

1 **Optimization of cryopreservation and *in vitro***
2 **fertilization techniques for the African turquoise**
3 **killifish *Nothobranchius furzeri***

4

5

6 Luca Dolfi¹, Tsz Kin Suen¹, Roberto Ripa¹, Adam Antebi^{1,2*}

7

8

9 ¹Max Planck Institute for Biology of Ageing, Cologne, Germany

10 ²Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated
11 Diseases (CECAD), University of Cologne, Cologne, Germany

12 *corresponding author

13 E-mail: aantebi@age.mpg.de

14 **Abstract**

15 Over the last decade, the African turquoise killifish, *Nothobranchius furzeri*, has
16 emerged as an important model system for the study of vertebrate biology and
17 ageing. However, rearing this fish in captivity can pose challenges, due to the
18 short window of fertility, inbreeding problems, and the continuous maintenance of
19 different strains and transgenic lines. To date, the main means of long term
20 strain maintenance is to arrest embryos in diapause, a poorly understood and
21 unreliable method. To solve these problems, we developed a robust protocol to
22 cryopreserve sperm and to revive them for *in vitro* fertilization (IVF), as a better
23 option for long term storage of *N. furzeri* lines. We tested a variety of extender
24 and activator buffers for sperm *in vitro* fertilization, as well as cryoprotectants to
25 achieve maximal long term storage and fertilization conditions tailored to this
26 species. Our optimized protocol was able to preserve sperm in a cryogenic
27 condition for months and to revive an average of 40% upon thawing. Thawed
28 sperm were able to fertilize nearly the same number of eggs as natural
29 fertilization, with an average of ~25% and peaks of ~55% fertilization. This
30 technical advance will greatly facilitate the use of *N. furzeri* as a model organism.

31

32 **Abbreviations used:**

33 **HBSS:** Hank's Balanced Salt Solution

34 **BSMIS:** Buffered sperm motility-inhibiting solution

35 **FBS:** Fetal bovine serum

36 **DMSO:** Dimethyl sulfoxide

37 **DMF:** Dimethylformamide

38 **MetOH:** Methanol

39 **DMA:** Dimethylacetamide

40 **IVF:** *In vitro* fertilization

41

42 **Introduction**

43 Over the last few years the African killifish, *Nothobranchius furzeri*, has emerged
44 as important model system for the study of vertebrate ageing. The life cycle of
45 these fish is characterized by a fast growth rate, reaching sexual maturity by 4-5
46 weeks, and a maximum lifespan of 6,5-7 months (as mean lifespan of the most
47 long-lived 10% of a given cohort)[1], [2], making them among the shortest-lived
48 vertebrate species bred in captivity and a unique platform for the rapid
49 exploration of aging and age-associated diseases[3].

50 Unfortunately fast growth and aging features also carry some drawbacks that
51 make the maintenance in captivity of this species quite challenging. Rapid
52 growth and maturation lead to a rapid passing of successive generations, which
53 can often result in inbreeding [4], [5]. Indeed, it is virtually impossible to establish
54 an ancient founder to maintain an original genotype because of the marginal
55 overlap of generations. Fertility in this species is limited to the 5th-20th week of life
56 and is maximal between the 6th and the 11th [6]–[8], marking an extremely narrow
57 breeding window, especially compared to other fish species where this can

58 correspond to years. Moreover the success of transposon-mediated
59 transgenesis [9] and CRISPR-mediated mutagenesis [10] in this fish means that
60 more genetically engineered lines require continuous maintenance and space
61 usage. Breeding to preserve a line takes considerable effort and is fraught with
62 risk of accident or infection that can result in strain loss. Furthermore, *N. furzeri*
63 husbandry requires a large amount of space, since this species is optimally
64 grown in captivity when single housed because of fish-to-fish harassment and
65 food competition [8].

66 Given these constraints, it is essential to develop protocols to maintain stocks
67 without constant breeding. Currently, the only known way to “freeze” a
68 generation is through diapause, a state of arrested development [2]. However,
69 diapause itself is quite variable and a topic of intense investigation [11], [12]. It is
70 difficult, to date, to induce and release diapause in a controlled and synchronized
71 manner from a large pool of embryos. As well, it is challenging to retain
72 permanence in this stage. Even eggs in diapause need periodic maintenance,
73 their medium or substrate must be checked, cleaned and changed. As the
74 number of strains, species or lines to preserve increases, this method becomes
75 quickly untenable at larger scales.

76 To solve these problems, researchers of other fish species rely on *in vitro*
77 fertilization and sperm cryopreservation techniques. Through cryopreservation, it
78 is possible to create sperm banks that can store fish genetic pools with minimum
79 maintenance effort for years. Upon revival, the thawed sperm can usually fertilize
80 eggs with a success rate from 10-80% [13]. Specific protocols have been
81 established to preserve and activate the sperm of both production fish species
82 (salmonids, sturgeons, carps and catfishes) and research species (*Zebrafish*,

83 *Medaka*) [14]. Despite this, there is no protocol available to date for *in vitro*
84 fertilization or sperm cryopreservation of any killifish species.

85 Here we optimized a protocol for Killifish sperm cryopreservation and *in vitro*
86 fertilization. Our protocol will greatly facilitate the husbandry and the usefulness
87 of *N. furzeri* as a model organism for research.

88 **Results**

89 **Extender and Activator**

90 The optimum conditions for a suitable fertilization environment can vary greatly
91 for each fish species, as well as the protocols, buffers and setups for
92 spermatozoa cryopreservation. For most freshwater fish, sperm motility can be
93 initiated by hypotonic osmolalities [15] and/or by alteration of ion concentration
94 such as potassium or calcium [16], [17]. Once activated, the sperm usually have
95 a short period of motility (30 s to 5 min), depending on species [15].

96 Protocols from other fish species avail of an “extender” and an “activator”
97 solution. The extender is usually a saline-buffered solution that is mixed with the
98 extracted sperm that keeps it in a stable and inactive condition. This is made
99 possible mostly by the high molality of the extender solution, which is
100 comparable or higher than the ion concentrations inside the gonad [13], [18].
101 By contrast, the activator is a low molality solution, which when added to the
102 sperm-extender solution, initiates sperm activity and movement. Often but not
103 always the activator is a dilution of the extender and specific concentrations of
104 ions like potassium, calcium and magnesium are required for proper activation

105 [16]. Thus, aside from osmolality, medium composition is also responsible for
106 correct sperm motility, directionality and endurance [13], [19].
107 For the most common laboratory species like *Zebrafish* and *Medaka* there are
108 several existing protocols that describe the use of Hank's Balanced Salt Solution
109 (HBSS), Buffered sperm motility-inhibiting solution (BSMIS) or Fetal bovine
110 serum (FBS) as extender and a dilution of these compounds or the addition of
111 another composite salt, like Instant Ocean or Iwamatsu solution, for activation
112 [14], [20], [21].

113 Our first goal therefore was to test sperm activation upon mixing with different
114 known solutions. The sperm was collected from male fish through dissection and
115 gonad isolation. Before dissection, the fish were carefully dried to prevent
116 spontaneous sperm activation due to water presence. Both testes were placed
117 into liquid solution in an Eppendorf tube and quickly shaken for 5-10 seconds to
118 allow the sperm to be released in the medium. We tested different activating
119 solutions including Tank water, Deionized water, BSMIS, FBS, HBSS and
120 Iwamatsu solution at different dilutions and molalities (Fig 1).

121 **Fig 1: Fresh sperm activation in different buffers.** (A) Tracking imaging of sperm movements. (B) Quantification of
122 sperm activation in different buffers. (C) Magnification of different types of movement occurring after sperm
123 activation, proper directional movements on the left and erratic inefficient vibrating movements on the right.
124 Asterisks indicate significance levels of between-condition t-test comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. N
125 = 3 biological replicates for each condition.

126 Immediately afterwards, the gonads were removed from the medium, 10 μ l of the
127 mixture was put in a hemocytometer chamber and sperm movements were
128 video-recorded under a microscope. The videos were subsequently analyzed

129 and the percentage of directionally moving spermatozoa was estimated (Figs 1A
130 and 1B).

131 Tank water, the natural medium where fish biologically breed, was able to
132 activate ~40% of the sperm. Deionized water was able to trigger a very initial
133 activation for a few seconds (data not shown), which faded immediately
134 thereafter, resulting in the appearance of either vibrating or immobile sperm (Fig
135 1C). BSMIS, FBS, HBSS and Iwamatsu solutions were able to activate sperm
136 only when diluted, while the stocks solutions molalities were too high to promote
137 sperm activation (Fig 1B). Notably BSMIS and FBS diluted to 1:2 and 1:4 had
138 comparable or even superior activation rates compared to tank water while
139 HBSS and Iwamatsu solution instead were inferior as activation promoters at any
140 dilution.

141 Aside from dilution of the extender itself, dilution with FBS is often used in
142 combination with other solutions for sperm activation [20], [22], [23]. For example,
143 Aoki et al. used FBS combined with 2 more volumes of Iwamatsu solution to
144 promote directional activation in *Medaka* (which is the closest species to
145 *Nothobranchius* among model fish). We therefore combined the FBS buffer with
146 other solutions as candidate activators in order to achieve an increased yield of
147 activation. We tested FBS in combination with two volumes of Iwamatsu, BSMIS
148 and HBSS, at different dilutions (Fig 2A).

149 **Fig 2: Frozen sperm activation in different buffers at different ratios.** (A) Tracking imaging of sperm movements and
150 quantification of directional sperm in different activating solutions, mixed in a ratio 1 to 3 with the extender solution
151 (1 volume of extender solution in 3 volumes of activating solution). (B) Tracking imaging of sperm movements and
152 quantification of directional sperm in different activating solutions, mixed in a ratio 1 to 10 with the extender solution

153 (1 volume of extender solution in 10 volumes of activating solution). Asterisks indicate significance levels of between-
154 condition t-test comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. N = 3 biological replicates for each condition.

155 In contrast to *Medaka*, FBS mixed with Iwamatsu did not give remarkable
156 activation yields, probably because of the high molality of the resulting mixture,
157 which may be suitable for *Medaka* (a half saltwater half freshwater fish) but not
158 for freshwater *N. furzeri*.

