
1

1

2 Allergen specific Treg upregulated by lung-stage schistosome 

3 infection alleviates allergic airway inflammation via inhibiting IgE 

4 secretion

5

6

7 Zhidan Li 1, Wei Zhang2, Fang Luo2, Jian Li2,3, Wenbin Yang2, Bingkuan Zhu2, 

8 Qunfeng Wu2, Xiaoling Wang1, Chengsong Sun2, Yuxiang Xie2, Bin Xu1, 

9 Zhaojun Wang4, Feng Qian2, Yanmin Wan3,5*, Wei Hu1,2,3* 

10

11

12

13 1. National Institute of Parasitic Diseases, Chinese Centre for Disease Control and 

14 Prevention, WHO Collaborating Centre for Tropical Diseases, National Centre for 

15 International Research on Tropical Diseases, Key Laboratory of Parasite and Vector 

16 Biology of the Chinese Ministry of Health, Shanghai 200025, China

17 2. State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory 

18 of Contemporary Anthropology, Human Phenome Institute, Ministry of Education Key 

19 Laboratory for Biodiversity Science and Ecological Engineering, Department of 

20 Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, 

21 Shanghai 200438, China 

22 3. Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 

23 200040, China

24 4. Department of Immunology and Microbiology, Shanghai Jiao Tong University 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.040998doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040998
http://creativecommons.org/licenses/by/4.0/


2

25 School of Medicine, Shanghai 200025, China

26 5. Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, 

27 Shanghai 201508, China

28

29 *Corresponding author: 

30 E-mail: huw@fudan.edu.cn (WH); yanmin_wan@fudan.edu.cn.

31

32

33 Short title:

34 Lung-stage schistosome infection alleviates asthma via Treg inhibiting IgE.

35

36

37

38

39

40

41

42

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.040998doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040998
http://creativecommons.org/licenses/by/4.0/


3

44 Abstract   
45 Schistosome infection showed protective effects against allergic airway 

46 inflammation (AAI). However, controversial findings exist especially regarding 

47 the timing of helminth infection and the underlying mechanisms. Moreover, 

48 most previous studies focused on understanding the preventive effect of 

49 schistosome infection on asthma (infection before allergen sensitization), while 

50 its therapeutic effects (infection after allergen sensitization) were rarely 

51 investigated. In this study, we investigated the therapeutic effects of 

52 schistosome infection on AAI using a mouse model of OVA induced asthma. 

53 To explore how the timing of schistosome infection influences its therapeutic 

54 effect, the mice were percutaneously infected with cercaria of Schistosoma 

55 japonicum at either 1 day before OVA induced asthma attack (infection at 

56 lung-stage during AAI) or 14 days before OVA induced asthma attack 

57 (infection at post lung-stage during AAI). We found that lung-stage 

58 schistosome infection significantly ameliorated OVA-induced AAI, whereas 

59 post lung-stage infection showed no therapeutic effect. Mechanistically, the 

60 lung-stage schistosome infection significantly upregulated the frequency of 

61 Treg, especially OVA specific Treg, in lung tissue, which negatively correlated 

62 with the level of OVA specific IgE. Depletion of Treg in vivo counteracted the 

63 therapeutic effect. Furthermore, transcriptomic analysis of lung tissue showed 

64 that lung-stage schistosome infection during AAI shaped the 

65 microenvironment to favor Treg induction. In conclusion, our data showed that 

66 lung-stage schistosome infection could relieve OVA induced asthma in a 

67 mouse model. The therapeutic effect was mediated by the upregulated OVA 

68 specific Treg which suppressed IgE production and Th2 cytokine secretion. 
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69 Our results may facilitate the discovery of a new therapy for AAI.

70

71 Key words: Schistosoma japonicum, Schistosome, Infection, Allergic airway 

72 inflammation, Asthma, Helminth therapy, Treg, IgE 
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74 Author Summary

75 Asthma is an increasingly common disease especially in industrialized 

76 countries, which is still lack of an optimal therapy. The protective effect of 

77 schistosome infection against allergic asthma has been shown in previous 

78 studies, which represents a promising candidate immune intervention 

79 approach. However, controversial findings exist especially regarding the timing 

80 of helminth infection and the underlying mechanisms. In this study, we 

81 demonstrate that lung-stage schistosome infection could upregulate the 

82 frequency of allergen specific Treg, which significantly alleviated OVA induced 

83 allergic airway inflammation via inhibiting the production of IgE and Th2 

84 cytokines. Our results proved the therapeutic effect of schistosome infection 

85 on allergic asthma. Moreover, we highlighted that lung-stage infection is 

86 essential for inducing allergen specific regulatory T cells in lung, which is the 

87 key mediator of the observed therapeutic effect. These findings shed new light 

88 on exploiting helminths or their derivatives to treat asthma and other allergic 

89 diseases.  

90

91
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93 Introduction
94 The prevalence of asthma has increased dramatically in the past three 

95 decades [1, 2], which represent a great health burden especially in developed 

96 countries [3, 4]. Atopic asthma is the most common form of asthma, which is 

97 an immunological disorder disease characterized by inflammation of the 

98 airways and lungs triggered by allergen with marked Th2 responses, 

99 overactive immunoglobulin IgE production, mucus hypersecretion and large 

100 amount of eosinophils influx to airways [5]. 

