
synthesis®, drug discovery®, and molecular biology’. In principle,
flexibly programmable robots could enable diverse experiments
beyond the capabilities of human researchers, across a range of
disciples within the sciences. Existing robotic software easily
automates protocols designed for hand pipettes, but struggles to
enable more specialized or sophisticated methods. As such, truly
custom robot manipulation remains out of reach for most
laboratories?, even those with well-established automation
infrastructures.

Bioautomation lags behind the rapidly advancing field of
manufacturing, where robots are expected to be task-flexible,
responsive to new situations, and interactive with humans or
remote management systems when ambiguous situations or
errors arise?. A key limitation is the lack of a comprehensive,
suitably abstract, and accessible software ecosystem®1°,
Though bioinformatics is becoming increasingly open-
sourced'" 2, bioautomation has been slow to adopt key practices
such as modularity, version control, and asynchronous
programming.

To address these issues, we developed Pyhamilton, a Python
package that not only facilitates high-throughput operations
within the laboratory, but also allows liquid-handling robots to
execute previously unimaginable and increasingly impressive
methods. With this package, users can use process scheduling,
run simulations for experimental planning, implement error
handling for straightforward troubleshooting, and easily integrate
robots with external laboratory equipment.

Design of Pyhamilton Software

Pyhamilton enables Hamilton STAR and STARIet liquid handling
robots to be programmed using standard Python. This allows for
robotic method development to benefit from standard software
paradigms, including exception handling, version control, object-
oriented programming, and other cornerstone computer science
principles (Supplementary Table 1). Pyhamilton seamlessly
connects with Hamilton robots, can interface with custom
peripherals (Fig. 1A), and contains unique Python classes
corresponding to robotic actions (i.e. aspirate and dispense) and
consumables (i.e. plates and pipette tips). To enable method
troubleshooting, Pyhamilton can also simulate methods through
Hamilton run control software and incorporate any Python
package (i.e. enabling error notifications via push, text message,
or Slack). Finally, in addition to the functionalities we present,
researchers can now also develop their own flexible code that
may be useful for increasingly specialized applications.

Enabling improved throughput of laboratory assays

Standard liquid-handling software limits access to the full
physical capabilities of a pipetting robot. For example, an 8-
channel head cannot be readily programmed to pipette into two
24-well plates simultaneously although doing so is physically
possible (Fig. 1B). This limits the ability to automate many
laboratory assays in higher throughput: automation of methods
involving 24-well plates is no faster than hand-pipetting, since
both a robot and researcher can only pipette a single plate at a
time. Thus, we first used Pyhamilton to develop a method which
pipettes liquids over two 24-well plates simultaneously (Fig. 1C),
doubling the speed. This can be critical for bacterial assays
involving heated liquid agar which solidifies quickly. This simple
example demonstrates the advantages of making full use of the
robot’'s mechanical capabilities, freed from software constraints.

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

d GENERAL METHOD OUTLINE

def main():
. ## insert each method code here (i.e. Fig 1C, 1F, 1H, etc
w1th HamiltonInterface() as ham_int, (larioStar() as reader_int, LBPumps() as pump_int: ## load Hamilton, plate reader, and pumps
sys_state.instruments = ham_int, reader_int, pump_int ## Define instruments used in experiment
system_initialize() ## initialize robot
main() ## run method
b EXPANDED ROBOTIC CAPABILIES: Improved Throughput of Assays C BACTERIAL ASSAY CODE
Culture-Based Manufacturer ## Service two 24-well plates at once
Assay Software - i for assay_plates in get 2 plates():
] ## Define assay reagents and destination wells
BN reagents, bacteria, destination_wells = \
T get_8 wells(assay)lates)
Perform neccessary pipetting steps
prepare_assays (reagents, bacterla, \
destination_wells)
d compLex LIQUID HANDLING: Population Dynamics e Symmetric Asymmetric .
Population flow Bounded population flow ‘r)lél’rncl())a:' . g::gra phic
(g |]] None
B -~ s W Medium
t=0 t=100 t=0 ™ t=100 L1 I High
f Symmetric Flow Pattern g POPULATION DYNAMICS CODE
s ## Move dye from one plate or well to the next (in loop)
k=t for source_plate, destination_plate in zip(plates, plates[l:]):
2 . + * ## Service one column at a time
@ for column in groups_of_8(range(96)):
5 ## Calculate liquid transfer volumes
‘§ transfers = nonzero_transfers(flow_matrix,
B source_plate, column)
Perform pipetting steps (in loop)
for destinations, volumes in transfers:
§ load_new_tips() # pick up tips
g ## Aspirate liquid from source wells
IS aspirate_from(select_channels(source_plate, \
@ column, destinations), volumes)
8 ## Dispense liquid to all destinations
§ dispense_to(destinations, volumes)
S ## Return tips to housing unit
put_tips_back()
h FEEDBACK-RESPONSIVE ADJUSTMENTS: On-Deck Turbidostats j TURBIDOSTAT METHOD CODE
Real-time Monitoring i ;04 timer = Timer() # Start time
£ 5 / € /— Y while True:
§ 2 3 .§ timer.start(cycle_time) # Iteration frequency
Time Time Time 5 sample_turbs() # Move plate to reader
e é "0 10 20 30 Ieaqil?gs 7=7 rea(,’fm-is“ N # Ix:i}ft:‘ [?I aTr‘V Wd(,hi ngs
Calculate K-estimates and replacement volumes

replace_volumes = transfer_function(readings)
Replace media based on K-estimates
replace_media(replace_volumes)