159 Among all the combinations, we noticed an impressive activation when applying
160 FBS together with a dilution 1:4 of BSMIS, reaching activation yields >60%.
161 These results outperformed all the other combinations and the baseline
162 activation in tank water, being similar or superior to the yields achieved by
163 BSMIS 1:2 and BSMIS 1:4 obtained in the previous test (Figs 2A and 1B). As a
164 second test, we repeated the previous experiment changing the ratio between
165 the extender (FBS) and the activators, from 1 plus 2 volumes respectively to 1
166 plus 9 volumes respectively. However, the activation rates obtained in the
167 second test (Fig 2B) were significantly worse compared to the previous test and
168 in these conditions most of the spermatozoa were vibrating or not moving at all.

169 **Cryoprotection, Freezing and Thawing**

170 To allow the sperm to survive the freezing procedure and be preserved for a long
171 time in a cryostatic condition, the extender has to be supplemented with a
172 cryoprotectant. Among the most used are DMSO, DMF, MetOH glycerol and
173 DMA, with a concentration that varies between 5 and 20% (usually 10%) of the
174 volume [14], [24]. These chemicals, even if mildly toxic, have the property to
175 surround the sperm cells, preventing the formation of ice crystals that could
176 compromise membrane integrity and protecting them from cryodamage [25].

177 Thus, our second goal was to establish conditions for long-term sperm
178 cryopreservation. Our target was to find an extender solution, which combined
179 with the proper cryoprotectant, could preserve the collected sperm in the inactive
180 state in a frozen condition. Since BSMIS and FBS worked best to activate sperm
181 when diluted (Fig 1B), we focused our studies on these.

182 In the first experiment we mixed the selected extender with an arbitrary
183 concentration (10%) of DMSO, DMF, MetOH, DMA or glycerol for a total of 10
184 combinations. Sperm was released in already mixed extender-cryoprotectant
185 solutions (Fig 3C) and the mixture was incubated for 1h at 4°C (Fig 3D), allowing
186 the cryoprotectants to be evenly absorbed by the sperm cells.

187 **Fig 3: Schematic of sperm collection and freezing procedure.** (A) Males dissection. (B) Gonads extraction. (C) Gonads
188 swing in extender plus cryoprotectant solution. (D-E) Cryoprotectant effect on sperm cells at 4°C and solution
189 transfer in smaller aliquots. (F) First freezing step setup with laying on the bottom of a glass beaker surrounded by
190 dry ice in a closed styrofoam box. (G) Second freezing step setup with aliquots exposed to nitrogen vapor. (H)
191 Aliquots long term storage in liquid nitrogen. For a detailed explanation of the several steps refer to the text.

192 The samples were then aliquoted in 60ul volumes (Fig 3E), frozen in dry ice (Fig
193 3F), and nitrogen gas phase (Fig 3G) in sequence, and finally stored in liquid
194 nitrogen (Fig 3H).

195 After 24–48h freezing, the sperm were revived through fast thawing in a 30°C
196 water bath and activated by the addition of 2 volumes of BSMIS diluted 1:4 in the
197 case of FBS extender and BSMIS diluted 1:2 in the case of BSMIS extender. We
198 found that sperm cryopreserved using 10% DMSO as cryoprotectant maintained
199 the highest activation (Fig 4A), followed by 10% methanol (with a greater effect
200 when used in combination with FBS), and last with DMF.

201 **Fig 4: Cryoprotectants, cryopreservation and thawing efficiencies.** (A) Frost protecting efficiencies of different
202 cryoprotectants in different extender solutions. Y bar represents the portion of sperm able to reactivate upon
203 defrosting and mix with the activator solution. (B) Different concentrations effects of cryoprotectants in FBS extender.
204 (C) Different freezing methods with different cooling rates applied to FBS extender plus 10% cryoprotectant. (D)
205 Different thawing methods with different thawing rates applied to FBS extender plus 10% DMSO. Asterisks indicate
206 significance levels of between-condition t-test comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. N = 3 biological
207 replicates for each condition.

208 Glycerol and DMA were absolutely ineffective in protecting the sperm from
209 freezing, resulting in immobile or inviable sperm upon thawing.

210 To achieve a higher yield of sperm survival and activation, we further optimized
211 the cryoprotectant concentration in the sperm-extender mixtures. Several
212 concentrations of cryoprotectants were tested in combination with FBS. Sperm
213 cryopreserved in FBS with 10 to 20% DMSO maintained comparably high
214 activation (Fig 4B), dropping slightly on higher concentrations, probably due to
215 increasing toxicity. Any concentration of methanol was able to moderately protect
216 sperm from cryodamage even though the revival rates were inferior compared to
217 DMSO by 5% to 20% less. Other combinations were not able to protect sperm
218 cells efficiently. Less than 10% of sperm were able to revive after freezing in any
219 concentration of DMA or DMF (Fig 4B).

220 Since no relevant increase in sperm survival and activation was observed in the
221 samples with a cryoprotectant concentration >10%, we set this concentration as
222 a standard for our future cryopreservation experiments. We selected DMSO and
223 Methanol as cryoprotectants to perform further optimization of cryopreservation.

224 Apart from the application of cryoprotectants, the freezing procedure is also a
225 crucial step for cryopreservation. A slow freezing rate can produce large ice

226 crystals and damage cellular ultrastructure, whereas a rapid freezing rate induce
227 only small intracellular ice crystals that are less likely to prompt damage [26].

228 We optimized sample freezing rate with various freezing setups. We placed the
229 Eppendorf tubes in 1) Mr. Frosty™ Freezing Container (estimated -10°C per min),
230 2) a glass beaker surrounded by dry ice (estimated -20°C per min), 3) direct
231 contact with dry ice (estimated -50°C per min), 5) a Dewar vessel calorimeter
232 partially filled with liquid nitrogen, where the Eppendorf tubes were placed in a
233 box without direct contact with liquid nitrogen but exposed to nitrogen gas phase
234 (estimated -100 °C per min); and 6) direct liquid nitrogen contact (estimated -
235 200°C per min) (Fig 4C). Sperm vials from all freezing setups were stored in
236 liquid nitrogen overnight after they reached a temperature below -50°C. After one
237 day, frozen sperm samples were revived using BSMIS 1:4 and observed for
238 their activation. Sperm vials frozen in a beaker surrounded by dry ice (\pm 20°C per
239 min) achieved the highest activation upon revival. Sperm cryoprotected with 10%
240 DMSO had higher activation than that cryoprotected with 10% methanol (Fig 4C),
241 similar to above. Therefore, we selected DMSO as the final cryoprotectant for
242 our cryopreservation protocol.

243 To assess the proper thawing rate for the frozen sperm vials, we thawed the
244 vials at 1) 30°C in a water bath, 2) room temperature and 3) 4°C in the fridge to
245 achieve rapid, medium, or slow thawing rates, respectively. We then revived
246 sperm using BSMIS 1:4 and observed the activation rate. Our results showed
247 that rapid thawing achieves the highest survival and activation of sperm (Fig 4D).

248 **Egg fertilization and survival**

249 Finally, we tested if the active sperm obtained with our protocol was also able to
250 fertilize eggs obtained from *N. furzeri* females. To perform this experiment in the
251 most comparable way, we set up several aquarium tanks with 5 female and 2
252 male specimens per tank and allowed them to naturally breed for 2 days. We
253 then collected the eggs generated from the natural breeding and monitored their
254 survival rate until mid somitogenesis. After the natural breeding, the males were
255 separated from the females, kept alone for 2 days, then sacrificed for gonad
256 extraction. The females were anesthetized, dried carefully (Fig 5A), and their
257 unfertilized eggs were gently pushed out from their belly (Fig 5B).

258 **Fig 5: Schematic of sperm thawing and egg fertilization procedure.** (A) Females preparation. (B) Eggs collection
259 through gentle belly squeeze. (C) Frozen sperm thawing in a water bath. (D-E) Eggs mixing with sperm-extender
260 solution. (F) Activating solution addition and (G) mix. (H) Fertilization occurring. (I) Eggs recovery in a petri dish. (J)
261 Fertilized egg developing in a petri dish. For a detailed explanation of the several steps refer to the text.

262 The sperm obtained from the male gonads was mixed with FBS or BSMIS buffer
263 with 10% DMSO. Half of the sperm-extender-cryoprotectant mixture was directly
264 activated (with 1:2 or 1:4 BSMIS) and used for the fertilization of the eggs (Fig
265 5D-J) while the other half was frozen and cryopreserved (Fig 3).

266 After a variable time period (from 1 day to 2 months), the frozen sperm were
267 thawed, activated and used to fertilize another pool of eggs, following the same
268 procedure (Fig 5).

269 All the eggs fertilized in both ways were monitored until the stage of mid
270 somitogenesis (Fig 6C) or later (Fig 6D) and some up to the point of hatching
271 (Fig 6E). Survival rates were scored (Fig 6F).

272 **Fig 6: Fertilization rates and embryos development.** (A) Embryos with not occurred (top left) and occurred (bottom
273 right) cortical reaction. (B) Embryos developing not correctly with odd cells number with different size (top left) and

274 correctly with a proper 4 cells stage (bottom right). (C) Embryos fertilized with IVF developing through diapause II /
275 mid-somitogenesis stage and later at (D) and advanced developmental stage. (E) Adult fish derived from IVF embryos.
276 (F) Fertilization efficiencies of natural breeding, IVF with fresh extracted sperm and IVF with frozen sperm. Asterisks
277 indicate significance levels of between-condition t-test comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. N =
278 6,8,4,10,3 biological replicates for each fertilization condition, respectively, in order of appearance in the graph.

