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Abstract

Around 13% of the human genome displays high sequence similarity with at least one other
chromosomal position and thereby poses challenges for computational analyses such as
detection of somatic events in cancer. We here extract features of sequencing data from across
non-unique regions and employ a machine learning pipeline to describe a landscape of somatic
substitutions in 2,658 cancers from the PCAWG cohort. We show mutations in non-unique regions
are consistent with mutations in unique regions in terms of mutation load and substitution profiles,
and can be validated with linked-read sequencing. This uncovers hidden mutations in ~1,700
coding sequences and thousands of regulatory elements, including known cancer genes,

immunoglobulins, and highly mutated gene families.

Introduction

Catalogs of somatic mutations in cancer promise insights into disease-initiating pathways,
underlying evolutionary processes, and the identification of potential therapeutic opportunities.
Large-cohort  studies, for example The Cancer Genome Atlas (TCGA,

https://www.cancer.gov/tcga) and the International Cancer Genome Consortium (ICGC,

https://dcc.icgc.org/), have shed light on the complexity of the mutational landscapes in gene-

coding regions. The Pan-Cancer Analysis of Whole Genomes (PCAWG) study has further
undertaken the analysis of 2,658 whole cancer genomes from the ICGC and TCGA to
characterize regions unobserved via exome sequencing studies’. This resource has led to studies
of the processes underlying somatic events?, complex structural variation®, driver genes*, and
timing®. However, these analyses rely on variants that can be positioned uniquely in the genome

and thus the repertoire of variation in non-unique regions still remains unexplored.

Short-read sequencing - the technology used in cancer studies including PCAWG - identifies
somatic mutations by comparing fragments of DNA from normal and tumor samples to a reference
genome. At the scale of 100bp, however, 13% of the human genome consists of sequences that
are present at more than one chromosomal location®’. These regions range in multiplicity from
two to several thousand copies and in identity of sequences from vague to perfect matches. This
non-uniqueness complicates genetic analyses and creates recurrent blind spots to somatic
mutation calling. Irrespective of their amenability to analysis, non-unique regions include genes

and regulatory elements that participate in human diseases?, developmental processes®, as well
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as splicing factors and nuclear RNAs that are recurrently mutated in cancers'®"". Blind spots in

these regions thus hinder a systematic understanding of relevant biological processes.

To alleviate the limitations of variant detection from short-read sequencing due to non-unique
regions, a technique called thesaurus annotation characterizes mutations in terms of equivalence

classes of genetic positions'>'

. This approach does not pinpoint the precise location of
mutations, but it enables calculation of summary statistics such as mutational load. It also
provides sufficient information about somatic events to study mutational signatures™ and to
identify affected functional elements. In the present work, we employed this technique to study
the PCAWG dataset with the aim to describe the landscape of somatic single-base substitutions.

This uncovers a vast set of somatic events across cancer genomes and cancer types.

Results

Thesaurus annotation uncovers a distinct class of mutations in a

pan-cancer cohort

To perform an analysis of somatic mutations that is inclusive to non-unique regions, we set up a
pipeline for variant calling on the PCAWG dataset without filtering reads based on mapping quality
(Methods). This provided a comprehensive set of candidate positions in all regions of the genome.
We then annotated the sites using a procedure that links called sites to possible alternative
positions in the genome'? (Figure 1a). To search for somatic mutations among the candidates,
we utilized curated PCAWG data in two distinct ways. First, we assembled a panel of 237
genomes from normal tissues to filter out common germline polymorphisms and sequencing
artifacts. Second, we trained a machine learning model to classify somatic events. Similar to other

machine-driven approaches'®'®

, our pipeline provided an algorithm with 18 features about
candidate sites collected from tumors and matched normal samples. The algorithm then learned
a strategy to call mutations from the candidates to match the PCAWG consensus calls'. Crucially,
training and testing were performed using only data from unique regions where the PCAWG call
set is expected to be of high quality, and the features provided did not include information about
mapping quality. The final classifier achieved a root-mean-square error of 8.9%, with false
discovery and false negative rates of 7.6% and 4.3%, respectively (Figure S1). The most

important feature for classification was allelic frequency in the matched normal sample (increase
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in classification error to 37% when omitted), but many other features, such as allelic frequency in

the tumor and the frequency in the panel of normals contributed as well (Figure S2).

After training the machine-learning model, we processed the entire PCAWG dataset and thereby
produced new sets of somatic mutation calls. We split mutations in the new call set into those
placed uniquely in the genome, which we describe further as ‘simple’ or ‘local’, and those that can
be linked to alternate sites, which we term ‘thesaurus’. Compared to the PCAWG calls, our set of
simple mutations showed median false discovery and false negative rates per sample at 7% and
9%, respectively, albeit with variability across the samples in the cohort (Figure 1b). Such
discrepancies and variability are not unexpected, as differences among computational pipelines
are well-documented'”'®. Indeed, modeling revealed that mutation frequency, coverage, and
mutation spectrum can explain the largest discrepancies, and that high false discovery and false
negative rates are related to internal consistency within the consensus itself (Figure S3).