Flow Rate
K-estimate
Transfer
Volume
Growth rate
Estimate (K)

Time Time Time L
system_clean() # (Clean system

Measure o o g .
- timer.wait()
0 10 20 30

Turbidostat Dilute Remove waste Time (hours)

Figure 1: Example Pyhamilton Applications. (a) Generalizable Python outline for writing custom Pyhamilton code to interface with robot and
integrated equipment such as plate readers (e.g., ClarioStar) and custom pump arrays. (b) Expanded robot capabilities allow for improved throughput
of laboratory across 24-well plates. (c) Example code required to run a bacterial assay across multiple simultaneous plates. Code for bacteriophage
plaque assay show (see supplemental methods). (d) Implementing complex and arbitrary bi-directional liquid handling to simulate experiments such as
unbounded (left) or bounded (right) population flow across a geographic region, such as a river. (e) Geographic “barriers” described in matrix format (f)
Simulation of bounded and unbounded migration (top), and visualization of the liquid patterns executed by the robot each iteration (bottom). Solid box
designates “high” geographic barrier, dashed box designates a “medium” geographic barrier. (g) Example code required to run population dynamics
simulations, using a sparse matrix to assign source wells, destination wells, and volume transfer fractions. (h) Real-time monitoring of on-deck
turbidostats enables feedback control to equilibrate cultures to a set density. (i) Plate reader measurements for OD (top), and respective estimated
growth estimates (bottom) obtained from data from 24 replicates. Data are smoothed with rolling mean and outlier points are excluded. OD set-point
shown in red. (j) Example code required to maintain on-deck turbidostats using a transfer function to calculate k-estimates and volume transfer rates.

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Enabling liquid transfers requiring complex calculations
Despite having far greater physical capabilities than a fixed-
volume multi-channel pipette, it is difficult to implement complex
liquid transfer patterns on a robot because programming using
standard software is prohibitively monotonous. The ability to
faithfully execute experiments involving hundreds of different
pipetting volumes could enable new types of applications such as
evolutionary dynamics experiments examining gene flow's,
population symbiosis'4, sources and sinks'®, genetic drift'617,
and the spread of gene drive systems'®'® (Fig. 1D). We
accordingly used Pyhamilton to enable the flexible transfer of
organisms between populations in a 96-well plate, using pre-
programmed migration rates to simulate geographic barriers (Fig.
1E).

A human would have great difficulty performing or programming
hundreds of variable pipetting actions in many directions, in any
reasonable time frame, without errors. With Pyhamilton, simple
abstractions and data structures make this task straightforward.
Instead of exhaustively specifying each pipetting step, we
specified liquid transfer patterns as matrices, and allowed the
software to compile the requisite steps. We demonstrate liquid
transfer to nearby plates and between adjacent wells to model
“flow” or “diffusion” across the miniaturized landscape of a 96-
well plate. We then simulate genetic flow by visualizing the point
spread of a drop of dye near the center of a plate (Fig. 1F). The
amount of liquid exchanged and the number of wells is arbitrary,
defined as a sparse matrix where the rows are source wells, the
columns are destination wells, and the values are the fraction of
liquid transferred (Supplementary Figure 2). Each iteration, the
robot performs several hundred bi-directional liquid transfers to
apply the matrix operations. Succinct code (Fig. 1G) can
generate both symmetric and asymmetric diffusion patterns,
which could be combined with a phenotypic reporter to
experimentally simulate arbitrarily directionally bounded or
unbounded migration (Fig. 1D) with many model organisms such
as E. coli, yeast, or even nematodes.

Enabling feedback control to maintain turbidostats

Though most liquid handling robots are used to execute a list of
precompiled instructions (e.g., assembling reagents for many
PCRs), many potential applications require making real-time
modifications. For example, a turbidostat is a culture of cells that

is maintained at a constant density by making real-time
adjustments to the flow rate of media in response to turbidity
sensing. In practice, this is accomplished with process controls
which measure the optical density (OD) of a culture in situ.
However, turbidity probes are both costly and not amenable to
high throughput?®2'. Thus, we sought to leverage the flexibility of
Pyhamilton to multiplex the maintenance of many bacterial
turbidostats by adjusting the volume of liquid transfers in
response to real-time density measurements obtained using an
integrated plate-reader (Fig. 1H). The method equilibrates each
culture, growing in a multi-well microplate, to a set point (Fig. 11)
in response to these measurements by applying a transfer
function to calculate the growth rate (k-value) and adjustment
volume for each individual well over time (Fig. 1J).