279 For the detailed fertilization protocol, females were anesthetized and carefully
280 dried from any residual water to prevent spontaneous egg cortical reaction or
281 activation (Fig 5A). Laying the fish on an open hand, a gentle pressure was
282 applied with a finger on the female belly, pushing gently from the middle toward
283 the anus (Fig 5B). 5 to 35 eggs were usually expelled. Those eggs were
284 collected using forceps in an Eppendorf tube containing the extender-sperm
285 solution (Fig 5D). In the case of frozen sperm, the tube was thawed immediately
286 before in a 30°C water bath (Fig 5C). These actions were performed by two
287 people, with one person thawing the sperm as soon as the other one began to
288 expel eggs from the female. Eggs were placed at the edge of the tube and gently
289 pushed to the bottom (Fig 5D). The best yields of fertilization were achieved
290 using aliquots of sperm-extender of 60 ul and no more than 35 eggs per aliquot.
291 Once the eggs were completely immersed, the tube was gently flicked for 10-20
292 seconds (Fig 5E), allowing the mix to homogeneously distribute around all the
293 eggs. The activator solution was then pipetted into the tube letting drops slide
294 over the tube's border (Fig 5F) and then mixed with the extender by gently
295 flicking the tube for 20-30 seconds (Fig 5G). The activated sperm was left with
296 the eggs for 10 minutes and the tubes standing open on a bench at room
297 temperature (Fig 5H). At this step, 10ul of the mixture were pipetted under the
298 microscope to evaluate sperm motility. To avoid damage due to DMSO toxicity,
299 the embryos were transferred after 10 minutes to a petri dish using a pipette and

300 methylene blue buffered tank water (Fig 5I). The water was replaced twice and
301 the petri dish incubated at 28°C (Fig 5J).

302 We noticed that the cortical reaction, the earliest process of development where
303 the distance between the yolk and chorion membrane increases, was not
304 correlated with fertilization success in *N. furzeri*. Once in contact with an
305 aqueous medium, a large number of eggs were able to spontaneously undergo
306 the cortical reaction in the absence of sperm, while a smaller percentage
307 remained blocked in the pre-cortical reaction stage (Fig 6A).

308 This happened also during natural fertilization, where a small fraction of collected
309 eggs was found blocked in the pre-cortical reaction stage. Eggs that underwent a
310 spontaneous cortical reaction showed abnormal cell cleavages, errant
311 development and embryonic death in the first 10 days (Fig 6B). Analogously,
312 eggs unable to carry out the cortical reaction inevitably led to an unsuccessful
313 fertilization, even in the presence of sperm and the proper buffer. Though the
314 mechanism underlying the cortical reaction remains unknown in this species, it is
315 most likely related to the degree of egg maturation [27], [28]. Our analyses were
316 thus made by counting the total number of embryos developed until mid
317 somitogenesis (Fig 6C) over the total initial number of eggs used for fertilization
318 (Fig 6F). Moreover, several embryos were allowed to develop and were followed
319 post-somitogenesis (Fig 6D), post-hatching and up to adulthood (Fig 6E). The
320 growth rates were normal and no defects were detected. Those fish were fertile
321 and able to produce viable embryos.

322 In conclusion, we found that under our conditions, rates of fertilization with frozen
323 sperm ranged from 15 to 25% and were only slightly below fresh IVF or natural

324 fertilization. FBS and BSMIS were better at *in vitro* fertilization than BSMIS alone
325 (Fig 6F). A detailed protocol for the entire procedure is found in the
326 Supplemental methods.

327 Conclusion and Discussion

328 In this study we optimized sperm activation, cryopreservation and *in vitro*
329 fertilization in the species *N. furzeri*, aiming to establish protocols to obviate
330 problems linked to inbreeding, line maintenance and space usage. Previous
331 publications show how an osmolality drop together with a species specific salt
332 combination are required for fish sperm activation. Concentrating on the most
333 used buffers and testing them in several dilutions and combination, we found that
334 *N. furzeri* requires a specific protocol tailored for this species, which represents a
335 hybrid between *Medaka* and *Zebrafish*.

336 After exploring several combinations, we narrowed down the viable extender
337 solutions to FBS and BSMIS and activators to BSMIS 1:4 and 1:2. Concerning
338 cryoprotectants only DMSO and MetOH achieved remarkable results in
339 protecting against cryodamage, DMF in very few cases, while DMA and glycerol
340 not at all.

341 Besides the choice of the extender, activator and cryoprotectant, there were
342 other critical variables that drastically influenced the outcome of our IVF. The
343 proper growth, health, and age of the fish were among the most important
344 features influencing sperm and egg quality. Sperm or egg pools derived from fish
345 too young or too old, or fish that did not grow properly or those that presented

346 the early stages of a disease, led to very low performance in sperm activation or
347 fertilization.

348 We achieved the best results when using fish 9-11 weeks of age. Even though
349 the natural breeding in this species ensues prior to this age, the gonads largely
350 grow in size between week 6 to week 10, allowing a greater amount of
351 collectable sperm. Also females produce significantly more eggs at week 10
352 compared to week 6, probably because they are bigger and can store more in
353 their belly.

354 It is important to emphasize that it was not possible to extract sperm by
355 squeezing the male's abdomen as for other fish species. Instead, the gonads
356 need to be extracted after male sacrifice and immediately spun vigorously into
357 the extender solution to allow sperm release. This practice led to a lower
358 percentage of mature sperm in the solution since also immature sperm and other
359 kinds of cells were released in the mix. These other not-activatable cells were
360 counted during the analysis since they were not distinguishable from sperm cells,
361 thus underestimating the effective activation yield results. Optimizing the sperm
362 extraction from living males could potentially increase the sperm activation
363 percentages as well as the fertilization success.

364 In these studies, fertilization were performed with an average of 60.000 sperm
365 per ul. We did not systematically modulate sperm concentration as a variable to
366 maximize the fertilization efficiency. Nevertheless, during our tests, several
367 sperm concentrations arose often due to different gonad dimension or to different
368 volumes of the extender, yet we never observed remarkable differences in sperm

369 activation. We suggest therefore that within a range between 15,000 -200,000
370 sperm/ul, fertilization occurs at comparable rates.

371 Another technical point is the use of eppendorf tubes versus cryovials. We found
372 that the conical 1.5ml eppendorf tubes ensured rapid sperm thaws and a better
373 distribution of the eggs and sperm at the bottom, maximizing the fertilization
374 efficiency. Because of their shape, cryovials are less practical since the sperm
375 needs more time to thaw and it is difficult to visualize the exact moment of
376 complete thaw, thus preventing the precise timing needed for subsequent steps
377 of fertilization. Importantly, we revived sperm frozen in Eppendorf tubes from 1
378 day to a maximum of 4 months, without noticing any remarkable difference in
379 yields of activation (data not shown). Further studies should clarify the long term
380 cryopotential of this setup.

381 Lastly, even though FBS and BSMIS gave comparable results in terms of sperm
382 activation and fertilization, in our hands FBS resulted in more overall resilience.
383 Notably, FBS gave better results in preserving sperm even when the fish quality
384 was not optimal or when the procedure was not performed with the highest
385 accuracy.

386 In sum, our optimized protocol and incidental observations should yield fairly
387 consistent results for sperm preservation and IVF, greatly facilitating the
388 husbandry and use of *N. furzeri* as a model organism.

389 Materials and Methods

390 Fish husbandry and sample collections

391 All adult fish used were *Nothobranchius furzeri* belonging to the GRZ strain and
392 were raised singularly in 2.8L tanks from the second week of life. Water
393 parameters were pH: 7-8; Kh: 3-5; T: 27 °C. 10% of the water in the system was
394 automatically replaced with clean water every day. Fish were raised in 12 hours
395 of light and 12 hours of darkness. Fish were fed with chironomus twice a day and
396 “Premium Artemia Coppens®” twice a day. Natural breeding events occurred in
397 8L tanks with 1-2 males and 3-5 females. To start the breeding event, one box
398 (9cm x 9cm x 4cm) half full of river sand ($\phi < 0,2\text{mm}$) was put on the bottom of
399 the tank. The boxes were put in the fish tanks for 2-3 hours and the average
400 number of eggs laid by each female in the sand was between 5 and 30. All the
401 fish used for the experiments were from 9 to 11 weeks old.

402 **Gonads extraction and sperms collection**

403 Males were anesthetized with a tricaine methanesulfonate solution (Sigma, 0.5
404 mg/ml) for 10+ minutes, until movements and breathing stopped. Fish were dried
405 using tissue paper and decapitated. The belly of the fish was cut open by scissor,
406 the organs removed and the gonads at two sides of the swimming bladder were
407 picked out gently using forceps. Gonads were placed in an Eppendorf tube
408 containing 500 μl of extender solution, grabbed tightly with forceps and spun
409 thoroughly back and forth for 1 min. After the sperm was released in the solution
410 the gonads were removed from the eppendorf. On average around 30 million
411 sperm (between 7,5 million and 100 million) were released.

412 **Fresh solutions trials**

413 An individual gonad was placed in 250 μl of solution (such as tank water, DE
414 water, BSMIS, HBSS, FBS, Iwamatsu solution) at a certain dilution (1:1, 1:2, 1:4,

415 1:8) and the sperm was released inside by shaking for 5-10 seconds. 10 μ l of
416 each solution+sperm mix were placed in a haemocytometer chamber
417 immediately after and the activation of sperm, visualized and recorded. Each trial
418 combination was repeated at least 3 times.

419 **Extended solution sperm activation trials**

420 One gonad was extracted and shook in extender solutions as previously
421 described. One volume (3 μ l) of sperm-extender mixture was mixed with two (6 μ l)
422 or nine volumes (27 μ l) of activator solutions and immediately transferred to the
423 haemocytometer chamber under the microscope for video recording. Each trial
424 combination was repeated at least 3 times.

425 **Imaging and video acquisition**

426 For sperm visualization we used an Imager Z1 microscope from Zeiss and for
427 video recording an Axiocam 506 mono, binning 3x3, resolution 2752x2208 and
428 the ZEN 2.3 pro software. Each video was recorded for 8 seconds.

429 **Imaris conversion and sperm motility analysis.**

430 Videos were imported in Imaris 8.1 and frame time points rescaled by 10 times.
431 Black and white colors were inverted in order to have white dots over black
432 background. Particle tracking function was set to identify all sperm with diameter
433 of $\pm 8.6\mu\text{m}$. Movements were tracked with autoregressive motion algorithm
434 function, set with max. distance: 25 μm and max. gap size: 5 as parameters.
435 Statistics relative to track displacement length were exported as excel file and
436 analyzed. As a cutoff we set a displacement length of $>15\mu\text{m}$ to distinguish
437 active directionally traveling sperm from not acting or vibrating ones. In case of

438 general drift of the whole sample size we increased the cutoff to >35 μ m or
439 >50 μ m (in case of very strong drift).

