

1 **Genetic control of *Campylobacter* colonisation in broiler chickens: genomic and transcriptomic**
2 **characterisation**

3

4 Androniki Psifidi ^{1,2*}, Andreas Kranis ^{1,3}, Lisa M. Rothwell ¹, Abi Bremner ¹, Kay Russell ¹, Diego Robledo ¹,
5 Stephen J. Bush ^{1,4}, Mark Fife ^{3,5}, Paul M. Hocking ¹, Georgios Banos ^{1,6}, David A. Hume ^{1,7}, Jim Kaufman⁸,
6 Richard A. Bailey ³, Santiago Avendano ³, Kellie A. Watson ¹, Pete Kaiser ¹, Mark. P. Stevens ¹.

7

8 ¹ The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush,
9 Midlothian, United Kingdom.

10 ² The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom.

11 ³ Aviagen Ltd., Newbridge, Midlothian, United Kingdom.

12 ⁴ Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford,
13 United Kingdom.

14 ⁵ The Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom.

15 ⁶ Scotland's Rural College, Edinburgh, Easter Bush, Midlothian, United Kingdom.

16 ⁷ Mater Research-University of Queensland, Translational Research Institute, Woolloongabba, Queensland,
17 Australia.

18 ⁸Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom.

19

20 *Corresponding author: Dr Androniki Psifidi

21 Address for correspondence: The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9
22 7TA, United Kingdom. Tel.: +44 (0)1707 669252. E-mail: apsifidi@rvc.ac.uk

23

24 Running title: Genetic basis of *Campylobacter* resistance in poultry.

25

26

27

28 **Abstract**

29 *Campylobacter* is the leading cause of bacterial foodborne gastroenteritis in many countries. Source
30 attribution studies unequivocally identify the handling or consumption of contaminated poultry meat as the
31 primary risk factor. One potential strategy to control *Campylobacter* is to select poultry with increased
32 resistance to colonisation. We conducted genomic and transcriptomic analyses of commercial pedigree
33 broilers exposed to *Campylobacter* to examine persistent colonisation of the caecum as a quantitative trait.
34 3,000 broilers were genotyped using a 50K single nucleotide polymorphism (SNP) array and imputed to 600K
35 SNPs. Genotypes were analysed for associations with the number of viable *Campylobacter* in the caeca.
36 Heritability of the trait was modest but significantly greater than zero ($h^2=0.11 \pm 0.03$). Genome-wide
37 association analyses confirmed quantitative trait loci (QTL) on chromosomes 14 and 16 previously identified
38 using the progeny of crosses of inbred lines differing in resistance, and detected two additional genome-wide
39 significant QTLs on chromosomes 19 and 26. RNA-Seq analysis of the transcriptome of caecal tonsils from
40 birds at the low and high extremes of *C. jejuni* colonisation phenotype identified differentially transcribed
41 genes, mainly located within the QTL on chromosome 16 and proximal to the major histocompatibility
42 complex (MHC) locus. We also identified strong *cis*-QTLs located within the MHC suggesting the presence of
43 *cis*-acting variation in both MHC class I, class II and BG genes. Multiple other *cis*-acting variants were identified
44 in association with key immune genes (*COPS3*, *CCL4*, *CR1L*, *C4BP*, *PLGR*) in the other QTLs. Pathway and
45 network analysis implicated cooperative functional pathways and networks in colonisation, including those
46 related to antigen presentation, innate and adaptive immune responses, calcium, and renin-angiotensin
47 signalling. While co-selection for enhanced resistance and other breeding goal traits is feasible, the frequency
48 of resistance-associated alleles was high in the population studied and non-genetic factors significantly
49 influence *Campylobacter* colonisation in poultry.

50

51 **Author summary**

52 *Campylobacter* infection is estimated to cause 95 million illnesses in people worldwide each year. Human
53 infections mostly involve gastroenteritis, but can have severe complications. The handling or consumption of

54 contaminated poultry meat is a key risk factor for human campylobacteriosis. The bacteria reach high
55 numbers in the intestines of chickens reared for meat (broilers) and are frequently found on carcasses after
56 slaughter. Effective vaccines against *Campylobacter* are not yet available, and treatments to reduce carcass
57 contamination (e.g. chlorination) are not acceptable in some markets. One alternative is to breed for chickens
58 with improved resistance to *Campylobacter* colonisation. To test the feasibility of this option in commercial
59 birds, we analysed the genetic make-up of 3,000 pedigree broilers and determined the number of
60 *Campylobacter* in their gut. There were associations between specific regions of the chicken genome and
61 resistance to *Campylobacter*. Within some of these regions, expression of certain genes differed between
62 birds at the low and high extremes of *Campylobacter* colonisation, providing a potential explanation for
63 genetic variation in resistance. Selection of poultry with increased resistance to *Campylobacter* colonisation
64 may be a complementary strategy to improved biosecurity, management, handling and processing
65 procedures to reduce the burden of *Campylobacter* on human health.

66

67 **Introduction**

68 Human campylobacteriosis exerts profound societal and economic costs. The World Health Organisation
69 estimated that *Campylobacter* caused 95 million illnesses, 21,000 deaths and loss of 2.1 million disability-
70 adjusted life years globally in 2010 [1]. In the United Kingdom alone, there were 63,946 laboratory-confirmed
71 human cases in 2017, most of which were due to *C. jejuni*. The ratio of unreported cases of human
72 campylobacteriosis to those captured by national surveillance in the United Kingdom is estimated to be 9.3
73 to 1 [2] therefore the true burden may exceed half a million cases per annum at a projected median cost to
74 the national health service of £50 million [3]. Human infections typically involve acute gastroenteritis,
75 however debilitating sequelae may occur including Guillain-Barré syndrome (GBS) and other inflammatory
76 neuropathies [4]. Poultry are the main reservoir of human campylobacteriosis and up to 80% of human cases
77 may be attributable to the avian reservoir as a whole [5, 6]. During 2016-2017, a United Kingdom-wide survey
78 indicated that 54% of fresh retail chicken was contaminated with viable *Campylobacter* [7]. The number of
79 *C. jejuni* in the caeca of chickens frequently exceeds 10^8 colony-forming units/gram and carcass
80 contamination at slaughter can be difficult to avoid [8, 9]. Quantitative risk assessments predict that even a

81 relatively modest 2 \log_{10} reduction in the number of *Campylobacter* on broiler carcasses could reduce the
82 incidence of human disease due to contaminated chicken by up to 30-fold [10]. A pressing need therefore
83 exists for strategies to reduce the entry of *Campylobacter*-contaminated poultry meat into the food chain.

84 As effective vaccines and treatments for pre-slaughter control of *Campylobacter* in poultry are lacking,
85 much interest exists in the potential for breeding chickens with improved resistance to intestinal colonisation
86 by *C. jejuni*. The scope for genetic control of *Campylobacter* in poultry has been demonstrated in commercial
87 broiler lines that vary in resistance [11-17] and inbred layer lines exhibiting heritable differences in *C. jejuni*
88 colonisation following experimental inoculation [18, 19]. Breeding for *Campylobacter* resistance may also
89 benefit avian intestinal health and productivity. In some commercial broiler chicken lines, experimental
90 inoculation of *C. jejuni* elicits damage to the intestinal mucosa, diarrhoea and impaired weight gain [20, 21]. In
91 some birds, *Campylobacter* colonisation may impact intestinal barrier function [22], nutrient absorption and
92 transporter expression [21, 23], the translocation of *Escherichia coli* to extra-intestinal organs [24], and may
93 lead to a dysbacteriosis. In other studies, where *Campylobacter* inoculation was via natural exposure
94 mimicking field exposure, there was no association between *Campylobacter* levels and bird growth rate [25]
95 or gut pathology [26], and selection for *Campylobacter* resistance remained compatible with other breeding
96 goals [26].

97 A previously published genome-wide association study (GWAS) on *C. jejuni* intestinal colonisation, where
98 phenotypes were analysed as a binary trait in a novel dual-purpose chicken breed, revealed a resistance-
99 associated locus on chromosome 11 near the *CDH13* gene encoding T-cadherin, and a second candidate locus
100 on chromosome 5 was identified close to calmodulin (*CALM1*), a calcium-activated modulator of cadherin
101 function [17]. Both genes differed in relative expression in a manner associated with resistance [17]. Studies
102 in inbred layer lines 6₁ and N found heritable differences in caecal colonisation by various *C. jejuni* strains
103 [18]. Initial low-resolution mapping studies using reciprocal (6₁♀ × N♂) and (N♀ × 6₁♂) F1 crosses and the
104 progeny of an (N♀ × 6₁♂) F1♂ × N♀ backcross indicated that resistance was controlled by a single autosomal
105 dominant locus [18], but subsequent analysis of a backcross population using 1,243 fully-informative single
106 nucleotide polymorphism (SNP) markers revealed quantitative trait loci (QTL) on chromosomes 7, 11 and 14
107 [19]. Using a ninth-generation advanced intercross (6₁ × N) line and a 600K genome-wide SNP array, the

108 location of the QTL on chromosome 14 was confirmed and refined, and additional QTLs were identified on
109 chromosomes 4 and 16, indicating potential involvement of the Major Histocompatibility Complex (MHC)
110 region [19]. QTL for resistance of chickens to enteric carriage of *Salmonella* have been reported at the same
111 regions of chromosome 14 [27] and 16 [27-29] that were implicated in host resistance to *C. Jejuni*
112 colonisation. Analysis of caecal gene expression in chicken lines of varying susceptibility to *Campylobacter*
113 colonisation has identified transcriptional signatures associated with differential resistance, including genes
114 influencing the immune response [13-16].

115 In the present study, we conducted a comprehensive genome-wide association study on a commercial
116 pedigree broiler population exposed to *Campylobacter* naturally present in the litter. The genomic
117 architecture of resistance was analysed using imputed high-density SNP genotyping, and resistance was
118 further characterised by transcriptome analyses of intestinal tissue from birds of the predicted resistant or
119 susceptible genotypes at the corresponding extremes of caecal *Campylobacter* colonisation phenotype. Our
120 data provide valuable insights into the prospects for genetic control of *Campylobacter* in poultry.

121

122 **Results**

123 **Descriptive statistics and genetic parameters affecting *Campylobacter* levels**

124 The mean number of caecal *C. jejuni* detected \pm standard deviation was $7.057 \pm 1.023 \log_{10}$ colony-forming
125 units (CFU) per gram (g), with a maximum of $10.64 \log_{10}$ CFU/g and minimum of $2 \log_{10}$ CFU/g, equal to the
126 limit of detection by direct plating. Sex had a marginal effect on *Campylobacter* levels ($P < 0.05$), with males
127 having higher *Campylobacter* load ($7.178 \pm 0.034 \log_{10}$ CFU/g) compared to females ($6.930 \pm 0.032 \log_{10}$
128 CFU/g). *Campylobacter* levels showed seasonal variability, with date of sampling having a significant effect
129 ($P < 0.05$), while body weight did not have a significant effect on the trait. No significant maternal effects were
130 identified. Modest, but statistically significant heritability for caecal *Campylobacter* level was estimated ($h^2 =$
131 0.11 ± 0.03).

132

133 **Genetic association analyses**

134 From 50K SNP genotype data obtained for 3,000 broilers, genotypes were imputed to 600K SNP for 2,718
135 birds. 282 samples failed the pedigree integrity testing prior to imputation and were removed. Imputation
136 was not possible on chromosome 16 due to the complexity of the MHC region. These data were analysed
137 using two genome-wide association methodologies: a genome-wide association study (GWAS) for single SNPs
138 and regional heritability mapping (RHM) to consider associations with genomic regions comprising multiple
139 consecutive SNPs. Using the SNP data on chromosome 16 the MHC haplotypes of these birds were assembled
140 and a haplotype analysis was performed.

141 **Genome-wide association study.** Manhattan and quantile-quantile (Q-Q) plots for the GWAS results
142 using the 50K and the imputed 600K arrays are shown in Fig. 1a and 1b, respectively. SNPs significantly
143 associated with log-transformed caecal *Campylobacter* levels, after a Bonferroni correction for multiple
144 testing, are shown in Table 1. Multi-dimensional scaling analysis revealed no population substructure in these
145 commercial broilers. GWAS analysis using the 50K SNP DNA array identified one SNP on chromosome 16
146 significantly associated with the log-transformed number of *Campylobacter* in the caeca at the genome-wide
147 level and another ca. 100 SNPs on the same chromosome with a suggestive genome-wide significant
148 association with the trait. All the significant SNPs were in high linkage disequilibrium (LD) and located within
149 the same LD block, in the same MHC region (S1. Fig). Three MHC haplotypes were constructed. The
150 recombination events were limited with only one event identified in the *TRIM* region of MHC of one sample.
151 One of the MHC haplotypes (AA) was detected at much higher frequency (88%), compared to the other two
152 (BB = 0.5% and BA = 11.5%). The ensuing MHC haplotype analysis identified statistical significant ($P < 0.05$)
153 associations between the MHC haplotypes and the log-transformed number of *Campylobacter* in the caeca.
154 The prevalent MHC haplotype AA was associated with colonisation resistance accounting for 1 \log_{10}
155 difference in the *Campylobacter* levels compared to the susceptible BB haplotype; a significant favourable
156 dominance deviation was also observed for the heterozygous haplotype AB (Fig. 2).

157

158 **Table 1. List of SNPs significantly associated with log-transformed caecal *Campylobacter* levels in**
159 **commercial chickens.**

SNP array	SNP marker	Location (Chr(bp))	GWAS (P-value)	Additive effects (P-values)	Dominance effects (P-values)	Phenotypic Variance explained by the SNP locus	p	q
50K	AX-76346701	26 (4644002)	1.15E-06	-0.19(0.10)	0.46(0.05)	0.05	0.88	0.12
50K	AX-75852372*	16(70922)	1.16E-06	0.65(0.001)	-0.37(0.07)	0.06	0.94	0.06
50K	AX-75852319	16(65899)	1.17E-06	0.62(0.02)	-0.34(0.09)	0.06	0.94	0.06
50K	AX-75778268	14(12417411)	1.18E-05	0.38(0.038)	-0.30(0.07)	0.03	0.93	0.07
50K	AX-76339934	26(3224490)	1.50E-05	-0.12(0.20)	0.40(0.05)	0.03	0.89	0.11
50K	AX-75798135	14(4937371)	7.09E-06	0.07(0.30)	0.15(0.20)	0	0.93	0.07
600K	AX-76346702	26(4644456)	4.47E-07	0.13(0.24)	-0.38(0.05)	0.04	0.88	0.12
600K	AX-75798142	14(4939239)	1.32E-06	0.05(0.39)	0.09(0.36)	0	0.93	0.07

160 SNP markers highlighted in bold were significant at the genome-wide level after Bonferroni correction.

161 *More than 100 SNP markers on chromosome 16 were significant at the suggestive significant genome-wide
162 level.

163

164

165 Additionally, one SNP with a genome-wide significant association and another one, located 1.4Mb away,
166 with a suggestive association were identified on chromosome 26. Similarly, two SNPs identified on
167 chromosome 14, albeit 7.5Mb apart from each other, crossed the suggestive genome-wide significant
168 threshold. The significant SNPs on chromosomes 14 and 26 were not in LD. The GWAS analysis using the
169 imputed 600K SNP array information confirmed the associations on chromosomes 14 and 26.

170 The additive and dominance genetic effects, and the proportion of the total phenotypic variance
171 explained by each of these SNPs are summarised in Table 1. The SNPs on chromosome 14 and 16 had a
172 significant additive effect (ranging from 0.3 to 0.6 \log_{10} CFU/g) while the SNPs on chromosome 26 had a
173 significant dominant effect (ranging from 0.3 to 0.4 \log_{10} CFU/g) on *Campylobacter* levels. The significant
174 SNPs in the QTL region on chromosome 16 accounted for 6% of the phenotypic variance, while collectively
175 all the SNPs in the three candidate regions accounted for 17% of the phenotypic variance of caecal
176 *Campylobacter* levels.

177 **Regional heritability mapping.** A Manhattan plot and Q-Q plot for the RHM analysis are shown in S2 Fig.
178 Details of the significant SNP windows are presented in S1 Table. RHM confirmed the significant associations
179 on chromosome 16 previously identified by the GWAS. Moreover, RHM detected one more suggestive
180 significant association on chromosome 19.

181

182 **SNP and candidate region annotation**

183 Most of the significant SNPs identified in the GWAS analysis were located upstream (40 %) or downstream
184 (34 %) of predicted genes or within introns (19 %). However, eight of the SNPs on chromosome 16, one SNP
185 on chromosome 26 and one SNP located within the significant RHM SNP-window on chromosome 19 were
186 found within exons. The exonic variants on chromosome 16 were located within *TRIM10* (tripartite motif 10),
187 *TAP1* (transporter associated with antigen processing 1), *RACK1/GNB2L1* (receptor for activated C kinase 1),
188 *TRIM27* (tripartite motif 27), and *TRIM32* (tripartite motif 32). The SNP on chromosome 19 corresponds to a
189 synonymous variant within *HIP1* (huntingtin interacting protein 1) and the SNP on chromosome 26
190 corresponds to a missense variance within *ADORA3* (adenosine receptor 3).

191 The candidate QTL regions for caecal *Campylobacter* levels contained a relatively small number of genes,
192 collectively comprising 173 annotated protein-coding genes, 7 microRNAs and 2 snoRNAs. Details of the
193 genes and non-coding RNAs located in the candidate regions are presented in S2 Table.

194

195 **Transcriptomic analyses**

196 As many traits are associated with altered expression of genes within QTLs [30], we performed RNA-Seq
197 analysis of the caecal tonsil transcriptome of 23 broilers to identify expression QTLs (eQTLs) and potential
198 allelic imbalance of candidate genes within the regions associated with *Campylobacter* resistance identified
199 with GWAS and RHM. The birds used were selected to represent combinations of predicted resistant or
200 susceptible genotypes (based on the identified QTLs) that were correspondingly at the extremes (resistant
201 n=9, susceptible n=7) as well as the average (n=7) of measured caecal *Campylobacter* load (S3 Table).