Asynchrony enables high-throughput turbidostats

To maximize the number of turbidostats that can be maintained,
we next developed a more complex method which uses
asynchronous programming to execute multiple robotic steps
simultaneously— in this case plate reading and pipetting (Supp
Fig. 1). This allows for nearly 500 cultures to be maintained with
real-time fluorescent reporter monitoring on a single robot. In this
method, bacterial cultures are inoculated into 96-well clear-
bottom plates and their ODs and fluorescence levels are
measured with an integrated plate reader (Fig. 2A). To minimize
waste, consumables, and prevent media contamination, we also
implemented a cleaning process (Fig. 2A): after each media
transfer, each tip is sterilized with 1% bleach, rinsed in water, and
returned to its housing unit (Fig. 2A). To further minimize the
possibility of cross-contamination between wells, each culture is
assigned its own tip and media reservoir by housing replenishing
media within high-volume 96-well plates. We confirmed that this
method introduces no measurable cross contamination by
inoculating 96 turbidostats with four different bacterial cultures
expressing RFP, YFP, CFP, or no fluorescent protein in a grid-
like pattern with no-bacteria controls (Fig. 2C). We then
monitored the absorbance and fluorescence levels in real-time,
and maintained the cultures at OD 0.8 for 24 hours. We observed
no cross-contamination and no growth in the no-bacteria controls
(Fig. 2C). We also inoculated the same bacterial strains at 6
different starting densities (OD=0.0-0.8) and demonstrated that
irrespective of initial conditions, the feedback control algorithm
equilibrates each culture to its set point within 12 hours (Fig. 2D).

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a

High-throughput Turbidostats

Real-time Monitoring & Feedback Adjustment

b 1 Pick up plate

—— 2 Read plate

-

Waste
Disposal

Bleach
Rinse

Absorbance

Plate Layout

Fluorescence (CFP) Fluorescence (RFP) Fluorescence (YFP) d

-3 Real-time Monitoring
-3 Liquid Handling
=== Asynchronous Tasks

3 Return plate to deck

Adust media volumes
via feedback loop

4 Pick up tips
5 Aspirate media

6 Dispense, mix and
re-aspirate media

7 Dispose waste
g Rinse tips in bleach

9 Rinse tips in water
Recycle tips

0 24 0 24
Time (hr) Time (hr)

Bacterial Strain
[crp | RFP | | YFP INoFP | |No Bacteria

N | Ll el » v v
- || Ll S V 3
i ¥ 33

0 24
Time (hr)

0 24
Time (hr)

Figure 2: High-throughput turbidostats. (a) High-throughput turbidostat summary for up to 480 simultaneous evolutions. Bacterial populations are
housed in 96-well clear-bottom plates on the deck of a liquid handling robot. Liquid handling is used to create a turbidostat in every well, continuously
refreshing each population by diluting the bacterial culture from a respective deep-well media reservoir on deck. An integrated plate reader is used to
monitor absorbance, luminescence, or fluorescence readouts for each culture. Movements by robotic pipette (blue arrow) and plate reader (red arrow) are
shown. Dotted lines indicate tasks that are executed asynchronously, and require 10 minutes per plate. (b) Step-by-step summary of high-throughput
turbidostat method. (c) Plate layout of real-time absorbance, CFP, RFP, and YFP fluorescence readings of 96 simultaneous cultures inoculated with either
no bacteria, FP-null bacteria, and CFP, RFP, or YFP-expressing bacteria. Data shown from 24 representative wells. (d) Real-time absorbance
measurements of 96 cultures inoculated at ODs of 0, 0.1, 0.2 0.4, 0.6, 0.8, which equilibrate to a set point of 0.8 within 12 hours, consistent with simulation

(Supplemental Figure 3).

High-throughput perturbation analysis of metabolites

We next sought to use high-throughput turbidostat tracking to
address an outstanding question in metabolic engineering by
systematically mapping the chemical landscape that supports
bacterial growth and protein expression. To do this, we surveyed
the contributions of carbon, nitrogen, and phosphorus on growth
and recombinant protein production by permuting chemical
gradients for these metabolites in high-throughput. This effort,
while seemingly well-studied, is difficult to accomplish without the
proper number of replicates, experimental controls, long-term
maintenance of log phase growth, and real-time monitoring, each
of which are trivial to implement with Pyhamilton.

It has traditionally been thought that cells regulate protein
production by allocating their resources to optimize for both
expression and growth?223, However, it has recently been shown
that in either carbon-, nitrogen- or phosphorus-limiting conditions,
cells are able to fine-tune their ribosomal usage to maintain equal
levels of protein®. Thus, we hypothesized that exploration of the
entire metabolite landscape (Fig. 3A) could more rigorously
identify bacterial growth conditions optimized for recombinant
protein production. To do this, we inoculated cultures with E.coli
BL21, a strain commonly used for recombinant protein production
in metabolic engineering or biomanufacturing, engineered for high
constitutive expression of a fluorescent protein (CFP)?5,

In a single experiment spanning 36 hours with no user
intervention, we simultaneously quantified the equilibrium log-
phase growth rates and respective fluorescence levels of 300
individual turbidostats, representing 100 different media
compositions in triplicate (Figure 3B). Cells were grown in
modified M9 media containing 100 different ratios of carbon,
nitrogen, and phosphorus and the cultures were maintained in log
phase growth for 36 hours with feedback control (Supplemental
methods). All cultures grew within +/- 20% of M9 media growth
rate, with the exception of cultures that were starved of both
carbon and phosphorus (Fig. 3C). We observed that increases in
growth rate are primarily correlated with increases in phosphorus
(independent of nitrogen or carbon levels), which is likely a result
of increased DNA synthesis. Further, in phosphorus-limiting
conditions, we find that the depressed growth rate can be rescued
by supplementing carbon, but not nitrogen, suggesting that
carbon precursors are a more limiting reagent than amino acids
in metabolism (Fig. 3C).