440 **Cryoprotectants trials**

441 Two gonads were extracted from a male and were shook into 500 μ l of a different
442 extender solution (FBS or BSMIS). These mixes were aliquoted in smaller
443 volumes (60 μ l) and different cryoprotectants (DMSO (Sigma), DMF (Carl Roth),
444 Methanol (Optima), DMA (Sigma) or glycerol) were added in different
445 concentrations in each different eppendorf and immediately mixed. 3 μ l from each
446 sample were taken and mixed with an activation solution to check the sperm
447 mobility, following the procedure previously described. The rest of each mix was
448 frozen following the cryopreservation procedure. Survivability of the sperm after
449 one-two weeks was checked upon thawing (see below).

450 **Cryopreservation**

451 Extender-sperm-cryoprotectant mixtures were incubated in 1.5ml eppendorfs for
452 1 hour at 4°C. The mixtures were distributed in Eppendorf tubes at a volume of
453 60 μ l each, the tubes were closed and gently placed at the bottom of a glass
454 beaker sitting in a styrofoam box filled up to 10cm with dry ice. After 15 minutes,
455 eppendorf tubes were quickly moved into a rack in a nitrogen tank, not
456 contacting directly the nitrogen but exposed only to nitrogen vapors for 30
457 minutes. As the final step the samples were moved directly into liquid nitrogen
458 and stored for days to months.

459 **Cryopreservation trials**

460 Both gonads from the same individual were placed in 500 μ l FBS solution and
461 swung for sperm release as previously described. 60 μ l of the resulting mix were

462 mixed half with 10% DMSO and half with 10% methanol in Eppendorf tubes and
463 incubated for 1 hour at 4°C. The eppendorfs were distributed among Mr. frosty
464 container (-10°C per min), a beaker surrounded with dry ice (-20°C per min),
465 directly on dry ice (-50°C per min), directly in nitrogen gas phase (-100 °C per
466 min), directly in nitrogen liquid (-200°C per min) phase for 30 minutes, until
467 completely frozen. The samples were placed in the nitrogen liquid phase after
468 they reached a temperature of below -50°C. The thawing and monitoring process
469 were performed as previously described.

470 **Thawing and sperm revival**

471 Frozen samples were thawed directly from liquid nitrogen into a 30°C warm
472 water bath until any ice disappeared. The procedure usually took 1 minute or
473 less. One volume (3µl) of thawed sperm mixtures was mixed with two volumes
474 (6µl) of BSMIS 1:4 on haemocytometer chamber to check for mobility and
475 activation rates.

476 ***In vitro* fertilization by thawed sperms**

477 Females were quickly anesthetized in a Tricaine methanesulfonate solution
478 (0.5mg/ml) and carefully dried using towel paper to prevent any residual water on
479 the fish surface. Eggs were extracted from the female by gently massaging and
480 slightly pushing their belly. Eggs were laid over a glove and collected through a
481 forceps over the side of a freshly thawed eppendorf with sperm-extender (60µl).
482 A pipette tip was used to push the eggs into the sperm mixture and the
483 eppendorf was gently flicked for 15-20 seconds to prevent egg clumps. 120µl of
484 activation solution was added to the mixtures and mixed flicking the eppendorf
485 for 15-20 seconds. The eggs were incubated in the mixture at room temperature
486 for 10 mins and during the incubation 15ul from the mixture was monitored under

487 the microscope to check the sperm activity. The eggs were finally transferred to
488 a petri dish filled with tank water and the water was replaced twice to wash away
489 any residual cryoprotectant. The petri dish were incubated at 28°C and the eggs
490 were monitored under a microscope for any morphological changes for 4 days.

491 **Graphs production images acquisitions and enhancement**

492 Raw data depicting track displacement length realized with Imaris were exported
493 as an excel chart. Data relative to all the experiments were pulled in a unique
494 excel file, containing 3 replicates for each individual trial or combination. Total
495 data were used to calculate averages, standard deviations and standard errors,
496 in case of mean of the means. Graphs were produced from these data using
497 excel.

498 **Images and graphics acquisitions and enhancement**

499 Tracking images were acquired from videos using Imaris snapshot function and
500 brightfield images were acquired using a Leica M80 microscope equipped with a
501 Leica MC170 HD camera. Images were enhanced in brightness, contrast and
502 saturation using GIMP to improve the visual quality.

503 Graphics and drawings were realized using paint, GIMP and power point.

504 **Acknowledgements**

505 Imaging analyses were performed in the FACS & Imaging Core Facility at the
506 Max Planck Institute for Biology of Ageing (Cologne).

507 **References**

508 [1] T. Genade *et al.*, “Annual fishes of the genus *Nothobranchius* as a model system for

509 aging research," *Aging Cell.* 2005, doi: 10.1111/j.1474-9726.2005.00165.x.

510 [2] A. Cellerino, D. R. Valenzano, and M. Reichard, "From the bush to the bench: The
511 annual Nothobranchius fishes as a new model system in biology," *Biol. Rev.*, 2016,
512 doi: 10.1111/brv.12183.

513 [3] I. Harel *et al.*, "A platform for rapid exploration of aging and diseases in a naturally
514 short-lived vertebrate," *Cell*, 2015, doi: 10.1016/j.cell.2015.01.038.

515 [4] P. W. Hedrick, "Inbreeding depression in conservation biology," *Annu. Rev. Ecol.*
516 *Syst.*, 2000, doi: 10.1146/annurev.ecolsys.31.1.139.

517 [5] L. I. Wright, T. Tregenza, and D. J. Hosken, "Inbreeding, inbreeding depression and
518 extinction," *Conserv. Genet.*, 2008, doi: 10.1007/s10592-007-9405-0.

519 [6] M. Polačík, R. Blažek, and M. Reichard, "Laboratory breeding of the short-lived
520 annual killifish Nothobranchius furzeri," *Nat. Protoc.*, 2016, doi:
521 10.1038/nprot.2016.080.

522 [7] M. Api, V. Notarstefano, I. Olivotto, A. Cellerino, and O. Carnevali, "Breeders Age
523 Affects Reproductive Success in Nothobranchius furzeri," *Zebrafish*, 2018, doi:
524 10.1089/zeb.2018.1631.

525 [8] J. Dodzian, S. Kean, J. Seidel, and D. R. Valenzano, "A protocol for laboratory
526 housing of Turquoise killifish (Nothobranchius furzeri)," *J. Vis. Exp.*, 2018, doi:
527 10.3791/57073.

528 [9] D. R. Valenzano, S. Sharp, and A. Brunet, "Transposon-mediated transgenesis in the
529 short-lived african killifish nothobranchius furzeri, a vertebrate model for aging," *G3
530 Genes, Genomes, Genet.*, 2011, doi: 10.1534/g3.111.001271.

531 [10] I. Harel, D. R. Valenzano, and A. Brunet, "Efficient genome engineering approaches
532 for the short-lived African turquoise killifish," *Nat. Protoc.*, 2016, doi:
533 10.1038/nprot.2016.103.

534 [11] A. L. T. Romney, E. M. Davis, M. M. Corona, J. T. Wagner, and J. E. Podrabsky,
535 "Temperature-dependent Vitamin D signaling regulates developmental trajectory
536 associated with diapause in an annual killifish," *Proc. Natl. Acad. Sci. U. S. A.*, 2018,
537 doi: 10.1073/pnas.1804590115.

538 [12] C. K. Hu and A. Brunet, "The African turquoise killifish: A research organism to study
539 vertebrate aging and diapause," *Aging Cell.* 2018, doi: 10.1111/acel.12757.

540 [13] H. Yang and T. R. Tiersch, "Current status of sperm cryopreservation in biomedical
541 research fish models: Zebrafish, medaka, and Xiphophorus," *Comparative
542 Biochemistry and Physiology - C Toxicology and Pharmacology.* 2009, doi:
543 10.1016/j.cbpc.2008.07.005.

544 [14] E. Cabrita *et al.*, "Cryopreservation of fish sperm: Applications and perspectives,"
545 *Journal of Applied Ichthyology.* 2010, doi: 10.1111/j.1439-0426.2010.01556.x.

546 [15] H. Yang and T. R. Tiersch, "Sperm motility initiation and duration in a euryhaline fish,
547 medaka (*Oryzias latipes*)," *Theriogenology*, 2009, doi:
548 10.1016/j.theriogenology.2009.03.007.

549 [16] M. Morisawa and K. Suzuki, "Osmolality and potassium ion: Their roles in initiation of
550 sperm motility in teleosts," *Science (80-)*., 1980, doi: 10.1126/science.7444445.

551 [17] L. Pérez, M. C. Vílchez, V. Gallego, M. Morini, D. S. Peñaranda, and J. F. Asturiano,
552 "Role of calcium on the initiation of sperm motility in the European eel," *Comp.
553 Biochem. Physiol. -Part A Mol. Integr. Physiol.*, 2016, doi:

554 10.1016/j.cbpa.2015.10.009.

555 [18] J. Stoss and W. Holtz, "Cryopreservation of rainbow trout (*Salmo gairdneri*) sperm. II.
556 Effect of pH and presence of a buffer in the diluent," *Aquaculture*, 1981, doi:
557 10.1016/0044-8486(81)90183-6.

558 [19] M. Morita, A. Takemura, and M. Okuno, "Requirement of Ca²⁺ on activation of sperm
559 motility in euryhaline tilapia *Oreochromis mossambicus*," *J. Exp. Biol.*, 2003, doi:
560 10.1242/jeb.00153.

561 [20] K. Aoki, M. Okamoto, K. Tatsumi, and Y. Ishikawa, "Cryopreservation of Medaka
562 Spermatozoa," *Zoolog. Sci.*, 1997, doi: 10.2108/zsj.14.641.

563 [21] J. Beirão, J. A. Lewis, B. F. Wringe, and C. F. Purchase, "A novel sperm adaptation
564 to evolutionary constraints on reproduction: Pre-ejaculatory sperm activation in the
565 beach spawning capelin (Osmeridae)," *Ecol. Evol.*, 2018, doi: 10.1002/ece3.3783.

566 [22] H. Ohta, K. Kawamura, T. Unuma, and Y. Takegoshi, "Cryopreservation of the sperm
567 of the Japanese bitterling," *J. Fish Biol.*, 2001, doi: 10.1006/jfbi.2000.1477.

568 [23] Q. Dong, C. Huang, and T. R. Tiersch, "Post-thaw amendment of cryopreserved
569 sperm for use in artificial insemination of a viviparous fish, the green swordtail
570 *Xiphophorus helleri*," *Aquaculture*, 2006, doi: 10.1016/j.aquaculture.2006.05.011.