202 **Differential gene expression analysis.** After false discovery rate (FDR, $P<0.05$) correction for multiple
203 testing, 3 protein-coding genes were found to exhibit significant differential expression (Table 2). The three
204 differentially expressed (DE) genes were located within the QTL region on chromosome 16 (*BF2*,
205 *ENSGALG00000032221*, *ENSGALG00000024357*). The *BF2* gene is an MHC class I gene while the other two
206 are both *BG*-like genes belonging to the butyrophilin family. In order to identify more subtle patterns of
207 differential expression, a relaxed significance threshold of unadjusted P value of 0.001 was implemented and
208 a total of 33 genes exhibited differential expression between high-, average-, and low-colonised birds at this
209 threshold (Table 2, Fig. 3). Among these DE genes were several related with the immune response (*ILF2*,
210 *ATG7*, *BG1*, *BF2*, *BF1*, *TAP1*, *ZNF692*). Interestingly, there were three DE *BF2* transcripts, two of which were
211 downregulated (ENSGALT00000079478, ENSGALT00000077683) and the other (ENSGALT00000087837)
212 upregulated in the resistant birds. There were also two DE *BF1* transcripts, both of which were upregulated
213 in the resistant birds.

214

215 **Table 2. List of differentially expressed transcripts in the caecal tonsils of low, average and high**
 216 ***Campylobacter* colonised commercial chickens.**

Ensembl Gene ID	Gene Symbol	Transcript ID	P-value	Q-value
ENSGALG00000041380	BF2	ENSGALT00000079478	2.04355E-06	0.027454094
ENSGALG00000032221	BTN	ENSGALT00000090334	4.74E-06	0.038294781
ENSGALG00000024357	BTN	ENSGALT00000000081	6.38441E-06	0.049299448
ENSGALG00000035351		ENSGALT00000054801	3.10369E-05	0.166786206
ENSGALG00000041380	BF2	ENSGALT00000087837	5.43846E-05	0.243543331
ENSGALG00000040185		ENSGALT00000050886	9.43213E-05	0.316789764
ENSGALG00000033932	BF1	ENSGALT00000086848	9.24971E-05	0.316789764
ENSGALG00000031279		ENSGALT00000050098	0.000108272	0.323238598
ENSGALG00000045597		ENSGALT00000083909	0.000125406	0.336954164
ENSGALG00000031155		ENSGALT00000077264	0.000145678	0.355837859
ENSGALG00000041380	BF2	ENSGALT00000077683	0.00016873	0.377800402
ENSGALG00000023565		ENSGALT00000031145	0.000220897	0.423948155
ENSGALG00000011570	ILF2	ENSGALT00000086283	0.000216056	0.423948155
ENSGALG00000015821	CCT8	ENSGALT00000086687	0.000249076	0.446161849
ENSGALG00000035075	TAP1	ENSGALT00000071455	0.000284244	0.470652875
ENSGALG00000041588		ENSGALT00000072642	0.000297782	0.470652875
ENSGALG00000002321	GOT2	ENSGALT00000087793	0.000331505	0.494845398
ENSGALG00000000895	NUDC	ENSGALT00000089774	0.000390069	0.551618808
ENSGALG00000004932	ATG7	ENSGALT00000036275	0.000609574	0.789690044
ENSGALG00000040421	LYPLA1	ENSGALT00000086258	0.000617198	0.789690044
ENSGALG00000026421	PSMB2	ENSGALT00000086964	0.000706133	0.790545526
ENSGALG00000026396	BG1	ENSGALT00000088858	0.000680119	0.790545526
ENSGALG00000038879		ENSGALT00000086305	0.000679203	0.790545526
ENSGALG00000038876		ENSGALT00000048688	0.000890983	0.797994287
ENSGALG0000003015	SERPINF1	ENSGALT00000079954	0.000766764	0.797994287
ENSGALG00000041814	DYNC2H1	ENSGALT00000078077	0.000865104	0.797994287
ENSGALG00000041845	ZNF692	ENSGALT00000074567	0.000862992	0.797994287
ENSGALG00000010175	HSP90AB1	ENSGALT00000086912	0.000861158	0.797994287
ENSGALG00000032378		ENSGALT00000062451	0.000873082	0.797994287
ENSGALG00000030378	RPL11	ENSGALT00000088956	0.001085374	0.940739393
ENSGALG00000033932	BF1	ENSGALT00000080529	0.001157014	0.946182617
ENSGALG00000016885	STK24	ENSGALT00000047579	0.001217473	0.946182617

ENSGALG00000006974	DDX27	ENSGALT00000085580	0.001187859	0.946182617
ENSGALG00000032617		ENSGALT00000062370	0.001267728	0.946182617
ENSGALG00000040179		ENSGALT00000049453	0.001261258	0.946182617

217

218

219 We performed separate *cis*- and *trans*- based eQTL analyses for the significant and suggestive significant
220 SNP markers identified by the GWAS and RHM:

221 **Cis-analysis.** After false discovery rate (FDR, $P < 0.05$) correction for multiple testing, we detected 102
222 significant *cis*-eQTL (S4 Table). Of those, 90 were associations between SNPs in high LD, located in the same
223 QTL region on chromosome 16, and the expression of a single gene, BG-like antigen 1 (*BG1*) (Fig. 4A). This
224 eQTL had a \log_{10} allelic-fold-change of 2.03. Four more *cis*-eQTLs were identified for *ENSGALG00000032221*
225 and three novel gene transcripts on chromosome 16, *ENSGALT00000065054*, *ENSGALT00000049453* and
226 *ENSGALT00000085167*. Another three significant *cis*-eQTLs were detected within *TMEM11* (transmembrane
227 protein 11) and the *COPS3* (COP9 signalosome subunit 3), two genes located within the QTL region on
228 chromosome 14 (position 4,552,835-4,560,698 and 4,767,396-4,781,731, respectively) (Fig. 4B and 4C, S4
229 Table).

230 **Trans-analysis.** We detected a total of 13 significant *trans*-eQTLs within the QTL region on chromosome
231 19 and two on chromosome 26 (S5 Table). Most of these predicted *trans*-acting elements are for genes
232 related with metabolic processes. The *trans*-acting SNP on chromosome 26 is for a microRNA (gga-mir-1553)
233 located on chromosome 7, close to the peak of a previously identified QTL for *C. jejuni* resistance identified
234 using a back-cross population of inbred lines 6₁ and N [19].

235 **Allele-specific expression analysis.** If an individual is heterozygous for a *cis*-acting SNP it is expected that
236 the two alleles of the gene will be expressed unequally causing allelic expression imbalance. To verify the *cis*-
237 QTLs detected above, and identify additional ones, we identified genetic variation within the QTL regions
238 identified by the GWAS and RHM using the RNA-Seq data and performed allele-specific expression (ASE)
239 analysis for all the SNPs located within these regions. Several significant ASE events were identified in all QTL
240 regions (mean P value ≤ 0.05 with at least 4 heterozygous animals). Specifically, 14 significant ASE events
241 were identified for 3 genes located on chromosome 14, 30 for 6 genes on chromosome 16, 11 for 2 genes

242 and one microRNA (gga-mir-142) on chromosome 19, and 35 for 5 genes on chromosome 26 (S6 Table). A
243 highly significant ASE event was identified on chromosome 14 (for the QTL located at 12MB) for chloride
244 voltage-gated ion channel 7 (*CLCN7*). ASE results on chromosome 16 were consistent with the presence of a
245 *cis*-acting polymorphism in *BG1*, with 6 SNPs in high-LD showing allelic imbalance ($P < 10^{-13}$). Moreover, ASE
246 analysis highlighted potential *cis*-acting polymorphisms for other genes of interest in the region, namely MHC
247 class 1 (*BF1* and *BF2*) and class 2 (*BLB2* and *BLB1*) (Fig. 5A-5C). Within *BF2*, 13 different SNPs showed highly
248 significant ASE, with P values $< 10^{-305}$; Fig. 5A). Chromosomes 19 and 26 also contain several immune-related
249 genes showing significant ASE: angiopoietin-related protein 2 (*ANGPTL2*), C-C motif chemokine ligand 4
250 (*CCL4*), complement C3b/C4b receptor 1-like (*CR1L*), C4b-binding protein (*C4BP*), polymeric immunoglobulin
251 receptor (*PLGR*) and BCL2 antagonist/killer 1 (*BAK2*).

252 **Validation of selected differentially transcribed genes.** Specific qRT-PCR assays were devised to validate
253 the transcript levels measured by RNA-Seq using the same RNA samples. Four genes located in the MHC
254 region on chromosome 16 (*BF2*, *BF1*, *ENSGALG00000032221* and *ENSGALG00000024357*), were found to be
255 differentially transcribed in the caecal tonsils of birds of predicted resistant or susceptible genotypes with
256 divergent caecal *Campylobacter* load, after adjusting for sex and seasonality. This confirmed that the
257 expression of each gene differed significantly between resistant and susceptible birds ($P \leq 0.05$ after Tukey's
258 HSD post-hoc test adjustment).

259

260 **Pathway, network and functional enrichment analyses**

261 **Pathway analysis using encoded genes in the candidate regions for *Campylobacter* resistance.** Based
262 upon the significant heritability estimate and the large amount of genetic variance accounted for by the
263 identified SNPs, we reasoned that the corresponding QTL regions may contain genes contributing to common
264 pathways associated with resistance to *Campylobacter* colonisation. We therefore identified the sets of
265 annotated genes lying within QTL regions and sought evidence of gene set enrichment. Ingenuity Pathway
266 Analysis (IPA) found these genes to be enriched for pathways involved in innate and adaptive immune
267 responses, antigen presentation, inflammatory responses, calcium signalling, epithelial cell signalling and
268 interactions (Fig. 6). Moreover, three networks of molecular interactions related to 'immunological diseases',

269 'cell death and survival', and 'molecular transport and protein trafficking' were constructed using the list of
270 genes in the candidate regions (Fig. 7). We subsequently extracted the gene ontology terms for each of these
271 genes and performed functional annotation clustering analysis. The genes were organised into 41 clusters,
272 each given an enrichment score (ES). The first (ES = 4) and the second (ES = 3.5) clusters were both enriched
273 for genes functionally annotated as involved in 'antigen processing and presentation via MHC class I and class
274 II molecules' (including *BF1*, *BF2*, *BLB1*, *BLB2*, *DMB1*, *DMB2*, *TAP1*, and *TAP2*) (S7 Table).

275 **Pathway analysis using DE genes in birds with different *Campylobacter* colonisation levels.** Functional
276 analysis of the DE genes using the IPA software showed significant enrichment for pathways related with
277 immune response (interferon signalling, antigen presentation, immunodeficiency signalling) and metabolism
278 (protein ubiquination, glutamate degradation) (S3 Fig.). Moreover, one network of molecular interactions
279 related to "cell death and survival, and organismal injury and abnormalities" was constructed based on the
280 DE genes (S4 Fig.). Functional annotation clustering of these genes uncovered significant enrichment (E.S. =
281 1.2) for one gene cluster related with immune response, defence response, response to stress, symbiosis,
282 encompassing mutualism through symbiosis, interspecies interactions between organisms.

283

284 **Discussion**

285 We sought to investigate the genetic basis of resistance of chickens to *Campylobacter* colonisation and
286 evaluate the potential for selective breeding of poultry with enhanced resistance to control *Campylobacter*
287 at farm level. Using samples from 3,000 commercial chickens exposed to *Campylobacter*, we detected
288 heritable variation associated with caecal *Campylobacter* levels and identified genomic markers and regions
289 associated with colonisation. Candidate genes, *cis*- and *trans*- acting elements, canonical pathways and
290 networks, and MHC haplotypes that were implicated in resistance to *Campylobacter* colonisation were also
291 identified.

292 We estimated significant heritability ($h^2=0.11$) for caecal *Campylobacter* colonisation. This was lower
293 compared to a previous estimate for this trait using the progeny of crosses of inbred White Leghorn chicken
294 lines with differing resistance to *Campylobacter* colonisation ($h^2=0.25$) [19]. The difference is likely
295 attributable to the use of field data on naturally colonised broilers in the present study compared to

296 experimental challenge of inbred lines. The heritability of resistance to *Campylobacter* colonisation is similar
297 to that observed for other livestock pathogens and diseases, such as bovine tuberculosis ($h^2=0.09-0.17$) [31,
298 32] and bovine and ovine mastitis ($h^2=0.10-0.20$) [33], where the development of genetic evaluations to
299 guide breeding decisions was deemed feasible.

300 In a previous study of the same commercial chicken population, *Campylobacter* colonisation levels were
301 not significantly phenotypically and genetically correlated with key production traits such as body weight,
302 nutrient absorption and gut health; this highlights that the presence of *Campylobacter* in the caeca of
303 chickens was not detrimental to the birds studied and that co-selection for *Campylobacter* colonisation
304 resistance with other breeding goals is feasible [26]. However, the low heritability estimates indicate that a
305 large proportion of phenotypic variance in *Campylobacter* colonisation is determined by non-genetic factors
306 that merit further investigation. Moreover, the high frequency of resistance-associated alleles in the studied
307 population of commercial birds suggests limited scope for improvement, albeit commercial broiler lines from
308 other breeding programmes may benefit from selection guided by the data presented here.

309 In the present study, we assumed a uniform exposure of birds to *Campylobacter* during the 16 months of
310 sampling. A seasonal, batch and sex effect on *Campylobacter* colonisation was detected and fitted in the
311 GWAS, eQTL and differential expression models of analysis to adjust for these sources of systematic variation.
312 Season has been previously reported to affect the colonisation phenotype in chickens [34, 35], with this
313 linked to an elevated incidence of human campylobacteriosis during summer [36]. The basis of this seasonal
314 effect is not entirely clear [37]. Moreover, while *Campylobacter* was routinely detected in the environment
315 of the birds sampled, we cannot preclude the possibility that the bacterial species and sequence types
316 present varied over time.

317 Consistent with a previous report of paternal effects on caecal *C. jejuni* colonisation in broilers [12] , we
318 detected a significant effect of sex on the colonisation phenotype, with males having higher mean caecal
319 counts of *Campylobacter*. Male susceptibility to *Campylobacter* has been also reported in human and mouse
320 studies [38, 39]. Sex-related differences in immune response and survival rate of broiler chickens have been
321 reported for a range of pathogens in chickens [40]. Male broilers were found to be more susceptible to
322 infectious disease and this was attributed to a less efficient immune response compared to females [40].

323 Moreover, there are differences in gene expression and responsiveness to bacterial lipopolysaccharide
324 between macrophages from males and females that have been attributed to the lack of dosage
325 compensation of the genes on the Z chromosome, which includes the interferon cluster [41]. Apart from
326 seasonality and sex, other non-genetic factors may explain the observed variation in *Campylobacter*
327 colonisation, including strain variation [42], the time and level of exposure relative to sampling [43],
328 coinfections [44], variation in the gut microbiota [45, 46], and diet and feed intake [47, 48]. Our results should
329 be interpreted in the context of the limitations and advantages of field-based genome-wide association
330 studies [49, 50]. Compared to controlled challenge experiments, unknown and uncontrolled exposure to non-
331 genetic factors may reduce the power of a field study but do not constitute a fatal flaw in demonstrating host
332 genetic differences in resistance [49]. Moreover, the demonstration of heritable resistance in field studies
333 that simulate commercial practice is highly relevant to the production system into which selectively-bred
334 birds would be introduced.

335 In line with our previous findings using the progeny of crosses of inbred chicken lines [19], the major
336 histocompatibility complex region on chromosome 16 was implicated in resistance to *Campylobacter*
337 colonisation in commercial broilers. Using genomic data we were able to identify a strong QTL in the MHC
338 region explaining most of the trait-associated genetic variation, and the QTL overlapped with expression QTLs
339 detected by RNA-Seq analysis of caecal tonsil tissue from birds at the extremes of the colonisation phenotype.
340 Within this QTL region, 100 SNP markers were found in high LD and collectively corresponded to three MHC
341 haplotypes. These haplotypes were relatively stable, since only one recombination event was identified in
342 the *TRIM* region of MHC, and they were associated with distinct colonisation phenotypes, with the more
343 prevalent one associated with colonisation resistance accounting for 1 \log_{10} difference in the *Campylobacter*
344 levels.

345 Despite the MHC region being polymorphic and repetitive, making it challenging to identify causative
346 genes and mutations underlying disease resistance, our analyses revealed a number of candidate genes for
347 *Campylobacter* resistance that warrant further investigation. Specifically, the eQTL and ASE analyses showed
348 evidence for *cis-acting* elements related with the expression of the BG-like antigen 1 (*BG1*) gene, major (*BF2*)
349 and minor (*BF1*) MHC class I genes, the major (*BLB2*) and minor (*BLB1*) MHC class II beta chain genes. In

350 addition, the *BF2*, *BF1*, *BG1* and two *BG*-like genes were found to be differentially expressed in chickens with
351 different caecal *Campylobacter* levels. The major MHC class II beta chain gene (*BLB2*) gene is widely
352 expressed at high levels in hematopoietic cells, whereas the minor MHC class II beta chain gene (*BLB1*) is
353 generally poorly expressed, although highly expressed in spleen, intestinal epithelial cells, and particularly
354 the caecal [51]. The *CITA* transactivator gene that controls expression of MHC class II genes [52] has been
355 found to be differentially expressed in chickens with high and low *C. jejuni* colonisation levels in a previous
356 experimental RNA-Seq study of the caecal tissue [16]. In that study, MHC class I genes *BF1* and *BF2* were also
357 found to be differentially expressed in the caeca of chickens with high and low *C. jejuni* levels [16].
358 Furthermore, similar to our findings, MHC-related *BG* genes have also been reported to be differentially
359 transcribed in the spleen of two chicken lines that differ in susceptibility to *C. jejuni* colonisation. The *BG*
360 region of MHC is very repetitive, and it is therefore difficult to distinguish specific *BG* genes due to copy
361 number variation [53].

362 In the present study, network analyses detected interferon signalling among the pathways associated with
363 resistance. Interferon- γ (IFN- γ) has been reported to be induced following *Campylobacter* infection of avian
364 cells [54] and chickens in a breed-dependent manner [55], and may underlie breed-specific differences in gut
365 inflammation and pathology [20, 56]. Furthermore, multiple interferon-related genes were found to be
366 differentially expressed in the caecal transcriptome of chickens with high and low *C. jejuni* colonisation levels
367 in a previous RNA-Seq study [16]. Interestingly, the major class I and II molecules, as well as other MHC
368 related genes have internal ribosome entry site (IRES) which respond to IFN- γ and therefore their differential
369 expression may be subject to interferon regulation. Furthermore, our recent analysis of whole genome
370 sequence of commercial broilers and layers, and the transcriptome of isolated macrophages from a broiler-
371 layer F2 sibling backcross, also revealed substantial differences in the expression of interferon-regulatory
372 factors (IRF) family members as well as in the *BLB1* and *BLB2* genes between individual birds [57] that could
373 underlie this phenotype.