Consistent with previously published results?*, we observe that
the total amount of protein is generally not affected by limiting
carbon or nitrogen, nor by supplementing the cells with excess of
either nutrient. However, perhaps most interestingly, we
additionally find that when phosphorus is limited (0.25X), excess
carbon supplementation not only rescues the growth rate of the

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b 1/4X Phosphorus 1/2X Phosphorus 1X Phosphorus 2X Phosphorus
Carbon 02505 1 2 4 02505 1 2 4 02505 1 2 4 02505 1 2 4
Carbon
_ 38 06 — 11— 11— = 0.25
Nitrogen Phosphorus 2 5 06 — 11— — 05
2 5 06 — 11— Il — 1
S S 06 —) —l— 2
06 " Vs " ann 4
Carbon % =) Z: e e Vst et e e P |] [— 0.25
Precursors § < s e e P e — 05
¢ ofR R po— R —] — 1
5 (-'—)- 9ES b [| A 2 :Z,
i 5E5] — B —] — 4 g
L =0 I =y gﬁ 0.25 [}
’é § 50] — [reeies] o] o 05
2 50 | — v 1
Amino acids Nucleotides s3 | e o] i %ﬁ l 2
50] f"”““ /va-w/.wfmw f‘»f-w g (‘““ 4
¢ ¢ 8 05 [[T —] [————~——]~—] 025
‘g 05] e ———— T ——————o] 05
= 05 —] M ———— | ————_— 1
8 05 [[M| S ———] 2
xl 05 [N SN S S) LS S L S S R — e [——] 4
- 18361836 18361836 1836 183618361836 18361836 18 36 18 36 18 36 18 36 1836 18 36 18 36 18 36 18 36 18 36
Protein DNA/RNA Elapsed Time (Hours)
C PHOSPHORUS CONCENTRATION
GROWTH RATE Change in SUMMARY Change in
Growth rate Growth rate
2 12
% 1.0
5}
X 08
N
)
,(\Oq 0.6
e
Change in Change in
d PROTEIN PRODUCTION Fluoreseence SUMMARY Fluoreseence
3 16 9 ® 16
s 2 ® 15
? 14 2 14
o ’ o “ 13
o 12) 12
L—f 0(\ 5— + 10
Gl Y A A"Q
S S
9@0 O

Figure 3: Metabolic profiling of protein production. (a) Schematic flow of carbon, nitrogen and phosphorus nutrients in protein and nucleotide
production. (b) Real-time absorbance and fluorescent reporter monitoring for 100 various M9 media compositions (n=3 per condition). Real-time
calculations of volumes/hr and estimates for k-value convergence shown. c) (left) Average growth rate for each media composition plotted as a 2-
dimensional fitness landscape of carbon and nitrogen, for four concentrations of phosphorus. (right) Summary of all 100 conditions shown as 3D fitness
landscape colored by growth rate (blue = low, red = high). Size of dot indicates absolute deviation from average 1X M9 media composition. d) (left)
Average amount of protein expression (measured by fluorescence) of each media composition plotted as a 2-dimensional fithess landscape of carbon
and nitrogen, for four concentrations of phosphorus. (right) 3D protein-production landscape of all 100 conditions colored by amount of fluorescence (blue
= low, red = high). Size of dot indicates absolute deviation from average 1X M9 media composition.

culture (Fig. 3C), but also results in an increase in total
fluorescence (Fig. 3D). Since we observe minimal growth defects
in these conditions, this finding suggests that on a per-cell basis,
supplementing carbon in phosphorus-limiting conditions (such as
in the s0il?®2” or P-limited lakes?®) can shunt bacterial metabolism
from DNA/mRNA synthesis to protein translation without
sacrificing growth. Collectively, these findings demonstrate that
Pyhamilton enables researchers to answer rigorous metabolic
engineering questions by enabling facile, low-consumable, yet
rich hypothesis-generating experiments.

DISCUSSION

Liquid handling robots have traditionally automated workflows that
were explicitly designed for human researchers. Future methods
enable experiments that could never be done by hand, such as
protocols that must pipette continuously for multiple days, that
perform complex calculations about future steps based on real-
time data, or that make use of hardware that is more sophisticated
than any hand-held multichannel pipette. Pyhamilton is an open-
source Python framework which enables these types of
experiments.

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We showcase these improved capabilities by simultaneously
quantifying the metabolic fitness landscape of 100 different
bacterial growth conditions to identify ideal conditions for
recombinant protein production. Though recent fluidic advances
have enabled the maintenance of many continuous cultures®, the
incorporation of real-time reporter monitoring vastly expands the
types of questions that can be approached with facile, multiplex
solutions. For example, one could maintain cultures of, and
accurately quantify any reporter output for massively-parallel
experiments including genetic knockout or CRISPR
collections?®3°, mutagenesis variants®!, or even small-molecule
compound libraries®2. With high accuracy, any suspension culture
of mixed populations could be maintained in log phase growth for
days in order to study transient invaders into microbial
communities®® or even microbiome system dynamics®. The
advent of small molecule fluorescent reporters for metabolic
fitness®®, pH%37, and CO,%, in addition to the hundreds of
fluorescent protein sensors available to the synthetic biology
community at large3®4°, also impresses the seemingly unlimited
potential of being able to multiplex and quantify changes in
growth, gene expression, and the environment in real-time.