571 [24] H. Yang, M. Norris, R. Winn, and T. R. Tiersch, "Evaluation of cryoprotectant and
572 cooling rate for sperm cryopreservation in the euryhaline fish medaka *Oryzias latipes*,"
573 *Cryobiology*, 2010, doi: 10.1016/j.cryobiol.2010.07.006.

574 [25] S. Bhattacharya, "Cryoprotectants and Their Usage in Cryopreservation Process," in
575 *Cryopreservation Biotechnology in Biomedical and Biological Sciences*, 2018.

576 [26] D. Gao and J. K. Critser, "Mechanisms of cryoinjury in living cells," *ILAR J.*, 2000, doi:
577 10.1093/ilar.41.4.187.

578 [27] J. C. Gilkey, "Mechanisms of fertilization in fishes," *Integr. Comp. Biol.*, 1981, doi:
579 10.1093/icb/21.2.359.

580 [28] F. J. LONGO, F. SO, and A. W. SCHUETZ, "MEIOTIC MATURATION AND THE
581 CORTICAL GRANULE REACTION IN STARFISH EGGS," *Biol. Bull.*, 1982, doi:
582 10.2307/1541457.

583

584 **Supporting information**

585 **S1 File. IVF protocol.** This is the protocol that we suggest and that uses FBS as extender,
586 DMSO 10% as cryoprotectant and BSMIS 1:4 as activator.