Performance was stable across cancer types (Figure S4).

Importantly, the set of thesaurus mutations showed little overlap with the PCAWG calls (Figure
1b), indicating most of those sites were previously hidden. To investigate whether these sites are
reasonable additions to the samples’ landscape, we studied total mutation load across samples
among the simple and thesaurus calls and found a high correlation (spearman rho 0.96) that was
concordant with direct proportionality (Figure 1c). Other properties such as allele frequency and
mutation coverage were also concordant (Figure S5). Moreover, counts of thesaurus mutations
correlated only weakly with sequencing coverage (spearman rho 0.16), suggesting the calls were

not dominated by noise.

We then studied the position of mutations in relation to annotations of non-unique sequence. As
expected, PCAWG calls showed under-representation in regions with low mapping quality
(Figure 1d). A simulation of mutation calls that might be obtained using a naive pipeline -
considering loci in non-unique regions but without using thesaurus annotation - showed severe
over-representation (Figure 1d), providing a justification for common mutation callers to filter out
such regions. In contrast, our pipeline produced an intermediate distribution, albeit with a
systematic over-representation compared to the proportion of non-unique sequence. This can be
due to a residual level of false positives, due to gaps in the sequence of the human reference

genome, or due to a propensity for samples to accumulate or tolerate mutations in those regions.
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As an orthogonal validation, we performed short-read and linked-read sequencing on one
additional cancer sample (Methods). The linked-read protocol uses barcodes to help aligners

position reads at their correct coordinates in the reference genome'®%

and thus expands the
regions where variation can be assessed by common mutation callers. In the short-read data, our
pipeline called 3,074 simple and 189 thesaurus somatic mutations, which we sought to confirm in
the linked-read data. Validation rates for simple variants were proportional to the variant allele
frequency in the short reads and surpassed 90% at allele frequency of 0.5 (Figure 1e, Figure S6).
For calls with thesaurus annotation, the validation rate was just 11% lower. This suggests that
while thesaurus calls may retain more false components than local calls, the large majority of hits

from our pipeline represent real events.

Mutations in non-unique regions are consistent with known

mutational processes

Somatic mutations in cancers appear through several biochemical processes, many of which
leave distinct patterns in samples’ mutation profiles®'. To a first approximation, these processes
can be presumed to act similarly in unique and non-unique regions and therefore manifest among
simple as well as thesaurus-annotated mutations. To test this hypothesis, we stratified mutations
by trinucleotide contexts. These profiles, which consist of 96-dimensional vectors, were correlated
in most samples (Figure 2a). Investigations of representative samples (Figure 2b) suggested that
the strength of correlation was influenced by the mutation load. Indeed, modeling revealed that
86% of discrepancies between simple and thesaurus profiles could be accounted through
mutation load, the entropy of the trinucleotide profiles, and technical features such as depth of

coverage.

To summarize the heterogeneity of the mutation profiles across the cohort, we visualized the
similarities between samples in a low-dimensional embedding (Figure 2c¢). In contrast to analyses
that decompose mutation profiles into independent signatures®', this technique compares
samples in a holistic manner. Profiles based on simple mutations clustered into several distinct
groups, reproducing known characteristics of the pan-cancer cohort. For example, skin and
kidney cancers separated from all others in this visualization, indicating that their mutation profiles
are formed by distinct combinations of mutational processes. We then asked to what extent
thesaurus mutations capture the same patterns and projected the thesaurus profiles onto the

same visualization. Because of the lower overall counts, the resulting patterns were noisier, but
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nonetheless mirrored the original. This global picture was confirmed by focusing on sets of
samples from distinct areas of the embedding (Figure 2d, Fig S7). Altogether, thesaurus
mutations have similar characteristics as simple mutations across cancer types as well as similar

molecular mutagenic processes.

Thesaurus mutations affect thousands of functional elements

While most mutations in cancer genomes are passengers, some inflict functional effects, for
example, by modifying protein structure or altering gene regulation. To create a comprehensive
summary of the impact of thesaurus mutations in tumors, we partitioned the genome into non-
overlapping regions described by a gene identifier and a functional label (coding sequence, intron,
promoter, untranslated, intergenic). These regions are defined through gene annotations, not
sequence uniqueness, and thus we found that some carried only simple mutations, others
contained only thesaurus mutations, and others harbored both types. In aggregate, thesaurus
mutations were associated with thousands of genes, including 1,744 coding sequences (Figure
3a).

