

1   Tissue-resident CD8<sup>+</sup> T cells drive age-associated chronic lung sequelae following viral  
2   pneumonia

3  
4   Nick P. Goplen<sup>1,2</sup>, Yue Wu<sup>3</sup>, Youngmin Son<sup>1</sup>, Chaofan Li<sup>1</sup>, Zheng Wang<sup>1</sup>, In Su Cheon<sup>1</sup>, Li  
5   Jiang<sup>1</sup>, Bibo Zhu<sup>1</sup>, Katayoun Ayasoufi<sup>3</sup>, Eduardo N. Chini<sup>2,4</sup>, Aaron J. Johnson<sup>3</sup>, Robert  
6   Vassallo<sup>1</sup>, Andrew H. Limper<sup>1</sup>, Nu Zhang<sup>5</sup> & Jie Sun\*<sup>1,2,3</sup>

7  
8   1. Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic,  
9   Rochester, MN 55905, USA

10   2. The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905,  
11   USA

12   3. Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA

13   4. Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA

14   5. University of Texas Health San Antonio, Long School of Medicine Departments of  
15   Microbiology, Immunology & Molecular Genetics, San Antonio TX, 78229 USA

16

17   \* Correspondence author. Email: sun.jie@mayo.edu

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 Lower respiratory viral infections, such as influenza virus and severe acute respiratory syndrome  
34 coronavirus 2 (SARS-CoV2) infections, often cause severe viral pneumonia in aged individuals.  
35 Here, we report that influenza viral pneumonia leads to chronic non-resolving lung pathology  
36 and exaggerated accumulation of CD8<sup>+</sup> tissue-resident memory T cells (T<sub>RM</sub>) in the respiratory  
37 tract of aged hosts. T<sub>RM</sub> accumulation relies on elevated TGF- $\beta$  present in aged tissues. Further,  
38 we show that T<sub>RM</sub> isolated from aged lungs lack a subpopulation characterized by expression of  
39 molecules involved in TCR signaling and effector function. Consequently, T<sub>RM</sub> cells from aged  
40 lungs were insufficient to provide heterologous protective immunity. Strikingly, the depletion of  
41 CD8<sup>+</sup> T<sub>RM</sub> cells dampens persistent chronic lung inflammation and ameliorates tissue fibrosis in  
42 aged, but not young, animals. Collectively, our data demonstrate that age-associated T<sub>RM</sub> cell  
43 malfunction supports chronic lung inflammatory and fibrotic sequelae following viral pneumonia  
44 in aged hosts.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 **Introduction**

64 Aged individuals (65 and older) will comprise 20 percent of the population in developed  
65 countries in the coming decades. It is well established that the peripheral CD8<sup>+</sup> T cell  
66 compartment that contributes to cellular immunity shrinks in number, diversity, and quality as  
67 we age [1-3]. As a consequence, memory T cells are enriched and T Cell Receptor (TCR)  
68 repertoires are narrowed during homeostasis [4]. Consequently, the magnitude and the quality of  
69 primary effector CD8<sup>+</sup> T cell response often is compromised in aged hosts following pathogen  
70 challenge [5]. Likewise, the development of CD8<sup>+</sup> memory T cell responses in the circulation  
71 and/or in the lymphoid organs is often impaired during aging [6, 7]. This age-related CD8<sup>+</sup> T cell  
72 attrition in memory T cell differentiation and/or function has been linked to impaired host  
73 responses to pathogens following primary infection or vaccination in aged hosts [8].

74

75 Tissue-resident memory CD8<sup>+</sup> T cells (T<sub>RM</sub>) with potent effector potential are mainly located in  
76 peripheral tissue at portals of pathogen entry, whereas circulating central and effector memory T  
77 cells survey lymphoid organs and/or peripheral tissues [9, 10]. It has been shown that CD8<sup>+</sup> T<sub>RM</sub>  
78 cells can provide nearly sterilizing protection if present in sufficient numbers [11]. Therefore,  
79 great enthusiasm has recently centered on enhancing local CD8<sup>+</sup> T<sub>RM</sub> responses as a promising  
80 vaccination strategy to control mucosal infections including influenza virus infection [12]. Much  
81 progress has been made recently regarding the cellular and molecular mechanisms regulating  
82 T<sub>RM</sub> cell development and maintenance [13, 14]. However, relatively less is known regarding the  
83 effects of aging in the development and/or function of T<sub>RM</sub> responses in the mucosal tissues  
84 following primary infection. Of note, analysis of spatial and temporal maps of T cell  
85 compartmentalization revealed that aged lungs harbor increased levels of CD8<sup>+</sup> CD69<sup>+</sup> T<sub>RM</sub>-like  
86 cells compared to young lungs [1]. However, it is unclear whether this is caused by a gradual  
87 build-up of memory T cells following frequent experiences of prior infections in the lungs, or  
88 due to enhanced generation of CD8<sup>+</sup> T<sub>RM</sub> cells following a single infection in the elderly.  
89 Therefore, the development and function of CD8<sup>+</sup> T<sub>RM</sub> cells in aged hosts following primary  
90 infection remains to be examined.

91 Lower respiratory tract viral infections represent a major public health challenge and economic  
92 burden worldwide. In a matter of months, emerging respiratory viral diseases can alter social

93 norms, stagnate economies, and overwhelm healthcare infrastructures across the globe, as  
94 demonstrated by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)  
95 pandemic. Among respiratory viral pathogens, influenza virus can infect 5–10% of the  
96 population [15], resulting in up to 35.6 million illnesses and 56,000 deaths annually in the U.S.  
97 alone since 2010 [16]. For reasons that are still not fully defined, many respiratory viruses  
98 including SARS-CoV-2 and influenza virus cause disproportionately severe morbidity in the  
99 elderly population [17, 18]. For instance, the vast majority of the mortality associated with both  
100 influenza and SARS-CoV-2 infections, occur in people 65 years and older. It has been shown  
101 that influenza disease severity is elevated, prolonged, and linked with increased comorbidities  
102 and death in the elderly population [19]. In addition to the acute mortality caused by respiratory  
103 viral infections, evidence has suggested that survivors of primary viral pneumonia may display  
104 persistent impairment of lung function due to lung fibrosis [20]. Furthermore, it is predicted that  
105 a large proportion of elderly Corona Virus Disease 2019 (COVID-19) survivors will be prone to  
106 persistent impairment of lung function and pulmonary fibrosis as was observed in survivors of  
107 SARS and Middle East Respiratory Syndrome (MERS) [21]. At this time, there are no  
108 preventative means or therapeutic interventions available to mitigate and/or reverse lung fibrosis  
109 development following viral pneumonia. Currently, the cellular and molecular mechanisms  
110 regulating the development of chronic lung fibrotic sequelae following primary viral pneumonia  
111 are still largely unknown. This major knowledge gap likely represents a future bottleneck for  
112 development of successful therapeutics for patients with chronic lung fibrosis induced by SARS-  
113 CoV-2 infection.

114 Here, we report that influenza infection in aged mice leads to non-resolving inflammation and  
115 persistent chronic lung pathology. Transcriptional and flow cytometric analyses revealed that  
116 lungs from aged mice exhibited enhanced accumulation of CD8<sup>+</sup> CD69<sup>+</sup> memory T cells.  
117 Parabiosis experiments showed that those age-associated lung CD8<sup>+</sup> CD69<sup>+</sup> T cells were tissue  
118 resident. Further, the excessive accumulation of lung CD8<sup>+</sup> T<sub>RM</sub> cells depends on the aging-  
119 associated increase in environmental TGF-β. Single cell (sc) RNA-seq analysis demonstrated  
120 that T<sub>RM</sub> against a major influenza protective epitope exhibited diminished effector function in  
121 response to TCR signaling. As a result, CD8<sup>+</sup> T<sub>RM</sub> failed to provide protective immunity against  
122 a secondary heterologous virus infection in aged mice. Strikingly, we further showed that the

123 depletion of CD8<sup>+</sup> T<sub>RM</sub> cells resulted in decreased tissue inflammation and lowered lung collagen  
124 deposition. Thus, we have discovered an age-associated paradox in CD8<sup>+</sup> T<sub>RM</sub> cell responses.  
125 CD8<sup>+</sup> T<sub>RM</sub> cell accumulation in aged hosts was not coupled to enhanced protective immunity, but  
126 rather, to chronic lung pathology and fibrotic sequelae following primary viral pneumonia.

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154 **Results**

155 **Non-resolving tissue inflammation and pathology following influenza virus infection in  
156 aged hosts**

157 To investigate the short and long-term effects of aging on influenza disease severity, young (2  
158 month old) and aged (21-22 month old) C57BL/6 mice were infected with influenza A virus  
159 (IAV; A/PR8/34 strain (PR8), Figure 1A). While 100% of young mice survived from intranasal  
160 infection with PR8, ~50% of aged mice succumbed to the infection by day 12 (Figure 1B), which  
161 are consistent with previous reports that aged mice exhibited enhanced host mortality following  
162 primary influenza infection [22]. Aged mice that survived exhibited prolonged weight recovery,  
163 although their weight completely recovered by 20 days post infection (d.p.i.) (Figure 1C).  
164 Interestingly, these differences in acute morbidity and mortality were seen despite similar viral  
165 replication at 9 d.p.i. and complete viral clearance in the respiratory tract in both groups by 15  
166 d.p.i. (Figure 1D) similar to previous reports [23].