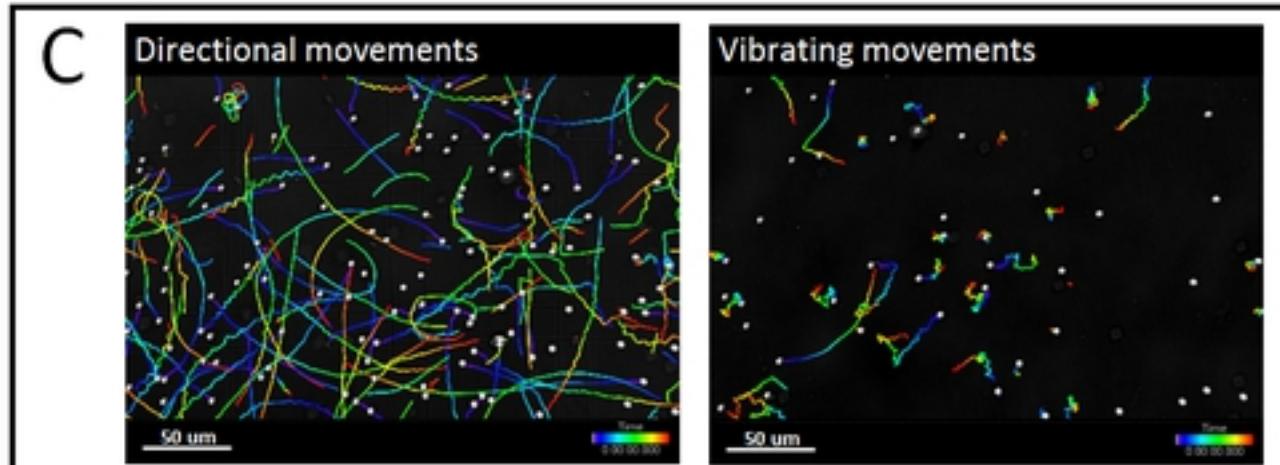
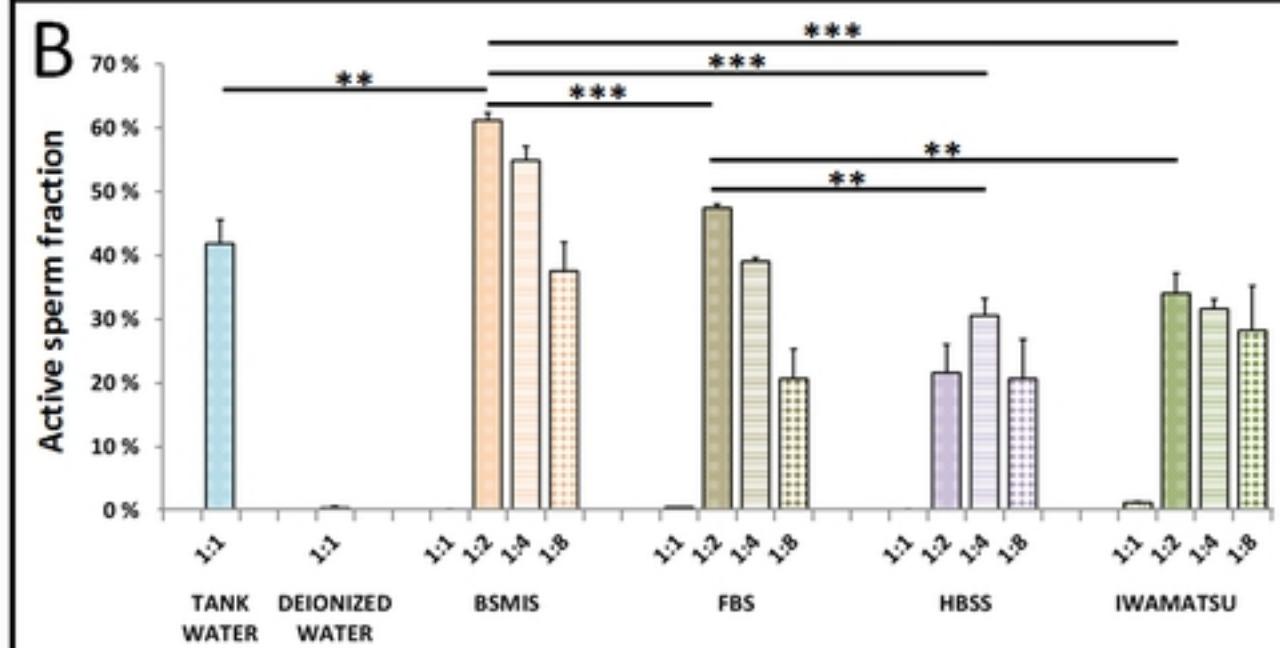
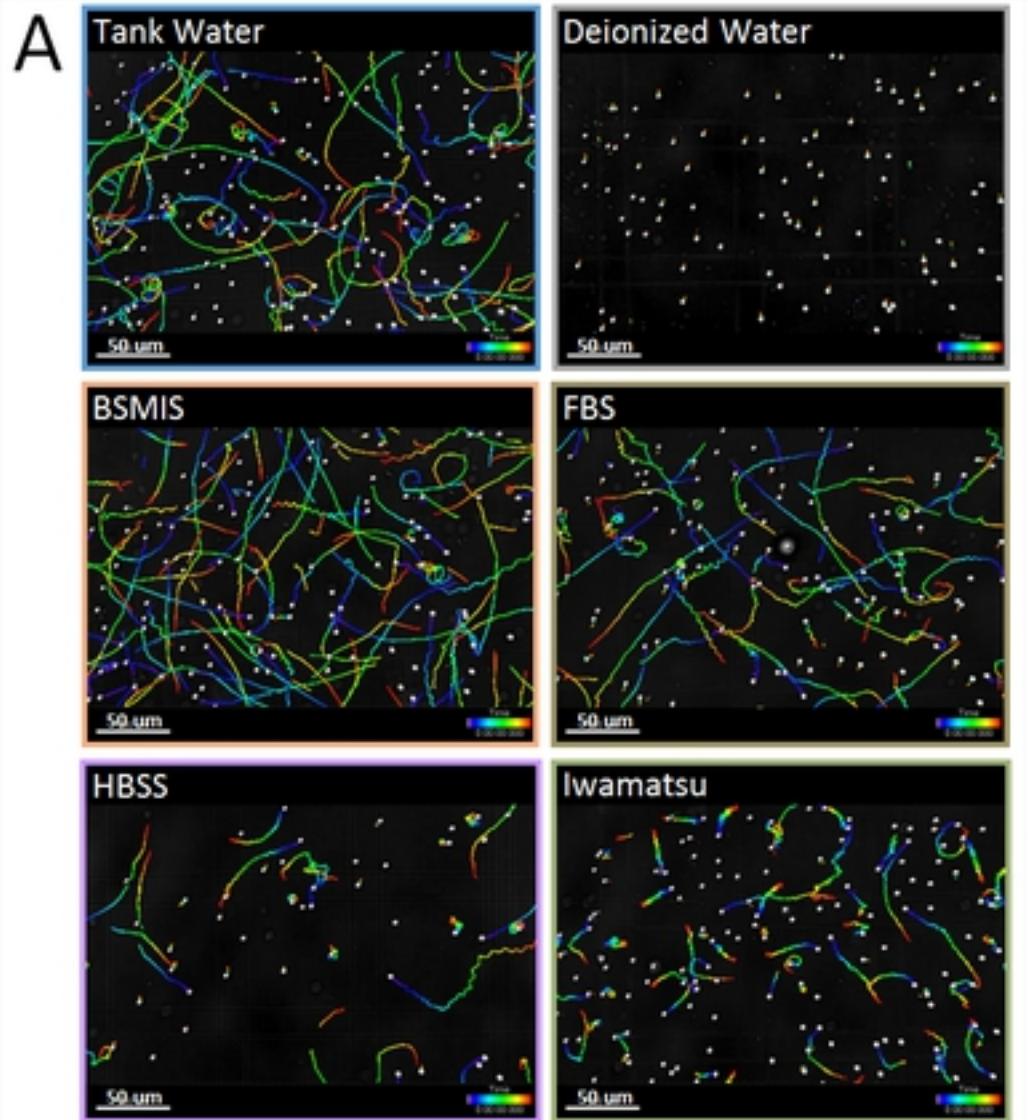
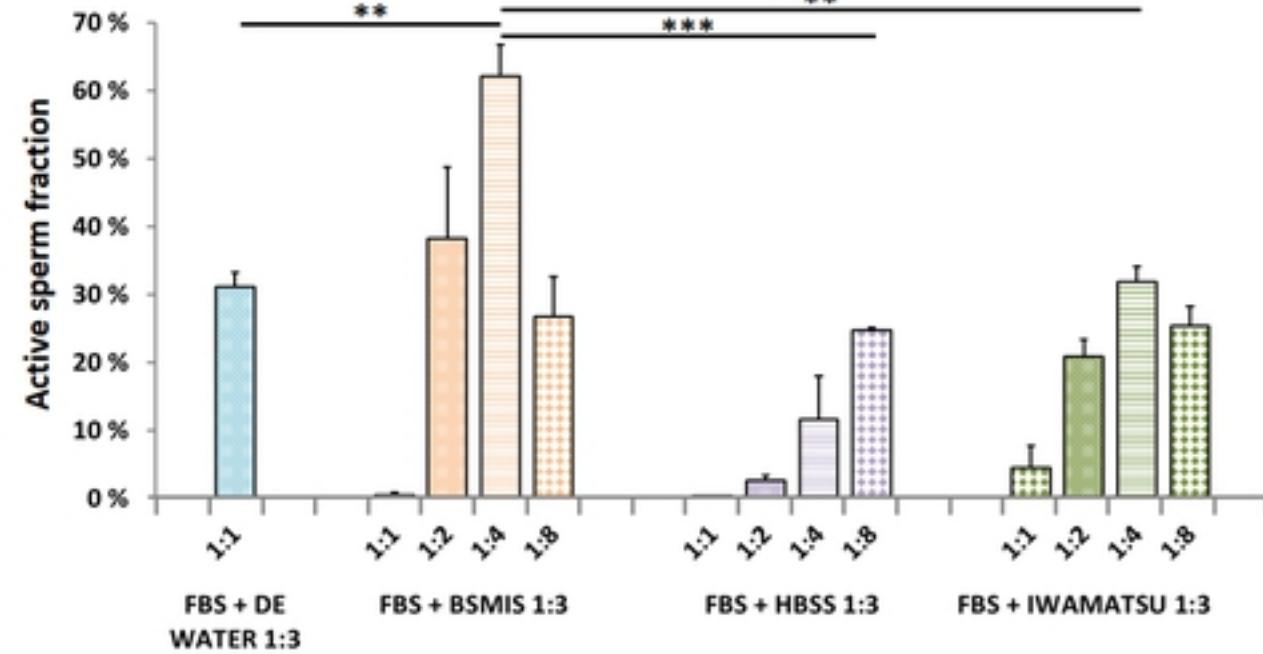
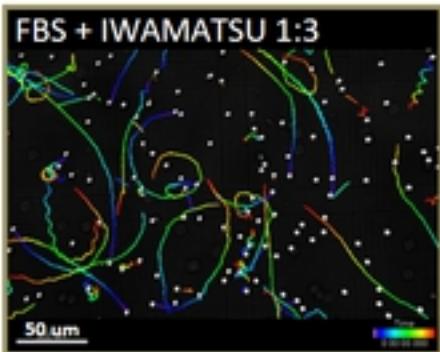
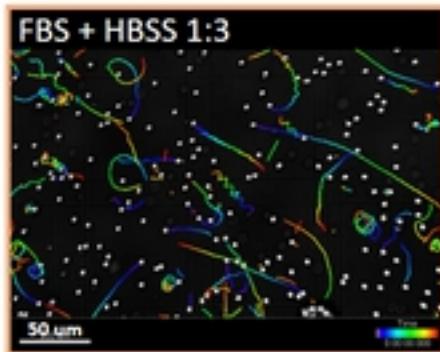
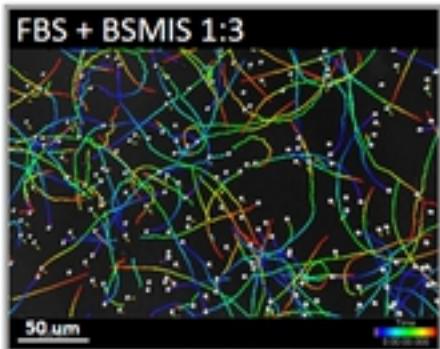
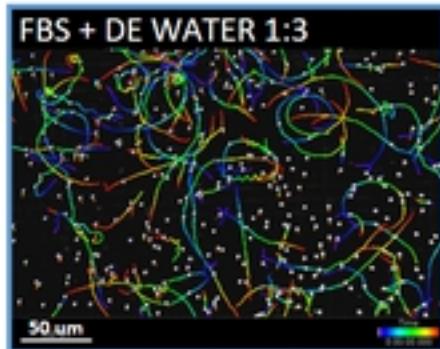
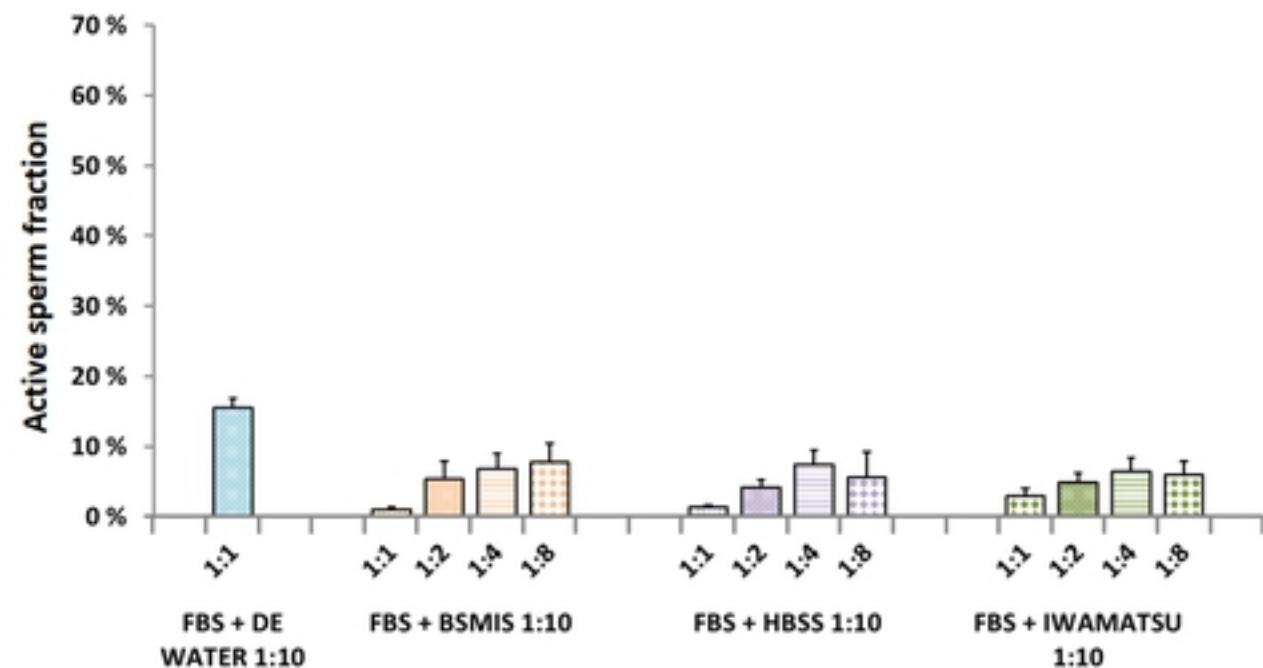
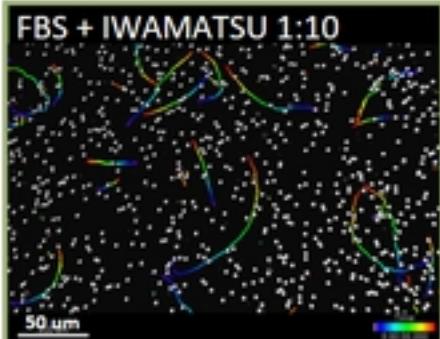
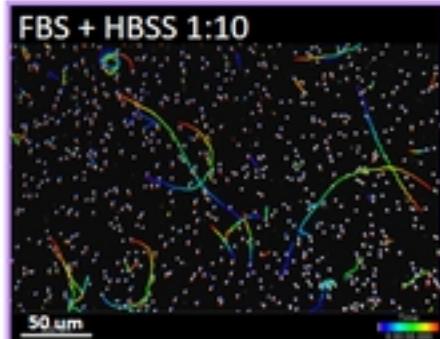
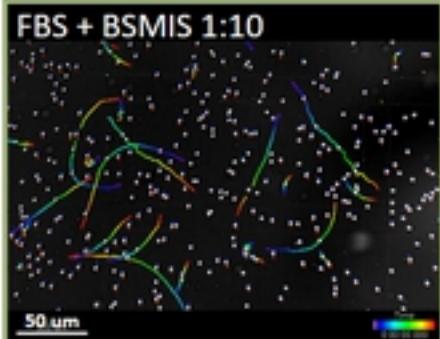
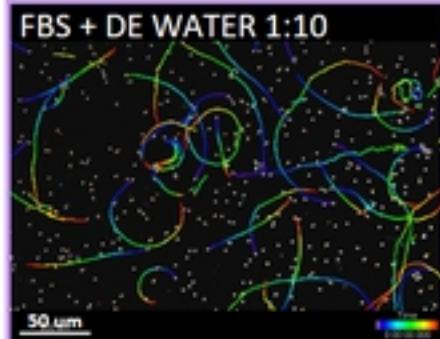