Several strategies are used to assess the importance of mutations and identify driver genes?'~%,

Recurrence in a cohort is a key indicator, but this signal can be confounded by factors such as
region size, chromosomal location, proximity between adjacent mutations, sequence
composition, and, in the case of coding sequences, effects on protein structure®?®. However,
these covariates can themselves be confounded by non-uniqueness in the genome. Here, in order
to study mutation patterns across all region types and in a way compatible with thesaurus
candidates, we performed modeling using only region length as a covariate (Methods). Starting
with coding sequences, we fit quantile regression models to describe cohort frequency in genes
with unique sequence (Figure 3b). The resultant model captured the expected upward trend, with
established driver genes such as TP53 and KRAS as strong outliers. Applying the same model
on genes that include non-unique sequences revealed the same trends. Interestingly, the cohort
frequencies of many genes shifted across quantile boundaries depending on whether thesaurus

mutations were excluded or included.

As the same modeling strategy is also suitable to study mutations outside of coding regions, we
carried out a genome-wide analysis and summarized the deviation of individual regions from
model trends using z-scores (Figure 3c, Table S1). Distributions of z-scores for elements affected

only by local mutations centered around zero by construction. For regions affected by thesaurus
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mutations, distributions were also centered near zero despite this property not being built into the
models. There was a consistent shift toward positive z-scores, but distributions for genes
harboring thesaurus mutations exclusively included heavy tails of negative scores, indicating the
mutation set may still suffer from false negatives. Scores were consistent when the same
modeling was repeated on sub-cohorts and, for coding regions, were correlated with a ranking
produced by a specialized scheme accounting for additional covariates (Methods, Figure S8).

Overall, the z-scores therefore provide a reasonable, albeit rudimentary, prioritization of hits.

To further refine the prioritization, we computed an entropy-based measure of specificity across
cancer types (Methods). We then used the pan-cancer z-scores and specificity measures together
to visualize hits in coding sequence (Figure 3d), promoters (defined as regions of at most 2000bp
upstream of genes, Figure 3e), and other regions (Figure S9, S10, Table S1). This approach
captured expected characteristics, in particular that most genes are neither recurrently mutated
or specific to a cancer-type, and that both dimensions carry outliers. Coding regions in TP53 and
KRAS were the top hits for pan-cancer recurrence and specificity, respectively. Genes with
thesaurus mutations lay in intermediate regions of the distributions interspersed among other
cancer genes. Strikingly, top-ranked thesaurus genes included well-known cancer genes such as
PIK3CA, including thesaurus mutations in breast cancers. Another pattern, visible in the analysis
of coding sequences, but that was even more pronounced among promoter sequences (Figure
3e), was high recurrence and specificity among immunoglobulin elements of the IGLC, IGHG,
IGHJ, and IGHM families. These instances offer leads for more in-depth investigation of thesaurus

hits in selected gene families.

Thesaurus annotation uncovers recurrent patterns in gene families

As some genes with thesaurus mutations already have established links to cancer, we began an
exploration of hits by considering the overlap of all thesaurus genes with the cancer gene
census?. Our pipeline detected thesaurus mutations in the coding sequences of 35 census genes
(Figure 4a) and the untranslated or promoter regions of 29 more (Figure S11). In four of these
genes (NUTM2A, NUTM2B, SSX2, SSX4), thesaurus mutations comprised their entire mutational
load. This is consistent with these genes being recorded in the census because of translocations
and fusions, which are detected by algorithms other than somatic substitution calling. Thesaurus
substitutions in these cases provide a complementary set of mutation events. For other genes,

thesaurus mutations raised the cohort frequency from a non-zero base. The proportion of samples
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affected exclusively by thesaurus mutations ranged from a few percent (e.g. 5% for PIK3CA, 2%
for ROBO2) up to a large majority (e.g. 88% for RGPD3).

To gain more insight into where the mutations lay along the gene structure, we visualized variant-
level results along the gene sequences, splitting the results by mutation type and comparing with
the PCAWG mutation calls (Figure S12, S13). For PIK3CA and KMT2C, two of the genes with
the highest mutation load, our pipeline detected 13% and 15% additional simple substitution
events compared to the PCAWG set (Figure 4b). This is broadly consistent with our previous
comparisons with the consensus and can in part be attributed to technical differences in the
pipelines'”. Thesaurus mutations were located in 630bp and 2.63kb segments of their coding
regions, respectively. There was a significant enrichment compared to the PCAWG calls (Fisher
tests, PIK3CA, p=7x10*, KMT2C, p=2x107"2), and, especially for KMT2C, the new mutations filled

a noticeable gap in the distribution of simple variants.