167

168 Recent clinical and experimental evidence suggests that severe acute influenza infection may  
169 cause persistent lung pathology, remodeling, and pulmonary dysfunction [20, 24]. To determine  
170 whether these acute differences in host morbidity result in differential tissue pathological  
171 sequela, we examined the kinetics of histopathology in the lungs following acute PR8 infection  
172 in young and aged hosts. While common features of pulmonary aging such as enlarged alveoli  
173 were observed prior to infection (0 d.p.i.), leukocytic infiltrates were not prominent in either  
174 aged or young naive lungs (Figure 1E). At peak of host inflammatory responses and weight-loss  
175 (9 d.p.i.) and even several weeks later (30 d.p.i.), lung histopathology and tissue damage  
176 appeared comparable between young and aged mice (Figure 1E & F). However, at 60 d.p.i.,  
177 lungs from aged mice showed a higher density of parenchymal disruption compared to lungs  
178 from young mice (Fig. 1E & F). These data suggest that acute influenza virus infection in aged  
179 mice results in persistent non-resolving pathological pulmonary responses.

180

181 To confirm these lung histopathological data, we examined the presence of inflammatory  
182 monocytes and neutrophils, two major inflammatory cells that can cause pulmonary  
183 inflammation and tissue damage [22, 25]. To discern the anatomical location of the cell  
184 infiltrates, we examined the vascular and parenchymal fractions of the lungs through the

185 injection of intravenous CD45 antibody (Ab) 5 min before sacrifice [26] (Figure 1G). In this  
186 setting, CD45<sub>i.v.</sub><sup>-</sup> cells were within lung tissue, while CD45<sub>i.v.</sub><sup>+</sup> cells were in lung blood vessels.  
187 Neutrophil counts in the circulation exhibited a slight increase in aging relative to young as has  
188 been reported at 9 d.p.i. (Figure 1H) [22]. Further, there were more tissue-resident neutrophils  
189 and monocytes in the aged group at 9 d.p.i. (Figure 1H). By 60 d.p.i., the differences of  
190 neutrophil and monocytes numbers in the circulation were lost compared to 9 d.p.i., yet evidence  
191 of parenchymal neutrophil and monocytes persisted in aged lungs compared to young mice  
192 (Figure 1H). Together, the data point to an infection-induced age-related non-resolving  
193 inflammatory response following primary influenza virus infection.

194

195 We next measured the expression of 560 immune-related genes in the lungs before (0 d.p.i.) or at  
196 60 d.p.i. using Nanostring. The immune gene profiles of the lungs from young or aged  
197 uninfected mice were quite similar except a few genes-associated with “inflammaging” [27],  
198 which were modestly increased in aged lungs (Figure 1I). Further, the expression profile of the  
199 immune-related genes in the lungs from infected young mice (60 d.p.i.) was quite similar to  
200 those of lungs from uninfected mice, suggesting that lungs from infected young mice largely  
201 return to immune homeostasis at 60 d.p.i. However, the expression of most immune response-  
202 related genes were upregulated in infected aged lungs relative to those of uninfected young or  
203 aged lungs, or infected young lungs (Figure 1I). The mRNA signal ratios of infected versus non-  
204 infected lungs in the young or aged groups identified 52 differentially expressed genes (DEGs)  
205 shared between young and aged groups; 12 were unique to young and 349 were unique to aged  
206 samples (Figure 1I, top right panel). When comparing gene expression ratios of aged to young  
207 lungs, before and after infection, there were only 16 unique age-related DEGs prior to infection,  
208 whereas 32 were shared prior to and after infection between young and aged groups. In contrast,  
209 348 unique DEGs were observed at day 60 post-infection in aged groups compared to infected  
210 young lungs (Figure 1I, bottom right panel). Among those DEGs, influenza infection led to  
211 greatly increased expression of myeloid cell-associated genes, cytokine and chemokine genes,  
212 and genes involved in lymphocyte responses in aged lungs (Figure S1A-C). Together, these data  
213 indicated that the immune landscape of aged and young lungs is grossly similar prior to  
214 infection, but aged lungs exhibit greatly exacerbated inflammatory gene expression and failed to  
215 return to immune homeostasis months after primary infection.

216

217 **Excessive accumulation of CD69<sup>+</sup> parenchymal memory CD8<sup>+</sup> T cells in aged hosts**

218 To gain more insight on the lung global transcription profiles of influenza-infected young or  
219 aged mice, we performed bulk RNA-seq on lung tissues from infected young or aged mice at 60  
220 d.p.i. There were around 700 genes differentially expressed between the lungs of young and aged  
221 mice (Figure 2A). Among those 700 DEGs, aged lungs expressed higher levels of inflammatory  
222 cytokines and molecules-associated with adaptive immune responses (Figure S1D). Gene set  
223 enrichment analysis (GSEA) found that young lungs were enriched with gene sets associated  
224 with tissue repair such as epithelial-mesenchymal transition (EMT) and apical junction (Figure  
225 S1E). In contrast, aged lungs were enriched with gene sets associated with inflammatory  
226 responses and adaptive immune responses (Figure 2B & C and S1F).

227

228 We were intrigued with the enrichment of adaptive immune responses in the aged lungs as  
229 previous reports described that influenza infected aged mice had decreased levels of memory T  
230 cell responses in the circulation [28]. Therefore, we performed flow cytometric analysis to  
231 measure splenic, lung circulating and parenchymal memory T cell responses following i.v.  
232 injection of CD45 Ab as above at 60 d.p.i. (Figure S2A). There were increased CD4<sup>+</sup>, CD8<sup>+</sup> T  
233 and B cell presence in aged lung parenchyma but not within the lung vasculature (circulation)  
234 (Figure 2D & E and Figure S2B & C). Lung CD8<sup>+</sup> CD69<sup>+</sup> CD103<sup>-</sup> or CD8<sup>+</sup> CD69<sup>+</sup> CD103<sup>+</sup> T<sub>RM</sub>-  
235 like cells were also increased in aged lungs compared to those of young lungs (Figure 2 D, F).  
236 Consistent with previous reports, adaptive immune cells, particularly CD8<sup>+</sup> T cells, were  
237 decreased in the spleens of aged mice [29] (Figure 2G).

238

239 We next examined influenza-specific CD8<sup>+</sup> memory T cells in the lungs and spleens of infected  
240 young or aged mice through the staining of H2D<sup>b</sup>/nucleoprotein (NP) peptide 366-374 tetramer  
241 (D<sup>b</sup>-NP) or polymerase (PA) peptide 224-233 (D<sup>b</sup>-PA) tetramers (Figure 2 H and Figure S2 D).  
242 Aged lungs harbored significantly higher numbers of influenza-specific D<sup>b</sup>-NP and D<sup>b</sup>-PA  
243 memory T cells, selectively in the lung tissue, compared to young lungs (Figure 2I). In contrast,  
244 there was a drastic reduction of influenza-specific CD8<sup>+</sup> memory T cells in aged spleens (Figure  
245 2J). Thus, we observed an unexpected increase of memory T cells present in aged lungs, despite  
246 the attrition of memory T cells in the spleen or circulation. Increased T<sub>RM</sub> responses in the lungs

247 could be due to increased infiltration of effector T cells in aged mice. We therefore examined  
248 effector T cell responses in the lungs and spleens at 10 d.p.i. We found that while D<sup>b</sup>-PA  
249 responses appear to be equivalent in the lungs between young and aged mice, there was a deficit  
250 in the generation of D<sup>b</sup>-NP specific CD8<sup>+</sup> T cells in the lungs (Figure 2K). Furthermore, there  
251 were significantly lower levels of both D<sup>b</sup>-NP and D<sup>b</sup>-PA effector T cells in the spleens and  
252 circulation (Figure 2K) of aged mice compared to controls as previously reported [33].  
253 Therefore, aged mice exhibit enhanced CD8<sup>+</sup> T<sub>RM</sub> numbers despite having lower levels of  
254 effector T cell responses.

255

#### 256 **Influenza-specific lung memory CD8<sup>+</sup> T cells of aged hosts are tissue resident**

257 To verify whether the CD8<sup>+</sup> CD69<sup>+</sup> T cells in the lung that were protected from intravenous  
258 labeling were bona fide tissue-resident cells, we infected aged mice with influenza and  
259 performed parabiosis surgery to join the circulation of infected aged mice (CD45.2<sup>+</sup>) with a  
260 young naive congenic (CD45.1<sup>+</sup>) animal at 5 weeks post infection (Figure 3A). Four weeks after  
261 parabiosis, we observed equilibration of CD8<sup>+</sup> T cells from each parabiont in the blood and  
262 spleens (Figure 3B & C and S3A), confirming the successful exchange of circulating immune  
263 cells between parabionts. A vast majority of tissue-resident alveolar macrophages belonged to  
264 the host in both animals as would be expected from this population that is maintained mainly  
265 through self-renewal [34] (Figure S3B). Together, these two observations indicate that shared  
266 circulation was achieved and the model is able to distinguish the origin of circulating and  
267 residential immune cells in a manner consistent with previously described findings.