101

102 The exact social and environmental factors that lead to hyper-reactive immune 

103 disorder is still not fully understood. A leading theory behind the rapid rising of 

104 allergy and asthma rates is the “hygiene hypothesis”, which suggests that the 

105 decreasing incidence of infections in western countries is the origin of the 

106 increasing incidence of both autoimmune and allergic diseases [6]. The 

107 hypothesis was supported by an observation showing that westernized lifestyle 

108 linked with significantly higher prevalence of atopic disease [7]. A putative 

109 explanation to this phenomenon is that the overall reduction in common 

110 Th1-inducing (bacterial, viral and parasitical) infections resulting in a 

111 decreased ability to counterbalance Th2-polarized allergic diseases [8-10]. 

112 Following this lead, a variety of experimental studies have proved that helminth 

113 infection can down-regulate host immunity and immunopathology in allergy 

114 and other immune disorders[11-13]. Schistosome was one of the parasites 

115 that has been found to have protective effects for autoimmune diseases and 

116 allergies like arthritis and asthma [14-16]. These explorations hold great 
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117 promise to identify a new and better therapy for atopic asthma, which may 

118 avoid the adverse effects of current treatments [17-19]. 

119

120 Schistosome is an ancient parasite affecting more than 230 million people in 

121 78 tropical and subtropical countries [20]. During the life stages in the definitive 

122 hosts, the trematode invades its mammalian hosts through the skin firstly, 

123 migrates from skin to lung, then develops and matures in liver, finally resides 

124 mesenteric venules. Although it has been shown by multiple studies that 

125 schistosome could abate allergic airway inflammation (AAI), the understanding 

126 of underlying mechanisms remains limited. Most previous studies focused on 

127 testing the preventive effect (infection before allergen sensitization) of 

128 schistosome infection against allergic asthma. And under this setting, 

129 controversial results have been reported regarding both the timing of infection 

130 (acute versus chronic) [21-23] and the effector component (egg versus worms) 

131 [24-26], which reflects the complexities of schistosome life cycle and its 

132 immune regulatory components. Moreover, contradictory results were also 

133 reported regarding the roles of regulatory T cells in schistosome mediated 

134 protection. Some studies showed that Treg was an important effector in 

135 schistosome mediated protection against asthma [21, 23, 26-28], while a more 

136 recent study showed that the protection was independent of Treg [24]. 

137

138 Unlike previous studies which focused on testing the preventive effect 

139 (infection before allergen sensitization) of schistosome infection against 

140 allergic asthma, the primary goal of this study was to investigate the 

141 therapeutic effect of schistosome infection on asthmatic inflammation 
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142 (infection after allergen sensitization) and to clarify the underlying mechanism. 

143 To this aim, the mice were percutaneously infected with cercaria of 

144 Schistosoma japonicum at either 1 day before OVA induced asthma attack 

145 (infection at lung-stage during AAI) or 14 days before OVA induced asthma 

146 attack (infection at post lung-stage during AAI). We found that only lung-stage 

147 schistosome infection could upregulate the frequency of allergen specific Treg, 

148 which significantly alleviated AAI via inhibiting IgE production and inflammatory 

149 cytokine secretion. 
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151 Results

152 Lung-stage schistosome infection ameliorated OVA-induced AAI in a 

153 murine model 

154 A mouse model of OVA-induced AAI was adopted to test the therapeutic effect 

155 of schistosome infection on allergic asthma (Fig 1A & 1B). Compared to the 

156 control group, mice in the OVA group showed significant infiltration of 

157 inflammatory cells in BALFs (Fig 1C & 1D), which resembled the main clinical 

158 feature of AAI [29]. Moreover, after schistosome infection, the results showed 

159 lung-stage infection significantly reduced the infiltration of inflammatory cells, 

160 especially eosinophils (Fig 1C), while post lung-stage infection did not (Figure 

161 1D). Histopathological examination further confirmed the above findings by 

162 showing that lung-stage infection significantly suppressed the OVA-induced 

163 eosinophil-rich leukocyte infiltration and mucus hypersecretion (Fig 1E), 

164 whereas post lung-stage infection showed no obvious therapeutic effect (Fig 

165 1F).  

166

167 Lung-stage schistosome infection inhibited IgE production and 

168 suppressed Th2 cytokine secretions

169 IgE is the key factor mediating the pathological immune responses that lead to 

170 allergic asthma [30]. To further characterize the therapeutic effects of 

171 schistosome infection, we measured the total and OVA specific IgE in serum of 

172 mice. The results showed that lung-stage infection significantly downregulated 

173 both the total and OVA specific IgE to levels comparable with DXM treated 

174 mice (Fig 2A & 2B). In contrast, post lung-stage infection tended to elevate the 
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175 total and OVA specific IgE levels despite no significant difference was reached 

176 (Fig 2C & 2D). Moreover, we also measured a panel of cytokines and 

177 chemokines in BALFs and found that lung-stage infection altered the 

178 cytokine/chemokine secretion pattern induced by aerosolized OVA challenge 

179 (Fig 3A & S1 Fig). More specifically, IL-5 and Eotaxin were reduced to levels 

180 similar with DXM treatment (Fig 3B). On the contrary, post lung-stage infection 

181 increased IL-4 and IL-5 secretion (Fig 3B). 