374 The present study identified two distinct QTLs on chromosome 14, both located within the interval of a
375 previously identified QTL for *Campylobacter* resistance using a backcrossed ([6₁ x N] x N) population of inbred
376 lines 6₁ and N [19]. One of these QTLs (located at 12 Mb) overlaps a QTL identified for the same trait using

377 a ninth generation advanced intercross population of these lines [19], as well as a QTL for resistance to
378 *Salmonella* colonisation in chickens [27], suggesting that a mechanism of resistance common to both
379 pathogens may exist. CREB binding protein (*CREBBP*), a key immune regulatory protein implicated in
380 *Salmonella* resistance in chickens [58], lies in close proximity to the marker of this QTL. In the present study,
381 a mutation (14:12556836, C to T, splice donor variant) with a predicted high impact on the encoded protein
382 of this gene was significantly ($P<0.05$) associated with *Campylobacter* colonisation resistance (data not
383 shown). Furthermore, pathway analysis in the present study confirmed the enrichment for *CREB* signalling
384 reported previously in inbred lines [19]. The other QTL region (located close to 5Mb) on chromosome 14 in
385 the present study overlapped with an expression QTL for *Campylobacter* resistance. Specifically, the SNP
386 marker significantly associated with *Campylobacter* resistance was also a *cis*-acting element for two genes
387 (upregulates *COPS3* and downregulates *TMEM11*). The protein encoded by COP9 signalosome complex
388 subunit 3 gene possesses kinase activity that acts as a site for complex phosphorylation of many regulators
389 involved in signal transduction such as I-kappa-B-alpha, p105, and c-Jun [59]. This protein is part of a complex
390 that plays a key role in diverse cellular processes including cytokine signalling and antigen induced responses
391 [60].

392 Several immune-related genes in the QTL regions on chromosomes 19 and 26 showed evidence of allele-
393 specific expression. Among these genes were the polymeric immunoglobulin receptor (*PLGR*) which is highly
394 expressed in intestinal epithelial cells and mucosa, and plays a crucial role in the transcytosis of polymeric
395 soluble immunoglobulins and immune complexes to the gut mucosal surface [61]. Genes and pathways
396 involved in the immunoglobulin production and function were reported to be upregulated in chickens
397 relative resistance to *C. jejuni* [16]. *PLGR* has been associated with intestinal immune defence against the
398 lumen-dwelling parasite *Giardia* in mice [62]. The QTL for *Campylobacter* resistance identified on
399 chromosome 26 encompasses the calcium/calmodulin-dependent protein kinase IG which belongs to a
400 calcium-triggered signalling cascade and phosphorylates the transcription factor CREB
401 (<https://www.uniprot.org/uniprot/Q96NX5>). A previous GWAS study of *C. jejuni* resistance identified a
402 suggestive significant association proximal to the calmodulin gene [17]. Intracellular calcium levels in the

403 intestinal epithelium are affected by *C. jejuni* in some lines [23], however the extent to which this affects
404 bacterial colonisation, or is induced by it, is unclear.

405 Our pathway analysis also showed enrichment for other innate and adaptive immune related pathways
406 in association with *Campylobacter* resistance. Of increased interest is the pathway related with IL-17
407 signalling since several previous studies suggested that IL-17 signalling and T_H-17 responses play a role in
408 resistance to *Campylobacter* colonisation in chickens following experimental inoculation [13, 16, 19, 56, 63,
409 64]. Future studies could seek to characterise the timing and magnitude of such responses in birds of
410 predicted resistant or susceptible genotypes upon exposure. An important factor to be considered in future
411 studies of this type is to characterise any concurrent infections and the subsequent relationship with
412 *Campylobacter* and the host immune response. Pathway analysis also detected enrichment for the renin-
413 angiotensin system, components of which have been reported to be activated by *Campylobacter* infection in
414 chickens [16] and in the gastric mucosa of *Helicobacter pylori* infected humans [65].

415

416 Conclusion

417 Our comprehensive genomic analyses estimated significant heritability of *Campylobacter* resistance in a
418 commercial broiler population and identified QTLs, transcripts and networks in common with previous
419 studies. A clear association with the MHC locus on chromosome 16 was identified, including detection of
420 differentially transcribed MHC-related genes in the QTL interval in birds at the extreme of colonisation
421 phenotype. The low frequency of susceptibility-associated alleles in the broiler population studied precluded
422 the selection of predicted resistant or susceptible birds for experimental challenge. The advent of rapid
423 genome-editing technology, for example reliant on modification of primordial germ cells implanted into
424 sterile recipients during embryo development [66], provides a potential means to validate the role of genetic
425 variation in *Campylobacter* resistance. The QTLs identified accounted for a c. 2 log₁₀ CFU/g difference in
426 caecal *C. jejuni* colonisation, sufficient to provide a significant reduction on the risk of contamination to
427 human health [10]. However, resistance-associated variation was already highly prevalent in the population
428 studied and environmental factors, which played a far greater role in the phenotype, may be more amenable
429 to rapid and effective intervention. A multifactorial approach addressing both genetic and non-genetic

430 factors is therefore needed to reduce *Campylobacter* levels in poultry and the incidence of the human disease
431 attributed to this source.

432

433 Materials and Methods

434 Animals and sampling

435 A total of 3,000 birds of an outbred pure-bred commercial broiler line from the Aviagen breeding
436 programme were housed within a non-bio-secure environment referred to as sib-test environment aimed to
437 resemble broader commercial conditions and where full sibs and half sibs of selection candidates are placed
438 [67]. Birds were fed standard maize-based starter, grower and finisher diets in line with industry practice. All
439 birds throughout the study received the same vaccinations as per commercial regime and were reared under
440 the same management practices and environmental parameters [26]. Birds were naturally exposed to
441 *Campylobacter* spp. under these conditions, as confirmed by routine sampling of the environment using the
442 'boot sock' method described previously [25]. Birds were culled and phenotyped when they reached the age
443 of five weeks. This was performed in batches of 100 birds (50 males and 50 females) giving a total of 3,000
444 birds phenotyped over a period of 16 months. After culling of birds by cervical dislocation by trained
445 personnel, cardiac blood was collected for DNA extraction, the two caeca were collected for enumeration of
446 viable *Campylobacter*, and the two caecal tonsils were stored in RNAlater (Thermo Fisher Scientific, Waltham,
447 USA) for subsequent RNA extraction.

448

449 Ethics statement

450 As these were commercial birds from an industry breeding programme and were not experimentally
451 inoculated, the study was conducted outside the auspices of the Animals (Scientific Procedures) Act 1986,
452 but was nevertheless subject to scrutiny and approval by the Animal Welfare & Ethical Review Body of The
453 Roslin Institute, University of Edinburgh (under PPL 60/4420).

454

455 Phenotyping and genotyping

456 To enumerate *Campylobacter*, serial ten-fold dilution series of weighed contents of the two caeca were
457 separately prepared to 10^{-7} in phosphate-buffered saline and 100 μ l of each dilution plated to modified
458 charcoal deoxycholate (mCCDA) agar supplemented with cefoperazone (32 mg/L) and amphotericin B (10
459 mg/L; Oxoid), followed by incubation for 48 h under microaerophilic conditions (5% O_2 , 5% CO_2 , and 90% N_2)
460 at 41°C. Dilutions were plated in duplicate and colonies with morphology typical of *Campylobacter* were
461 counted and expressed as CFU/g. The theoretical limit of detection by the method used was 100 CFU/g. In
462 instances where no colonies were observed after direct plating, a *Campylobacter* load equal to the theoretical
463 limit of detection was assumed, as enrichment to confirm the absence of *Campylobacter* in caecal contents
464 was not performed.

465 All the birds were genotyped with a proprietary 50K high-density genome-wide SNP array and then
466 imputed using AlphalImpute [68, 69] to the 600K SNP Affymetrix® Axiom® HD array [70] based on parent,
467 grand-parent and great-grand-parent 600K SNP Affymetrix data. Of 3,000 birds sampled, genotypes for 2,718
468 birds were successfully imputed. Imputation failures likely reflect a lack of compatibility between the
469 pedigree information and the genotypic data.

470

471 **Heritability analysis**

472 As the distributions of *Campylobacter* levels were not normally distributed, all counts were log-
473 transformed and expressed as \log_{10} CFU/g. Genetic parameters were estimated for caecal *Campylobacter*
474 colonisation resistance using a mixed linear univariate model that included the date of sampling and the sex
475 as fixed effects, and the random effect of the individual birds linked to each other with the pedigree genetic
476 relationship matrix. Body weight and maternal effects were also tested but their effects on the
477 *Campylobacter* levels were not significant and therefore were not included in the final model. Genetic
478 relationships between birds were calculated using a three generations pedigree and included in the analyses.
479 The heritability of the trait was calculated as the ratio of the additive genetic variance to the total phenotypic
480 variance. The analysis was performed using ASReml v4.0 [71].

481

482 **Genome-wide association study**

483 The 50K and 600K SNP genotype data were subjected to quality control measures using PLINK v1.09 [72]
484 with parameters of minor allele frequency >0.05 , call rate $>95\%$ and Hardy-Weinberg equilibrium ($P > 10^{-6}$).
485 After quality control, 37,498 and 288,381 SNP markers remained for further analysis (from the 50K and 600K
486 datasets, respectively). Positions of SNP markers were obtained using the GalGal5 annotation, available via
487 the Ensembl Genome Browser (www.ensembl.org). Population stratification was investigated using a
488 genomic relatedness matrix generated from all individuals. This was converted to a distance matrix that was
489 used to carry out classical multi-dimensional scaling analysis (MSA) using the R package GenABEL [73] to
490 obtain its principal components. The GEMMA v0.98.1 algorithm [74] was used to perform GWAS analyses
491 using a standard univariate linear mixed model in which date of sampling and sex were fitted as fixed effects
492 and the genomic relatedness matrix among individuals was fitted as a polygenic random effect. After
493 Bonferroni correction for multiple testing, significance thresholds for analysis with the 50K array were $P \leq$
494 1.33×10^{-6} and $P \leq 2.66 \times 10^{-5}$ for genome-wide significant levels (i.e., $P \leq 0.05$) and suggestive significant
495 levels (namely one false positive per genome scan), respectively, corresponding to $-\log_{10}(P)$ of 5.87 and 4.47.
496 The significance thresholds for the 600K array after Bonferroni correction were $P \leq 1.73 \times 10^{-7}$ and $P \leq 3.46$
497 $\times 10^{-6}$ corresponding to $-\log_{10}(P)$ of 6.76 and 5.45. The extent of linkage disequilibrium (LD) between
498 significant SNPs located on the same chromosome regions was calculated using the r-square statistic of PLINK
499 v1.09 [72].

500 Individual markers found to be significant in the previous step were further examined with a mixed model
501 that included the same fixed effects as used in the GWAS, the fixed effect of the corresponding SNP locus
502 genotype and the random effect of the animal. Additive (a) and dominance (d) effects, and the proportion of
503 total phenotypic variance (PV_p) due to each SNP locus were calculated as follows:

504 $a = (AA - BB) / 2$

505 $d = AB - ((AA + BB) / 2)$

506 $PV_p = (2pq(a + d(q - p))^2) / VP$

507 where AA, BB and AB were the predicted trait values of the respective genotypic classes, p and q were the
508 allelic frequencies of A and B at the SNP locus, and VA and VP were the additive genetic and total phenotypic

509 variance of the trait. The latter were estimated with the same model used for the heritability estimate. All
510 analyses were run with ASReml v4.0 [71].

511

512 **Regional heritability mapping**

513 RHM analyses were performed using DISSECT [75] fitting genomic regions of 20 SNPs in sliding windows
514 along each chromosome with the same fixed effects as the ones used in the single SNP GWAS described
515 above. The significance of genomic regions was assessed with the likelihood ratio test statistic, which was
516 used to compare the RHM model where both the whole genome and a genomic region were fitted as random
517 effects against a base model that excluded the latter effect. Only the 50K data was analysed with this method.
518 A total of 1,915 regions were tested across the genome. After adjustment for multiple testing, using the
519 Bonferroni correction, significance thresholds were $P \leq 2.63 \times 10^{-5}$ and $P \leq 5.26 \times 10^{-5}$ for genome-wide levels
520 ($P \leq 0.05$) and suggestive levels (namely one false positive per genome scan), respectively, corresponding to
521 $-\log_{10}(P)$ of 4.57 and 3.27.

522

523 **SNP and candidate region annotation**

524 All significant SNPs identified in the GWAS and RHM analyses were mapped to the GalGal5 reference
525 genome and annotated using the Ensembl Variant Effect Predictor (<http://www.ensembl.org/Tools/VEP>).
526 Moreover, all the genes that were located within the 20 SNP windows found to be significant by RHM; and
527 the 250 kb 5' and 3' regions of the significant SNP markers identified by the GWAS were annotated using
528 GalGal5 data obtained by the BioMart data mining tool (<http://www.ensembl.org/biomart/martview/>). This
529 allowed us to catalogue all the genes that were located in the vicinity of the identified significant SNP markers
530 for *Campylobacter* colonisation resistance.

531

532 **Transcriptomic analyses**

533 Total RNA was prepared from the caecal tonsils of 23 broilers, selected on their genotype (allele
534 combination in the significant identified markers) and caecal *Campylobacter* load, after correction for other
535 sources of systematic variation (sex and date of sampling). Details of the birds selected are shown in S3 Table.

536 RNA was extracted using the RNeasy Mini Kit (Qiagen Hilden, Germany) according to manufacturer's
537 instructions. The resultant RNA was checked for quality using the Agilent Tapestation 2200, and all samples
538 were of high quality with RNA Integrity Numbers (RIN) greater than 9. Library preparation was performed by
539 Edinburgh Genomics (<http://genomics.ed.ac.uk/>) using the Illumina TruSeq mRNA (poly-A selected) library
540 preparation protocol (Illumina; Part: 15031047, Revision E). The mRNA was sequenced by Edinburgh
541 Genomics at a depth of > 40 million strand-specific 75 bp paired-end reads per sample, using an Illumina
542 HiSeq 4000. Expression levels for the 23 samples were estimated using Kallisto v0.43.0 [76]. Rather than
543 aligning RNA-seq reads to a reference genome, reconstructing transcripts from these alignments and then
544 quantifying expression as a function of the reads aligned, Kallisto employs a 'lightweight' algorithm, which
545 first builds an index of k-mers from a known transcriptome. As a reference transcriptome, we obtained from
546 Ensembl v89 the set of GalGal5 cDNAs and ncRNA transcripts (ftp://ftp.ensembl.org/pub/release-89/fasta/gallus_gallus/cds/Gallus_gallus.Gallus_gallus-5.0.cds.all.fa.gz, and
547 ftp://ftp.ensembl.org/pub/release-87/fasta/gallus_gallus/ncrna/Gallus_gallus.Gallus_gallus-5.0.ncrna.fa.gz;
548 n=38,118 total transcripts, representing 10,846 protein-coding genes and 937 non-coding genes). Expression
549 levels were then estimated directly (i.e., in an alignment-free manner) by quantifying exact matches between
550 reads and k-mers. Expression is reported per transcript as the number of transcripts per million, and is
551 summarised to the gene level as described previously [77].

553 **Differential expression.** Differential expression analysis was run on caecal tonsils from birds with high,
554 intermediate and low *Campylobacter* load, after adjusting for sex and seasonality, using the Kallisto output
555 with the R/Bioconductor package 'Sleuth' v0.29.0 [78]. Differential expression was considered significant for
556 FDR corrected *P* values ≤ 0.05 and suggestive significant for uncorrected *P* values ≤ 0.001 . Additional
557 differential expression analyses were performed using the qRT-PCR output for a subset of the genes found
558 to be significantly differentially expressed in the initial RNA-Seq analysis. Least square mean pairwise
559 comparisons between different *Campylobacter* levels were conducted. Tukey's HSD post-hoc test adjustment
560 was applied at a significance level of 0.05.

561 **Expression QTL analysis.** eQTL analyses were performed using the R package Matrix eQTL v2.1.0 [79]. The
562 number of transcripts per million, derived from Kallisto analysis as described above, were used as a measure

563 of gene expression. Several covariates (\log_{10} transformed *Campylobacter* counts, sex, date of sampling) were
564 included in the association analysis. *Cis*- and *trans*-eQTLs were obtained, considering *cis*-acting SNPs to be
565 within 100 kb from the 5' start or 3' end of a known gene. *P* values were corrected using false discovery rate
566 (FDR) estimated with Benjamini-Hochberg procedure. SNP - gene expression association was considered
567 significant for FDR corrected *P* values ≤ 0.05 . For the significant *cis*-eQTL we estimated effect size using the
568 log allelic fold-change (aFC) measurement. aFC is defined as the log-ratio between the expression of the
569 haplotype carrying the alternative variant allele to the one carrying the reference allele and was calculated
570 as described [80]. Briefly, the model assumes an additive model of expression in which the total expression
571 of a gene in a given genotype group is the sum of the expression of the two haplotypes: $e(\text{genotype}) = 2e_r$,
572 $e_r + e_a$, and $2e_a$ for reference homozygotes, heterozygotes, and alternate homozygotes, respectively,
573 where e_r is the expression of the haplotype carrying the reference allele, and e_a the expression of the
574 haplotype carrying the alternative allele. The allelic fold change k is defined as $e_a = k e_r$ where $0 < k < \infty$.
575 aFC is represented on a \log_2 scale as $s = \log_2 k$.