268

269 The parenchymal compartment of the aged infected hosts had a significantly larger number of  
270 CD8<sup>+</sup> CD69<sup>+</sup> T cells than the uninfected parabiont, of which ~95% were from the aged  
271 parabiont, despite indistinguishable numbers of CD8<sup>+</sup> T cells in both the lung vasculature and  
272 spleens between the young and aged parabionts (Figure 3D & E). Roughly 99% of total  
273 parenchymal CD8<sup>+</sup> CD69<sup>+</sup> D<sup>b</sup>-NP<sup>+</sup> cells in the lungs of two parabionts were found in aged lungs  
274 (Figure 3 F, G). In contrast, there were comparable CD45-i.v.<sup>+</sup> CD8<sup>+</sup> D<sup>b</sup>-NP<sup>+</sup> cells that were  
275 found in the lung circulation between young and aged parabionts (Figure 3G). Likewise, we  
276 observed similar patterns on the distribution of the D<sup>b</sup>-PA-specific CD8<sup>+</sup> T cells in lung  
277 parenchyma and circulation (Figure 3H & I & S3E). Notably, there were no major differences in

278 CD8<sup>+</sup> splenic memory T cells between the two parabionts for the same antigen specificities  
279 (Figure S3D & F). Together, these data suggest that aged lung parenchymal CD8<sup>+</sup> influenza-  
280 specific memory T cells are mainly tissue-resident.

281

282 **Age-associated T<sub>RM</sub> cell accumulation is dependent on environmental TGF-β**

283 It remains unclear if the excessive accumulation of T<sub>RM</sub> cells in aged lungs is due to the aged  
284 environment or intrinsic T cell differences in the development and/or repertoire between young  
285 and aged mice. To examine these possibilities, we adoptively transferred CD8<sup>+</sup> Ovalbumin  
286 (OVA)-TCR transgenic OT-I T cells of young naive donors to young or aged hosts. We then  
287 infected the mice with recombinant influenza virus expressing cognate OVA peptide  
288 (SIINFEKL) (PR8-OVA) [35] and evaluated memory T cell responses at 7 weeks after infection  
289 (Figure 4A). There were increased numbers of OT-I T<sub>RM</sub> present in aged lung tissue versus  
290 young (Figure 4B), while equivalent numbers of lung circulating or splenic memory OT-I cells  
291 were observed between young and aged mice (Figure 4C & D). Together, these data indicated  
292 that the aged microenvironment facilitates lung T<sub>RM</sub> cell accumulation following influenza virus  
293 infection even though the responding cells were from the same young donor.

294

295 To explore the potential mechanisms regulating CD8<sup>+</sup> T<sub>RM</sub> cell accumulation during aging, we  
296 performed qRT-PCR analysis on infected lungs to examine the expression of *Il15*, *Tnf* and *Tgfb1*,  
297 which are important in T<sub>RM</sub> cell development and/or maintenance [36-40]. We found that *Tgfb1*  
298 transcript levels were elevated in infected aged lungs compared to those of infected young lungs  
299 (Figure 4E). Previously, TGF-βR signaling was shown to be critical for the development of both  
300 CD69<sup>+</sup> CD103<sup>+</sup> and CD69<sup>+</sup> CD103<sup>-</sup> lung T<sub>RM</sub> cells [41]. Therefore, we examined whether the  
301 excessive accumulation of CD8<sup>+</sup> T<sub>RM</sub> cells in aged lungs is dependent on TGF-βR signaling. To  
302 this end, we adoptively transferred young WT or TGFβRII-deficient (TGFβRII KO, dlLck-Cre  
303 *Tgfb2*<sup>f1/f1</sup>). OT-I cells into young or aged hosts, and then infected the mice with PR8-OVA.  
304 TGFβRII deficiency not only diminished OT-I T<sub>RM</sub> development in young mice, but also  
305 abolished the excessive accumulation of OT-I T<sub>RM</sub> in aged mice (Figure 4F). However, TGFβRII  
306 deficiency did not significantly affect splenic memory T cell responses in young or aged mice  
307 (Figure 4G). Thus, these data suggest that excessive accumulation of CD8<sup>+</sup> T<sub>RM</sub> cells in aged  
308 lungs is dependent on TGF-βR signals in aged tissue environment.

309

310 **Age-associated dysfunction of T<sub>RM</sub> cells against a major protective epitope**

311 T<sub>RM</sub> cells are vital for heterologous influenza virus reinfection [43]. Since aged lungs  
312 accumulated significant more CD8<sup>+</sup> T<sub>RM</sub> cells, it is plausible that aged mice may exhibit  
313 enhanced protective heterologous immunity against viral reinfection. To this end, we employed a  
314 heterologous infection and challenge model in which we infected young or aged mice with PR8  
315 virus and then re-challenge the mice with a lethal dose of X31 virus in the presence of FTY720,  
316 which blocks the contribution of protective circulating memory T cells [12]. PR8 and X31  
317 viruses differ in viral surface proteins, but share internal viral proteins such as NP, which are  
318 cross-recognized by memory CD8<sup>+</sup> T cells [44, 45]. We confirmed that FTY720 treatment  
319 abolished T cell migration (Figure S4A). We then followed host morbidity and mortality daily  
320 following X31 challenge. All naïve young or aged mice succumbed to lethal X31 infection  
321 (Figure S4B), while PR8-infected young mice were fully protected from lethal X31 infection in  
322 the presence of FTY720 (Figure 5A). Strikingly, ~75% of PR8-infected aged animals succumbed  
323 to secondary X31 re-challenge, which was almost comparable to mortality of primary X31  
324 infection in those mice (Figure 5A and S4B). Thus, the enhanced presence of CD8<sup>+</sup> T<sub>RM</sub> cells in  
325 aged lungs failed to provide heterologous protection against influenza reinfection.

326

327 Among influenza-specific CD8<sup>+</sup> T cells, D<sup>b</sup>-NP-specific T cells appear to be particularly critical  
328 for the protection against secondary heterologous viruses [46]. To examine the mechanisms  
329 underlying the impaired protective function of T<sub>RM</sub> cells in aged lungs, we sorted polyclonal D<sup>b</sup>-  
330 NP-specific T<sub>RM</sub> from infected young or aged lungs, and performed scRNAseq at 60 d.p.i.  
331 (Figure S4C). Compared to D<sup>b</sup>-NP T<sub>RM</sub> cells from aged mice, D<sup>b</sup>-NP T<sub>RM</sub> from the young mice  
332 were enriched in genesets associated with NF-κB signaling and inflammatory immune responses  
333 (Figure 5B). Furthermore, D<sup>b</sup>-NP T<sub>RM</sub> from aged mice had decreased expression of effector  
334 molecules such as *Ifng* and *Tnf*, and molecules involved with TCR signaling such as *Lck* and  
335 *Junb* (Figure 5C). Additionally, *Bhlhe40*, a key transcription factor necessary for the expression  
336 of effector molecules in T<sub>RM</sub> cells [13], was diminished in T<sub>RM</sub> from aged lungs (Figure 5C). We  
337 performed Uniform Manifold Approximation and Projection (UMAP) and found that D<sup>b</sup>-NP T<sub>RM</sub>  
338 from young and aged mice can be divided into 4 clusters (Figure 5D and S4D). Cluster 0 cells  
339 were mainly comprised of T<sub>RM</sub> cells from young mice, and clusters 2 and 3 cells consisted

340 mainly of T<sub>RM</sub> cells from aged mice, while cluster 1 cells were equally divided by T<sub>RM</sub> cells from  
341 young and aged mice (Figure 5D & E). Compared to the rest of cluster cells, cells in cluster 0  
342 express high levels of genes associated with classical T<sub>RM</sub> signature (such as *Bhleh40*, *Cd69* and  
343 *Jun*), molecules associated with better TCR signaling (such as *Lck*, *Cd3e* and *Cd28*) and genes  
344 associated with CD8<sup>+</sup> T cell effector function (such as *Ccl4* and *Tnf*) (Figure 5F). Thus, age-  
345 associated lung T<sub>RM</sub> cells lose a functional subpopulation that is characterized with robust  
346 expression of CD8<sup>+</sup> T cell effector and functional molecules, which likely explain the lack of  
347 protection against secondary viral re-challenge.

348

349 To further test the capacity of T<sub>RM</sub> to elicit a protective response, we stimulated lung cells from  
350 young or aged mice with NP 366-374 peptide and then measured IFN- $\gamma$  and TNF production by  
351 CD8<sup>+</sup> T<sub>RM</sub> cells through intracellular staining. Consistent with the scRNAseq data, D<sup>b</sup>-NP-  
352 specific T<sub>RM</sub> cells from aged mice exhibited diminished production of IFN- $\gamma$  compared to young  
353 mice, particularly on the IFN- $\gamma$  levels were evaluated on a per cell basis (Figure 5 G-I).