Outside of established cancer genes, most genes that harbor thesaurus mutations also contain
at least some simple substitutions. Examples with heavy mutation burden include ANKRD30A,
an ankyrin-repeat containing gene linked with breast cancer?, and TPTE, a phosphatase linked
to the PTEN pathway?® (Figure 4c). Given their high mutation load and interactions with cancer
pathways relevant to patient stratification schemes?, thesaurus mutations that fill gaps in their

mutation profiles offer direct opportunities to test their translational relevance.

While thesaurus mutations constitute a minority of hits for most genes, they represent the
dominant class for others (Figure 4d). Among genes highlighted by our z-score analysis and also
by alternative prioritization methods, TRIM49 and TRIM64B, two members of the tripartite motif
family of proteins were prominent with mutations along their entire gene body. This family is
involved in innate immunity, autophagy and carcinogenesis®®. AMY71B encodes an amylase
isoenzyme typically expressed in the salivary gland and the pancreas and is embedded in a region
of variable copy-number. It may influence metabolism, but its high mutation burden may also be
a corollary of the genomic fragility of its surrounding genomic region®'. POTEM is another gene
with an ankyrin domain with heavy mutation burden. The gene family has been discussed in

studies of expression-based biomarkers®2.

Each of the thesaurus mutations in our dataset is annotated by a link to at least one alternative
genomic site with a similar surrounding sequence. These links describe ambiguities in assigning
the location of the individual somatic events. True to the ubiquity of non-uniqueness across the

genome, we found mutations in coding sequences linked to a variety of targets, including
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untranslated, intronic, promoter, or untranslated regions of other genes. Mutations in PIK3CA, for
example, linked to an untranslated region of a pseudogene. However, we observed that links
often interconnected genes from the same family (Figure 4e). These cliques prompted us to
consider mutation load across several related genes. Using the amylase gene family as an
example, the detected mutations across five genes affected 3.1% of non-hypermutated samples
in the cohort. Samples affected by the individual genes were to a large extent non-overlapping
(Figure 4f), ruling out the possibility that the mutation set is dominated by double-counting. When
we modeled the entire gene family as a single entity in our quantile regression model and z-
scoring, the score for the family rose from 3.01 for AMY1A alone to 4.04 for the gene group.
Analogous patterns, with variability on the degree of effect on the joint scores, occurred in other
families (Figure S14-S22).

Among genes highlighted due to mutations in promoter regions were several members of the
immunoglobulin (1G) family (Figure 4g, Figure S23, S24). The immunoglobulin locus undergoes
hypermutation during B-cell maturation through cytidine deamination®® and genomic
rearrangements. Consistent with the role of this process in antibody diversification and immunity,
mutations associated to IG gene fragments were enriched in leukemias and lymphomas. Among
sequences upstream of all IG gene segments, thesaurus mutations represented 19.7% of all
variants in those cancers. Furthermore, the trinucleotide mutation profiles were dominated by C>T
substitutions and were consistent with reported sequence hotspot patterns® (Figure 4h). This
suggests that thesaurus annotation reliably detects these non-germline events and can thus

inform translational approaches that use immune signatures.

Discussion

The structure of the human genome has been shaped by its evolution, including by duplications
and rearrangements. This history leaves a substantial portion of the genome to appear non-
unique at the scale of short reads used by high-throughput sequencing studies. As long- and
linked-read sequencing protocols become established and widespread, these regions will
become accessible for direct analysis'®. However, existing datasets, including efforts to sequence
whole genomes of pan-cancer primary tumors' and metastases®, already offer opportunities to

evaluate somatic events in these non-unique regions.

When specific sequences are of interest a priori, targeted approaches can perform re-analysis of

subsets of sequencing data. This analytic strategy is effective when there are complex
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rearrangements as in the case of the HLA locus®, or sequences are present in a large number of
copies as in the case of transposons®. However, the human genome also carries areas that are
almost exactly duplicated due to recent evolutionary events and are present in fewer than ten
copies. Such regions can be studied in a systematic manner through a technique that links specific
genomic positions and provides information about clusters based on multi-locus alignments'?. Our
pipeline collects multi-locus annotations and leverages high-quality mutation calls from PCAWG
to train a machine learning model. The resulting calls for somatic substitutions provide a first
systematic summary of the mutation events in non-unique regions, at a genome-wide scale,

across several cancer types.

The landscape of thesaurus-annotated mutations covers over 1700 coding genes, 4500
promoters, and thousands of other functional elements. The mutation burden in these regions is
consistent with known properties of cancer types and trinucleotide substitution patterns that
characterize underlying molecular mechanisms are concordant as well. Mutation rates are in line
with those in genes with unique sequence, and outliers are affected to an extent comparable to
established cancer genes. These hits provide tantalizing leads toward a more complete picture of

mutational processes in cancers.