As such, Pyhamilton is a small part of an ongoing transition to a
paradigm which leverages insights from computer science® and
applies them to biology. Similar to how Bioconductor!' and The
Biopython project’? have revolutionized computational biology,
bioinformatics, and genomics, our hope is that by making this
software open-source and freely available, a community of
scientists and developers could begin to similarly transform
bioautomation. The experiments we have described represent
only a small sampling of many possible Pyhamilton applications.
Collectively, they highlight the potential of high-throughput robotic
systems to transcend the repetitive processes for which they were
conceived and directly address broad questions in microbiology,
genetics, and evolution that are beyond the physical capabilities
of human researchers.

ACKNOWLEDGEMENTS

We would like to acknowledge Alvaro Cuevas of Hamilton
Robotics for his examples, guidance, and assistance in making
use of the Original Equipment Manufacturer (OEM) interface,
along with the rest of Hamilton Robotics. We thank Jason Yang,
Stephen Von Stetina, Ethan Alley, Brian Wang, Samantha
Shepherd, and Timothy Erps for thoughtful comments and
discussion.

FUNDING

EAD was supported by the National Institute for Allergy and
Infectious Diseases (F31 Al145181-01). EJC was supported by
the Ruth L. Kirschstein NRSA fellowship from the National Cancer
Institute (F32 CA247274-01). This work was supported by the MIT
Media Lab, an Alfred P. Sloan Research Fellowship (to KME),
gifts from the Open Philanthropy Project and the Reid Hoffman
Foundation (to K.M.E.), the National Institute of Digestive and
Kidney Diseases (RO0 DK102669-01 to KME) and the DARPA
Safe Genes Program (N66001-17-2-4054 to KME). The findings,
views, and/or opinions expressed are those of the authors and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

AUTHOR CONTRIBUTIONS

Software: DWG*. Conceptualization: EJC, DWG, EAD, and KME.
Methodology: EJC, DWG, EAD. Validation: EJC, DWG, EAD.
Formal Analysis: EJC. Investigation: EJC, DWG. Writing —
Original Draft: EJC. Writing — Review & Editing: EJC, DWG, EAD,

and KME. Visualization: EJC. Funding Acquisition: KME.

*All correspondence regarding Pyhamilton software development
should be directed to DWG:
(dgretton@mit.edu, https://github.com/dgretton/).

REFERENCES

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Sparkes, A. et al. Towards Robot Scientists for autonomous scientific
discovery. Autom. Exp. 2, 1 (2010).

Appleton, E., Densmore, D., Madsen, C. & Roehner, N. Needs and
opportunities in bio-design automation: four areas for focus. Curr. Opin.
Chem. Biol. 40, 111-118 (2017).

Freemont, P. S. Synthetic biology industry: data-driven design is creating
new opportunities in biotechnology. Emerging Topics in Life Sciences 3,
651-657 (2019).

Meldrum, D. Automation for genomics, part one: preparation for
sequencing. Genome Res. 10, 1081-1092 (2000).

Ley, S. V., Fitzpatrick, D. E., Ingham, R. J. & Myers, R. M. Organic
synthesis: march of the machines. Angew. Chem. Int. Ed Engl. 54, 3449—
3464 (2015).

Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97—
113 (2018).

Smanski, M. J. et al. Functional optimization of gene clusters by
combinatorial design and assembly. Nat. Biotechnol. 32, 1241-1249
(2014).

Bar, H., Hochstrasser, R. & Papenfub, B. SiLA: Basic standards for rapid
integration in laboratory automation. J. Lab. Autom. 17, 86-95 (2012).
Walsh, D. I., 3rd et al. Standardizing Automated DNA Assembly: Best
Practices, Metrics, and Protocols Using Robots. SLAS Technol 24, 282—
290 (2019).

Linshiz, G. et al. PR-PR: cross-platform laboratory automation system.
ACS Synth. Biol. 3, 515-524 (2014).

Gentleman, R. C. et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
Cock, P. J. A. et al. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics 25,
1422-1423 (2009).

Slatkin, M. Gene flow and the geographic structure of natural populations.
Science 236, 787-792 (1987).

Kaneko, K. & lkegami, T. Homeochaos: dynamics stability of a symbiotic
network with population dynamics and evolving mutation rates. Physica
D 56, 406—429 (1992).

Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol.
11, 326-330 (1996).

Lande, R. NATURAL SELECTION AND RANDOM GENETIC DRIFT IN
PHENOTYPIC EVOLUTION. Evolution 30, 314—-334 (1976).

Gillespie, J. H. Genetic drift in an infinite population. The
pseudohitchhiking model. Genetics 155, 909-919 (2000).

Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Emerging
technology: concerning RNA-guided gene drives for the alteration of wild
populations. Elife 3, e03401 (2014).

Noble, C., Olejarz, J., Esvelt, K. M., Church, G. M. & Nowak, M. A.
Evolutionary dynamics of CRISPR gene drives. doi:10.1101/057281.
Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S.
Precise, automated control of conditions for high-throughput growth of
yeast and bacteria with eVOLVER. Nat. Biotechnol. 36, 614-623 (2018).
Hemmerich, J., Noack, S., Wiechert, W. & Oldiges, M. Microbioreactor
Systems for Accelerated Bioprocess Development. Biotechnol. J. 13,
e1700141 (2018).

Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying
Absolute Protein Synthesis Rates Reveals Principles Underlying
Allocation of Cellular Resources. Cell vol. 157 624—635 (2014).

Mori, M., Schink, S., Erickson, D. W., Gerland, U. & Hwa, T. Quantifying
the benefit of a proteome reserve in fluctuating environments. Nature
Communications vol. 8 (2017).

Li, S. H.-J. et al. Escherichia coli translation strategies differ across

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

carbon, nitrogen and phosphorus limitation conditions. Nat Microbiol 3,
939-947 (2018).

Sarabipour, S., King, C. & Hristova, K. Uninduced high-yield bacterial
expression of fluorescent proteins. Anal. Biochem. 449, 155—-157 (2014).
Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial
phosphorus limitation: mechanisms, implications, and nitrogen—
phosphorus interactions. Ecol. Appl. 20, 5-15 (2010).

Ostertag, R. Mechanisms to overcome ecosystem nitrogen and
phosphorus limitation. Nature Precedings (2008)
doi:10.1038/npre.2008.1993.1.

Hessen, D. O. Dissolved organic carbon in a humic lake: effects on
bacterial production and respiration. Hydrobiologia 229, 115-123 (1992).
Peters, J. M. et al. A Comprehensive, CRISPR-based Functional Analysis
of Essential Genes in Bacteria. Cell 165, 1493-1506 (2016).

Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene
knockout mutants: the Keio collection. Mol. Syst. Biol. 2, (2006).
Miyazaki, K. & Takenouchi, M. Creating random mutagenesis libraries
using megaprimer PCR of whole plasmid. Biotechniques 33, 10334,
1036-8 (2002).

Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial
compound libraries for drug discovery: an ongoing challenge. Nat. Rev.
Drug Discov. 2, 222-230 (2003).

Amor, D. R., Ratzke, C. & Gore, J. Transient invaders can induce shifts
between alternative stable states of microbial communities. Sci Adv 6,
eaay8676 (2020).

Lloyd-Price, J. et al. Erratum: Strains, functions and dynamics in the
expanded Human Microbiome Project. Nature 551, 256 (2017).

Zhao, Y. & Yang, Y. Profiling metabolic states with genetically encoded
fluorescent biosensors for NADH. Curr. Opin. Biotechnol. 31, 86—-92
(2015).

Zhang, L. et al. Ratiometric fluorescent pH-sensitive polymers for high-
throughput monitoring of extracellular pH. RSC Adv. 6, 46134-46142
(2016).

Si, Y. et al. Rapid and accurate detection of Escherichia coli growth by
fluorescent pH-sensitive organic nanoparticles for high-throughput
screening applications. Biosens. Bioelectron. 75, 320-327 (2016).
Zhujun, Z. & Seitz, W. R. A carbon dioxide sensor based on fluorescence.
Anal. Chim. Acta 160, 305-309 (1984).

Hu, H. et al. Glucose monitoring in living cells with single fluorescent
protein-based sensors. RSC Adv. 8, 2485-2489 (2018).

Palmer, A. E., Qin, Y., Park, J. G. & McCombs, J. E. Design and
application of genetically encoded biosensors. Trends Biotechnol. 29,
144-152 (2011).

METHODS

Robotic Equipment set-up and interfacing. A Hamilton
Microlab STARIet 8-channel base model was augmented with a
Hamilton CO-RE 96 Probe Head and a Hamilton iSWAP Robotic
Transport Arm. Air filtration was provided by an overhead HEPA
filter fan module integrated into the robot enclosure. A BMG
CLARIOstar luminescence multi-mode microplate reader was
positioned inside the enclosure, within reach of the transport arm.
Software. A general-purpose driver method was created using
MicroLab STAR VENUS ONE software and compiled to Hamilton
Scripting Language (hsl) format. Instantiation of this method and
management of its local network connection was handled in
Python. The Pyhamilton Python package provided an overlying
control layer interface to the CLARIOstar plate reader in
supporting Python packages. We used Git to develop and version
control the packages and the specific Python methods used for
each experiment; our software implementation can be found on
github at https://github.com/dgretton/pyhamilton.

Bacterial assays. For bacterial assay validation, bacterial plaque
assays were used to confirm dilutions and agar solidification.
Briefly, overnight cultures of S2060 cells were grown in 2XYT

media supplemented with maintenance antibiotics were diluted
1,000-fold into fresh 2XYT media with maintenance antibiotics
and grown at 37 °C with shaking at 230 rpm to ODggo ~0.6—0.8
before use. M13 bacteriophage were serially diluted 100-fold (4
dilutions total) in H20. 20 pL of bacterial were added to 100 pL of
each phage dilution, and to this 200 pL of liquid (70 °C) “soft” agar
(2XYT media + 0.6% agar) supplemented with 2% Bluo-Gal was
added onto a well of a 24-well plate already containing 235 pL of
hard agar per well (2XYT media + 1.5% agar, no antibiotics). To
prevent premature cooling of soft agar, the soft agar was placed
on the robot deck in a 70 °C heat block. After solidification of the
top agar, plates were incubated at 37 °C for 16—18 h. Source code
from our implementation can be found at:
https://github.com/dgretton/roboplaque