182  

183 Lung-stage schistosome infection upregulated the frequencies of 

184 regulatory T cells (Treg) especially OVA specific Treg in lung

185 Treg was suggested to be the key factor of S. mansoni-mediated protection 

186 against allergic airway inflammation [21]. Herein, we first assessed the 

187 frequencies of Treg (CD4+CD25+Foxp3+ Treg) in spleen and lung. As shown in 

188 Figure 4A, compared to the OVA control, lung-stage infection significantly 

189 upregulated the frequency of Treg both in lung and spleen (Fig 4A), whereas 

190 post lung-stage infection only slightly improved the proportion of Treg in spleen 

191 (Fig 4B). To further illustrated that the influences of schistosome on OVA 

192 induced AAI were allergen specific or non-specific immune response, OVA 

193 specific naïve CD45.1+ CD4+ T cells were transferred into CD45.2+ recipient 

194 mice. The frequencies of total Treg, CD45.1+ Treg (OVA specific), and 

195 CD45.2+ Treg (OVA non-specific) were detected in lung and lung draining 

196 lymph nodes (LDLNs). Interestingly, we found that the frequency of OVA 

197 specific Treg (CD45.1+ Treg) in lung increased by more than 3 folds after 

198 schistosome infection (P < 0.001), while that in LDLNs didn’t show any 
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199 significant changes (Fig 5B & 5C). However, the frequency of endogenous 

200 Treg (CD45.2+ Treg) in lung was not significantly improved, while that in 

201 LDLNs showed a slight increased (Fig 5B & 5C). The proportion of total Treg 

202 was increased in lung and LDLNs (Fig 5B & 5C). 

203

204 Besides, we also found that the ratio of OVA specific CD4+ IL-4+ T versus CD4+ 

205 IFN-γ+ T cells significantly decreased after lung-stage schistosome infection 

206 (S2 Fig), suggesting that specific CD4+ T cell responses from Th2 toward Th1 

207 shifted responses. 

208

209 The therapeutic effect of lung-stage schistosome infection was Treg 

210 dependent 

211 Significant negative correlations between the frequency of Treg and OVA 

212 specific IgE or IgG (Fig 6) were observed, indicating that the therapeutic effect 

213 of schistosome infection on AAI might be mediated by Treg. To elucidate the 

214 role of Treg, we performed in vivo depletion using anti-mouse CD25 antibody 

215 (Fig 7A). Our data showed that Treg depletion (OVA+INF+αCD25 group) 

216 aggravated OVA induced AAI compared to isotype control group. Inflammatory 

217 cell infiltration, mucus secretion (shown by PAS staining) and OVA specific IgE 

218 production significantly increased after Treg depletion (Fig 7). 

219

220 Lung-stage schistosome infection moulded the microenvironment to 

221 facilitate the generation of Treg

222 To find out factors that contributed to the induction of Treg upon lung-stage 

223 schistosome infection, we performed the transcriptomic profiles of the lung 
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224 tissues from the schistosome infected and non-infected mice post OVA 

225 challenge. The results showed that 203 genes were upregulated and 279 

226 genes were downregulated in the lung-stage schistosome infection group (Fig 

227 8A & Data file S1). GO analysis of DEGs showed that the top 3 terms of 

228 significantly enriched (P < 0.05) is mainly distributed in the T cell activation, the 

229 leukocyte proliferation and the regulation of leukocyte proliferation (Fig 8B) 

230 pathways. And panther analysis showed that 84 DEGs are relate to immune 

231 system process (S3 Fig) and 70 of them were downregulated (Data file S1). 

232 Further analysis showed that 3 genes (CD46, Epor, and Klra17) reported to 

233 promote Treg response were upregulated [31-33] and 8 genes (Clec7a, CCR6, 

234 Spi-B, ABCG1, ADA, Ctsk, Ctss, and Ptgir) reported to inhibit Treg response 

235 were downregulated [34-41] (Fig 8C & Table 1) in schistosome infected mice. 

236 We postulated that lung-stage schistosome infection generated a 

237 microenvironment facilitating Treg development in lung (Fig 8C).   

238

239 In addition, we found that 8 genes (DOCK2, IRF4, Rac2, Lgals3, H2-Oa, 

240 Pdcd1lg2, Sash3, and Mzb1) related to B cell function or differentiation [42-49] 

241 were also downregulated after schistosome infection (Table 2), which might 

242 potentially contribute to the inhibition of IgE response. Genes related to lung 

243 development (FOXF1, ANO9, TRIM6, MMP27, Epor, Gata1, and Serpina) 

244 [50-52] and cell integrity (Villin and CRB1)[53, 54] were found to be 

245 upregulated too, which indirectly supported the observed therapeutic effect of 

246 schistosome infection (Table 2). 
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248 Discussion
249 The eradication of helminths (and other pathogens) is suggested to have 

250 resulted in over-activated immune response, which might be the cause of the 

251 increasing prevalence of allergic and autoimmune disorders especially in 

252 developed and urbanized countries [55-57]. The therapeutic effect of parasitic 

253 infection against allergies and autoimmune disease have been extensively 

254 explored especially after the hygiene hypothesis was introduced into this field 

255 [58]. Among which, the immunoregulation of schistosome is best illustrated [14, 

256 21, 59]. 

257

258 In this study, to investigate how the timing of schistosome infection influence 

259 the development of allergic asthma, we compared the therapeutic effect of two 

260 phase of schistosome infection: lung-stage and post lung-stage. We found that 

261 lung-stage schistosome infection significantly relieved OVA-induced allergic 

262 airway inflammation, but post lung-stage infection showed no therapeutic 

263 effect. Within lung-stage infection (3-7 days post infection), schistosomula 

264 transformed from cercaria was completely located in lung tissue of the host 

265 [60], which might modulate the local immune response to abate OVA induced 

266 AAI. We postulated that this might be the reason that made the therapeutic 

267 effect of lung-stage infection superior to post lung-stage infection. And indeed, 

268 we found that lung-stage infection significantly upregulated Treg response in 

269 lung.