576 **SNP calling and allele-specific expression analysis.** In order to perform allele-specific expression analysis
577 we aligned RNA-Seq reads to the reference genome and called the genomic variance in the previously
578 identified QTL regions. Quality filtering and removal of residual adaptor sequences from the raw reads was
579 first performed using Trimmomatic v0.38 [81]. Leading and trailing bases with a Phred score less than 20
580 were removed, and the read trimmed if the average Phred score over a sliding window of four bases was less
581 than 20. Only reads where both forward and reverse pairs were longer than 36 bp post-filtering were
582 retained. Filtered reads were mapped to the chicken genome (*Gallus_gallus-5.0*; Genbank assembly
583 GCA_000002315.3) [82] using STAR v2.6.1a [83], with the maximum number of mismatches allowed for each
584 read pair set to 10% of the trimmed read length, and minimum and maximum intron lengths set to 20 bases
585 and 1 Mb, respectively. PCR duplicates were marked and SNPs were identified and genotyped called for
586 individual samples using samtools v1.6 [84], ignoring reads with mapping quality < 20 and bases with Phred
587 quality scores < 20 . SNPs within 5 bp of an indel, with mapping quality < 20 , minor allele frequency (MAF) $<$
588 0.05 or where < 4 reads supported the alternative allele were also discarded. The SNPs located within the
589 QTL regions identified by the GWAS were annotated using Variant Effect Predictor, as described above.

590 Allelic-specific expression was assessed using the R package AllelicImbalance v1.24.0 [85]. For every SNP
591 in a region of interest, read counts were obtained for each allele present in a heterozygous animal, provided
592 it was present in > 4 and < 17 heterozygous animals (i.e. 75% of the total animals). SNPs with less than 10
593 reads were excluded. A binomial test was performed to assess the significance of the difference in allelic
594 count. Allele-specific expression was considered significant if the mean *P* value across all heterozygotes was
595 ≤ 0.05 .

596

597 **Quantitative RT-PCR validation of differentially expressed genes**

598 First strand synthesis was performed using 1 μ g of total RNA and the Verso cDNA Synthesis Kit (Thermo
599 Scientific) according to the manufacturer's instructions. qPCR reactions were performed using the Forget-
600 Me-NotTM qPCR Master Mix (Biotium) in 20 μ L volumes containing 1 X Forget-Me-NotTM qPCR Master Mix,
601 0.5 μ M of each forward and reverse primer, 50 nM of ROX reference dye and 2 μ L of cDNA at a 1:10 dilution
602 in template buffer. Gene-specific primers were designed and purchased from Sigma. Primer sequences are
603 detailed in S10 Table. The amplification and detection of specific DNA was achieved using the AB 7500 FAST
604 Real-Time PCR System (Applied Biosystems) and the following programme: 95°C for 2 min followed by 40
605 cycles of 95°C for 5 s then 60°C for 30 s. To confirm the presence of a single PCR product, melting curves were
606 generated by one cycle of 60°C for 1 min, increasing to 95°C in 1% increments every 15 s. Samples were run
607 in triplicate and each qPCR experiment contained 3 no-template control wells and a 5-fold dilution series in
608 duplicate of pooled caecal tonsil derived cDNA from several birds from which standard curves were
609 generated. The expression of genes were normalised to the geometric mean of three reference genes found
610 previously to be stably expressed in chicken lymphoid organs; *r28S*, *TBP* and *GAPDH* [86].

611

612 **Pathway, network and functional enrichment analyses**

613 Identification of potential canonical pathways and networks underlying the candidate genomic regions
614 associated with *Campylobacter* colonisation resistance was performed using the Ingenuity Pathway Analysis
615 (IPA) programme (www.ingenuity.com). IPA constructs multiple possible upstream regulators, pathways and
616 networks that serve as hypotheses for the biological mechanism underlying the phenotypes based on a large-

617 scale causal network derived from the Ingenuity Knowledge Base. IPA then infers the most suitable pathways
618 and networks based on their statistical significance, after correcting for a baseline threshold [87]. The IPA
619 score in the constructed networks can be used to rank these networks based on the P values obtained using
620 Fisher's exact test (IPA score or P score = $-\log_{10}(P \text{ value})$).

621 The gene list for *Campylobacter* colonisation resistance was also analysed using the Database for
622 Annotation, Visualization and Integrated Discovery (DAVID) v6.8 [88]. Gene ontology (GO) was determined
623 and functional annotation clustering analysis was performed. The *Gallus gallus* background information is
624 available in DAVID and was used for the analysis. The enrichment score (ES) of the DAVID package is a
625 modified Fisher exact P value calculated by the software, with higher ES reflecting more enriched clusters.
626 An ES greater than 1 means that the functional category is overrepresented.

627

628 **Acknowledgements**

629 The authors gratefully acknowledge the support of the Biotechnology & Biological Sciences Research
630 Council via the LINK scheme (grant reference BB/J006815/1) and Institute Strategic Programme funding at
631 The Roslin Institute (BBS/E/D/20231760 and BBS/E/D/20002172). We also acknowledge funding from the
632 Scottish Government via the Rural & Environmental Science and Analytical Services programme of research
633 for 2016-2021. These funders had no role in study design, data collection and analysis, decision to publish,
634 or preparation of the manuscript. We dedicate this manuscript to our late colleagues Dr Paul Hocking and
635 Professor Pete Kaiser, who played key roles in conception of the study and supervision of the research.

636

637 **Conflict of interest**

638 AK, RB, MF and SA are employed by Aviagen Ltd.
639 The remaining authors declare that the research was conducted in the absence of any commercial or financial
640 relationships that could be construed as a potential conflict of interest.

641

642 **Author contributions**

643 PK, KW, MS, PH, MF, AK, SA, RB and AP conceived and designed the genetic study of *Campylobacter* resistance
644 and secured substantial funding; MS, AP and DH conceived and designed the transcriptomic study of
645 *Campylobacter* resistance and MS and AP secured substantial funding. AP, LR, RB and KW performed data
646 collection. AP and LR performed the phenotyping, with input from MS. AK performed the imputation of the
647 genomic data. AP and GB, with input from AK, PK and KW, collated and edited the genotyping data and
648 performed the genetic and genomic analysis. AP performed the transcriptomic analyses with input from KR,
649 SB, DH and MS. DR performed the ALE analysis. AP performed the pathway analyses. KW reconstructed the
650 MHC haplotypes. AP performed the haplotype analyses and interpreted the results with input from JK and
651 KW. KR performed the RNA extractions, KR and AB performed the qRT-PCR to validate the RNA-Seq data. AP,
652 MS, KW, AK, GB, DH, JK, MF, RB and SA interpreted these results. AP and MS wrote the manuscript. All other
653 co-authors provided manuscript editing and feedback. All authors read and approved the final manuscript.
654

655 **Availability of data**

656 The sequencing and expression data from caecal tonsils of chickens with different levels of *Campylobacter*
657 colonisation in their caeca are deposited in the European Nucleotide Archive under accession number
658 PRJEB22580.

659

660 **References**

- 661 1. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al. World Health Organization global
662 estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS medicine.
663 2015;12(12):e1001923. Epub 2015/12/04. doi: 10.1371/journal.pmed.1001923. PubMed PMID: 26633896;
664 PubMed Central PMCID: PMC4668832.
- 665 2. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, et al. Longitudinal study of infectious
666 intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut.
667 2012;61(1):69-77. Epub 2011/06/29. doi: 10.1136/gut.2011.238386. PubMed PMID: 21708822; PubMed
668 Central PMCID: PMC3230829.
- 669 3. Tam CC, O'Brien SJ. Economic Cost of *Campylobacter*, Norovirus and Rotavirus Disease in the United
670 Kingdom. PloS one. 2016;11(2):e0138526. Epub 2016/02/02. doi: 10.1371/journal.pone.0138526. PubMed
671 PMID: 26828435; PubMed Central PMCID: PMC4735491.
- 672 4. O'Brien SJ. The consequences of *Campylobacter* infection. Current opinion in gastroenterology.
673 2017;33(1):14-20. Epub 2016/11/01. doi: 10.1097/mog.0000000000000329. PubMed PMID: 27798443.
- 674 5. Hazards EPoB. Scientific Opinion on *Campylobacter* in broiler meat production: control options and
675 performance objectives and/or targets at different stages of the food chain. EFSA Journal. 2011;9(4):2105.
676 doi: 10.2903/j.efsa.2011.2105.

677 6. Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man SM. Global Epidemiology of *Campylobacter*
678 Infection. Clinical microbiology reviews. 2015;28(3):687-720. Epub 2015/06/13. doi: 10.1128/cmr.00006-15.
679 PubMed PMID: 26062576; PubMed Central PMCID: PMCPMC4462680.

680 7. FSA. *Campylobacter* contamination in fresh whole chilled UK-produced chickens at retail: the final
681 results from Year 3 (August 2016 to July 2017). . 2017. doi:
682 <https://admin.food.gov.uk/sites/default/files/campyretailsurveyjul2017.pdf>.

683 8. Reich F, Atanassova V, Haunhorst E, Klein G. The effects of *Campylobacter* numbers in caeca on the
684 contamination of broiler carcasses with *Campylobacter*. International journal of food microbiology.
685 2008;127(1-2):116-20. Epub 2008/07/29. doi: 10.1016/j.ijfoodmicro.2008.06.018. PubMed PMID: 18657873.

686 9. Hansson I, Pudas N, Harbom B, Engvall EO. Within-flock variations of *Campylobacter* loads in caeca
687 and on carcasses from broilers. International journal of food microbiology. 2010;141(1-2):51-5. Epub
688 2010/05/25. doi: 10.1016/j.ijfoodmicro.2010.04.019. PubMed PMID: 20493571.

689 10. Rosenquist H, Nielsen NL, Sommer HM, Norrung B, Christensen BB. Quantitative risk assessment of
690 human campylobacteriosis associated with thermophilic *Campylobacter* species in chickens. International
691 journal of food microbiology. 2003;83(1):87-103. Epub 2003/04/04. doi: 10.1016/s0168-1605(02)00317-3.
692 PubMed PMID: 12672595.

693 11. Stern NJ, Meinersmann RJ, Cox NA, Bailey JS, Blankenship LC. Influence of host lineage on cecal
694 colonization by *Campylobacter* jejuni in chickens. Avian diseases. 1990;34(3):602-6. Epub 1990/07/01.
695 PubMed PMID: 2241687.

696 12. Li X, Swaggerty CL, Kogut MH, Chiang H, Wang Y, Genovese KJ, et al. The paternal effect of
697 *Campylobacter* jejuni colonization in ceca in broilers. Poult Sci. 2008;87(9):1742-7. Epub 2008/08/30. doi:
698 10.3382/ps.2008-00136. PubMed PMID: 18753441.

699 13. Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, et al. Gene expression profiling of the
700 local cecal response of genetic chicken lines that differ in their susceptibility to *Campylobacter* jejuni
701 colonization. PloS one. 2010;5(7):e11827. Epub 2010/08/03. doi: 10.1371/journal.pone.0011827. PubMed
702 PMID: 20676366; PubMed Central PMCID: PMCPMC2911375.

703 14. Li XY, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, et al. Caecal transcriptome analysis
704 of colonized and non-colonized chickens within two genetic lines that differ in caecal colonization by
705 *Campylobacter* jejuni. Animal genetics. 2011;42(5):491-500. Epub 2011/09/13. doi: 10.1111/j.1365-
706 2052.2010.02168.x. PubMed PMID: 21906100.

707 15. Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, et al. Systemic response to
708 *Campylobacter* jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens.
709 Immunogenetics. 2012;64(1):59-69. Epub 2011/07/13. doi: 10.1007/s00251-011-0557-1. PubMed PMID:
710 21748442.

711 16. Connell S, Meade KG, Allan B, Lloyd AT, Kenny E, Cormican P, et al. Avian resistance to *Campylobacter*
712 jejuni colonization is associated with an intestinal immunogene expression signature identified by mRNA
713 sequencing. PloS one. 2012;7(8):e40409. Epub 2012/08/08. doi: 10.1371/journal.pone.0040409. PubMed
714 PMID: 22870198; PubMed Central PMCID: PMCPMC3411578.

715 17. Connell S, Meade KG, Allan B, Lloyd AT, Downing T, O'Farrelly C, et al. Genome-wide association
716 analysis of avian resistance to *Campylobacter* jejuni colonization identifies risk locus spanning the CDH13
717 gene. G3 (Bethesda, Md). 2013;3(5):881-90. Epub 2013/04/04. doi: 10.1534/g3.113.006031. PubMed PMID:
718 23550144; PubMed Central PMCID: PMCPMC3656734.

719 18. Boyd Y, Herbert EG, Marston KL, Jones MA, Barrow PA. Host genes affect intestinal colonisation of
720 newly hatched chickens by *Campylobacter* jejuni. Immunogenetics. 2005;57(3-4):248-53. Epub 2005/05/19.
721 doi: 10.1007/s00251-005-0790-6. PubMed PMID: 15900496.

722 19. Psifidi A, Fife M, Howell J, Matika O, van Diemen PM, Kuo R, et al. The genomic architecture of
723 resistance to *Campylobacter* jejuni intestinal colonisation in chickens. BMC genomics. 2016;17:293. Epub
724 2016/04/20. doi: 10.1186/s12864-016-2612-7. PubMed PMID: 27090510; PubMed Central PMCID:
725 PMCPMC4835825.

726 20. Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, et al. *Campylobacter* jejuni is
727 not merely a commensal in commercial broiler chickens and affects bird welfare. mBio. 2014;5(4):e01364-
728 14. Epub 2014/07/06. doi: 10.1128/mBio.01364-14. PubMed PMID: 24987092; PubMed Central PMCID:
729 PMCPMC4161246.

730 21. Awad WA, Aschenbach JR, Ghareeb K, Khayal B, Hess C, Hess M. *Campylobacter jejuni* influences the
731 expression of nutrient transporter genes in the intestine of chickens. *Veterinary microbiology*. 2014;172(1-
732 2):195-201. Epub 2014/05/20. doi: 10.1016/j.vetmic.2014.04.001. PubMed PMID: 24834798.

733 22. Awad WA, Molnar A, Aschenbach JR, Ghareeb K, Khayal B, Hess C, et al. *Campylobacter* infection in
734 chickens modulates the intestinal epithelial barrier function. *Innate immunity*. 2015;21(2):151-60. Epub
735 2014/02/21. doi: 10.1177/1753425914521648. PubMed PMID: 24553586.

736 23. Awad WA, Smorodchenko A, Hess C, Aschenbach JR, Molnar A, Dublec K, et al. Increased
737 intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken
738 intestinal epithelium during *Campylobacter jejuni* colonization. *Applied microbiology and biotechnology*.
739 2015;99(15):6431-41. Epub 2015/04/01. doi: 10.1007/s00253-015-6543-z. PubMed PMID: 25825050.

740 24. Awad WA, Dublec F, Hess C, Dublec K, Khayal B, Aschenbach JR, et al. *Campylobacter jejuni*
741 colonization promotes the translocation of *Escherichia coli* to extra-intestinal organs and disturbs the short-
742 chain fatty acids profiles in the chicken gut. *Poult Sci*. 2016;95(10):2259-65. Epub 2016/05/05. doi:
743 10.3382/ps/pew151. PubMed PMID: 27143773.

744 25. Gormley FJ, Bailey RA, Watson KA, McAdam J, Avendano S, Stanley WA, et al. *Campylobacter*
745 colonization and proliferation in the broiler chicken upon natural field challenge is not affected by the bird
746 growth rate or breed. *Applied and environmental microbiology*. 2014;80(21):6733-8. Epub 2014/08/31. doi:
747 10.1128/aem.02162-14. PubMed PMID: 25172857; PubMed Central PMCID: PMCPMC4249045.

748 26. Bailey RA, Kranis A, Psifidi A, Watson KA, Rothwell L, Hocking PM, et al. Colonization of a commercial
749 broiler line by *Campylobacter* is under limited genetic control and does not significantly impair performance
750 or intestinal health. *Poult Sci*. 2018;97(12):4167-76. Epub 2018/07/10. doi: 10.3382/ps/pey295. PubMed
751 PMID: 29982748; PubMed Central PMCID: PMCPMC6305830.

752 27. Calenge F, Vignal A, Demars J, Feve K, Menanteau P, Velge P, et al. New QTL for resistance to
753 *Salmonella* carrier-state identified on fowl microchromosomes. *Molecular genetics and genomics : MGG*.
754 2011;285(3):237-43. Epub 2011/02/01. doi: 10.1007/s00438-011-0600-9. PubMed PMID: 21279652.

755 28. Calenge F, Lecerf F, Demars J, Feve K, Vignoles F, Pitel F, et al. QTL for resistance to *Salmonella* carrier
756 state confirmed in both experimental and commercial chicken lines. *Animal genetics*. 2009;40(5):590-7. Epub
757 2009/05/09. doi: 10.1111/j.1365-2052.2009.01884.x. PubMed PMID: 19422366.

758 29. Tilquin P, Barrow PA, Marly J, Pitel F, Plisson-Petit F, Velge P, et al. A genome scan for quantitative
759 trait loci affecting the *Salmonella* carrier-state in the chicken. *Genetics, selection, evolution : GSE*.
760 2005;37(5):539-61. Epub 2005/08/12. doi: 10.1051/gse:2005015. PubMed PMID: 16093014; PubMed Central
761 PMCID: PMCPMC2697224.

762 30. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to
763 be eQTLs: annotation to enhance discovery from GWAS. *PLoS genetics*. 2010;6(4):e1000888. Epub
764 2010/04/07. doi: 10.1371/journal.pgen.1000888. PubMed PMID: 20369019; PubMed Central PMCID:
765 PMCPMC2848547.

766 31. Birmingham ML, Brotherstone S, Berry DP, More SJ, Good M, Cromie AR, et al. Evidence for genetic
767 variance in resistance to tuberculosis in Great Britain and Irish Holstein-Friesian populations. *BMC
768 proceedings*. 2011;5 Suppl 4:S15. Epub 2011/06/08. doi: 10.1186/1753-6561-5-s4-s15. PubMed PMID:
769 21645294; PubMed Central PMCID: PMCPMC3108209.

770 32. Banos G, Winters M, Mrude R, Mitchell AP, Bishop SC, Woolliams JA, et al. Genetic evaluation for
771 bovine tuberculosis resistance in dairy cattle. *Journal of dairy science*. 2017;100(2):1272-81. Epub
772 2016/12/13. doi: 10.3168/jds.2016-11897. PubMed PMID: 27939547.

773 33. Banos G, Bramis G, Bush SJ, Clark EL, McCulloch MEB, Smith J, et al. The genomic architecture of
774 mastitis resistance in dairy sheep. *BMC genomics*. 2017;18(1):624. Epub 2017/08/18. doi: 10.1186/s12864-
775 017-3982-1. PubMed PMID: 28814268; PubMed Central PMCID: PMCPMC5559839.