Figure 1

A**B****Figure 2**

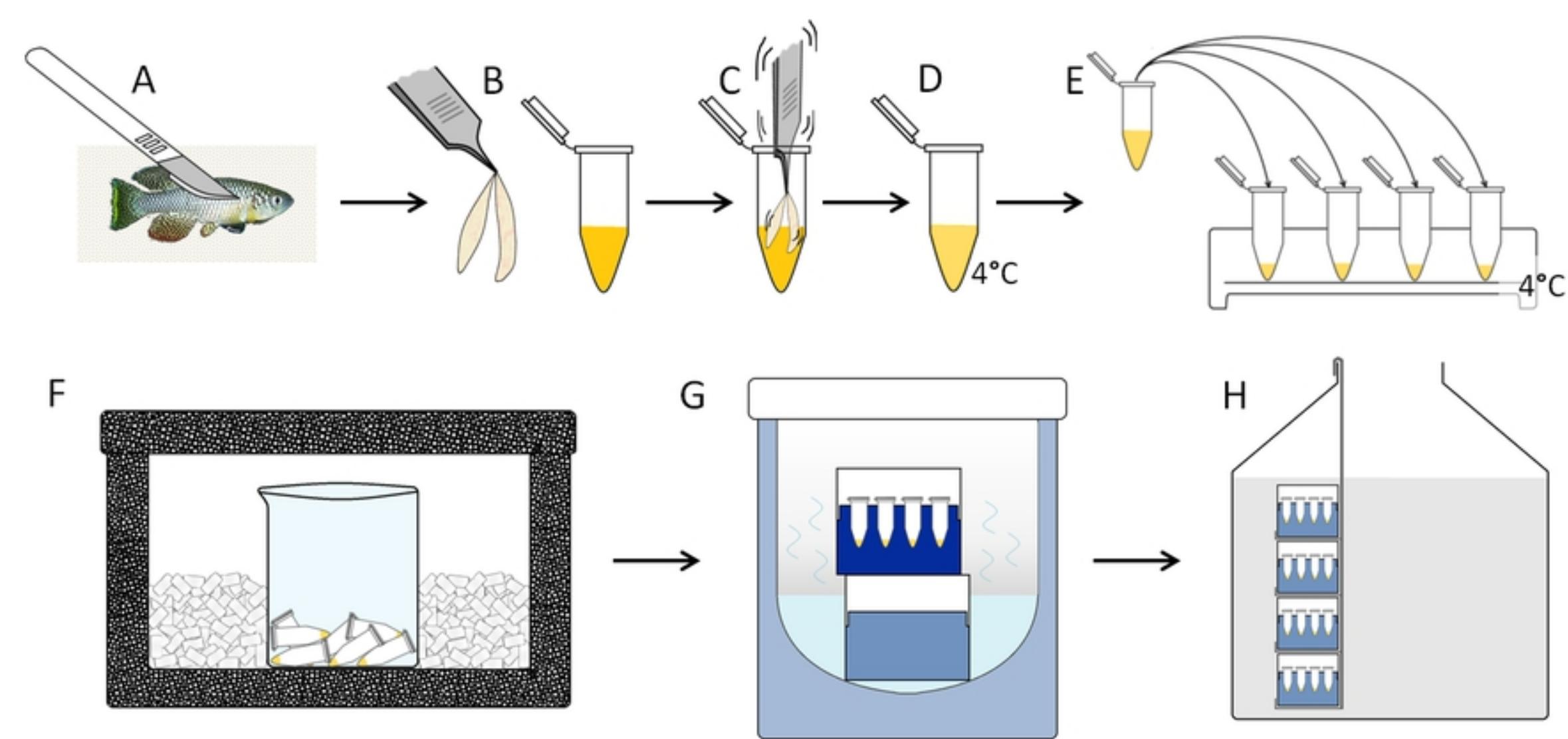
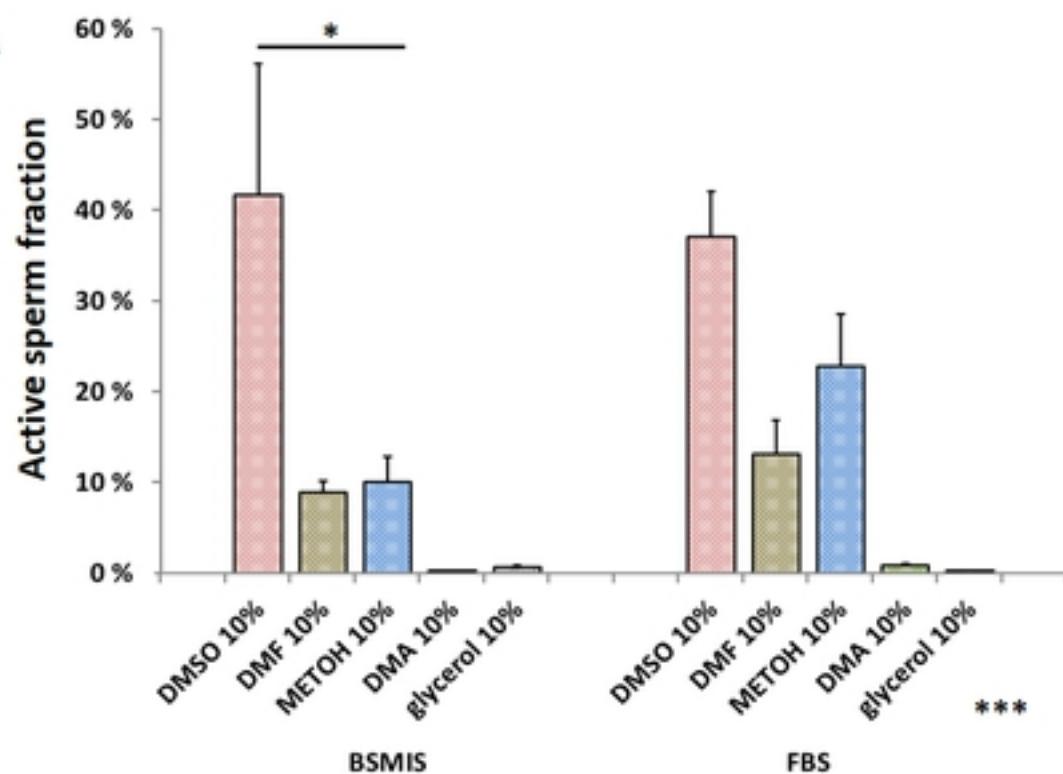
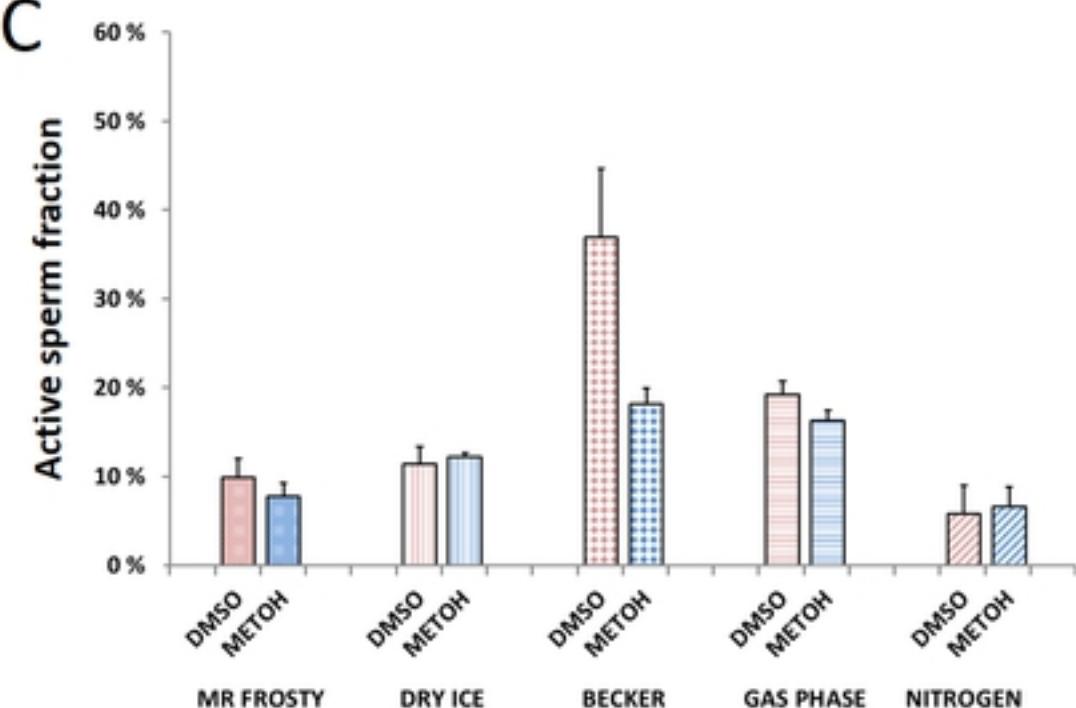
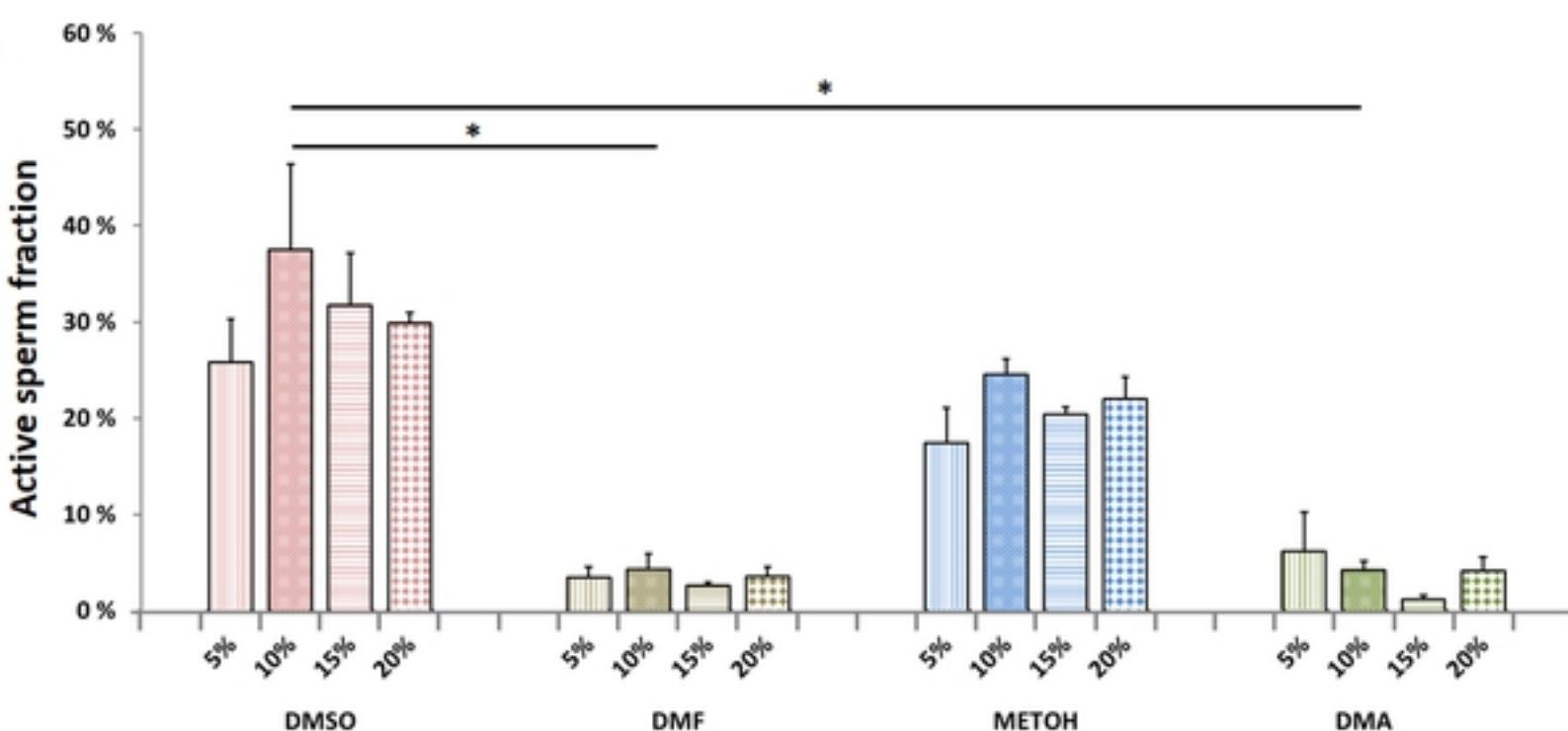