Population Dynamics Experiments. Briefly, 96-well clear-
bottom plates were filled with 100 uL of water in each well.
Nucleation was initiated by adding colored dye to the first well,
and liquid transfers were initiated and compiled by a Hamilton
Microlab STARIet. Source code from our implementation can be
found at:

https://github.com/dgretton/pyhamilton population dynamics

Feedback controller algorithm. Bacteria optical density (OD)
was modeled to evolve as:
xr = xockt

where z is the culture OD, %o is the initial OD, k is the bacteria
exponential growth constant (k-value) in reciprocal hours, and ¢
is elapsed time in hours. A media replacement cycle is modeled
as dilution of a culture by instant uniform mixing with transparent
media of a fraction ¥ of its initial volume, which linearly scales its
OD = to a new OD ' (e.g. if a 100 pL culture is at OD 0.3 and

y= % then the replacement is modeled as diluting with 50 pL
transparent media, and the final OD 7 is 0.2), summarized as:

, 1
r = ——X
1+y
The culture OD is to be maintained at a constant setpoint, 2% In
each cycle £ =0,1,2,... each representing a time interval At,

the turbidostat controller is responsible for producing an output
command and state update according to a transfer function:

(i, @) = [z, i1)
where ¥i is the new controller output command as a fraction of
the turbidostat volume, ®i is the new controller internal state, i
is the present OD measurement, and f(xi, di-1) is the controller
transfer function based on the OD measurement and the previous
controller state ®i~1. The controller state may depend on the
history of prior OD measurements %o- - - - Xi-1 and prior controller
commands Y0;- - -» ¥i-1,
Specific controller state. A feedback controller with a distinct state
was created for each culture. The controller state is a triple
bi = (i, kF, yi): the present OD measurement, *i; the current
estimate of the culture’s growth k-value, kf; and the output
command, Yi.
Transfer function. The transfer function updates the three state
variables and computes an output. Rearranging the model
equations, we calculate the current k-value, given a new
measurement =; taken an interval At after the previous
replacement executed, as

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

k= 111(%(}’;‘—1 + 1)
At
This ki contributes to the state k-value estimate *i through a first-
order linear filter to dampen the effect of measurement noise. The
output to restore the turbidostat OD to the setpoint is
P cke At
y; = max (0, min(y™*, W))

where the final output i is subject to physical limits, being both
nonnegative and not greater than the largest volume the robot can
move with a pipette tip as a fraction of the turbidostat volume,
appearing as Y™ After output limiting, ¥i is saved in the
controller state. Controller was developed as an abstract Python
class and tested in simulation with mechanical and measurement
noise models before application in experiments (Supplemental
Figure 3). Filtered k-value estimates were used to draw
conclusions about bacterial growth rates. Source code for
implementation can be found at:
https://github.com/dgretton/many basic turbidostats/blob/master

[turb_control.py.

On-deck Turbidostat cultures. Peristaltic pump array. To pump
media onto the deck, up to seven miniature 12 volt, 60 mL/min
peristaltic pumps (“fish tank pumps”) were actuated by custom
motor drivers. A Raspberry Pi mini single-board computer
received instructions over local IP and commanded the motor
drivers via I°C (extended pump configuration details, see
https://www.biorxiv.org/content/10.1101/2020.04.01.021022v1).

Following each filling of the reservoir with fresh media, media was
added to each bacterial turbidostat growing in a 24-well plate,
based on OD and parameter estimation. Each turbidostat was
then sampled by aspirating culture into a 96-well plate reader
plate which was then read using an integrated ClarioStar plate

reader. Remaining media was then drained from the reservoir and
the system was rinsed 1X 5% bleach and 4X water between each
iteration. S2060 bacterial strains were grown in 2XYT media
supplemented with antibiotics. Source code for implementation
can be found at:

https://github.com/dgretton/many basic turbidostats.

High-throughput Turbidostat cultures. Cell strains and growth
conditions. To generate fluorescent reporter strains, plasmids
pRSET-B YFP, pRSET-B mCherry, and pRSET-B mCherry were
transformed into E. coli strain BL21(DE3) (New England Biolabs).
Plasmids were a gift from Kalina Hristova (Addgene #108856,
Addgene #108857, Addgene #108858). Bacteria cells were grown
overnight in LB media, and the conditioned to grow in M9 Minimal
Media: 33.7 mM Na2HPO4, 22.0mM KH3PO4, 8.5 mM NaCl, 9.35
mM NH4CI, 0.4% Glucose, 1 mM MgS0O4, 0.3 mM CaCl2, 1 ug
biotin, 1 ug thiamin, 1X trace elements. For modified M9 Media,
Phosphorus, Carbon, and Nitrogen sources were increased or
decreased by 2 or 4 fold. For turbidostat inoculations, starter
cultures were grown overnight at 37 °C for 16-18 h, and then
diluted 1:100, and then grown for another 4-8 hours until in log-
phase growth. When each strain reached log-phase growth (OD
0.6-0.8), cultures were first diluted to an OD of 0.6 and then
turbidostats were inoculated 1:100 into 175 uL in 96-well plate
reader plates prior to initiation of the robotic method (Corning,
Iltem#3631). Media for each well was aliquoted into a 96-deep well
plate (Thomas Scientific, ltem #1149J23). The robot deck was
organized as described in Figure 2A. Antibiotics. Antibiotics (Gold
Biotechnology) were used at the following working
concentrations: carbenicillin, 50 pg/mL; chloramphenicol, 40
pg/mL. Source code for implementation can be found at:
https://github.com/dgretton/many asynchronous turbidostats.