354 Moreover, CD8<sup>+</sup> T<sub>RM</sub> cells from aged lungs were defective in simultaneously producing both  
355 IFN- $\gamma$  and TNF following peptide re-stimulation (Figure 5J). Of note, splenic CD8<sup>+</sup> memory T  
356 cells were also impaired in producing both IFN- $\gamma$  and TNF following peptide re-stimulation  
357 during aging (Figure S5A), suggesting that the impaired production of functional effector  
358 molecules following peptide re-stimulation was not restricted to T<sub>RM</sub> cells. In contrast to their  
359 diminished cytokine production following peptide stimulation (TCR signaling), total CD8<sup>+</sup> or  
360 D<sup>b</sup>-NP-specific T<sub>RM</sub> cells were capable of producing IFN- $\gamma$  and TNF following PMA/Ionomycin  
361 restimulation (Figure S5B, C). These data suggest that D<sup>b</sup>-NP T<sub>RM</sub> cells exhibit impaired  
362 production of effector molecules specifically following TCR stimulation. Interestingly, following  
363 ex vivo stimulation of D<sup>b</sup>-PA specific T<sub>RM</sub> cells by PA 224-233 peptide, we found that D<sup>b</sup>-PA  
364 T<sub>RM</sub> cells from aged and young hosts had similar ability to produce IFN- $\gamma$  and TNF (Figure  
365 S5D). These data suggest that the impaired production of effector molecules by D<sup>b</sup>-NP-specific  
366 T<sub>RM</sub> cells is likely not due to the aged environment, but their developmental defects as  
367 demonstrated before [28]. Consistent with this idea, young OT-I cells transferred into the aged  
368 hosts did not exhibit functional defects in cytokine production compared to OT-I cells transferred  
369 into young mice (Figure S5 E & F).

370

371

372 **Resident CD8<sup>+</sup> T cells in aged hosts drive persistent pulmonary inflammation and lung**  
373 **fibrosis**

374 Excessive accumulation of T<sub>RM</sub> cells following PD-L1 blockade in influenza-infected mice leads  
375 to persistent inflammatory and fibrotic responses in the lungs at the memory stage [41]. Since  
376 aged lungs harbored enhanced T<sub>RM</sub> cells and persistent lung pathology, we hypothesized that  
377 excessive accumulation of CD8<sup>+</sup> T<sub>RM</sub> in aged lungs may cause persistent inflammation and  
378 fibrotic sequela. To test this hypothesis, we infected aged mice with PR8 virus and then injected  
379 the mice with high or low doses of CD8 depleting antibody ( $\alpha$ -CD8) at 21 d.p.i. to deplete CD8<sup>+</sup>  
380 T cells systemically in lymphoid and peripheral tissues (high dose) or only in lymphoid organs  
381 and the circulation (low dose) [40, 47, 48] (Figure 6A). Both low dose and high dose CD8 Ab  
382 treatment largely ablated splenic CD8<sup>+</sup> T cells, however, only high dose CD8 Ab injection  
383 caused significant ablation of CD8<sup>+</sup> T cells in the lung parenchyma (Figure 6B and S6A).

384 Neither high nor low dose of CD8 Ab treatment caused significant reduction of CD4<sup>+</sup> T or B cell  
385 compartments in the lungs (Figure S6 B). Lung histopathological analysis revealed marked  
386 reduction of inflammatory lesions following high dose, but not low dose of CD8 Ab treatment  
387 particularly in aged mice following infection (Figure 6 C-E), indicating that lung resident CD8<sup>+</sup>  
388 T cells drive chronic lung pathology at the memory phase. Consistent with the histology data,  
389 high dose, but not low dose, of CD8 Ab treatment caused significant reduction of Ly6C<sup>+</sup>  
390 monocyte and neutrophil infiltration in aged, but not young lung tissues (Figure 6F). Thus,  
391 resident CD8<sup>+</sup> T cells are responsible for the constant recruitment of monocytes and neutrophils  
392 to the tissue at the memory phase. To further explore the roles of resident CD8 T cells in  
393 promoting tissue inflammation at the memory stage, we measured immune-associated genes in  
394 the lungs by Nanostring. There was a marked decrease in the expression of multiple cytokines  
395 and particular chemokines in the lungs of mice that received high CD8 Ab treatment, compared  
396 to those of lungs of mice received control Ab or low dose of CD8 Ab at 60 d.p.i. (Figure 6G &  
397 6SC & D), likely explaining the diminished monocyte and neutrophil infiltration in the tissue  
398 following resident CD8<sup>+</sup> T cell depletion.

399

400 Acute influenza virus infection can cause persistent lung remodeling and collagen deposition  
401 [24]. We therefore examined whether CD8<sup>+</sup> T cell depletion at 3 weeks post infection could

402 affect lung fibrosis at the memory stage. CD8<sup>+</sup> T cell depletion did not affect lung collagen  
403 content in infected young mice revealed by both Mason's trichrome staining and hydroxyproline  
404 assay (Figure 6H and I), which measures total collagen protein [49]. These data suggest that  
405 normal CD8<sup>+</sup> T<sub>RM</sub> cell responses in young mice contribute minimally to lung fibrotic responses  
406 following acute influenza virus infection, which is in contrast to the excessive CD8<sup>+</sup> T<sub>RM</sub> cell-  
407 induced fibrotic sequelae following PD-L1 blockade [41]. In contrast to young mice, aged mice  
408 exhibited increased lung collagen deposition, particularly in the lung parenchyma (Figure 6H &  
409 J). Strikingly, mice received high CD8 Ab treatment had markedly reduced lung fibrosis as  
410 revealed by Trichome staining and hydroxyproline assay, compared to lungs of mice that  
411 received control Ab or low dose of CD8 Ab (Figure 6J & K). These data suggest that resident but  
412 not circulating CD8<sup>+</sup> T cells are important in promoting chronic lung collagen deposition  
413 following the resolution of primary influenza infection. In summary, our data indicate that  
414 excessive accumulation of lung resident CD8<sup>+</sup> T cells does not lead to enhanced protective  
415 immunity in aged mice, but rather drive age-associated persistent lung inflammation and chronic  
416 fibrosis following viral pneumonia.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433 **Discussion**

434 In this report, we demonstrate that acute influenza infection leads to persistent chronic  
435 pulmonary inflammation and fibrosis, which are largely propagated by an exaggerated CD8<sup>+</sup> T<sub>RM</sub>  
436 response in aged hosts. Somewhat counterintuitively, elevated CD8<sup>+</sup> T<sub>RM</sub> cells in the aged lung,  
437 fail to provide the protective heterologous immunity to that observed in young mice, likely due  
438 to a selective dysfunction in a protective CD8<sup>+</sup> T<sub>RM</sub> cell population (i.e. D<sup>b</sup>-NP CD8 T cells) [50,  
439 51].

440

441 Previous reports suggest that both T cell-intrinsic and extrinsic environmental factors could  
442 contribute to the suboptimal effector and memory CD8<sup>+</sup> T cell responses during aging [8, 52,  
443 53]. To our surprise, we observed enhanced T<sub>RM</sub> cell accumulation, despite diminished lung  
444 effector T cell responses and lower levels of splenic memory T cells observed in aged hosts. Our  
445 data further indicate that aged environment, likely through elevated tissue TGF- $\beta$ , promotes T<sub>RM</sub>  
446 cell generation and/or maintenance in a T cell-extrinsic fashion during aging. Of note, aging has  
447 been linked to altered naïve T cell repertoires and enhanced representation of senescent virtual  
448 memory T cells [54]. Whether these T cell intrinsic changes in aged hosts, in addition to  
449 environmental factors, contribute to an enhanced T<sub>RM</sub> generation, requires further investigation.  
450 Notably, despite a numeric increase in T<sub>RM</sub> cells, protective heterologous immunity is impaired  
451 in aged hosts due to a qualitative defect in T<sub>RM</sub> cells not present in young mice. The protective  
452 function of T<sub>RM</sub> cells is usually associated with their effector activities at the site of pathogen re-  
453 entry [56]. For instance, it has been shown that IFN- $\gamma$  is important for T<sub>RM</sub> cell protective  
454 immunity against secondary heterologous influenza virus infection [43]. Consistent with the  
455 notion, scRNAseq analysis found that T<sub>RM</sub> cells against a major protective CD8<sup>+</sup> T cell epitope  
456 (D<sup>b</sup>-NP) from aged mice lose a functional T<sub>RM</sub> subset observed in young hosts; this subset was  
457 characterized with robust expression of molecules associated with TCR signaling and effector  
458 molecules. As a result, D<sup>b</sup>-NP specific T<sub>RM</sub> cells are less sensitive to TCR stimulation for the  
459 simultaneous production of IFN- $\gamma$  and TNF. Thus, defective TCR-mediated effector cytokine  
460 production could underlie the impaired protection against secondary influenza virus infection.  
461 Notably, T<sub>RM</sub> cells can undergo *in situ* proliferation and generate secondary effector T cells [41,  
462 57, 58]. Previously, it has been shown that memory T cells in aged mice are senescent in  
463 proliferation during secondary expansion [8]. Therefore, it is also possible that impaired T<sub>RM</sub>

464 proliferation and secondary effector T cell expansion could together contribute to the impaired  
465  $T_{RM}$  protective function.