776 34. Taylor EV, Herman KM, Ailes EC, Fitzgerald C, Yoder JS, Mahon BE, et al. Common source outbreaks
777 of *Campylobacter* infection in the USA, 1997-2008. *Epidemiology and infection*. 2013;141(5):987-96. Epub
778 2012/08/16. doi: 10.1017/s0950268812001744. PubMed PMID: 22892294.

779 35. Friedrich A, Marshall JC, Biggs PJ, Midwinter AC, French NP. Seasonality of *Campylobacter jejuni*
780 isolates associated with human *Campylobacteriosis* in the Manawatu region, New Zealand. *Epidemiology and
781 infection*. 2016;144(4):820-8. Epub 2015/09/08. doi: 10.1017/s0950268815002009. PubMed PMID:
782 26344515.

783 36. Skarp CPA, Hanninen ML, Rautelin HIK. *Campylobacteriosis*: the role of poultry meat. Clinical
784 microbiology and infection : the official publication of the European Society of Clinical Microbiology and
785 Infectious Diseases. 2016;22(2):103-9. Epub 2015/12/22. doi: 10.1016/j.cmi.2015.11.019. PubMed PMID:
786 26686808.

787 37. Sibanda N, McKenna A, Richmond A, Ricke SC, Callaway T, Stratakos AC, et al. A Review of the Effect
788 of Management Practices on *Campylobacter* Prevalence in Poultry Farms. *Frontiers in microbiology*.
789 2018;9:2002. Epub 2018/09/11. doi: 10.3389/fmicb.2018.02002. PubMed PMID: 30197638; PubMed Central
790 PMCID: PMCPMC6117471.

791 38. Strachan NJ, Watson RO, Novik V, Hofreuter D, Ogden ID, Galan JE. Sexual dimorphism in
792 campylobacteriosis. *Epidemiology and infection*. 2008;136(11):1492-5. Epub 2007/12/08. doi:
793 10.1017/s0950268807009934. PubMed PMID: 18062834; PubMed Central PMCID: PMCPMC2870750.

794 39. Gillespie IA, O'Brien SJ, Penman C, Tompkins D, Cowden J, Humphrey TJ. Demographic determinants
795 for *Campylobacter* infection in England and Wales: implications for future epidemiological studies.
796 *Epidemiology and infection*. 2008;136(12):1717-25. Epub 2008/11/13. doi: 10.1017/s0950268808000319.
797 PubMed PMID: 19000328; PubMed Central PMCID: PMCPMC2870783.

798 40. Leitner G, Heller ED, Friedman A. Sex-related differences in immune response and survival rate of
799 broiler chickens. *Veterinary immunology and immunopathology*. 1989;21(3-4):249-60. Epub 1989/07/01.
800 doi: 10.1016/0165-2427(89)90035-4. PubMed PMID: 2678727.

801 41. Garcia-Morales C, Nandi S, Zhao D, Sauter KA, Vervelde L, McBride D, et al. Cell-autonomous sex
802 differences in gene expression in chicken bone marrow-derived macrophages. *Journal of immunology*
803 (Baltimore, Md : 1950). 2015;194(5):2338-44. Epub 2015/02/01. doi: 10.4049/jimmunol.1401982. PubMed
804 PMID: 25637020; PubMed Central PMCID: PMCPMC4337484.

805 42. Chaloner G, Wigley P, Humphrey S, Kemmett K, Lacharme-Lora L, Humphrey T, et al. Dynamics of
806 dual infection with *Campylobacter jejuni* strains in chickens reveals distinct strain-to-strain variation in
807 infection ecology. *Applied and environmental microbiology*. 2014;80(20):6366-72. Epub 2014/08/12. doi:
808 10.1128/aem.01901-14. PubMed PMID: 25107966; PubMed Central PMCID: PMCPMC4178652.

809 43. Newell DG, Fearnley C. Sources of *Campylobacter* colonization in broiler chickens. *Applied and*
810 *environmental microbiology*. 2003;69(8):4343-51. Epub 2003/08/07. doi: 10.1128/aem.69.8.4343-
811 4351.2003. PubMed PMID: 12902214; PubMed Central PMCID: PMCPMC169125.

812 44. Macdonald SE, van Diemen PM, Martineau H, Stevens MP, Tomley FM, Stabler RA, et al. Impact of
813 *Eimeria tenella* Coinfection on *Campylobacter jejuni* Colonization of the Chicken. *Infection and immunity*.
814 2019;87(2). Epub 2018/12/05. doi: 10.1128/iai.00772-18. PubMed PMID: 30510107; PubMed Central PMCID:
815 PMCPMC6346136.

816 45. Sofka D, Pfeifer A, Gleiss B, Paulsen P, Hilbert F. Changes within the intestinal flora of broilers by
817 colonisation with *Campylobacter jejuni*. *Berliner und Munchener tierarztliche Wochenschrift*. 2015;128(3-
818 4):104-10. Epub 2015/04/17. PubMed PMID: 25876269.

819 46. Indikova I, Humphrey TJ, Hilbert F. Survival with a Helping Hand: *Campylobacter* and Microbiota.
820 *Frontiers in microbiology*. 2015;6:1266. Epub 2015/12/01. doi: 10.3389/fmicb.2015.01266. PubMed PMID:
821 26617600; PubMed Central PMCID: PMCPMC4637420.

822 47. Gracia MI, Sanchez J, Millan C, Casabuena O, Vesseur P, Martin A, et al. Effect of Feed Form and
823 Whole Grain Feeding on Gastrointestinal Weight and the Prevalence of *Campylobacter jejuni* in Broilers Orally
824 Infected. *PloS one*. 2016;11(8):e0160858. Epub 2016/08/09. doi: 10.1371/journal.pone.0160858. PubMed
825 PMID: 27500730; PubMed Central PMCID: PMCPMC4976972.

826 48. Visscher C, Klingenberg L, Hankel J, Brehm R, Langeheine M, Helmbrecht A. Influence of a specific
827 amino acid pattern in the diet on the course of an experimental *Campylobacter jejuni* infection in broilers.
828 *Poult Sci*. 2018;97(11):4020-30. Epub 2018/07/10. doi: 10.3382/ps/pey276. PubMed PMID: 29982672;
829 PubMed Central PMCID: PMCPMC6162363.

830 49. Bishop SC, Woolliams JA. On the genetic interpretation of disease data. *PloS one*. 2010;5(1):e8940.
831 Epub 2010/02/04. doi: 10.1371/journal.pone.0008940. PubMed PMID: 20126627; PubMed Central PMCID:
832 PMCPMC2812510.

833 50. Bishop SC, Doeschl-Wilson AB, Woolliams JA. Uses and implications of field disease data for livestock
834 genomic and genetics studies. *Frontiers in genetics*. 2012;3:114. Epub 2012/06/28. doi:
835 10.3389/fgene.2012.00114. PubMed PMID: 22737163; PubMed Central PMCID: PMCPMC3381217.

836 51. Parker A, Kaufman J. What chickens might tell us about the MHC class II system. *Current opinion in*
837 *immunology*. 2017;46:23-9. Epub 2017/04/24. doi: 10.1016/j.co.2017.03.013. PubMed PMID: 28433952.

838 52. Steimle V, Siegrist CA, Mottet A, Lisowska-Grosپierre B, Mach B. Regulation of MHC class II
839 expression by interferon-gamma mediated by the transactivator gene CIITA. *Science (New York, NY)*.
840 1994;265(5168):106-9. Epub 1994/07/01. doi: 10.1126/science.8016643. PubMed PMID: 8016643.

841 53. Salomonsen J, Chattaway JA, Chan AC, Parker A, Huguet S, Marston DA, et al. Sequence of a complete
842 chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular
843 expression patterns. *PLoS genetics*. 2014;10(6):e1004417. Epub 2014/06/06. doi:
844 10.1371/journal.pgen.1004417. PubMed PMID: 24901252; PubMed Central PMCID: PMCPMC4046983.

845 54. Smith CK, Kaiser P, Rothwell L, Humphrey T, Barrow PA, Jones MA. *Campylobacter jejuni*-induced
846 cytokine responses in avian cells. *Infection and immunity*. 2005;73(4):2094-100. Epub 2005/03/24. doi:
847 10.1128/iai.73.4.2094-2100.2005. PubMed PMID: 15784550; PubMed Central PMCID: PMCPMC1087459.

848 55. Smith CK, Abuoun M, Cawthraw SA, Humphrey TJ, Rothwell L, Kaiser P, et al. *Campylobacter*
849 colonization of the chicken induces a proinflammatory response in mucosal tissues. *FEMS immunology and*
850 *medical microbiology*. 2008;54(1):114-21. Epub 2008/07/24. doi: 10.1111/j.1574-695X.2008.00458.x.
851 PubMed PMID: 18647351.

852 56. Reid WD, Close AJ, Humphrey S, Chaloner G, Lacharme-Lora L, Rothwell L, et al. Cytokine responses
853 in birds challenged with the human food-borne pathogen *Campylobacter jejuni* implies a Th17 response.
854 *Royal Society open science*. 2016;3(3):150541. Epub 2016/04/14. doi: 10.1098/rsos.150541. PubMed PMID:
855 27069644; PubMed Central PMCID: PMCPMC4821255.

856 57. Freem L, Summers KM, Gheys AA, Psifidi A, Boulton K, MacCallum A, et al. Analysis of the Progeny
857 of Sibling Matings Reveals Regulatory Variation Impacting the Transcriptome of Immune Cells in Commercial
858 Chickens. *Frontiers in genetics*. 2019;10:1032. Epub 2019/12/06. doi: 10.3389/fgene.2019.01032. PubMed
859 PMID: 31803225; PubMed Central PMCID: PMCPMC6870463.

860 58. Li P, Fan W, Everaert N, Liu R, Li Q, Zheng M, et al. Messenger RNA Sequencing and Pathway Analysis
861 Provide Novel Insights Into the Susceptibility to *Salmonella enteritidis* Infection in Chickens. *Frontiers in*
862 *genetics*. 2018;9:256. Epub 2018/08/01. doi: 10.3389/fgene.2018.00256. PubMed PMID: 30061915; PubMed
863 Central PMCID: PMCPMC6055056.

864 59. Rozen S, Fuzesi-Levi MG, Ben-Nissan G, Mizrachi L, Gabashvili A, Levin Y, et al. CSNAP Is a
865 Stoichiometric Subunit of the COP9 Signalosome. *Cell reports*. 2015;13(3):585-98. Epub 2015/10/13. doi:
866 10.1016/j.celrep.2015.09.021. PubMed PMID: 26456823; PubMed Central PMCID: PMCPMC5724754.

867 60. Dubiel D, Rockel B, Naumann M, Dubiel W. Diversity of COP9 signalosome structures and functional
868 consequences. *FEBS letters*. 2015;589(19 Pt A):2507-13. Epub 2015/06/23. doi:
869 10.1016/j.febslet.2015.06.007. PubMed PMID: 26096786.

870 61. Agarwal V, Hammerschmidt S. Cdc42 and the phosphatidylinositol 3-kinase-Akt pathway are
871 essential for PspC-mediated internalization of pneumococci by respiratory epithelial cells. *The Journal of*
872 *biological chemistry*. 2009;284(29):19427-36. Epub 2009/05/29. doi: 10.1074/jbc.M109.003442. PubMed
873 PMID: 19473971; PubMed Central PMCID: PMCPMC2740568.

874 62. Davids BJ, Palm JE, Housley MP, Smith JR, Andersen YS, Martin MG, et al. Polymeric immunoglobulin
875 receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. *Journal of*
876 *immunology* (Baltimore, Md : 1950). 2006;177(9):6281-90. Epub 2006/10/24. doi:
877 10.4049/jimmunol.177.9.6281. PubMed PMID: 17056558.

878 63. Shaughnessy RG, Meade KG, McGivney BA, Allan B, O'Farrelly C. Global gene expression analysis of
879 chicken caecal response to *Campylobacter jejuni*. *Veterinary immunology and immunopathology*.
880 2011;142(1-2):64-71. Epub 2011/05/25. doi: 10.1016/j.vetimm.2011.04.010. PubMed PMID: 21605915.

881 64. Connerton PL, Richards PJ, Lafontaine GM, O'Kane PM, Ghaffar N, Cummings NJ, et al. The effect of
882 the timing of exposure to *Campylobacter jejuni* on the gut microbiome and inflammatory responses of broiler
883 chickens. *Microbiome*. 2018;6(1):88. Epub 2018/05/14. doi: 10.1186/s40168-018-0477-5. PubMed PMID:
884 29753324; PubMed Central PMCID: PMCPMC5948730.

885 65. Hallersund P, Elfvin A, Helander HF, Fandriks L. The expression of renin-angiotensin system
886 components in the human gastric mucosa. *Journal of the renin-angiotensin-aldosterone system : JRAAS*.
887 2011;12(1):54-64. Epub 2010/08/27. doi: 10.1177/1470320310379066. PubMed PMID: 20739374.

888 66. Taylor L, Carlson DF, Nandi S, Sherman A, Fahrenkrug SC, McGrew MJ. Efficient TALEN-mediated gene
889 targeting of chicken primordial germ cells. *Development* (Cambridge, England). 2017;144(5):928-34. Epub
890 2017/02/09. doi: 10.1242/dev.145367. PubMed PMID: 28174243; PubMed Central PMCID:
891 PMCPMC5374353.

892 67. Kapell DN, Hill WG, Neeteson AM, McAdam J, Koerhuis AN, Avendano S. Twenty-five years of
893 selection for improved leg health in purebred broiler lines and underlying genetic parameters. *Poult Sci*.
894 2012;91(12):3032-43. Epub 2012/11/17. doi: 10.3382/ps.2012-02578. PubMed PMID: 23155010.

895 68. Hickey JM, Kinghorn BP, Tier B, van der Werf JH, Cleveland MA. A phasing and imputation method
896 for pedigree populations that results in a single-stage genomic evaluation. *Genetics, selection, evolution : GSE*.
897 2012;44:9. Epub 2012/04/03. doi: 10.1186/1297-9686-44-9. PubMed PMID: 22462519; PubMed Central
898 PMCID: PMCPMC3378429.

899 69. Hickey JM, Kranis A. Extending long-range phasing and haplotype library imputation methods to
900 impute genotypes on sex chromosomes. *Genetics, selection, evolution : GSE*. 2013;45:10. Epub 2013/04/27.
901 doi: 10.1186/1297-9686-45-10. PubMed PMID: 23617460; PubMed Central PMCID: PMCPMC3642030.

902 70. Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K
903 SNP genotyping array for chicken. *BMC genomics*. 2013;14:59. Epub 2013/01/30. doi: 10.1186/1471-2164-
904 14-59. PubMed PMID: 23356797; PubMed Central PMCID: PMCPMC3598943.

905 71. Gilmour AR GB, Cullis BR, Thompson R. ASReml User Guide Release 3.0. VSN International Ltd,
906 Hemel Hempstead, United Kingdom. 2009.

907 72. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-
908 genome association and population-based linkage analyses. *American journal of human genetics*.
909 2007;81(3):559-75. Epub 2007/08/19. doi: 10.1086/519795. PubMed PMID: 17701901; PubMed Central
910 PMCID: PMCPMC1950838.

911 73. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association
912 analysis. *Bioinformatics* (Oxford, England). 2007;23(10):1294-6. Epub 2007/03/27. doi:
913 10.1093/bioinformatics/btm108. PubMed PMID: 17384015.

914 74. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide
915 association studies. *Nat Methods*. 2014;11(4):407-9. Epub 2014/02/18. doi: 10.1038/nmeth.2848. PubMed
916 PMID: 24531419; PubMed Central PMCID: PMCPMC4211878.

917 75. Canelas-Xandri O, Law A, Gray A, Woolliams JA, Tenesa A. A new tool called DISSECT for analysing
918 large genomic data sets using a Big Data approach. *Nature communications*. 2015;6:10162. Epub
919 2015/12/15. doi: 10.1038/ncomms10162. PubMed PMID: 26657010; PubMed Central PMCID:
920 PMCPMC4682108.

921 76. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. *Nature
922 biotechnology*. 2016;34(5):525-7. Epub 2016/04/05. doi: 10.1038/nbt.3519. PubMed PMID: 27043002.

923 77. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates
924 improve gene-level inferences. *F1000Research*. 2015;4:1521. Epub 2016/03/01. doi:
925 10.12688/f1000research.7563.2. PubMed PMID: 26925227; PubMed Central PMCID: PMCPMC4712774.

926 78. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating
927 quantification uncertainty. *Nat Methods*. 2017;14(7):687-90. Epub 2017/06/06. doi: 10.1038/nmeth.4324.
928 PubMed PMID: 28581496.

929 79. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. *Bioinformatics* (Oxford,
930 England). 2012;28(10):1353-8. Epub 2012/04/12. doi: 10.1093/bioinformatics/bts163. PubMed PMID:
931 22492648; PubMed Central PMCID: PMCPMC3348564.

932 80. Mohammadi P, Castel SE, Brown AA, Lappalainen T. Quantifying the regulatory effect size of cis-
933 acting genetic variation using allelic fold change. *Genome research*. 2017;27(11):1872-84. Epub 2017/10/13.
934 doi: 10.1101/gr.216747.116. PubMed PMID: 29021289; PubMed Central PMCID: PMCPMC5668944.

935 81. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
936 *Bioinformatics* (Oxford, England). 2014;30(15):2114-20. Epub 2014/04/04. doi:
937 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID: PMCPMC4103590.