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Figures

Supplemental Figure 1: High-throughput turbidostats

num_turbs = 384
def main():
labware = plates, tip_boxes, media_sources

reader_protocols = [‘'absorbance', 'mCherry', 'YFP', 'CFP']
while True:

for turbs_for_plate, controllers_for_plate, labware_for_plate in turbidostat_details:
plate, tips, media_supply = labware_for_plate
platedatas = measure_plate(plate, reader_protocols, simultaneously_execute=service_prev_plate)
record_readings(plate, turbs_for_plate, platedatas)
od_readings = convert_to_ods(platedatas)
remember.replace_vols = transfer_function(controllers_for_plate, od_readings)
def service_prev_plate(args=(plate, tips, media_supply)):
service(remember.replace_vols, *args)
with HamiltonInterface() as ham_int, ClarioStar() as reader_int:
sys_state.instruments = ham_int, reader_int
system_initialize()

main()

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Figure 2: Population Dynamics Diffusion Matrix
=

Source Wells

Destination Wells

Fraction of liquid transfered .

0 0.5 1

Supplemental Figure 2: Population Dynamics Diffusion Matrix. Pyhamilton can be used in concert with all typical Python modules. The population
dynamics application (Fig. 1D) makes use of matrix multiplication implemented by rectangular arrays from the scientific computing Python package NumPy.
The diffusion matrix models arbitrary rates of flow from any of 96 wells in a microplate to all other wells. Gradient color scale represents fractional
magnitudes of liquid transfers. Rows of the diffusion matrix sum to 1. Successive steps are computed by repeated multiplication of an initial 96-entry
concentration vector by the 96x96 diffusion matrix. In this matrix, the dark main diagonal indicates that most of each population stays in its source well.
Entries above and below the main diagonal by 1 and 8 rows represent transfers to vertical and horizontal neighbors respectively. All other entries are zero
because population flow is not modeled to occur diagonally or beyond immediate neighbors. Obstacles to gene flow are captured by lighter colored areas
in off-diagonal entries. Though this matrix is symmetric in that flows in both directions between each pair of wells are the same, matrix symmetry is not a
requirement in general. The matrix construction facilitates offline analysis and visualization prior to robot execution. This construction would be difficult to
implement in existing programming applications for Hamilton robots. Available online at:
https://github.com/dgretton/pyhamilton_population_dynamics/blob/master/flow_matrix.csv.

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Figure 3: Turbidostat Controller Simulation
BEFORE K-VALUE CONVERGENCE CONVERGED

0.8 1

0.7

0.6

0.5 A1

0D600

0.4

0.3 A

0D600

0.2 1

2.2 A

0 10 20 30 40 50

2.0 A

2.25 A

2.00
1.8 1
1.75 A

1.50 A
1.6 4
1.25 1

144 1.00 A A

T T T T T

0 10 20 30 40 50

Controller K-Value Estimate (hr-1)
Controller K-Value Estimate (hr-1)

Simulated time (hr)
1.2 A

1.0 Actual K-Value

T T T T T T

2 4 6 8 10 12

o -

Simulated time (hr)
Supplemental Figure 3: Turbidostat Controller Simulation. 24 simulated turbidostats using the same controllers as experiments with initial k-value
estimate of 2.3 hr'! (20-minute doubling time typical of E. Coli) and actual k-value 0.93 hr (typical of metabolite-poor media) converge in 12 hours. Start
conditions vary between OD 0.1 and OD 0.8. Simulation includes uniform pipetting volume noise model and power law measurement noise model (spurious
peaks). Controllers initially over-replace media in higher density cultures due to growth rate overestimate, causing OD to drop temporarily, before
recovering as the k-value estimate converges more closely to the actual k-value. This behavior is exactly recapitulated in the turbidostat convergence
study (Fig. 2D), indicating good correspondence between model and system. The simulated turbidostat OD setpoint was adjusted +0.1 at 20 hours and
40 hours. Though the OD measurements and the controller’s transfer volume commands both change at these times, the inferred k-value stays constant.

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041368; this version posted April 16, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Tables

Supplemental Table 1: Pyhamilton Design Principles & Features
Modularity Use Pyhamilton alone as one complete package

Compatible auxiliary instrument modules can be used in concert or independently
Integratable as one part of a larger project

Expandable vocabulary of commands

Abstraction layers Common interface for Hamilton Run Control simulator integration and physical robot
Independent of any particular robot model (STAR, STARIet, etc.)

Hierarchical exception definitions

Transparent connection management Locally hosted background server

GUI-less launcher for background hsl executor

One-line context managers launch and destroy background processes automatically
Deployment readiness Predefined semantic errors

Automatic command formatting with detailed defaults

Idiomatic support for parallel commands

Modern code practice Legible code

Version control

https://doi.org/10.1101/2020.04.14.041368
http://creativecommons.org/licenses/by-nc-nd/4.0/