Our analyses of cohort mutation rates, regional recurrence and hotspots, cancer-type specificity,
and co-occurrence are a first-pass summary of the patterns in these data. Indeed, mutational
processes are modulated, directly or indirectly, by a myriad of factors that include nucleotide
content, chromatin accessibility, gene expression®?. While methods developed in these areas
provide guidance for more refined analyses, they rely on auxiliary data as model covariates. In
the context of non-unique regions, these covariates, as they are often acquired through short-
read sequencing, are likely to suffer biases related to sequence uniqueness®. A careful
examination of those covariates in the non-unique genome is a critical step toward better

understanding of the statistical and functional importance of the uncovered mutational landscape.

Beyond somatic substitution events, cancer genomes also suffer other types of mutations,
including small insertions and deletions and regional copy-number changes®. Such events are
fewer in number than SNVs but can have more profound functional consequences. Our dataset
carries evidence that such events occur in genes with non-unique sequences. Our analysis,
however, does not include them because of current limitations in thesaurus annotation. It is thus
clear that, despite uncovering thousands of additional somatic events, more still remains hidden.

Similar considerations are also relevant for comparative genomics of germline variants and their

10


https://doi.org/10.1101/2020.04.14.040634
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.040634; this version posted April 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

relation to rare diseases®. The challenges in detecting these events are technical, but can be
overcome with careful strategies for variant comparison®®, and would help refine views on the

genomics of disease.

11
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Material and Methods

Cancer cohort

Data for cancer samples and matching normal tissue were obtained through the Pan-Cancer
Analysis of Whole Genomes (PCAWG) consortium’. The dataset consisted of 2,658 samples from
38 distinct cancer types (22 organ systems) and 47 consortium projects. All alignments were used
in their original formats as provided by the consortium. Briefly, all samples consisted of reads

aligned to the hs37d5 reference build of the human genome using bwa-mem®.

A random set of 237 normal-tissue samples reported not to be contaminated by tumor cells were
selected to form a panel of normals. These samples originated from all 38 cancer types. The
panel thus captures heterogeneity of human populations, although it cannot be treated as a true

representative of all genetic variation.

Annotations

All calculations were performed against the hs37d5 genome reference build, including decoy
chromosomes. Gene annotations were obtained from GENCODE, release 19*'. Classifications of

known repeat elements were downloaded from the UCSC genome browser hub.

Variant calling, thesaurus annotation, and candidate prioritization

An initial set of variants were called from bwa-aligned sequencing data using Bamformatics

(v0.2.5) (https://github.com/tkonopka/Bamformatics). Settings were left at their defaults, except

for argument --minmapqual 0, which instructs the software to use all primary read alignments

irrespective of mapping quality.

Variants detected in samples included in the panel of normals were aggregated into a single table.

The frequency of each variant in this panel was kept as a proxy for population frequency.

Variants from tumor samples were annotated using GeneticThesaurus (v0.2.1)

(https://github.com/tkonopka/GeneticThesaurus). Customized settings included --minmapqual 0,

which instructs the software to use all primary aligned reads irrespective of mapping quality, and
settings --many 20 --toomany 100, which limit thesaurus links to a smaller number than set by

default. The thesaurus annotation process was provided access to alignment data for matched
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normal samples. Output from this stage included tables linking variants to related sites in the
genome, as well as tables associating each variant in the tumor with features such as allelic
frequency, coverage, and analogous features from the matched normal. These tables included
data based only on the called variant position as well as data pooling information from all

thesaurus-linked sites.

Following the variant annotation by the GeneticThesaurus software, variants from each tumor
were compared to the panel of normals. Items present at a frequency greater than 1% in normal
samples were deemed to consist of common germline variants or sequencing artefacts and were
excluded from downstream analysis. Prioritized candidates were further annotated with features

from the CIGAR strings of aligned reads using custom scripts.

Machine learning to detect somatic mutations

A set of 300 tumor samples and their matching normal controls were selected at random for
machine-learning. The set contained representatives from all the major PCAWG histologies. The
set was split into training, testing, and validation sets with 150, 50, and 100 samples, respectively.
Separately, PCAWG mutation calls for the same samples were assembled into a truth set.
Importantly, the PCAWG mutation calls were filtered using the same panel-of-normals frequency
filter used on the candidate sites and then trimmed further to remove items that were not present
in the variant candidates. These steps ensured that the candidates and the truth set are
consistent, and that all items in the truth set could in principle be obtained from non-missing
features in the candidate data. Both the candidate and the truth dataset were restricted to sites
with a PASS filter code in the candidate data, i.e. to those sites not linked to any additional
locations via thesaurus links. This ensured that the identification of somatic mutations among the
candidates could be determined by technical features of the sequencing data and biological

aspects of the tumor and was not confounded by aspects related to mappability.