466

467 Interestingly, impaired effector cytokine production by  $D^b$ -NP  $T_{RM}$  cells was not observed in  $D^b$ -  
468 PA or transferred young OT-I  $T_{RM}$  cells, suggesting that this functional defect in  $D^b$ -NP T cells is  
469 likely not caused by the aged environment. It has been shown that  $D^b$ -NP, but not  $D^b$ -PA,  $CD8^+$   
470 T cells have preferential age-associated loss in responsiveness, which is mainly due to the  
471 narrowed TCR- $\beta$  repertoire in  $D^b$ -NP  $CD8^+$  T cells or their recruitment into a response [6, 28,  
472 32]. Thus, intrinsic developmental defects are likely the cause of the functional decline in  $D^b$ -NP  
473  $T_{RM}$  cells [28]. Notably, our data highlight the importance of  $D^b$ -NP  $T_{RM}$  cells in protective  
474 immunity as functional impairment specifically in  $D^b$ -NP cells could translate into differences in  
475 the secondary protective immunity. This notion is consistent with previous reports, which have  
476 pinpointed robust expansion of  $D^b$ -NP memory T cells over  $D^b$ -PA memory T cells in the  
477 secondary expansion to provide enhanced protective immunity following heterologous challenge  
478 [46, 59].

479

480  $CD8^+$   $T_{RM}$  cells exhibit higher levels of expression of multiple effector molecules compared to  
481 central and effector memory T cells [13, 60]. The heightened expression of these molecules  
482 confers  $CD8^+$   $T_{RM}$  cells with superb antiviral function, but may potentially cause bystander tissue  
483 inflammation and injury [41]. In experimental models, both  $CD4^+$  and  $CD8^+$   $T_{RM}$  cells have been  
484 implicated in causing tissue immunopathology ranging from persistent allergic inflammation to  
485 inflammatory bowel disease [61, 62]. Previous reports have demonstrated that influenza  
486 infection in young mice leads to chronic inflammation and collagen deposition [24]. Notably,  
487 resident  $CD8^+$  T cell depletion only moderately affected pulmonary inflammation and lung  
488 collagen deposition in young mice, even though exaggerated  $CD8^+$   $T_{RM}$  responses following PD-  
489 1 blockade can lead to inflammatory and fibrotic sequelae [41]. These data suggest that  
490 influenza-infected young lungs are able to tolerate “normal levels” of  $T_{RM}$  cells, likely due to the  
491 expression of various inhibitory molecules expressed by  $T_{RM}$  cells [41]. During aging, however,  
492 influenza virus infection leads to excessive accumulation of  $T_{RM}$  cells, which exceeds the ability  
493 of the aged tissue to “counterbalance” the pathogenic activities of  $T_{RM}$  cells, driving enhanced  
494 pulmonary inflammation and parenchymal fibrosis. The cellular and molecular mechanisms

495 underlying T<sub>RM</sub>-mediated lung pathology and fibrosis during aging are unclear currently.  
496 However, aging is associated with the impaired capability of tissue repair [27]. It is possible that  
497 epithelial injury caused by persistent low level release of cytopathic molecules by T<sub>RM</sub> cells  
498 surpasses the limited recovery capability of the aged tissue. To this end, even though D<sup>b</sup>-NP T<sub>RM</sub>  
499 cells have diminished TCR signaling for IFN- $\gamma$  and TNF production, their responses to PMA and  
500 Ionomycin are intact. Therefore, they may remain capable of producing low levels of effector  
501 molecules in response to environmental inflammatory factors that are constitutively observed in  
502 aged tissues [22, 27]. Alternatively, it is possible that enhanced accumulation of those  
503 “functionally-intact” T<sub>RM</sub> cells such as D<sup>b</sup>-PA T<sub>RM</sub> cells may be responsible for the persistent  
504 tissue inflammation and fibrosis in aged hosts. Additionally, T<sub>RM</sub> cells in aged mice may have  
505 different traits than T<sub>RM</sub> cells in young mice [63, 64], thereby causing increased lung  
506 inflammation and tissue fibrosis.

507

508 Aging is associated with enhanced development of a number of chronic lung diseases including  
509 chronic obstructive pulmonary diseases (COPD) and pulmonary fibrosis [65]. Interestingly,  
510 aging is also associated with increased susceptibility of acute lung injury and severe disease  
511 development following respiratory viral infections such as influenza virus and SARS-CoV-2 [17,  
512 66, 67]. Increasing evidence has suggested that acute viral infections may cause persistent lung  
513 function impairments due to pulmonary fibrosis [20]. Indeed, lung fibrosis is well-documented in  
514 a substantial number of patients who have recovered from the infection of SARS-CoV or MERS-  
515 CoV [68, 69] and a group of influenza patients with severe acute diseases [20]. Emerging  
516 evidence has also suggested that COVID-19 survivors will likely exhibit persistent impairment  
517 of lung function and the development of pulmonary fibrosis [21, 70-74]. Data presented here  
518 suggests for the first time that excessive T<sub>RM</sub> cells are likely the cause of chronic lung diseases  
519 and pulmonary fibrosis following viral pneumonia in aged individuals. Of note, recent data on  
520 scRNAseq analyses have suggested that pulmonary T cells from COVID-19 patients are enriched  
521 with T<sub>RM</sub> signature and CD8<sup>+</sup> T cell clonal expansion in the airways  
522 (doi: <https://doi.org/10.1101/2020.02.23.20026690>). Thus, strategies aimed at decreasing  
523 exuberant T<sub>RM</sub> responses and/or inhibiting the pathogenic potential of T<sub>RM</sub> cells may be  
524 promising in treating chronic lung diseases following viral pneumonia in the elderly, including  
525 COVID-19 survivors.

526

527 In summary, we have unveiled an age-associated paradox in CD8<sup>+</sup> T<sub>RM</sub> cell responses. The  
528 excessive accumulation of T<sub>RM</sub> cells is not protective but rather drives inflammatory and fibrotic  
529 sequelae following primary respiratory viral infection. Moving forward, it is crucial to better  
530 understand the mechanisms of age-associated T<sub>RM</sub> malfunction so that we can selectively restore  
531 T<sub>RM</sub> protective function while minimizing their pathogenic potential in the elderly.

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557 **Materials & Methods**

558 **Mice, infections, and adoptive transfers.**

559 C57BL/6 were originally purchased from Jackson (Harbor, ME) Laboratory and mostly bred in  
560 house. Aged mice were received at 20-21 months of age from the National Institutes of Aging  
561 and maintained in same specific-pathogen-free conditions for at least one month prior to  
562 infection. In most of cases, aged and young subject bedding was cross-contaminated weekly to  
563 control for different microbial environments. Young OT-I and dLck-Cre  $Tgfb2^{fl/fl}$  OT-I  
564 lymphoid tissues (KO, CD45.1<sup>+</sup>) were shipped from Nu Zhang (University of TX Health Science  
565 Center at San Antonio). All mice were housed in a specific pathogen-free environment and used  
566 under conditions fully reviewed and approved by the internal animal care and use committee  
567 (IACUC) guidelines at the Mayo Clinic (Rochester, MN). For primary influenza virus infection,  
568 influenza A/PR8/34 strain (~100 pfu/mouse) was diluted in FBS-free DMEM media (Corning)  
569 on ice and inoculated in anesthetized mice through intranasal route as described before [76]. X-  
570 31 strain was prepared identically and  $2.8 \times 10^5$  pfu was administered per mouse for secondary  
571 challenge. During the secondary challenge phase, experimental mice were treated with 1  $\mu$ g/g  
572 FTY720 daily starting one day prior to re-challenge.. For adoptive transfers,  $1 \times 10^4$  OT-I from  
573 lymph nodes of 8-10 weeks old females were transferred intravenously and mice were infected  
574 as indicated 1 day later.

575

576 **Cell depletions.**

577 For depletion of CD8 T cells, starting at day 21 post-infection, mice were given 20  $\mu$ g (Low  
578 dose) or 500  $\mu$ g of anti-CD8 Ab (53-6.7) or control rat IgG (500  $\mu$ g) in 200  $\mu$ L PBS through  
579 once weekly intraperitoneal injections. Mice were sacrificed 3 days after the last treatment.

580

581 **Parabiosis surgery**

582 To examine tissue residency of lung CD69<sup>+</sup> parenchymal CD8<sup>+</sup> T cells, parabiotic surgery was  
583 performed. CD45.1<sup>+</sup> young naive mice were paired with infected aged CD45.2<sup>+</sup> congenic mice at  
584 35 d.p.i. Briefly, mice were anesthetized with ketamine and xylazine. After disinfection,  
585 incisions were made in the shaved skin area then the olecranon of the knee joints of each mouse  
586 was joined. Opposing incisions were closed with a continuous suture on the dorsal and ventral  
587 sides. Parabionts were then allowed to rest for 4 weeks before sacrifice and examining the lung

588 vasculature, parenchyma, and spleen immuno-profiles. Equilibration of white blood cells  
589 between parabionts was confirmed in the peripheral blood before tissue analysis by flow  
590 cytometry.