938 82. Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, et al. A New Chicken Genome
939 Assembly Provides Insight into Avian Genome Structure. *G3* (Bethesda, Md). 2017;7(1):109-17. Epub

940 2016/11/17. doi: 10.1534/g3.116.035923. PubMed PMID: 27852011; PubMed Central PMCID: 941 PMCPMC5217101.
942 83. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq 943 aligner. *Bioinformatics* (Oxford, England). 2013;29(1):15-21. Epub 2012/10/30. doi: 944 10.1093/bioinformatics/bts635. PubMed PMID: 23104886; PubMed Central PMCID: PMCPMC3530905.
945 84. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format 946 and SAMtools. *Bioinformatics* (Oxford, England). 2009;25(16):2078-9. Epub 2009/06/10. doi: 947 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PubMed Central PMCID: PMCPMC2723002.
948 85. Gadin JR, van't Hooft FM, Eriksson P, Folkersen L. AllelicImbalance: an R/bioconductor package for 949 detecting, managing, and visualizing allele expression imbalance data from RNA sequencing. *BMC 950 bioinformatics*. 2015;16:194. Epub 2015/06/13. doi: 10.1186/s12859-015-0620-2. PubMed PMID: 26066318; 951 PubMed Central PMCID: PMCPMC4465016.
952 86. Borowska D, Rothwell L, Bailey RA, Watson K, Kaiser P. Identification of stable reference genes for 953 quantitative PCR in cells derived from chicken lymphoid organs. *Veterinary immunology and 954 immunopathology*. 2016;170:20-4. Epub 2016/02/14. doi: 10.1016/j.vetimm.2016.01.001. PubMed PMID: 955 26872627.
956 87. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway 957 Analysis. *Bioinformatics* (Oxford, England). 2014;30(4):523-30. Epub 2013/12/18. doi: 958 10.1093/bioinformatics/btt703. PubMed PMID: 24336805; PubMed Central PMCID: PMCPMC3928520.
959 88. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, 960 Visualization, and Integrated Discovery. *Genome biology*. 2003;4(5):P3. Epub 2003/05/08. PubMed PMID: 961 12734009.

962

963

964 **Figure Captions**

965 **Fig 1. Manhattan plots and Q-Q plots displaying the GWAS results for chicken *Campylobacter* colonisation 966 resistance using the 50K (A) and the imputed 600K (B) HD arrays.** (i) Genomic location is plotted against – 967 $\log_{10}(P)$ in the Manhattan plot. Genome-wide ($P < 0.05$) and suggestive genome-wide thresholds are shown 968 as red and blue lines, respectively. (ii) Q–Q plot of observed P values against the expected P values for 969 *Campylobacter* caeca load (log-transformed CFU of *Campylobacter* per gram of caeca content).

970 **Fig 2. MHC haplotype analysis results.** *Campylobacter* caecal load (log-transformed CFU of *Campylobacter* 971 per gram of caeca content) is plotted against the MHC haplotypes identified in the commercial chickens.

972 **Fig 3. Differential expression analysis results.** Differential expression of genes in chickens with different (low, 973 average and high) *Campylobacter* colonisation levels. Each column represents relative gene expression levels 974 in caecal tonsils of chickens. Expression level is shown as log2 fold change in expression of low and average 975 colonised chickens relative to expression of high colonised chickens.

976 **Fig 4. Expression QTL analysis results.** Boxplots showing the expression of *BG1* (4A), *TMEM11* (4B) and *COPS3* (4C) genes depending on the genotypes of SNPs acting as cis-elements. On the x-axis, "0", "1" and "2" represent the number of copies of the non-reference allele, and on the y-axis the expression of each gene (Transcripts Per Million, TPM), is represented after mean-centering and scaling.

980 **Fig 5. Allele specific expression (ASE) analysis results.** Bar plots showing the allele specific expression results for *BF2* (5A), *BLB1* (5B) and *BLB2* (5C) genes. Each column represents gene expression levels, measured as read counts, for each allele (reference (red) vs non-reference (green) allele). Gene expression levels have been plotted against each individual animal.

984 **Fig. 6. Pathway analysis using the IPA software.** The most highly represented canonical pathways derived from genes located within the candidate regions for *Campylobacter* colonisation resistance in commercial chickens. The solid yellow line represents the significance threshold. The line joining squares represents the ratio of the genes represented within each pathway to the total number of genes in the pathway.

988 **Fig. 7. Network analysis using the IPA software.** Three networks, related to immunological disease (A), cell death and survival (B), and molecular transport and protein trafficking (C) that illustrate the molecular interactions between the products of candidate genes selected from QTL regions for *Campylobacter* colonisation resistance in commercial chickens. Arrows with solid lines represent direct interactions and arrows with broken lines represent indirect interactions. Genes with white labels are those added to the IPA analysis because of their interaction with the target gene products.

994

995

996

997 **Supporting Information**

998 **S1 Fig. Patterns of linkage disequilibrium (LD) for SNP markers on chromosome 16 associated significantly**
999 **with *Campylobacter* colonisation resistance in commercial chickens.** All the significant SNP markers were
1000 in high LD, illustrated with red colour, and were located within the same LD block (230kb) marked with
1001 triangle.

1002 **S2 Fig. Manhattan plot and Q-Q plot displaying the RHM results for chicken *Campylobacter* colonisation**
1003 **resistance.** (A) Genomic location is plotted against $-\log_{10}(P)$ in the Manhattan plot. Genome-wide ($P < 0.05$)
1004 and suggestive genome-wide thresholds are shown as red and blue lines, respectively. (B) Q–Q plot of
1005 observed P values against the expected P values for *Campylobacter* caecal load (log-transformed CFU of
1006 *Campylobacter* per gram of caecal content).

1007 **S3 Fig. Pathway analysis using the IPA software.** The most highly represented canonical pathways derived
1008 from differentially expressed genes in the caecal tonsils of commercial chickens with divergent caecal
1009 *Campylobacter* load. The solid yellow line represents the significance threshold.

1010 **S4 Fig. Network analysis results using the IPA software.** A gene network related with cell death and survival
1011 and organismal injuries and abnormalities were constructed from differentially expressed genes in the caecal
1012 tonsils of commercial chickens with divergent caecal *Campylobacter* load. Arrows with solid lines represent
1013 direct interactions and arrows with broken lines represent indirect interactions. Genes with red labels are
1014 upregulated, with green labels downregulated and with white labels are those added to the IPA analysis
1015 because of their interaction with the target gene products.

1016

1017 **S1 Table. List of SNP windows associated with *Campylobacter* colonisation resistance in Regional**
1018 **Heritability Mapping (RHM) analysis of the commercial chickens.**

1019 **S2 Table. List of genes and non-coding RNAs located in the candidate regions for *Campylobacter* resistance**
1020 **identified by GWAS and RHM analysis in commercial chickens.**

1021 **S3 Table. Details of the commercial chickens with low, average and high *Campylobacter* colonisation levels**
1022 **selected for RNA-Seq.**

1023 **S4 Table. Expression (cis-) QTL analysis results.** List of SNPs identified by GWAS which were acting as *cis*-
1024 elements for genes located in the candidate regions for *Campylobacter* colonisation resistance.

1025 **S5 Table. Expression (trans-) QTL analysis results.** List of SNPs identified by GWAS which were acting as *trans*-
1026 elements across the chicken genome.

1027 **S6 Table. Allele specific expression (ASE) analysis results.** List of SNPs in the candidate regions for
1028 *Campylobacter* colonisation resistance which had a significant ASE.

1029 **S7 Table. Functional annotation clustering analysis of the genes located in the candidate regions for**
1030 ***Campylobacter* colonisation resistance in chickens.**
1031

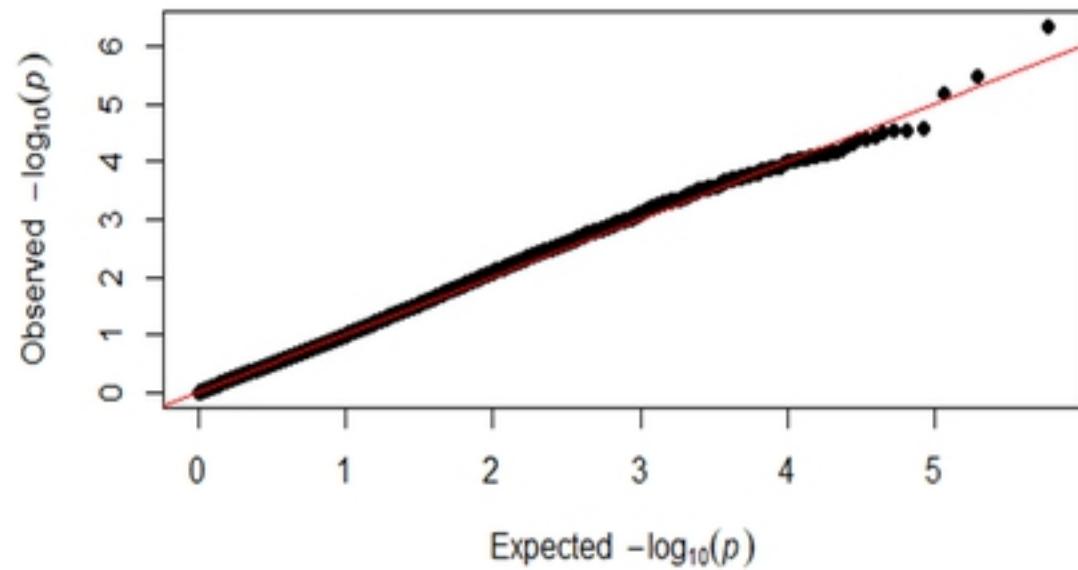
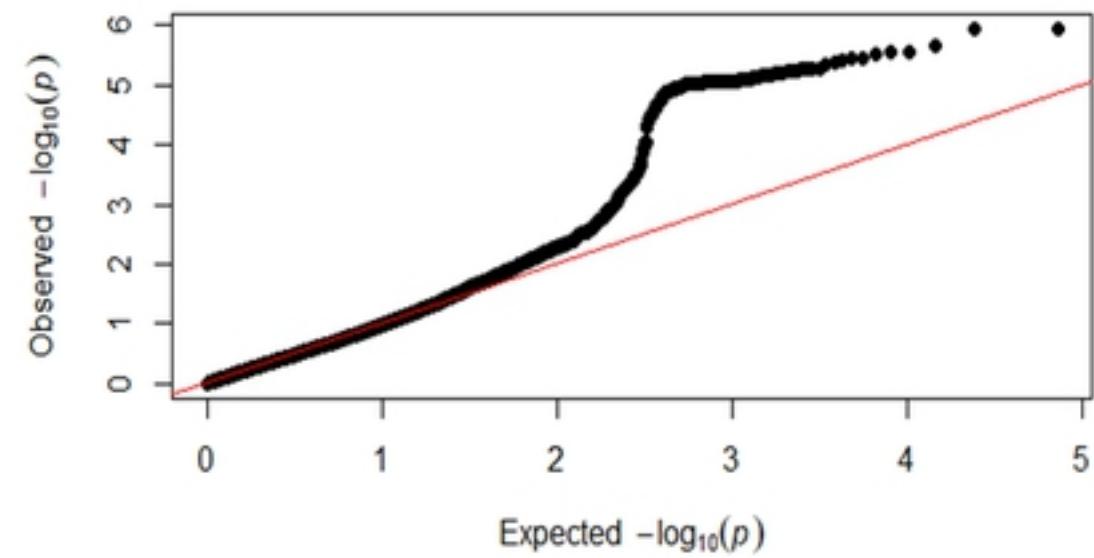
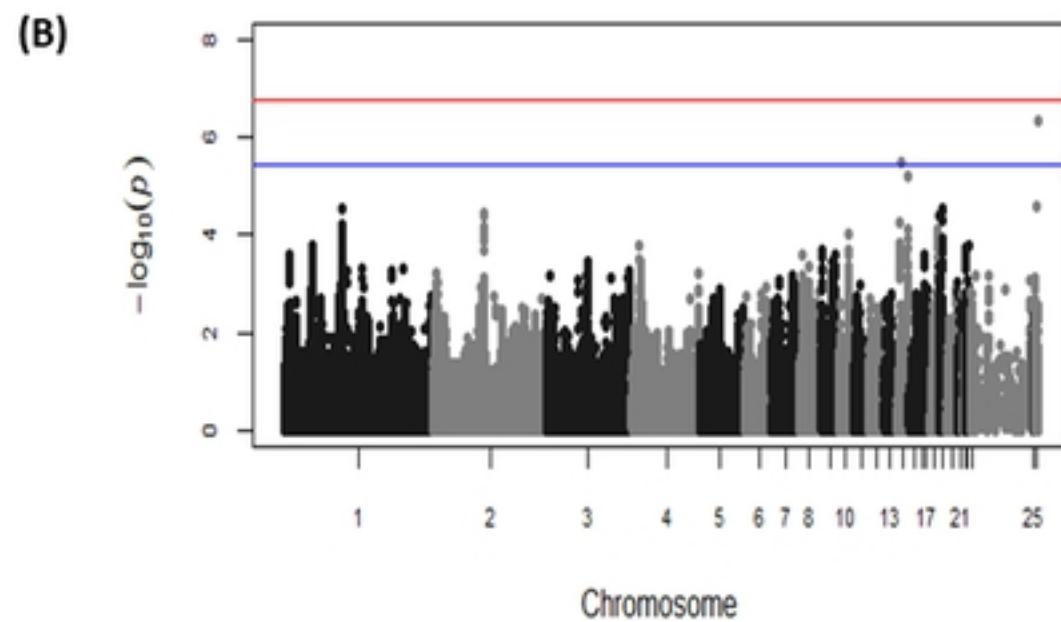
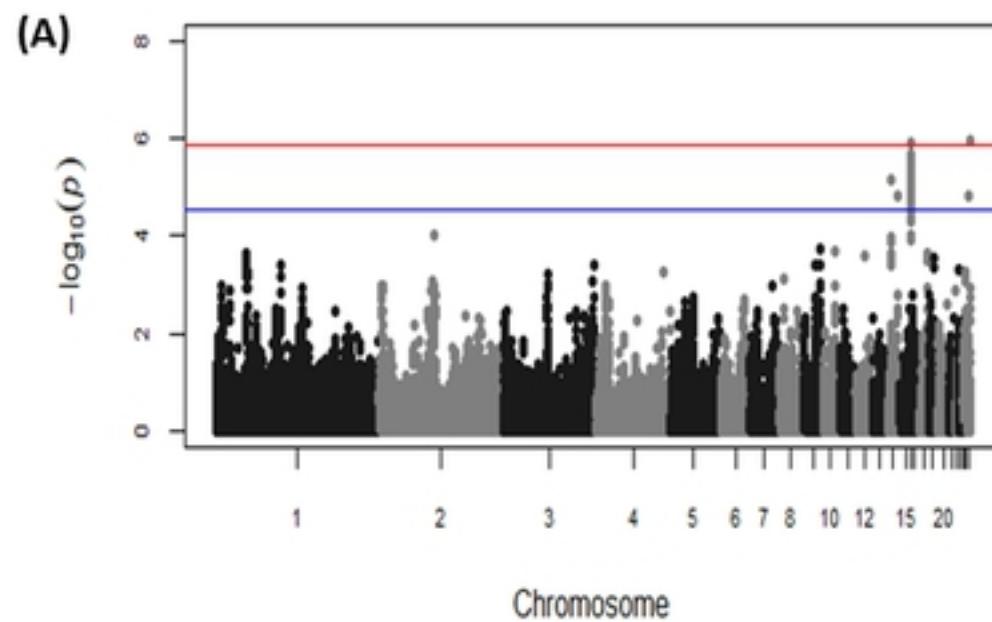