Machine learning models were trained using xgboost*?

- an algorithm based on random forests -
with default settings except when stated. To explore the effect of data quantity on classification
performance, a series of models were trained based on an increasing number of tumor samples.
The samples used in each model were selected with a stochastic procedure that attempted to use
distinct samples in replicates. Once the tumor samples were selected, models were trained using
all the data from those tumors. After training, all models were evaluated against the entire test set

using false-discovery (ratio of false calls among all positive calls) and false-negative rates (ratio
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of missed calls among all calls in the truth set). After obtaining a satisfactory set of
hyperparameters, a final model was trained using the entire set of 150 training samples and re-

evaluated on an independent validation set.

Feature importance in the final classifier was assessed using a bootstrapped dropout-loss
procedure. This procedure subsamples the testing dataset, permutes values within individual
features or certain groups of features, and assesses how the predictions on the adulterated data
compare with predictions based on the original data. The downsampling and permutation

procedure was repeated 100 times and average dropout-loss values reported.

This model was then applied to call somatic single nucleotide variants on the entire set of
candidate sites irrespective of filter code, i.e. on unique and non-uniquely mappable sites.
Importantly, for features that can be affected by mappability, the values provided to the classifier
were those estimated by the GeneticThesaurus annotation procedure, i.e. averages over all sites
linked by the thesaurus. By construction, this procedure ensured that in well-mappable areas, the
classifier functioned in the same way as during training. In non-unique regions, the classifier made

predictions from data informed by multiple locations in the genome.

Modelling mutation load

Called mutations were classified into two groups - local and thesaurus - based on whether a site
was associated with an alternative location via a thesaurus link. The mutation load in each sample
was defined as the total number of positions for each type. Cases where mutations were called
at more than one site and linked together via a thesaurus annotation were treated as single
events; the site with the higher allelic frequency was marked as primary and taken forward for
subsequent analysis. The relation between the mutation loads associated with local and

thesaurus filter codes was modeled using a power-law equation
thesaurus load ~ scaling (simple load)®*°"",

where scaling and exponent are free parameters. Under an assumption that thesaurus mutations
appear via the same mechanisms as simple mutations, power would be equal to unity and
proportionality would indicate the relative size of non-unique and unique genomic regions. The
model can be reformulated as, log(thesaurus load) ~ scaling + exponent log(simple load). The

free parameters were solved using simple regression.
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Linked-read sequencing

A sample from a patient with a malignant peripheral nerve sheath tumor was selected for
sequencing. The patient provided their written and informed consent to provide samples for this
study, which was approved by the National Research Ethics Service (NRES) Committee
Yorkshire and The Humber — Leeds East (15/YH/0311).

High molecular weight DNA was extracted from frozen tissue according to the 10x genomics
protocol (CG000072). In short, 500 ul of cold nuclei isolation buffer was added (sigma pure prep
lysis buffer (NUC201-1KT), 1mM DTT, 10% Triton X-100) to a small piece of frozen tissue in a
1.5 ml tube (and homogenized by moving a pestle up and down 10-20x). After settling, the
supernatant was transferred to a new tube and centrifuged for 5 min at 500xg (4°C). The
supernatant was removed without disturbing the pellet and the following was added: 70 pl of cold
PBS, 10 ul of proteinase K and 70 pl of Digestion buffer (20mM EDTA, 2nM Tris-HCI, 10mM N-
laurylsarcosine sodium salt and water). The pellet was dislodged by tapping the tubes lightly and
then left to rotate for 2h at 20°C. Tween-20 was added to a final concentration of 0.1% and pipette
mixed 5 times. An equal amount of 1x SPRIselect reagent (Beckman Coulter B23317) was added
followed by rotation for 20 min. The beads were then washed twice with 70% ethanol and
resuspended in 50 pl sample elution buffer (Qiagen AE buffer with 0.1% Tween 20). After
incubation at 20°C for 5 min, the beads were put on a shaker at 1400rpm for 3 min (25°C) to elute
the DNA. The samples were quantified using the Qubit. Linked reads libraries were generated
using the 10x Chromium, following the manufacturer's instructions. The library was sequenced

using paired-end 150bp reads with an 8bp index on a single lane of an lllumina HiSeq X.