591

592 **Tissue Processing, cellular isolation, stimulations, and data analysis.**

593 Animals were injected intravenously with 4  $\mu$ g of CD45 or 2  $\mu$ g CD90.2 antibody labeled with  
594 various fluorochromes. 2 minutes post-injection, animals were euthanized with an overdose of  
595 ketamine/xylazine and processed 3 minutes later. Following euthanasia, spleens were removed  
596 and the right ventricle of the heart was gently perfused with PBS (10 mL). Lungs were instilled  
597 with either 1 mL of 10% formalin for histology studies or 1 mL of digestion buffer (90%DMEM  
598 10% PBS+Calcium with 180 U/mL Type 2 Collagenase (Worthington) and 15  $\mu$ g/mL DNase  
599 (Sigma) additives). Tissue was processed on a gentleMACS tissue disrupter (Miltenyi) for 40  
600 minutes at 37°C followed by hypotonic lysis of red blood cells in ammonium-chloride-potassium  
601 buffer and filtering through 70  $\mu$ m mesh. FC-gamma receptors were blocked with anti CD16/32  
602 (2.4G2). Cells were washed twice in PBS and stained with near infrared Zombie viability dye per  
603 manufacturers protocol (Biolegend). Cell surfaces were immuno-stained with the following  
604 cocktails of fluorochrome-conjugated Abs (Biolegend). Immuno-staining was performed at 4 °C  
605 for 30 min. Cells were washed twice with FACS buffer (PBS, 2 mM EDTA, 2% FBS, 0.09%  
606 Sodium Azide), prior to fixation and ran on an Attune NxT autosampler (Life Technologies).  
607 FCS files for myeloid stains were analyzed with FlowJo 10.2 (Tree Star). Antibody clones are as  
608 following: Siglec-F (E50-2440), CD11c (N418), CD11b (M1/70), CD64 (X54-4/7.1), Ly6G  
609 (1A8), I-A/I-E (M5/114.15.2), Ly6C (HK1.4), CD8 $\alpha$  (53-6.7), CD69 (H1.2F3), CD44 (IM7),  
610 CD103 (2E7), PD-1 (29F.1A12). For functional assays, following digestion protocols above,  
611 cells were resuspended at 3x10<sup>6</sup>/mL in RPMI with 10% FCS and stimulated with indicated  
612 amount of peptide or PMA and Ionomycin for 3 hours before adding monensin for the last 2  
613 hours of culture.

614 **Hydroxyproline assay**

615 50 mg lung tissue was hydrolyzed in 1 ml of 6 M HCl at 95°C overnight. Hydroxyproline  
616 standard solution was purchased from Sigma-Aldrich. Hydroxyproline concentration is  
617 determined by the reaction of oxidized hydroxyproline with 4-(Dimethylamino)benzaldehyde

618 (DMAB). The product was read at 560-nm wavelength in a Thermax plate reader as described  
619 [41, 77].

620

## 621 **Quantification of Histopathology.**

622 Hematoxylin and eosin stained formalin-fixed lung sections were scanned using an Aperio Image  
623 Scanner (leica). Tiff files were converted to 16-bit black and white and two threshold  
624 measurements were taken using Image J software (NIH). One measured the total parenchymal  
625 area and the other the inflamed area of the tissue. The caveat of the method is that bronchiole  
626 epithelium is thresholded in both measurements. To account for this, values from a group of age-  
627 matched naive mice were subtracted from the above ratios to yield % of inflamed/infiltrated  
628 parenchyma.

629

## 630 **Quantitative RT-PCR**

631 Total RNA was extracted from lung tissue from Trizol preparations. Random primers  
632 (Invitrogen) and MMLV reverse transcriptase (Invitrogen) were used to synthesize first-strand  
633 cDNAs from equivalent amounts of RNA from each sample. These cDNA were subjected to  
634 realtime-PCR with Fast SYBR Green PCR Master Mix (Applied Biosystems). Realtime-PCR  
635 was conducted on QuantStudio3 (AppliedBioscience). Data were generated with the comparative  
636 threshold cycle (Delta CT) method by normalizing to hypoxanthine phosphoribosyltransferase  
637 (HPRT) transcripts in each sample as reported previously [78].

638

## 639 **Nanostring analysis**

640 Total RNA was extracted from bulk lung samples in Trizol 0 or 60 d.p.i. 100 ng of RNA was  
641 either pooled between group or used from individual samples as indicated. Library hybridization  
642 was established by following the instructions of the manufacturer. Aliquots of Reporter CodeSet  
643 and Capture ProbeSet were thawed at RT. Then, a master mix was created by adding 70  $\mu$ l of  
644 hybridization buffer to the tube containing the reporter codeset. Eight microliters of this master  
645 mix was added to each of the tubes for different samples; 5  $\mu$ l of the total RNA sample was  
646 added into each tube. Then, 2  $\mu$ l of the well-mixed Capture probeset was added to each tube and  
647 placed in the preheated 65°C thermal cycler. All the sample mixes were incubated for 18 hours at  
648 65°C for completion of hybridization. The samples were then loaded into the sample hole in the

649 cartridge and loaded into the NanoString nCounter SPRINT Profiler machine (NanoString).  
650 When the corresponding Reporter Library File (RLF) running was finished, the raw data were  
651 downloaded and analyzed with NanoString Software nSolver 3.0 (NanoString). mRNA counts  
652 were processed to account for hybridization efficiency, background noise, and sample content,  
653 and were normalized using the geometric mean of housekeeping genes. All data were normalized  
654 by housekeeping genes. Heat maps were generated by an assortment of R language packages.  
655

### 656 **Single-cell RNA sequencing**

657 Sorted (CD8<sup>+</sup>CD44<sup>Hi</sup>CD69<sup>+</sup>i.v.CD90<sup>D<sup>b</sup></sup>-NP tetramer PE/APC-double fluorochrome positive) T  
658 cells from pooled lung cells of mice (10-18 mice) infected with influenza virus (60 d.p.i.) were  
659 loaded on the Chromium Controller (10x Genomics). Single-cell libraries were prepared using the  
660 Chromium Single Cell 3' Reagent kit (10x Genomics) following manufacturer's instruction.  
661 Paired-end sequencing was performed using an Illumina HiSeq 2500 in rapid-run mode.  
662 CellRanger software package (10x Genomics) were used to align and quantify sequencing data  
663 from 10x Genomics. All scRNA-seq analyses were performed in R using the Seurat package  
664 (version 3.0).  
665

### 666 **Total RNA-sequencing**

667 RNA was extracted from bulk lung samples with trizol. After quality control, high quality  
668 (Agilent Bioanalyzer RIN >7.0) total RNA was used to generate the RNA sequencing library.  
669 cDNA synthesis, end-repair, A-base addition, and ligation of the Illumina indexed adapters were  
670 performed according to the TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA). The  
671 concentration and size distribution of the completed libraries was determined using an Agilent  
672 Bioanalyzer DNA 1000 chip (Santa Clara, CA) and Qubit fluorometry (Invitrogen, Carlsbad,  
673 CA). Paired-end libraries were sequenced on an Illumina HiSeq 4000 following Illumina's  
674 standard protocol using the Illumina cBot and HiSeq 3000/4000 PE Cluster Kit. Base-calling was  
675 performed using Illumina's RTA software (version 2.5.2). Paired-end RNA-seq reads were  
676 aligned to the mouse reference genome (GRCm38/mm10) using RNA-seq spliced read mapper  
677 Tophat2 (v2.1.1). Pre- and post-alignment quality controls, gene level raw read count and  
678 normalized read count (i.e. FPKM) were performed using RSeQC package (v2.3.6) with NCBI  
679 mouse RefSeq gene model. For functional analysis, GSEA was used to identify enriched gene

680 sets, from the hallmark and C5 databases of MSigDB, having up-regulated and down-regulated  
681 genes, using a weighted enrichment statistic and a log2 ratio metric for ranking genes.

682

683 **Statistical analysis.** Quantitative data are presented as mean  $\pm$  Standard of Deviation. Unpaired  
684 two-tailed Student's t-test (two-tailed, unequal variance) was used to determine statistical  
685 significance with Prism software (Graphpad). Where appropriate, ANOVA corrected for  
686 multiple comparisons was used (Graphpad). We considered  $p < 0.05$  as significant in all  
687 statistical tests and denoted within figures as a \* for each order of magnitude  $p$  value.

688

689

690

## 691 **Acknowledgements**

692 We thank NIH tetramer core for tetramers and Mayo flow cytometry core and genomic core  
693 for technical assistance. This study was funded by the US National Institutes of Health grants  
694 AI112844, AI147394 and AG047156 to J.S., NS103212 to A.J., AI125701 and AI139721 to  
695 N.Z. and HL52160 to A.L. Mayo Clinic CBD Research Fund to J.S., E.C. and R.V. Cancer  
696 Research Institute CLIP program and American Cancer Society grant RSG-18-222-01-LIB to  
697 N.Z. Three Lakes Partners Foundation to A.L.