270

271 Multiple factors such as worm species, timing, intensity and chronicity of 

272 infection, as well as host genetics have been investigated to illustrate the 
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273 mechanisms of helminth mediated the regulation of host immunity [61]. 

274 Nonetheless, the relationship between helminths and asthma still remains. 

275 Mechanistic studies reported contradictory results, for example, one study 

276 showed that S. mansoni-mediated suppression of allergic airway inflammation 

277 was patency dependent and mediated by infection-induced Treg [21], while 

278 another study showed that protection mediated by S. mansoni egg was 

279 independent of either Treg or Breg [24]. In current study, we found that 

280 lung-stage schistosome infection occurred during OVA induced asthma attack 

281 could upregulate the frequency of Treg and suppressed OVA specific IL-4 

282 response. Upregulation of Treg by schistosome infection has been reported by 

283 few previous studies [21, 62], however, to our knowledge, this is the first proof 

284 showing that the lung-stage schistosome infection can upregulate allergen 

285 OVA specific Treg.

286

287 To elucidate the role of Treg in schistosome infection mediated alleviation of 

288 AAI, we first analyzed the relationship between Treg and OVA specific IgE and 

289 found that the frequency of Treg in lung negatively correlated with OVA 

290 specific IgE. Furthermore, by in vivo depletion of Treg, we found that the 

291 decrease of IgE secretion was Treg dependent. IgE acts as the major mediator 

292 resulting in the allergic airway inflammation [63]. Our result proved that the 

293 therapeutic effect of schistosome infection on AAI was mediated by a Treg 

294 dependent inhibition of IgE, which was consistent with a previous report 

295 showing that the preventive effect of chronic S. mansoni infection against later 

296 AAI was also Treg dependent [21]. 

297
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298 Mechanisms underlying the induction of Treg or Breg by egg related antigens 

299 have been reported [64, 65]. However, we did not find out the exact active 

300 molecules of schistosome that led to the upregulation of Treg in this study. 

301 Nonetheless, we think that it is very likely the observed therapeutic effect was 

302 a collective result of multiple components of schistosome, as previous studies 

303 showed multiple enzymes released by schistosomula could regulate host 

304 immunity [66, 67]. We plan to acutely define these components in future. 

305

306 Instead of identifying effector antigens, in this study, we tried to understand 

307 how the lung-stage schistosome infection influence local immune responses in 

308 lung. To do so, we performed transcriptomic comparison between lung tissues 

309 of schistosome infected and non-infected mice. The results showed, after 

310 lung-stage schistosome infection, most genes related to immune response 

311 were downregulated (70/84), implying the general immune state in lung tended 

312 to be downregulated by schistosome infection. Among these genes, we found 

313 that 3 genes (CD46, Epor, and Klra17) reported to promote Treg response 

314 were upregulated and 8 genes (Clec7a, CCR6, Spi-B, ABCG1, ADA, Ctsk, 

315 Ctss, and Ptgir) reported to inhibit Treg response were downregulated in 

316 schistosome infected mice, suggesting that schistosome infection generated a 

317 milieu facilitating Treg induction in lung. In the meantime, we also observed 

318 some molecules reported to facilitate the function of B or plasma cells were 

319 downregulated, which was consistent with our finding that IgE response was 

320 suppressed.

321
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322 Collectively, our study showed that lung-stage schistosome infection 

323 established a regulatory environment in lungs, which can help to relieve OVA 

324 induced AAI in mouse model. Although the exact mechanism about Treg 

325 upregulation remains elusive, our data clearly showed that lung-stage 

326 schistosome infection can improve the frequency of allergen specific Treg and 

327 the latter can directly suppress IgE production. The encouraging results 

328 highlight the value of lung-stage schistosome infection as a potential therapy 

329 for allergic asthma. And identifying the effector molecules is especially of 

330 interesting, as it will make this therapy more practical.
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332 Methods
333 OVA-induced allergic airway inflammation and schistosome infection

334 Female BALB/c mice (6- to 8-week-old) were randomly divided into six groups 

335 in this experiment, which are OVA-induced AAI (OVA) group, OVA-induced 

336 AAI with lung-stage schistosome infection (OVA+INF, lung-stage) group, 

337 OVA-induced AAI with post-lung stage infection (OVA+INF, post lung-stage) 

338 group, OVA-induced AAI with dexamethasone (DXM) treatment (OVA+DXM) 

339 group, as well as infection (INF) group and normal (NOR) group. The mice 

340 were sensitized by injecting 10 µg of alum-adjuvanted ovalbumin (OVA; Cat# 

341 77120 and 77161, Thermo Fisher, US) intraperitoneally on day 0 and day 14. 

342 Subsequently, to induce AAI, the mice were challenged with aerosolized OVA 

343 (1% in PBS) for 30 minutes in the chamber of a Medical Compressor Nebulizer 

344 (DEDAKJ, Germany) on days 21–24 (Fig 1A and 1B). The mice of the normal 

345 control and schistosome infection control groups were challenged with 

346 phosphate buffer solution (PBS). To test the therapeutic effect of infection on 

347 OVA induced AAI, mice were infected with 15 cercaria of S. japonicum at 

348 either 1 day before OVA induced asthma attack (infection at lung-stage during 

349 AAI) or 14 days before OVA induced asthma attack (infection at post 

350 lung-stage during AAI).