Validation through linked-read sequencing

BCL files were processed and demultiplexed to FASTQ files using bcl2fastq v2.20.0. Reads were
mapped to the hs37d5 reference build, de-duplicated and filtered using the LongRanger (v2.2.2)
WGS pipeline with the --somatic flag. This pipeline leverages the Chromium molecular barcodes
and GATK v4.0.8.1 to call and phase single nucleotide variants, indels, and structural variants.
Overall, a total of 1,538,338 GEMs were generated, containing on average 589kb of DNA with an
average size of 86kb, each producing a median of 47 linked reads for a final 38x depth of coverage

and 32x median depth at mutated sites.
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The reported variants were compared to the calls from the machine learning approach on a
standard short-read WGS dataset of the same tumor sample. Simple variants called from the
short reads were declared validated if they were part of the PASS mutations in the linked reads.
Thesaurus calls were declared validated if they were part of PASS mutations in the linked reads,
or if their thesaurus-linked sites were part of the linked-read dataset. This approach allows for
ambiguity in placing the mutation location based on short-read data, but does not inflate detection

rates'?.

Mutation trinucleotide profiles

Trinucleotide contexts were extracted for all called mutations in the cohort. These neighborhoods
were used to assign each substitution mutation to one of 96 categories as previously described™.
Counting the number of mutations of each type produced two profiles - one based on simple

mutations in unique genomic regions and one based on mutations with thesaurus links.

For correlation analysis, the simple and thesaurus profiles were treated as 96-dimensional vectors
and correlation was evaluated using the Spearman method. Because mutation profiles are
degenerate when the overall number of mutations is small and constrained to non-negative
counts, statistical significance was estimated by simulation. For a given profile of thesaurus
mutations, 10,000 random profiles were generated with an equivalent number of mutations. The
Spearman correlation value between the local and thesaurus profiles were compared to the
distribution of correlations between the local and simulated profiles. The procedure provided
approximations to p-values that were sufficiently precise to determine significance at nominal and

multiple-testing adjusted levels.

For visualization of similarities of the mutation profiles, count-based mutation profiles were
adjusted using allele-frequency data. This adjustment provided weighting toward well-measured
mutation instances and avoided degenerate comparisons based on integer counts. Mutation
profiles based on simple mutations were sum-normalized and embedded into a two-dimensional

space using UMAP#344

, a dimensional reduction technique, using a euclidean distance metric.
Following generation of the embedding based on simple mutations, the resultant model was used

to predict the position of allele-frequency-adjusted profiles based on thesaurus mutations.
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Modeling of mutation frequency

Mutation frequencies were computed by counting the number of samples (patients) with at least
one somatic mutation in regions of interest. In order to avoid counts being inflated by likely
passenger mutations, hyper-mutator samples were identified and removed from this calculation
and subsequent modeling. Hyper-mutator status was set if a sample contained more than 300
mutations in coding regions, a procedure previously described in other studies of driver

22,37

mutations=~’. In practice, we omitted 198 samples (7.5% of the cohort) from the mutation

frequency analysis.

Mutation frequencies were assessed on non-overlapping genomic regions labeled as coding
(cds), intronic (intron), untranslated (UTR), promoter, or intergenic. Each region was associated
with a genomic length, a frequency based on simple mutations alone, a frequency based on

thesaurus mutations alone, and a frequency based on both simple and thesaurus mutations.

Modeling of the relation between region size and mutation frequency was performed using

quantile regression. The model used logarithmically transformed frequency and region size,
log(frequency) ~ ap + a1 log(size) + a2 (log(size))*2,

With ag, a1, and a, as free parameters. The model quadratic term allows some nonlinearity in the
relationship between size and frequency, which is required to allow the growth in frequency to
taper for very large regions. Quantile regression with this model was performed at the 50%
percentile to describe the primary trend, and at 5%, 25%, 75%, 95% levels to obtain intervals of
variability. After fitting the parameters, each genomic region was associated with an expected

mutation frequency and an interquartile interval.

Quantile regression based on a linear equation is guaranteed to produce fitted models that
preserve ordering of percentiles, e.g. with a model at quantile of 75% always yielding larger values
than at 50%. This property is not guaranteed for models with higher-order terms. Predictions from
the fitted models were thus adjusted post-hoc. Furthermore, the interquartile interval was forced
to correspond to at least 1/N, with N being the number of samples in the modeled cohort. All

model predictions were restricted to the unit interval, [0, 1].
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|dentifying driver genes with dndscv

The dN/dS ratio was computed through maximum likelihood estimates across trinucleotide
contexts using dndscv?. After removing hypermutator samples with more than 300 coding
mutations, we ran dndscv on the pan-cancer cohort for de-novo discovery of candidate cancer
genes. We used the pooled set of thesaurus and simple mutations, but we did not correct for

epigenetic covariates, as these covariates are not annotated for non-uniquely mapping regions.