698

## 699 **Financial interest disclosure**

700 R.V. receives funding from Pfizer, Bristol-Myers-Squibb, and Sun Pharmaceuticals.

701

702

703

704

705

706

707

708

709

710

711 **Figure Legends**

712 **Figure 1. Aged lungs display non-resolving pulmonary immunopathology following**  
713 **influenza infection.**

714 Young (2 month) or aged (22 month) C57BL/6 mice were infected or not with PR8 virus. **F-H**,  
715 anti-CD45 was injected intravenously (i.v.) to label circulating white blood cells prior to  
716 sacrifice. **A**. Schematics of experimental procedure. **B**. Percent of host survival following  
717 influenza infection in young or aged mice. **C**. Percent of pre-infection body weight following  
718 influenza infection in young or aged mice. **D**. Airway viral titers were determined through plaque  
719 forming unit (pfu) assay of BAL fluid at 9, 15, and 30 d.p.i. **E**. Lung histopathology by H & E  
720 staining at 0, 9, 30, and 60 d.p.i. **F**. Percent of left lung lobe parenchyma infiltrated by white  
721 blood cells was quantitated by Image J analysis. **G, H**. Lung cells were stained for monocytes  
722 (MNC: CD64<sup>+</sup> Siglec-F<sup>-</sup> CD11c<sup>-</sup> MHCII<sup>-</sup> CD11b<sup>hi</sup>) and neutrophils (Neu: Ly6G<sup>+</sup>) which were  
723 enumerated in the lung and divided into circulating (Cir) or parenchymal (Par) following  
724 intravenous labeling of immune cells at 9 and 60 d.p.i. **G**. Representative plots. **H**. Cell numbers  
725 of circulating and parenchymal monocytes and neutrophils at 9 and 60 d.p.i. **I**. 530 transcripts  
726 were examined at the endogenous mRNA levels by nanostring from young or aged lungs prior to  
727 (day 0), or 60 d.p.i. and displayed as a heatmap (purple = relatively low expression, orange =  
728 relatively high expression) following log2 transformation of raw expression data above detection  
729 threshold. Venn diagrams displaying data in both number of genes and % of total genes  
730 examined for the ratios infected versus not by age (top right panel) or aged to young by day post-  
731 infection (bottom right panel) from nanostring data. Groups from **B & C** are n=10 young and  
732 n=14 aged mice (2 experiments pooled). **D** is 6 BAL samples per group (2 experiments pooled)  
733 for days 9 & 15 and 3 each for day 30. **D, E, G**, and **I** are representatives of 2-4 experiments  
734 each; **H** is 1-2 independently significant replicates pooled. Scale bars on histology figures are  
735 600  $\mu$ m. \* p<0.05 Student's two-tailed t-test with unequal variance.

736

737 **Figure 2. Aged lungs exhibit enhanced local adaptive immune responses despite circulatory**  
738 **deficiencies in the memory phase.**

739 Young and aged mice were infected with PR8. **A**. Bulk RNAseq was performed on young or  
740 aged lungs at 60 d.p.i., data is displayed as a heatmap (purple = relatively low expression, orange  
741 = relatively high expression) of 658 differentially expressed genes (549 up-regulated in aged

742 relative to young, 109 up-regulated in young relative to aged) with  $p < 0.001$ . **B.** GSEA for  
743 adaptive immune response genes with normalized enrichment score (NES) and false discovery  
744 rate (FDR). **C.** Ranked normalized geneset enrichment scores (ES) from the C5 and Hallmark  
745 (HM) databases and associated false-discovery rates (FDR (q)). **D.** Representative flow  
746 cytometry plot showing lung CD8<sup>+</sup> T cells separated by CD69 and CD45 i.v. labeling, showing  
747 parenchymal (Res) and circulating (Cir) populations as indicated. **E.** Quantification of CD4<sup>+</sup> (top  
748 panel) and CD8<sup>+</sup> T cells (bottom panel) in lung circulation (Cir) or parenchyma (Par) 60 d.p.i. **F.**  
749 CD69<sup>+</sup> parenchymal CD8<sup>+</sup> T cells that either express CD103 (CD103<sup>+</sup>) or not (CD103<sup>-</sup>) were  
750 enumerated at 60 days post-infection. **G.** T (CD4<sup>+</sup> & CD8<sup>+</sup>) and B lymphocytes (B220<sup>+</sup>) were  
751 quantitated in spleens at 60 d.p.i. (Spleen Ly #). **H.** Representative flow cytometry plots, and **(I.)**  
752 number of D<sup>b</sup>-NP (top) or D<sup>b</sup>-PA tetramer positive (bottom) circulating (Circ) or parenchymal  
753 (Res) memory CD8<sup>+</sup> T cells. **J.** Number of D<sup>b</sup>-NP or D<sup>b</sup>-PA tetramer positive CD8<sup>+</sup> memory T  
754 cells in spleens. **K.** Total CD8<sup>+</sup>, CD8<sup>+</sup> D<sup>b</sup>-NP or CD8<sup>+</sup> D<sup>b</sup>-PA T cell numbers were quantitated in  
755 the lung parenchyma (Par), vasculature (Cir) or spleen (Spleen) at 10 d.p.i. **D-F, H, & K** are  
756 representatives of 2-4 experiments. **I & J** are pooled data from 3 independently significant  
757 experiments. \*  $p < 0.05$  Student's two-tailed t-test with unequal variance.

758

759

760 **Figure 3 CD8<sup>+</sup> memory T cells in the lung parenchyma from aged mice are tissue resident**  
761 Aged mice (CD45.2) were infected with PR8 and parabiosed with young naive (CD45.1) mice at  
762 5 weeks after infection. 4 weeks later, CD45<sup>+</sup> white blood cells were intravenously labeled in  
763 each host before sacrifice. **A.** Schematics of experimental procedure. **B.** Each animal was bled at  
764 time of sacrifice and CD8<sup>+</sup> T cells were examined by flow cytometry for origin (representative  
765 flow plot). **C.** Percent of host or donor CD8<sup>+</sup> T cells in aged or naive hosts where each line  
766 represents all the CD8<sup>+</sup> T cells in blood from one mouse. **D.** Representative flow plot of total  
767 parenchymal CD8<sup>+</sup> T cells (CD69<sup>+</sup>CD8<sup>+</sup> T cells protected from i.v. CD45 labeling) derived from  
768 host or donor. **E.** Enumeration of lung parenchymal (left panel) or vasculature (right panel; circ)  
769 CD8<sup>+</sup> T cells in each host by mouse of origin. **F.** Representative flow plot of parenchymal D<sup>b</sup>-NP  
770 tetramer<sup>+</sup> CD8<sup>+</sup> T cells (CD69<sup>+</sup>CD8<sup>+</sup> T cells protected from i.v. CD45 labeling) derived from  
771 host or donor. **G.** Enumeration of D<sup>b</sup>-NP<sup>+</sup> cells that are resident (left panel) or circulating (right  
772 panel). **H.** Representative flow plot of parenchymal D<sup>b</sup>-PA tetramer<sup>+</sup> CD8 T cells (CD69<sup>+</sup>CD8<sup>+</sup>

773 T cells protected from i.v. CD45 labeling) derived from host or donor. **I.** Enumeration of D<sup>b</sup>-PA<sup>+</sup>  
774 cells that are resident (left panel) or circulating (right panel). Experiment was repeated twice  
775 with 3 pairs each and data was pooled. \* p<0.05 Student's two-tailed t-test with unequal  
776 variance.

777

778 **Figure 4. Excessive accumulation of T<sub>RM</sub> cells in an aged environment is dependent on**  
779 **TGF- $\beta$ R signaling.**

780 **A.** OT-I T cells (CD90.1<sup>+</sup>) from young donors were adoptively transferred into young or aged  
781 C57BL/6 mice 1 day prior to infection with PR8-OVA virus. **B.** Representative flow cytometry  
782 plots in lungs at 50 d.p.i., showing the gating strategy for resident OT-I T cells (CD8<sup>+</sup>CD69<sup>+</sup>  
783 i.v.CD45<sup>-</sup>VB5<sup>+</sup>CD90.1<sup>+</sup>) **C, D.** Donor OT-I cells were enumerated in young and aged hosts in  
784 the lung vasculature (Cir) or parenchyma (Res) (C) , or in spleens (D) at 50 d.p.i. **E.** Relative  
785 transcripts (RT) of *Il-15*, *Tnf*, and *Tgfb1* (left to right) from total lung samples obtained from  
786 aged and young animals at 60 d.p.i. was evaluated by qPCR. **F, G.** Wild type (WT, CD45.1<sup>+</sup>) or  
787 *TGFbR2<sup>fl/fl</sup> dLck-Cre* OT-I cells (KO, CD45.1<sup>+</sup>) were adoptively transferred from young donors  
788 into young or aged hosts (CD45.2<sup>+</sup>) one day prior to PR8-OVA infection. **F.** Resident OT-I cells  
789 were enumerated in the lung of young or aged mice at 50 d.p.i. **G.** OT-I cells in the spleen of  
790 young or aged mice at 50 d.p.i. **C** is pooled data of 3 independent experiments, **E-G.** are  
791 representatives of 2 repeats. \* p<0.05 Student's two-tailed t-test with unequal variance.