351

352 Bronchoalveolar lavage collection and cell counting

353 Mice were euthanized 48 h after the last aerosolized OVA challenge (day 26), 

354 and bronchoalveolar lavage fluids (BALFs) were collected as previously 

355 reported method [68]. Briefly, after euthanasia, tracheotomy was carried out 

356 and an arteriovenous indwelling needle (20G; BRAUN, Germany) was inserted 
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357 into the trachea. Lavages were collected by washing the lung twice with 0.3 ml 

358 PBS. Cells in BALFs were harvested after centrifugation and the supernatants 

359 were stored at -80°C for cytokine detection. Cell pellet was fixed with 

360 paraformaldehyde (4%) and stained with a Haematoxilin-Eosin (H&E). A total 

361 of 1000 cells from multiple fields were examined for each slide. Counts of total 

362 cells, eosinophils, macrophage, neutrophils, and lymphocytes were performed 

363 on blinded samples, as described previously [69]. 

364

365 Lung histopathology

366 Lung tissues were fixed in 4% phosphate buffered formaldehyde overnight, 

367 then embedded in paraffin and cut for haematoxylin-eosin (H&E) and periodic 

368 acid-Schiff (PAS). Images of the stained sections were captured with a NIKON 

369 DS-U3 microscope (NIKON, Japan). Lung inflammation and the intensity of 

370 goblet cell metaplasia was assessed and scored 0-4 by two blinded, 

371 independent investigators, as described previously [70]. 

372

373 Determination of total and OVA-specific IgE in serum

374 The level of total and OVA specific IgE in serum were measured using enzyme 

375 linked immunosorbent assay (ELISA). Briefly, Maxisorp 96-well microtiters 

376 plates (Thermo Fisher Scientific, USA) were coated with rat monoclonal 

377 anti-mouse IgE antibody for total IgE detection (1: 1000; Cat# ab99571, 

378 Abcam, UK) or 10 μg/ml ovalbumin for OVA specific IgE (Cat# A5503, Sigma, 

379 US) 100 μl/well, respectively, in carbonate-bicarbonate buffer, pH 9.6, for 

380 12–16 hours at 4°C. Then the plates were blocked for at least 2 hours at 37°C 
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381 with 100 μl/well of PBS plus BSA (1%). After wash, 100 μl serum diluted with 

382 PBST (1: 40 for total IgE; 1: 5 for OVA specific IgE) were added to each well 

383 and incubated at 37°C for 2 hours. Next, HRP labeled goat anti-mouse IgE 

384 antibody were diluted with PBST (1: 2000; Cat# ab99574, Abcam, UK) and 

385 added to each well at 100 μl/well. After 2 hours incubation at 37°C, the plates 

386 were washed with PBST for 5 times. Finally, color was developed by addition 

387 of 100 μl/well of TMB (Cat# PA107, TIANGEN, China) and after incubating at 

388 room temperature for maximal 30 minutes, the reaction was stopped with 5% 

389 sulfuric acid (50 μl/well). Optical density (OD) values were determined at 450 

390 nm using the multi-mode microplate readers (BioTek, USA). The concentration 

391 of total IgE was then calculated according to the standard curve.

392

393 Cytokine detection in BALFs

394 Levels of IL-4, IL-5, IL-13, IL-10, Eotaxin and IFN-γ in BALFs were measured 

395 using a custom-made Bio-Plex Pro Reagent Kit V (6-plex customization) (Cat# 

396 MHSTCMAG-70K, Wayen Biotechnologies, China) according to the 

397 manufacturer’s instructions. The fluorescence labeled beads was detected 

398 using a corrected Bio-Plex MAGPIX system (Bio-Rad, Luminex Corporation, 

399 Austin, TX, USA) and the cytokine concentrations were calculated using 

400 Bio-plex manager 6.1 (Bio-Rad).

401

402 Lymphocytes isolation from lung tissues

403 After collection, lung tissues were washed 3–4 times with Roswell Park 

404 Memorial Institute (RPMI) medium, minced to tiny pieces, and then digested in 

405 0.1% type IV collagenase (Cat# C8160, Solarbio, China) solution at 37°C for 
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406 30 min. Digested lung tissues was filtered through a 70 μm cell strainer and 

407 erythrocytes were lysed with a Red Blood Cell Lysis Buffer (Cat# R1010, 

408 Solarbio, China). 

409

410 Flow cytometry assay

411 Single cells suspension were stained with a panel of surface mAbs in FACS 

412 buffer (PBS containing 2 mM EDTA and 0.5% bovine serum albumin) for 30 

413 min on ice, including FITC-conjugated anti-CD4 (Clone# 88-8111-40, 

414 eBioscience, USA), APC-conjugated anti-CD25 mAb (Clone# 88-8111-40, 

415 eBioscience, USA), SuperBright645-conjugated anti-CD45.1 (Clone# 

416 64-0453-82, eBioscience, USA) and Pe-cyanine7-conjugated anti-CD45.2 

417 (Clone# 25-0453-82, eBioscience, USA). Subsequently, cells were fixed with 

418 fix/perm buffer (Clone# 88-8111-40, eBioscience, USA) on ice for 20 min, and 

419 then stained with mAbs targeting intracellular markers in a Perm/wash buffer 

420 for 30 min on ice. For the detection of Treg, PE labeled anti-Foxp3 mAb 

421 (Clone# 88-8111-40, eBioscience, USA) was used. And for detecting OVA 

422 specific IL-4 and IFN-γ secretion, isolated lymphocytes were initially stimulated 

423 for 16 h with 5 ug/ml OVA peptide (323-339) (China peptides, China) and then 

424 stained with mAbs Perp-cy5.5 conjugated anti-CD3 (Clone# 145-2C11, 

425 eBioscience, USA) and FITC conjugated anti-CD4 (Clone# 88-8111-40, 

426 eBioscience, USA) for 30 min on ice. Subsequently, cells were fixed with 

427 fix/perm buffer (Clone# 88-8111-40, eBioscience, USA) on ice for 20 min. 