Cancer type specificity

Specificity of mutations was quantified using information entropy, defined via Shannon's formula,
S =-2ipiln pi

with the sum running over cancer types. Probabilities pi for each cancer type were defined as pi

= (ci + )/ 2j(g + €) with ci being the count of patients (samples) carrying a mutation in the region
and the constant e being a pseudocount regularization. For the regularization, we used a value of
1 for coding sequences and adjusted values for promoters, UTRs, introns, and intergenic regions
proportionally to the median region length. Because entropy is high for quasi-random
configurations and low for configurations peaked on one bin, visualizations of specificity were
performed using changes in entropy, AS. These were defined by subtracting S from the entropy

of a hypothetical region with null counts,

AS=-3i(e/N)In (¢/N)-S = -¢In (¢/N) - S.
The quantity gives mutation patterns with a high number of patients from a single cancer type

higher values than cancer-type-agnostic patterns. It also assigns values near zero to all

infrequently-mutated regions.
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Figure 1. Calling mutations in non-unique regions of the genome. (a) Schematic of short-read sequencing
data with one single-nucleotide substitution in a unique region and one in a non-unique region. Thesaurus
annotation links related sites together. (b) Comparison of mutation calls from a mappability agnostic pipeline
with the PCAWG mutation set. FDR: false discovery rate; FNR: false negative rate; thes. PR: positive rate
among thesaurus mutations; thes. DR: new discovery rate among thesaurus mutations. (c) Mutation load
among simple and thesaurus mutations. A model is fit on a subset of samples with at least 1000 simple
mutations. (d) Proportions of mutations that fall in non-unique regions of the genome. Vertical bar shows
the fraction of the genome that is non-unique at a resolution of 100bp. The cohort was filtered to exclude
samples with fewer than 1000 simple mutations. consensus: PCAWG mutation calls; naive: a mutation set
called considering non-unique regions, but without thesaurus annotations. (e) Validation rate of mutations
in an independent cancer sample sequenced with short-read and linked-read technologies.
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Figure 2. Concordance of simple and thesaurus mutational profiles. (a) Distribution of spearman
correlations, computed for each sample, between 96-dimensional mutational profiles from simple and thesaurus
mutations. (b) Correlations diagrams between thesaurus and simple mutation counts for two representative
samples with intermediat and high correlation values. (c) Stereo UMAP embedding of cohort samples based
on trinucleotide mutation profiles. The first map is based on simple mutations and a cosine distance. The
second view shows a projection of thesaurus profiles onto the same embedding space. Colors indicate histology
types and subtypes. (d) Mutation profiles for local and thesaurus mutations for a group of samples selected
from the dashed area in (c¢). Mutation profiles display average profiles for the group. Bars represent 95%
quantiles for each substitution type.
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Figure 3. Mutation rates in functional regions. (a) Counts of functional regions affected by both local
and thesaurus mutations, or only by thesaurus mutations. (b) Modeling of cohort frequency in gene coding
sequences (cds) as a function of region size using quantile regression. Shaded regions indicate quantile 25%
and 75% intervals and dots display genes outside the range. Subpanels show genes affected only by local
mutations, by a mixture of local and thesaurus mutations, or only thesaurus mutations. (c) Summary
of quantile modeling on functional regions, and in coding sequences partitioned by mutation effect. (d)
Specificity of mutations in coding sequences. Two axes measure over-representation of mutations in the
pan-cancer cohort and the entropy across cancer types. Labels indicate two canonical cancer genes - TP53 and
KRAS - and outlier genes that contain at least some thesaurus mutations. Percentages show the proportion
of samples with thesaurus mutations. (e) Analogous to previous panel, showing promoter regions.
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Figure 4. Thesaurus mutations in gene families. (a) Thesaurus mutations in coding sequences of the
cancer gene census. Percentages on right indicate the proportion of patients that carry exclusively thesaurus
mutations. (b) Distribution of mutations along the cds of two known cancer genes. (c) Analogous to (b),
genes carrying both local and thesaurus mutations, but not part of cancer census. (d) Analogous to (b)
with genes carrying mostly, or exclusively, thesaurus mutations. (e) Dominant linking patterns between
selected genes. Genes and links are colored according to region type, e.g. cds and promoters. Links from
one region type to another, e.g. from cds to UTR, are grouped into a label ‘other’. (f) Cohort summary of
mutations in one gene family. (g) Distribution of mutations along sequences upstream (promoters) of selected
immunoglobulin (IG) fragments. (h) Mutation profiles in promoter sequences of B-cell non-Hodgkins leukemia
(BNHL) and chronic lymphocytic leukemia (CLL) consistent with somatic hypermutation by deamination.
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(External File)
Supplementary Table 1. Summary of z-scores and histology specificity for all genomic

regions.
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