Figure 3


A

C

B

D

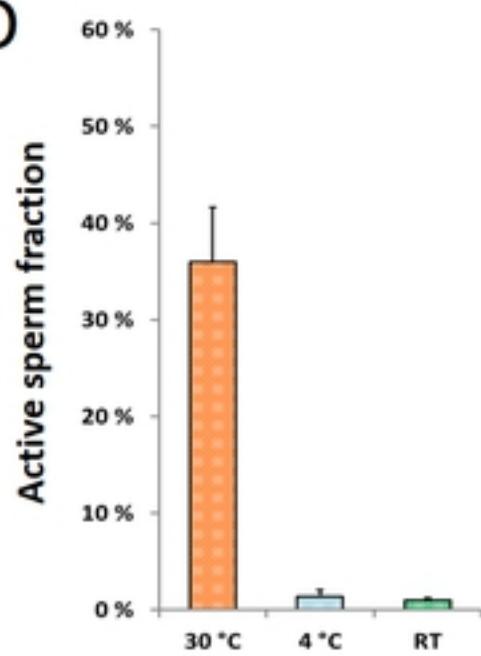


Figure 4

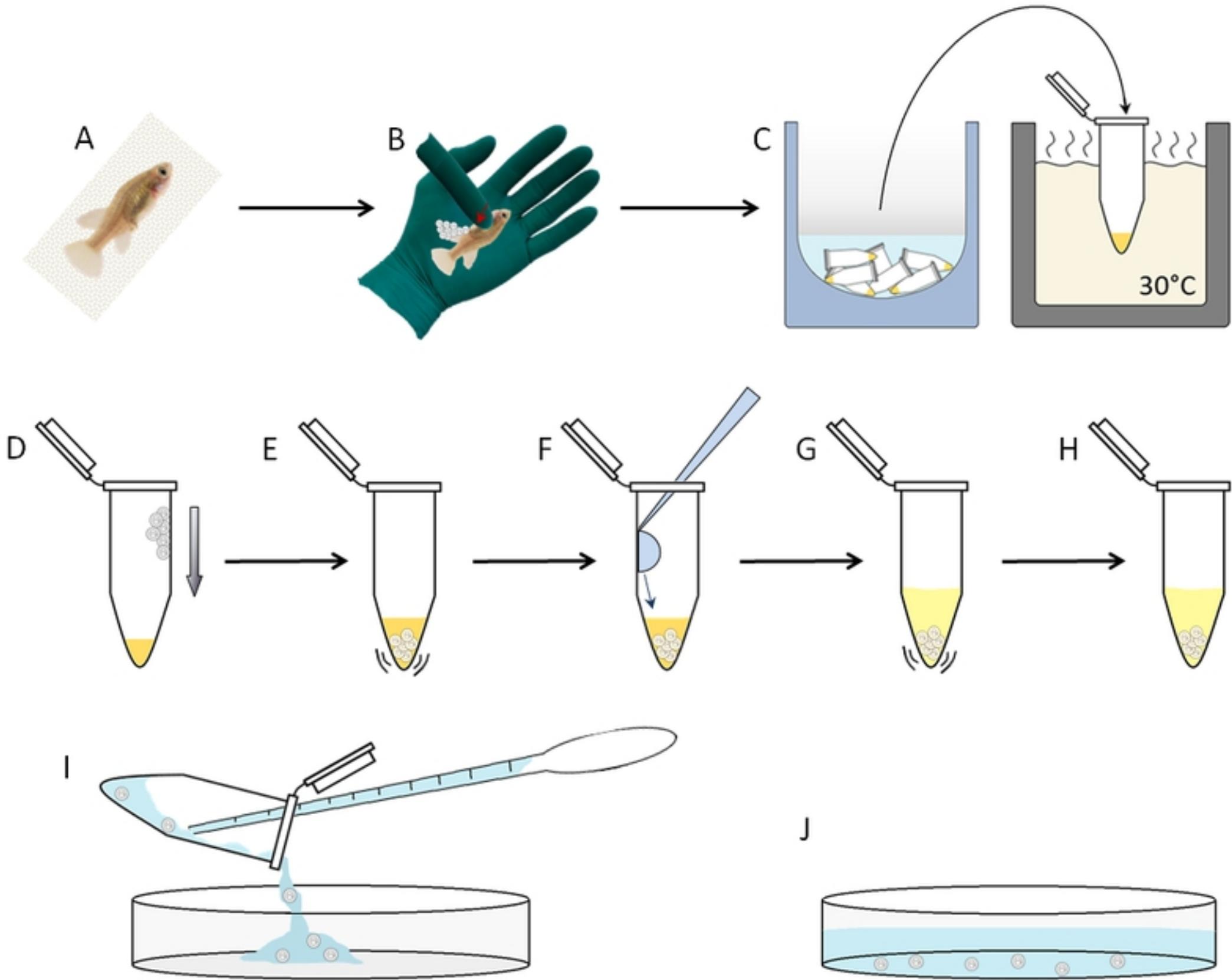
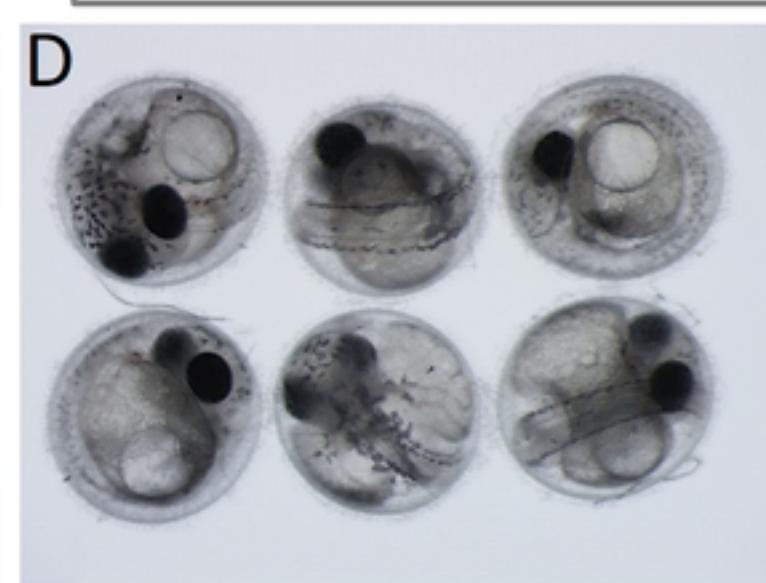


Figure 5



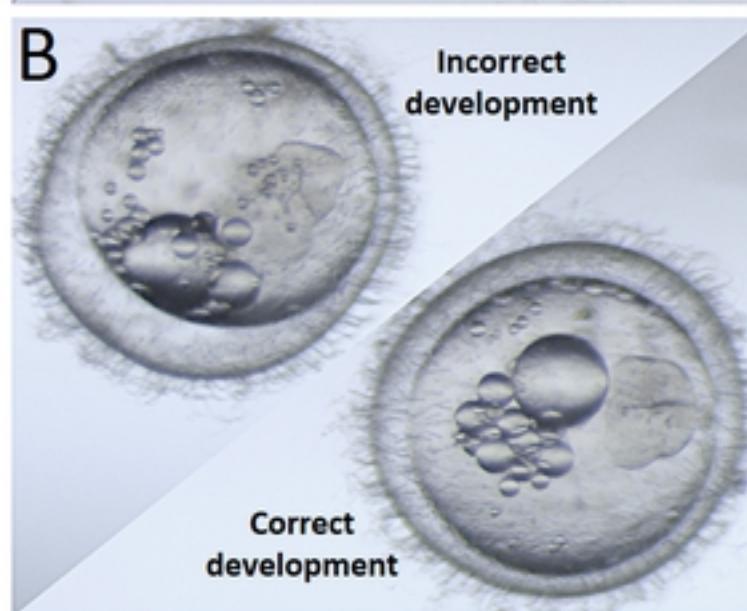
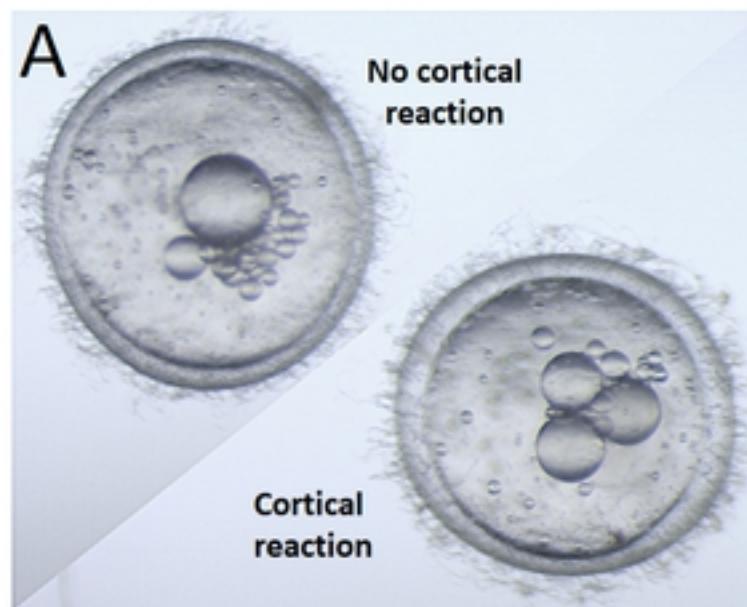



Figure 6