428 Then PE conjugated anti-IL-4 (Clone# 12-7041-81, eBioscience, USA) or APC 

429 conjugated anti-IFN-γ (Clone# 17-7311-81, eBioscience, USA) for 30 min on 

430 ice. Finally, after two washes, all cells were resuspended in PBS containing 
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431 1% paraformaldehyde and subject to flow cytometry analysis (Cytometer LX, 

432 Beckman).

433  

434 Adoptive Transfer of naïve CD4+ T cells 

435 Naïve CD4+ T cells of CD45.1+ OT II mice were purified using EasySep Mouse 

436 Naïve CD4+ T Cell Isolation Kit (Cat# 19765, StemCell, USA) according to the 

437 manufacturer’s protocol. The purity of isolated cells was checked by flow 

438 cytometry and was confirmed to be > 85%. Freshly purified naïve CD4+ T cells 

439 were suspended in PBS and injected intravenously into CD45.2+ congenic 

440 C57BL/6 recipient mice, 1 × 106 cells/mouse. The induction of AAI and 

441 schistosome infection were performed as described above.

442

443 In vivo depletion of Treg

444 Anti-CD25 antibody clone PC61 has been widely used to deplete Tregs for 

445 characterizing Treg function in vivo [71]. 100 g/mouse anti-CD25 antibody 

446 (Cat# 16-0251-85, Clone# PC61.5, eBioscience, USA) or isotype IgG (Cat# 

447 16-4301-85, Clone# eBRG1, eBioscience, USA) were dissolved with 150 l 

448 sterile PBS and injected intravenously into the mice 21 days post OVA 

449 sensitization. A second shot of 50 g /mouse antibodies was given on day 23 

450 post OVA sensitization (Fig 7A). After depletion, the mice were randomly 

451 divided into two groups: OVA+INF+αCD25 and OVA+INF+IgG. OVA 

452 sensitization, aerosol challenge and schistosome infection were performed as 

453 described above.
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454

455 RNA sequencing

456 Total RNA was extracted from lung tissues by using Trizol reagent (Cat# 

457 15596026, Invitrogen). RNA purity was checked using the Nano Photometer 

458 spectrophotometer (IMPLEN, CA, USA). RNA integrity was assessed using 

459 the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent 

460 Technologies, CA, USA). 1 μg total RNA from each sample was used to 

461 construct the sequencing library using Poly(A) mRNA Capture Module (Cat# 

462 RK20340, Abclonal, USA) and Fast RNA-seq Lib Prep Module for Illumina 

463 (Cat# RK20304, Abclonal, USA). Index codes were added to attribute 

464 sequences of each sample. Then the libraries were sequenced on Illumina 

465 Novaseq platform (2  150 bp). Total 7 samples, 3 from OVA group and 4 ×

466 from OVA+INF group, were sequenced in one lane, producing more than 30 

467 million reads per library. 

468

469 Differential expression genes (DEGs) analysis and functional enrichment 

470 analysis

471 Sequencing quality was evaluated by FastQC software 

472 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Poor quality 

473 reads and adaptors were trimmed by Trimmomatic software (Released 

474 Version 0.22, www.usadellab.org/cms/index/php?page = trimmomatic), and 

475 only reads longer than 50 bp were used for further analysis. The high-quality 

476 reads were mapped to mouse genome (mouse BALB/cJ) downloaded in 

477 Ensembl database. The HTseq [72] were used to quantify gene expression 
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478 and R DEseq2 package [73] were employed for differential expression 

479 analysis. Only genes with FDR adjusted P-value < 0.05 and absolute value of 

480 fold change > 2 were considered as DEGs. Functional enrichment of GO terms 

481 and KEGG analyses of DEGs were conducted by R cluster Profiler package 

482 [74] with FDR correction. Significantly enriched GO terms and KEGG 

483 pathways were identified with corrected P value < 0.05. DEGs related 

484 pathways enrichment terms were performed with the Panther Classification 

485 System (http://pantherdb.org/).

486

487 RNA sequencing data are deposited in the SRA database, SRA accession 

488 number: PRJNA609083.

489

490 Ethics Statement

491 All experiments and methods were performed in accordance with relevant 

492 guidelines and regulations. Mice experiments were carried out at National 

493 Institute of Parasitic Disease, Chinese Center for Disease Control and 

494 Prevention (NIPD, China CDC) in Shanghai, China. All animal experiment 

495 protocols used in this study were approved by the Laboratory Animal Welfare 

496 & Ethic Committee (LAWEC) of National Institute of Parasitic Diseases (Permit 

497 Number: IPD-2016-7).

498

499 Statistical analysis

500 All statistical analyses were performed using GraphPad Prism 8.0 (GraphPad 

501 Software, Inc., San Diego, CA, USA). The data of quantitative variables were 

502 presented as mean ± standard error of mean (SEM). P < 0.05 was considered 
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503 statistically significant.