Figure 1

MHC haplotype analysis results

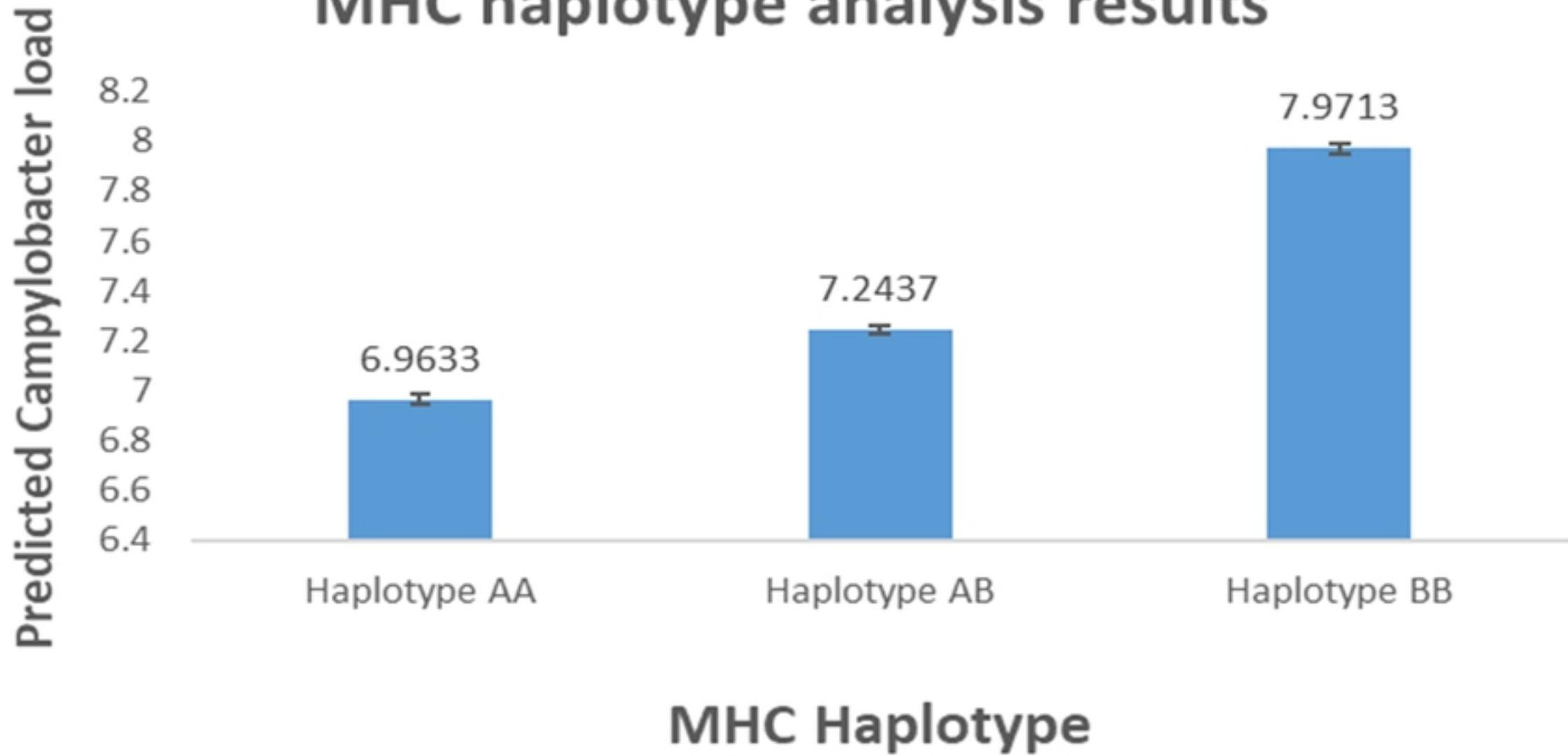


Figure 2

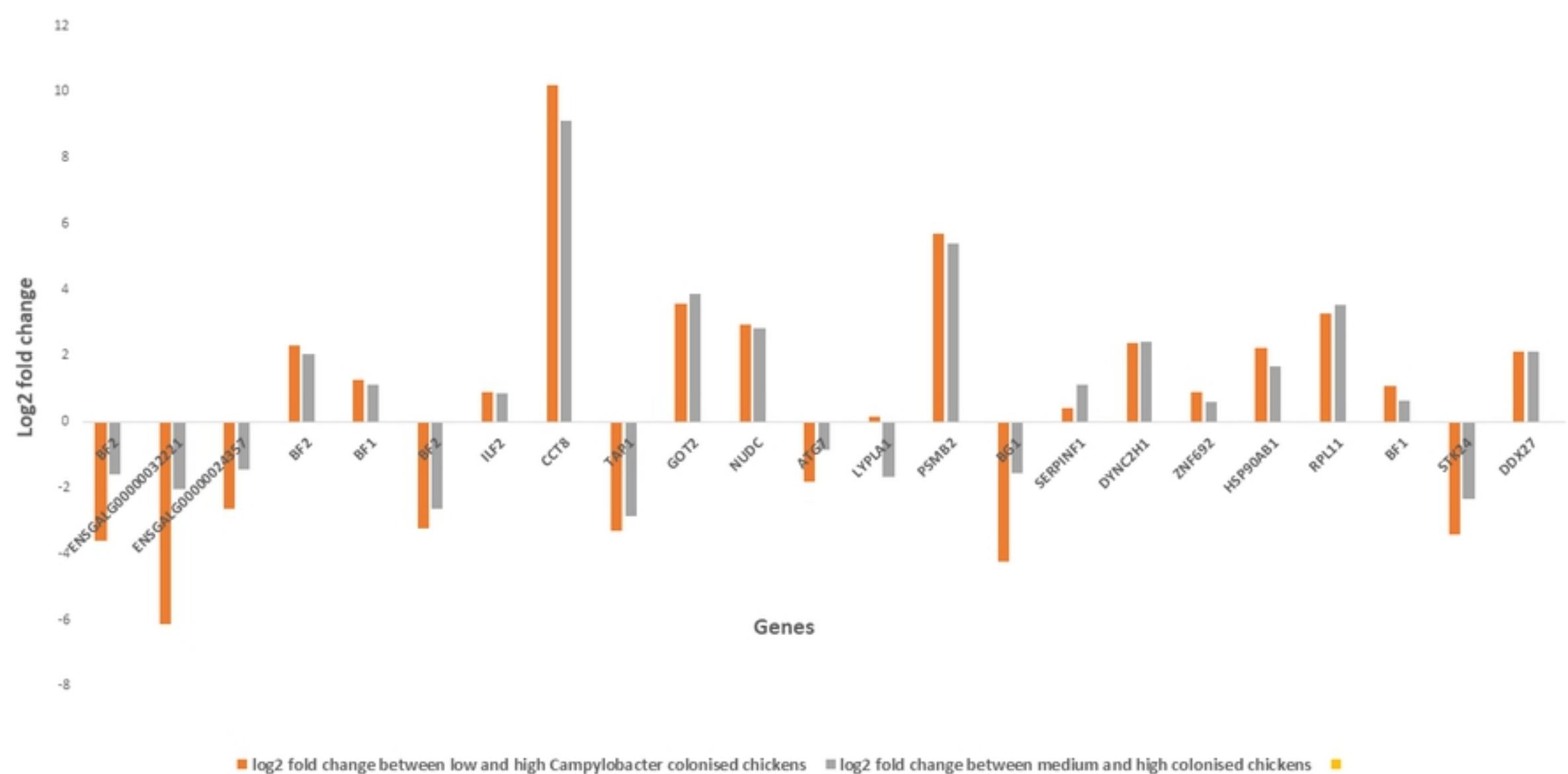
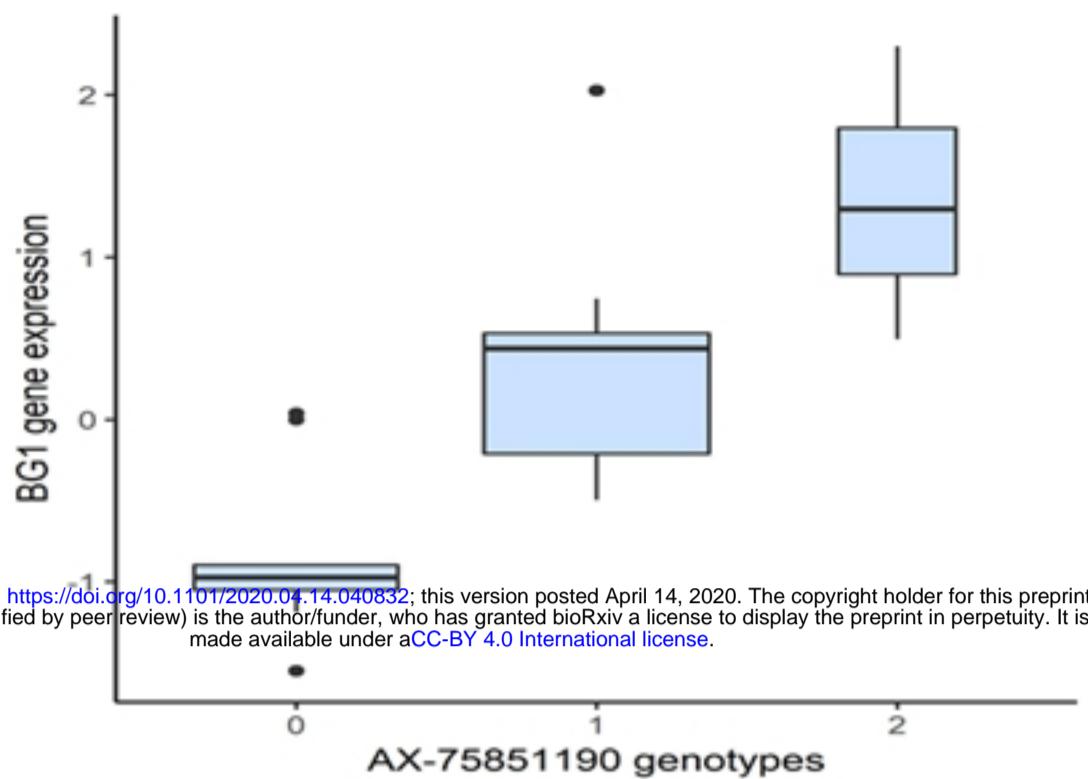
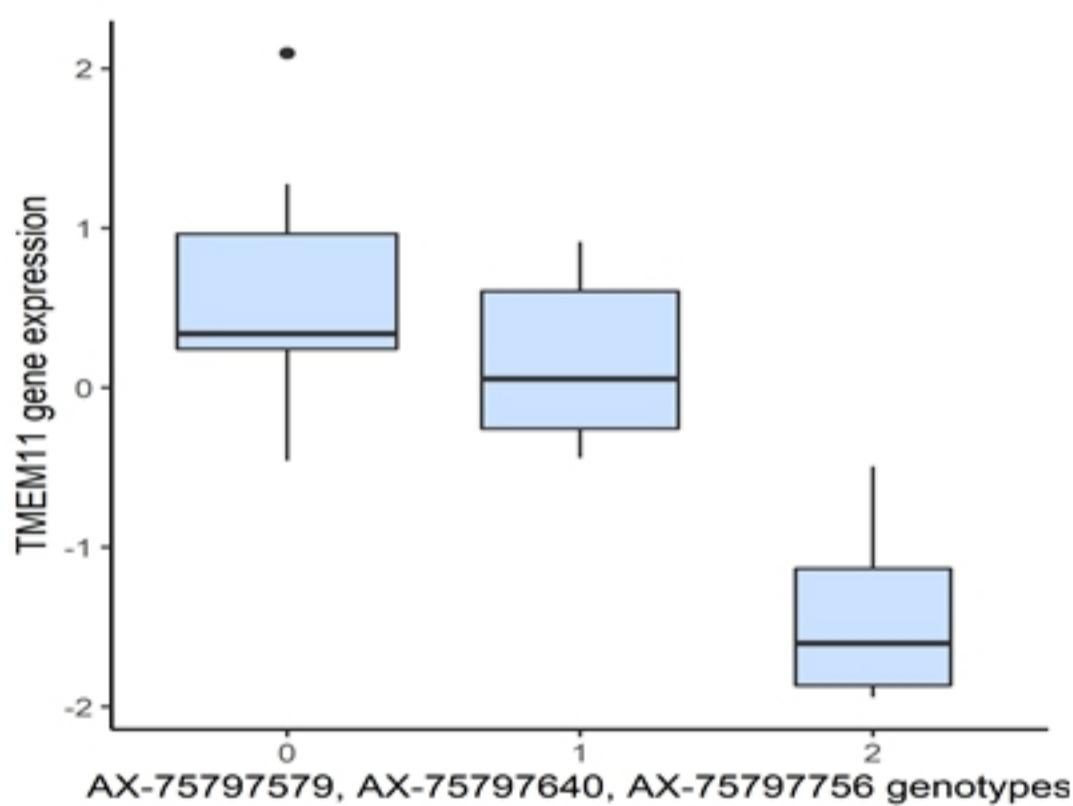




Figure 3

(A)

(B)

(C)

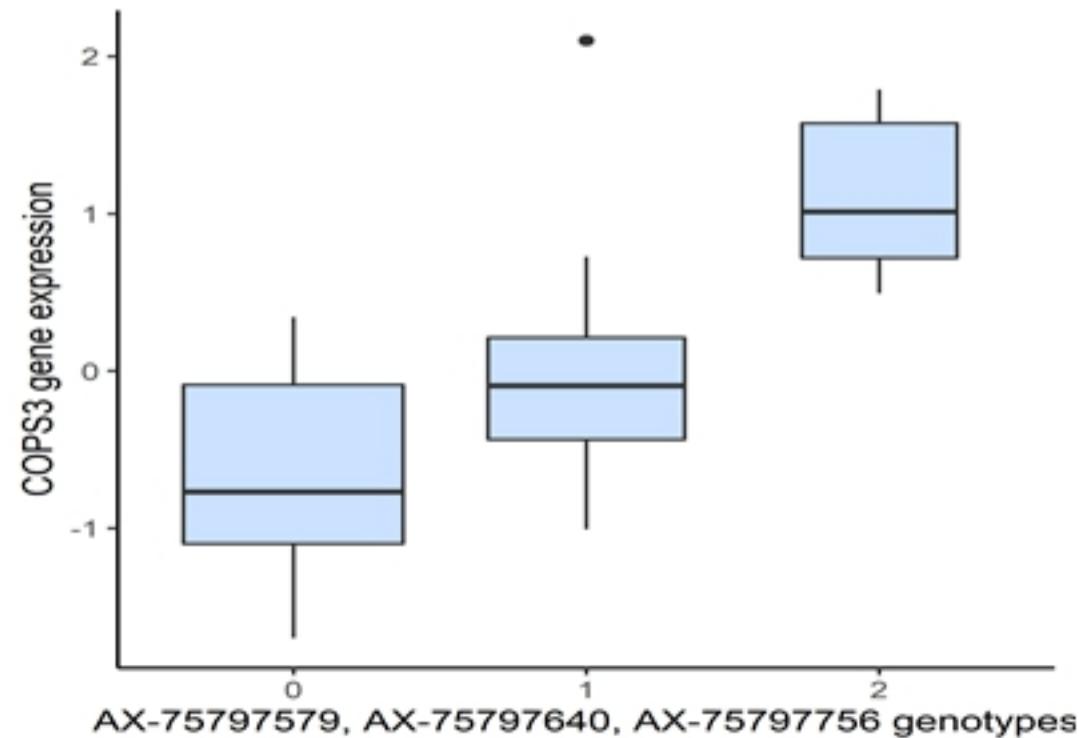
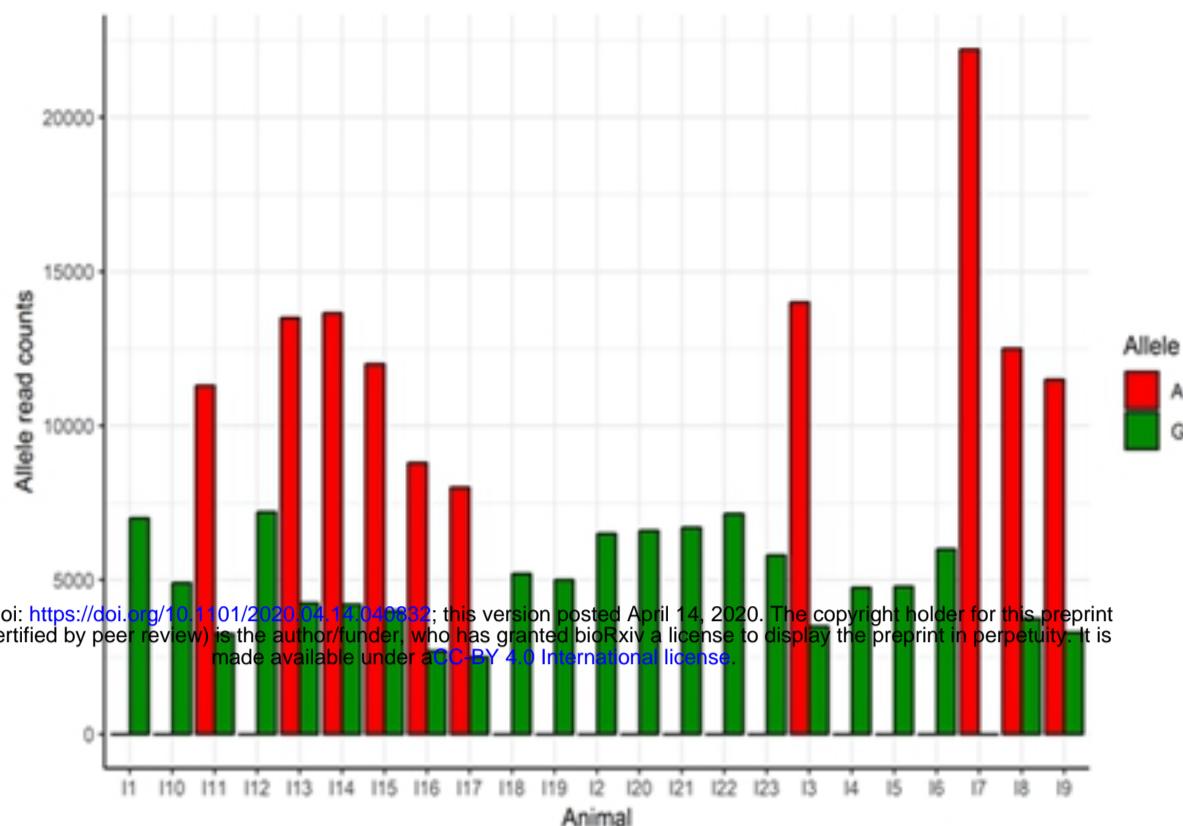
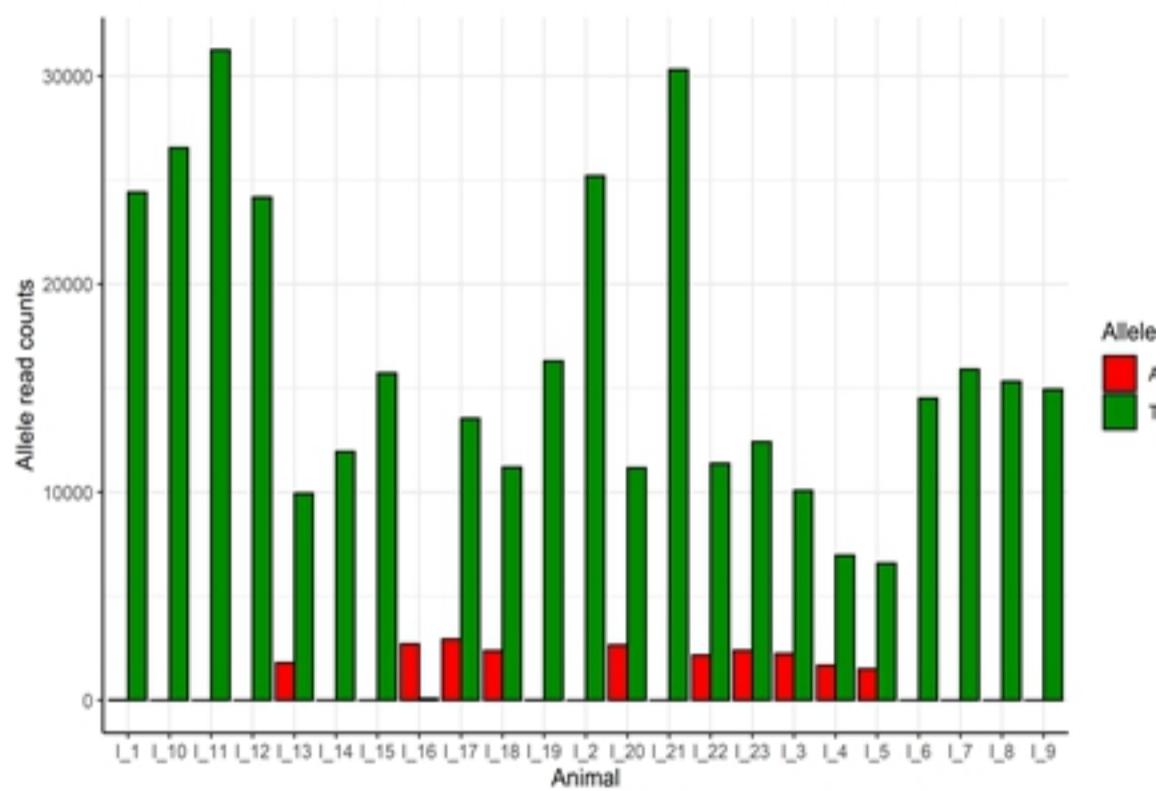
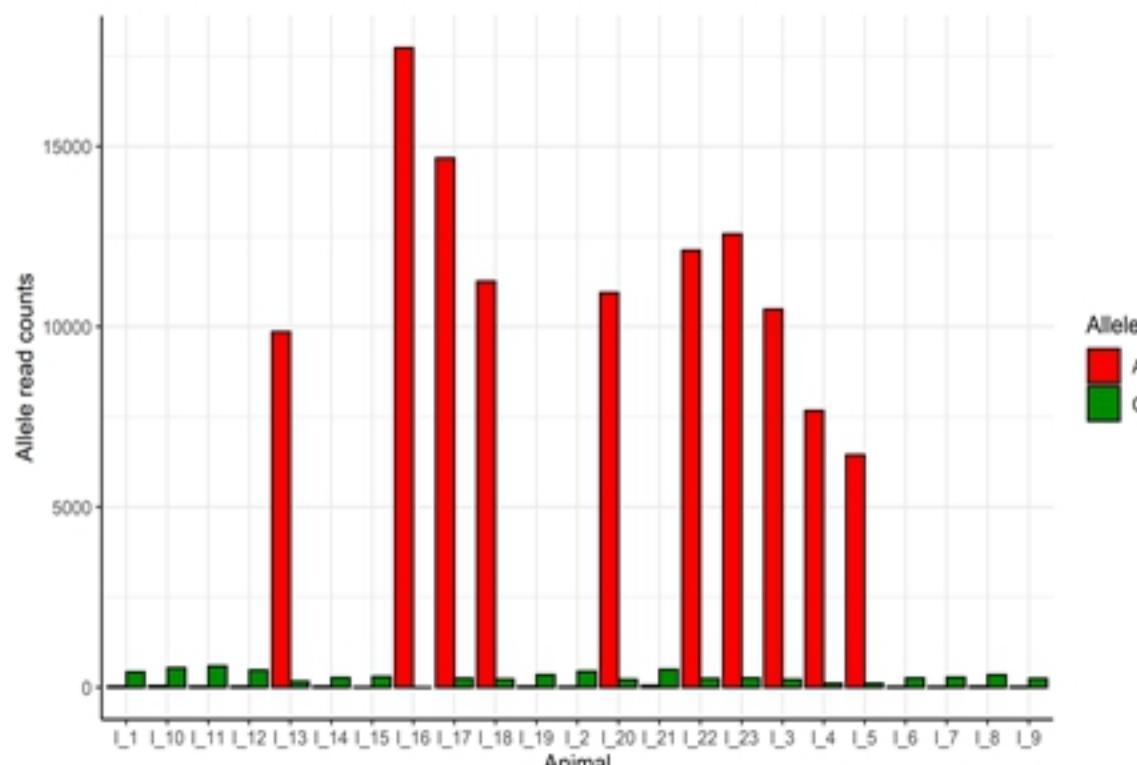