504 Supporting information

505 S1 Fig. Comparisons of concentrations of IL-13, IL-10, IL-17A and IFN-γ in 

506 BALF. FI indicated fluorescence intensity. Data were shown as Mean ± SEM. *, 

507 P < 0.05; **, P < 0.01; ***, P < 0.001.

508 (TIF)

509 S2 Fig. The influences of Lung-stage schistosome infection on OVA specific 

510 IFN-γ and IL-4 response after OVA challenge. 

511 (A) Gating strategy of flow cytometry. (B) Frequencies of OVA specific 

512 CD3+CD4+IL-4+ T cells, CD3+CD4+IFN-γ+ T cells and their ratios in lung and 

513 LDLN. Data were shown as Mean ± SEM, n = 8. *, P < 0.05; **, P < 0.01 and 

514 NS, not significant. 

515 (TIF)

516 S3 Fig. Panther pathway analysis of DEGs between lung-stage schistosome 

517 infected mice and no-treatment control mice post OVA challenge.

518 (TIF)
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918 Figures and figure Legends 

919 Fig. 1.

920 Fig. 1. Lung-stage schistosome infection alleviated the attack of 
921 OVA-induced AAI, whereas post lung-stage infection did not. 
922 Experimental design of OVA induced AAI treated with either lung-stage (A) or 
923 post lung-stage (B) schistosome infection. (C & D) Comparisons of 
924 inflammatory cell infiltration in BALF of mice after OVA challenge. (E & F) 
925 Representative images of H&E and PAS staining of lung tissue after OVA 
926 challenge. Statistical analysis of inflammation score and mucus secretion 
927 score were also shown in (E) and (F), respectively. NOR, normal mice (without 
928 OVA sensitization and challenge); INF, mice without OVA sensitization and 
929 challenge but infected with schistosome; OVA, mice with OVA sensitization 
930 and challenge but without schistosome infection; OVA + INF, mice sensitized 
931 and challenged with OVA and treated with schistosome infection; OVA + DXM, 
932 mice sensitized and challenged with OVA and treated with dexamethasone. 
933 Data were shown as mean ± SEM, n = 5. *, P < 0.05; **, P < 0.01; NS, not 
934 significant by the one-way analysis of variance (ANOVA) with Tukey test. #; ##; 
935 ### indicated P < 0.05; < 0.01; < 0.001, respectively, OVA versus NOR (C & 
936 D). *, **, *** indicated P < 0.05; < 0.01; < 0.001, respectively, OVA+INF or 
937 OVA+DXM versus OVA (C & D). 
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938 Fig. 2.
939

940 Fig. 2. Lung-stage schistosome infection suppressed both the total and 
941 OVA specific IgE after OVA challenge, whereas post lung-stage infection 
942 did not.
943 (A & C) OVA specific IgE in each group were measured by ELISA after 
944 treatment with schistosome infection. (B & D) The concentration of total IgE in 
945 mouse serum were compared among all groups after OVA challenge. Data 
946 were shown as Mean ± SEM, n = 5. *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, 
947 not significant. 
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952 Fig. 3.

953
954 Fig. 3. Lung-stage schistosome infection inhibited Th2 cytokine 
955 secretion after OVA challenge, while post lung-stage infection did not. 
956 (A) Heatmaps of multiple cyto-/chemokines of mice treated with lung-stage 
957 schistosome infection (left) and post lung-stage schistosome infection (right) 
958 after OVA challenge. (B) Concentrations of IL-4, IL-5 and Eotaxin in BALFs 
959 were compared among all groups. Data were shown as Mean ± SEM, n = 5. *, 
960 P < 0.05; **, P < 0.01; ***, P < 0.001; NS, not significant. 
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970 Fig. 4.

971
972 Fig. 4. Lung-stage schistosome infection upregulated Treg frequency in 
973 lung and spleen after OVA challenge. 
974 (A & B) Comparisons of Treg frequencies (CD4+CD25+Foxp3+ Treg) in lungs 
975 and spleens among all groups. Representative data of flow cytometry analysis 
976 for each group were shown together with statistical comparisons. Data were 
977 presented as Mean ± SEM, n = 5. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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988 Fig. 5.

989 Fig. 5. Lung-stage schistosome infection upregulated OVA specific Treg 
990 after OVA challenge.
991 (A) Design of experiment for testing the therapeutic effect of lung-stage 
992 schistosome infection on OVA induced AAI after adoptive transfer of OVA 
993 specific naïve CD4+ T cell. (B & C) Gate strategy and statistical comparisons of 
994 flow cytometry analysis for total Treg, CD45.1+ Treg (OVA specific) and 
995 CD45.2+ Treg in lung and lung draining lymph nodes (LDLN). Data were shown 
996 as Mean ± SEM, n = 8. *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, not 
997 significant.
998
999

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.040998doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040998
http://creativecommons.org/licenses/by/4.0/


46

1000 Fig. 6.

1001
1002 Fig. 6. The frequency of Treg in lung negatively correlated with OVA 
1003 specific IgE and IgG. Correlation analysis between Treg frequency in lung 
1004 and the OD values of OVA specific IgE (left) and IgG (right) in serum. 
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1019 Fig. 7.

1020
1021 Fig. 7. In vivo depletion of Treg counteracted the therapeutic effect of 
1022 lung-stage schistosome infection on OVA-induced AAI.
1023 (A) Design of experiment for testing the role of Treg in the therapeutic effect 
1024 mediated by lung-stage schistosome infection. (B) Comparisons of 
1025 inflammatory cell counts in BALF between lung-stage schistosome infected 
1026 mice treated with either anti-CD25 antibody or isotype control IgG. (C) Lung 
1027 histopathology analysis of lung-stage schistosome infected mice treated with 
1028 either anti-CD25 antibody or isotype control IgG. Upper, H&E staining; lower, 
1029 PAS staining. (D) Comparisons of OVA specific IgE and IgG between Treg 
1030 depleted and control mice. Data were shown as Mean ± SEM, n = 8. *, P < 
1031 0.05; ***, P < 0.001. 
1032
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1033 Fig. 8.

1034
1035 Fig. 8. Transcriptomic analysis of differentially expressed genes (DEGs) 
1036 between lung tissues of OVA-induced asthmatic mice treated with and 
1037 without lung-stage schistosome infection. 
1038 (A) Volcano plot of detected gene transcription profile in lung tissues of 
1039 OVA-induced asthmatic mice treated with lung-stage schistosome infection 
1040 compared with no-treatment control mice after OVA challenge. (B) The top 8 
1041 functional enrichment pathways of Gene ontology (GO) analysis for biological 
1042 process in DEGs (P < 0.05). (C) Predicted gene network that might promote 
1043 the generation of Treg in DEGs.
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1045
1046 Tables and captions
1047
1048 Table 1. DEGs reported to promote or inhibit Treg response.

Classification Name Short name GeneID Log2Foldchange Adj p-value Reference
CD46 antigen, complement regulatory 
protein CD46 17221 1.52 0.015635106 31 

Upregulate and promote 
Treg Erythropoietin receptor EPOr 13857 1.26 0.000502759 32

Killer cell lectin-like receptor, subfamily 
A, member 17 Klra17 170733 1.81 0.00139324 33

Chemokine (C-C motif) receptor 6 CCR6 12458 -1.82 0.004889779 34
C-type lectin domain family 7, member a Clec7a 56644 -1.27 0.016544002 35
Spi-B transcription factor Spi-B 272382 -1.03 0.008667091 36

Downregulate and inhibit 
Treg Adenosine deaminase ADA 11486 -1.45 6.94E-05 37

ATP binding cassette subfamily G 
member 1 ABCG1 11307 -1.11 0.024201953 38

Cathepsin K Ctsk 13038 -1.30 0.000166352 39
Cathepsin S Ctss 13040 -1.44 0.000215072 40
Prostaglandin I receptor Ptgir 19222 -1.05 0.007454223 41
Programmed cell death 1 ligand 2 Pdcd1lg2 58205 -1.85 0.020944852 75
Interleukin 2 receptor, beta chain IL-2Rβ 16185 -1.31 0.02093114 76

Downregulate and 
promote Treg CD 5 antigen CD5 12507 -1.06 0.035912699 77

CD52 antigen CD 52 23833 -1.19 0.001160938 78
C-type lectin domain family 4, member 
a2 DCIR 26888 -1.34 0.001202901 79

Lipocalin 2 LCN2 16819 -1.57 4.03219E-05 80

1049
1050
1051
1052
1053
1054
1055 Table 2. DEGs reported to facilitate B cell or plasma cell, lung development 
1056 and cellular morphology. 

Classification Name Short name GeneID Log2Foldchange Adj p-value Reference
Dedicator of cyto-kinesis DOCK2 94176 -1.059783027 0.013672224 42
Interferon regulatory factor 4 IRF4 16364 -1.399178091 0.020943206 43
Rac family small GTPase 2  Rac2 19354 -1.073471112 0.019595199 44

Related to inhibiting IgE 
production Lectin, galactose binding, soluble 3 Lgals3 16854 -1.240144306 3.75E-06 45

Histocompatibility 2, O region alpha locus H2-Oa 15001 -1.349647201 0.001621659 46
Programmed cell death 1 ligand 2 Pdcd1lg2 58205 -1.8532719 0.020944852 47
SAM and SH3 domain containing 3 Sash3 74131 -1.00163088 0.005576389 48
Marginal zone B and B1 cell-specific protein 1 Mzb1 69816 -1.854756211 7.72E-06 49
Foxf1 adjacent non-coding developmental regulatory RNA FOXF1 68790 1.028879446 0.042391573 NCBI
Anoctamin 9 ANO9 71345 1.104812889 0.04292976 50
Tripartite motif-containing 6 TRIM6 94088 1.104616713 0.043674764 51

Related to Lung development 
or development Matrix metallopeptidase 27 MMP 27 234911 2.088654169 0.041785907 52

Erythropoietin receptor Epor 13857 1.263048651 0.000502759 NCBI
GATA binding protein 1 Gata 1 14460 1.821382745 0.04829584 NCBI
Serine (or cysteine) peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 7   Serpina7 331535 2.231550156 0.028961618 NCBI

Related to cell morphology or 
membrane integrity Villin Villin 22349 1.077160094 0.026732286 53

Crumbs family member 1, photoreceptor morphogenesis 
associated CRB1 170788 2.51928641 0.008667091 54

1057
1058
1059
1060 Data file S1. DEGs between OVA and OVA+INF groups and their classifications.
1061 (See supplementary materials)
1062

1063

1064

1065
1066
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