Figure 4

(A)**(B)****(C)****Figure 5**

(A)

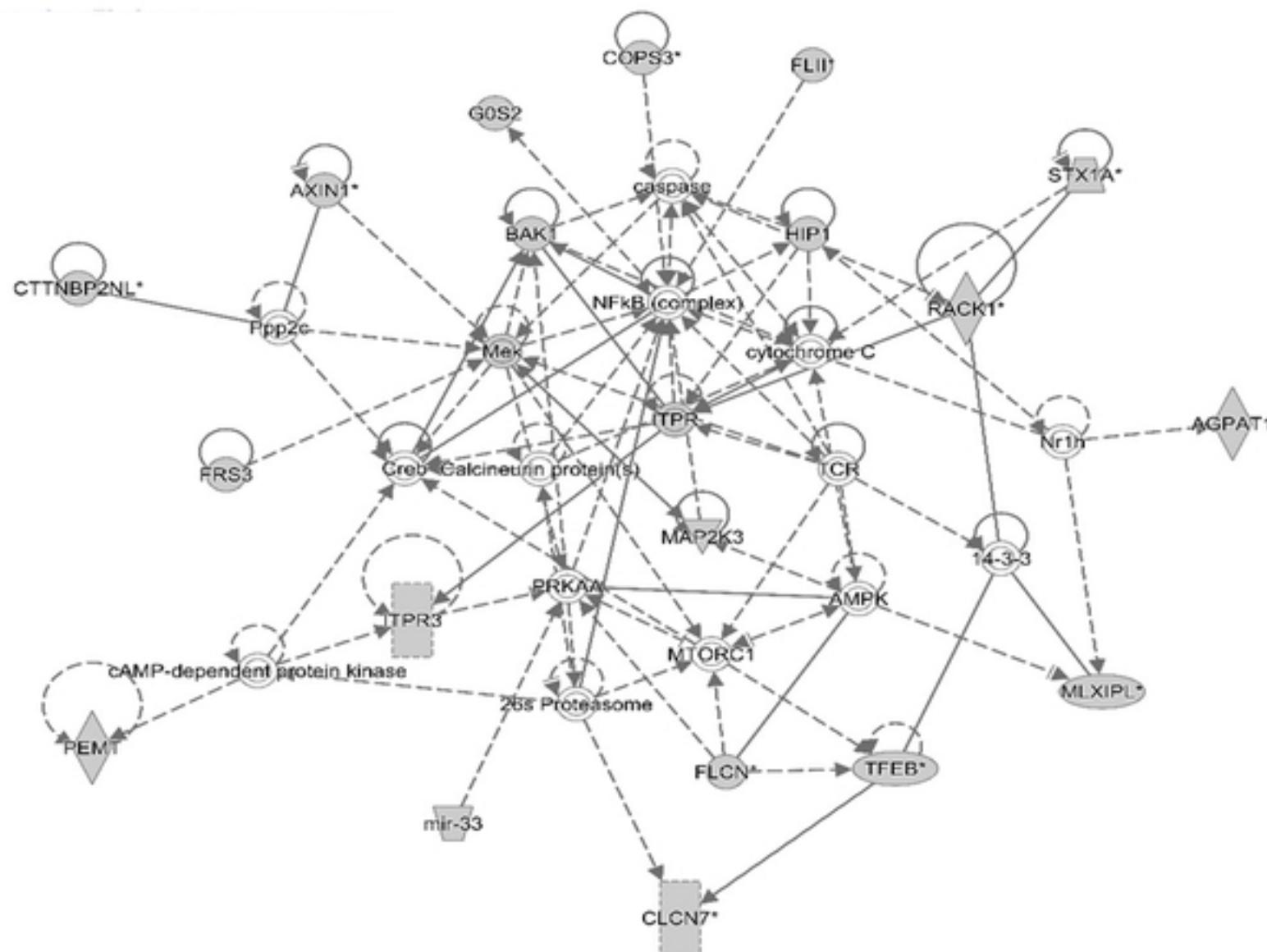


Figure 7A

(B)

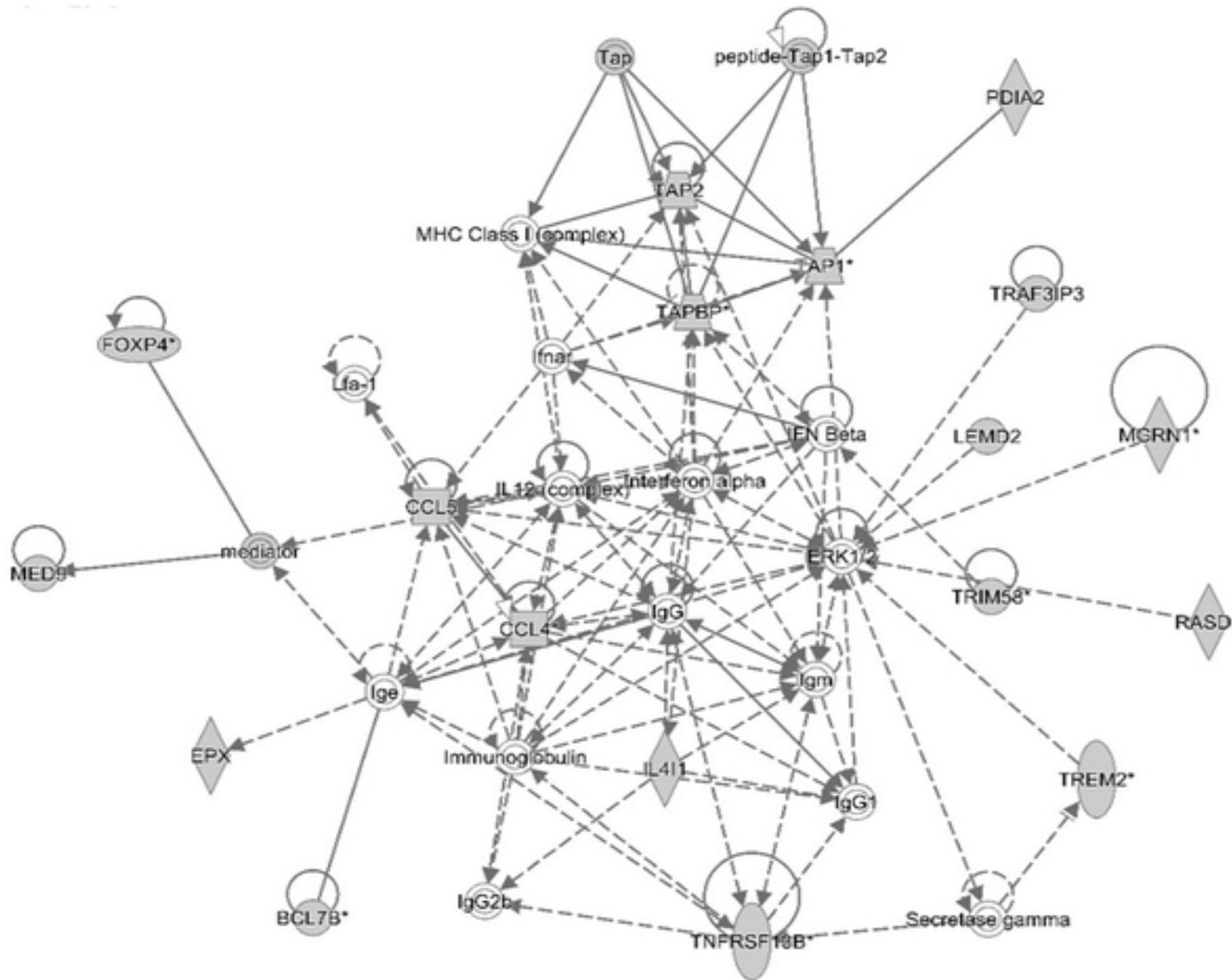


Figure 7B

(c)

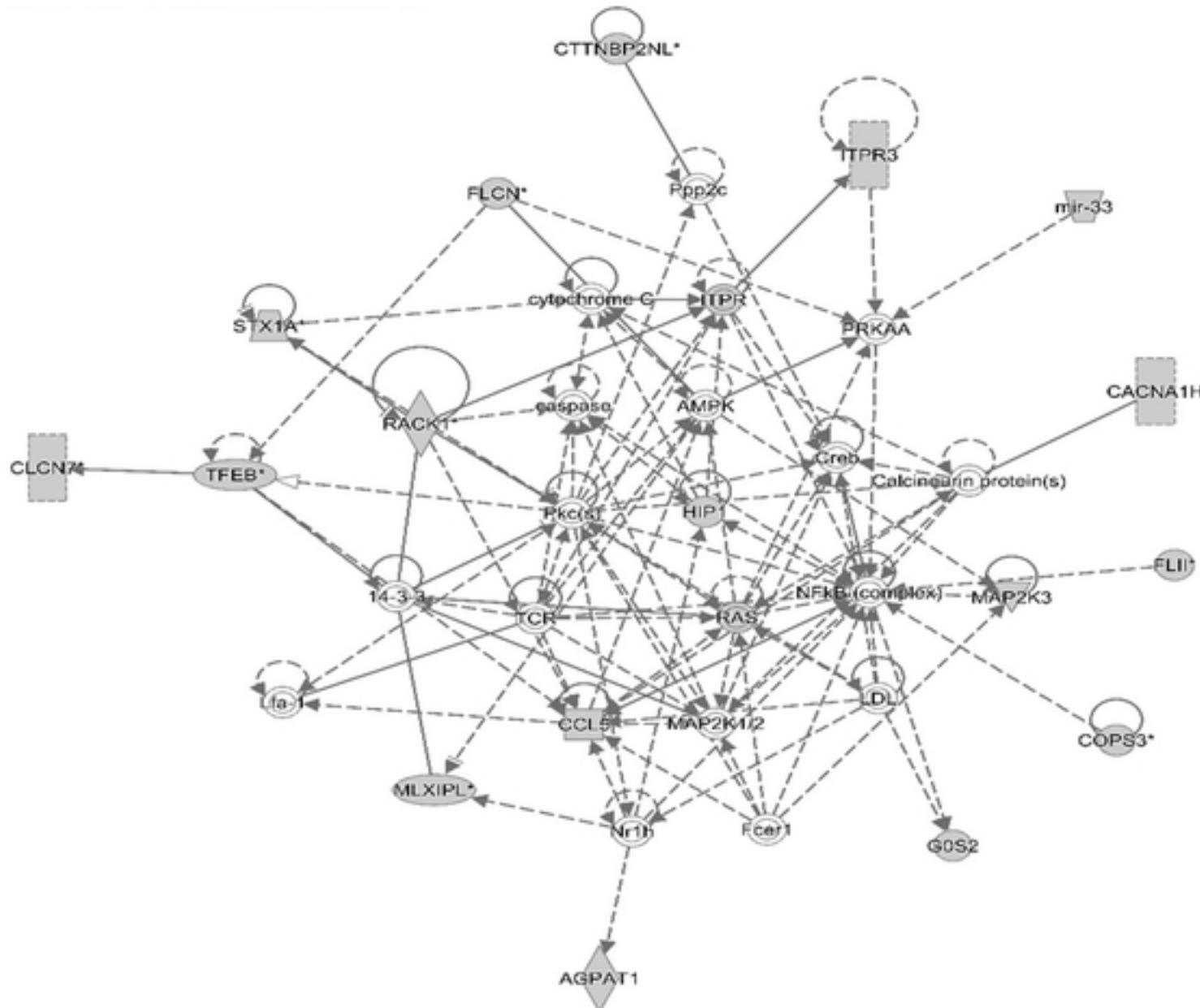
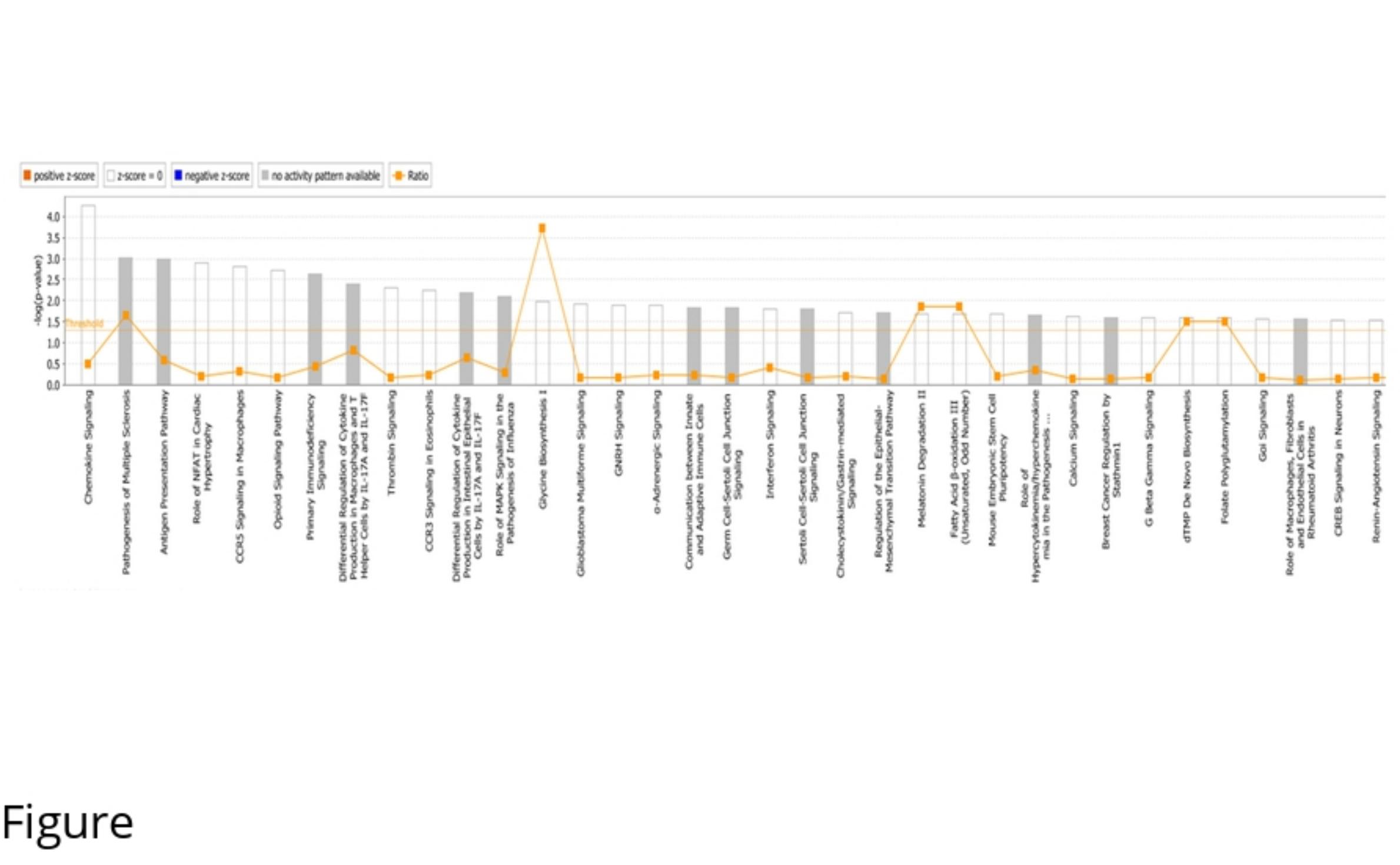



Figure 7C