792

793 **Figure 5. D<sup>b</sup>-NP T<sub>RM</sub> cells from aged lungs are dysfunctional in protective immunity.**

794 **A.** PR8 virus infected young (filled triangles, Y) or aged (open circles, A) mice were treated with  
795 FTY720 daily starting at 60 d.p.i. per methods and materials. Then mice were infected with a  
796 lethal dose of X31 at 61 d.p.i. Survival (middle panel) and weight loss (bottom) as percent of  
797 pre-secondary infection weight were determined daily post secondary infection (d.p.2<sup>o</sup>i.). **B.** D<sup>b</sup>-  
798 NP-specific T<sub>RM</sub> cells (CD8<sup>+</sup>CD44<sup>Hi</sup>CD69<sup>+</sup>i.v.CD90<sup>-</sup>D<sup>b</sup>-NP tetramer<sup>+</sup>) from PR8 infected young  
799 (n=18) or aged (n=12) mice were pooled and sorted for single-cell RNAseq analysis. GSEA of  
800 NF- $\kappa$ B signaling and inflammatory response. NES: normalized enrichment score, FDR: False  
801 discovery rate (middle and bottom panel). **C.** Violin plots of *Bhlhe40*, *Cd3e*, *Lck*, *Junb*, *Fos*,  
802 *Fosl2*, *Nr4a1*, *Ifng* and *Tnf* expression in young or aged D<sup>b</sup>-NP T<sub>RM</sub> cells. **D.** Seurat UMAP plots  
803 with clusters 0-3 of aged (left panel) and young (right panel) samples from scRNAseq data. **E.**

804 Composition of aged or young T<sub>RM</sub> cells per cluster. **F.** Cluster-differentiated heat map (purple =  
805 lower relative expression, yellow = higher relative expression) of indicated genes. **G.**  
806 Representative flow cytometry plots of the production of IFN- $\gamma$  and TNF in lung resident CD8<sup>+</sup>  
807 T cells following 1 ng/ml NP 366-374 peptide stimulation. **H.** Percent of IFN- $\gamma$ <sup>+</sup> resident CD8<sup>+</sup> T  
808 cells following stimulation with increasing amount of NP 366-374 peptide (0.01 – 10 ng/mL). **I.**  
809 Geometric Mean Fluorescence Intensity (gMFI) IFN- $\gamma$  levels following of stimulation with  
810 increasing amount of NP 366-374 peptide. **J.** Percent of IFN- $\gamma$ <sup>+</sup> TNF<sup>+</sup> resident CD8<sup>+</sup> T cells  
811 following stimulation with increasing amount of NP 366-374 peptide (0.01 – 10 ng/mL). **A** are  
812 pooled data from 2 experiments. **G-J** are representatives of 3 experiments. \* p<0.05 Student's  
813 two-tailed t-test with unequal variance.

814

815 **Figure 6. Resident CD8<sup>+</sup> T cells support chronic parenchymal inflammation and fibrosis in**  
816 **aged hosts.**

817 Aged or young WT mice were infected with PR8 strain. **A.** Experimental procedure of high or  
818 low dose of CD8 antibody ( $\alpha$ CD8) treatment starting at day 21 post-infection. **B.** Lung-resident  
819 CD8<sup>+</sup> T cell numbers in aged (left panel) or young (right panel) mice following CD8 Ab  
820 treatment. **C, D.** H&E staining of whole left-lung lobes from young (**C**) or aged mice (**D**) treated  
821 with indicated Abs. **E.** Percent of left lung lobes infiltrated by white blood cells via Image J  
822 analysis of D. **F.** Quantitation of resident monocytes (Ly6C Hi, ivCD45<sup>-</sup>CD64<sup>-</sup>CD11c<sup>Lo</sup>Siglec-F<sup>-</sup>  
823 CD11b<sup>Hi</sup>Ly6C<sup>Hi or Lo</sup>) and neutrophils (Neu, ivCD45<sup>-</sup>Ly6G<sup>Hi</sup>CD11b<sup>Hi</sup>) in IgG or high dose CD8  
824 depleted young (left) or aged (right) mice treated with indicated Ab. **G.** Heat map for select  
825 DEGs of the lungs from aged mice treated with IgG (in triplicate), high dose ( $\alpha$ CD8<sup>Hi</sup>, in  
826 triplicate) or low dose ( $\alpha$ CD8<sup>Lo</sup>, pooled n=3) of CD8 Ab as analyzed by Nanostring. Orange is  
827 relatively high expression and purple is relatively low expression. **H.** Representative 200x  
828 micrographs of Mason's trichromatic stain on lung sections of young mice with or without high  
829 dose CD8 Ab treatment. **I.** Hydroxyproline levels reflective collagen content of the lungs from  
830 young mice with or without high dose CD8 Ab treatment. **J.** Representative 200x micrographs of  
831 Mason's trichromatic stain on lung sections of aged mice received control Ab, low dose of CD8  
832 Ab ( $\alpha$ CD8<sup>Lo</sup>) or high dose CD8 Ab ( $\alpha$ CD8<sup>Hi</sup>) treatment. **K.** Hydroxyproline levels reflective  
833 collagen content of the lungs from aged mice received control Ab, low dose of CD8 Ab  
834 ( $\alpha$ CD8<sup>Lo</sup>) or high dose CD8 Ab ( $\alpha$ CD8<sup>Hi</sup>) treatment. **B, F, H-K** are 2 pooled experiments, **E &**

835 **G** are single replicates. \* p<0.05 Student's two-tailed t-test with unequal variance (**I**) or for  
836 ANOVA with correction for multiple tests (**B, E, F, J, & K**).  
837

838 **Figure S1. Aged lungs exhibit persistent inflammatory responses following influenza**  
839 **infection.**

840 **A-C.** Young (Y) or aged (A) C57BL/6 mice were infected (day 60) or not (day 0) with PR8. 560  
841 immune-associated genes in the lungs were analyzed by Nanostring (at least 3 pooled  
842 samples/group). Myeloid (**A**), cytokine and chemokine (**B**), or lymphocyte (**C**) associated DEGs  
843 that were at least 1.5 fold expression level changes from Aged to young infected samples. (**D**)  
844 RNAseq heatmap showing DEGs in young or aged infected lungs 60 d.p.i. **E, F.** GSEA plots of  
845 RNAseq data showing genes enriched in young infected lungs (**D**) or aged infected lungs (**F**).  
846 NES: normalized enrichment scores and FDR: false-discovery rates.  
847 Nanostring data is representative of 2 experiments with pooled samples. RNAseq data is from a  
848 single replicate with samples in triplicate.

849

850 **Figure S2. Enhanced presence of adaptive immune cells in aged lung parenchyma.**

851 Young (filled triangles) or aged (open circles) C57BL/6 mice were infected with PR8 and  
852 injected intravenously (i.v.) with anti-CD45 to label circulating white blood cells prior to  
853 sacrifice. **A.** Schematics of experimental procedure. **B.** NK, NKT, and B cells were enumerated  
854 in the lung vasculature (Cir; left panel) and parenchyma (Par; right panel) at 60 d.p.i. **C.** Fold  
855 change of aged/young cells in parenchyma with indicated lymphocyte population at 60 d.p.i. **E.**  
856 Representative flow cytometry gating of CD8<sup>+</sup> CD44<sup>Hi</sup> D<sup>b</sup>-tetramer<sup>+</sup> NP and PA specific  
857 memory T cells in the spleen at 60 d.p.i.

858 B-D are representatives of 3 experiments. \* p<0.05 Student's two-tailed t-test with unequal  
859 variance .  
860

861 **Figure S3. Aged parenchymal CD8<sup>+</sup> CD69<sup>+</sup> memory T cells are tissue resident**

862 Aged mice (CD45.2<sup>+</sup>) were infected with PR8 and parabiosed with young naive (CD45.1<sup>+</sup>) mice  
863 at 5 weeks after infection. **A.** Representative flow cytometry plots (left panel) or cell numbers  
864 (right panel) of splenic CD8<sup>+</sup> T cells, showing the host or donor derived cells in infected aged or  
865 naive hosts. **B.** Representative flow cytometry plots (left panel) or cell numbers (right panel) of

866 alveolar macrophages, showing the host or donor derived cells in infected aged or naive hosts. **C.**  
867 Representative flow plot of total lung CD8 T cells showing D<sup>b</sup>-NP<sup>+</sup> tetramer staining in the  
868 parenchyma (CD45 i.v.<sup>-</sup>) or circulation (CD45 i.v.<sup>+</sup>). Percentages of total lung D<sup>b</sup>-NP tetramer+  
869 cells found in the parenchyma (top right panel) or circulation (bottom right panel) of each mouse.  
870 **D.** Representative flow plot (left panel) and quantitation (right panel) of D<sup>b</sup>-NP tetramer positive  
871 CD44<sup>hi</sup> CD8<sup>+</sup> memory T cells from the spleen. **E.** Representative flow plot of total lung CD8<sup>+</sup> T  
872 cells showing D<sup>b</sup>-PA<sup>+</sup> tetramer staining in the parenchymal (CD45 i.v.<sup>-</sup>) or circulation (CD45  
873 i.v.<sup>+</sup>). Percentages of total lung D<sup>b</sup>-PA tetramer+ cells found in the parenchyma (top right panel)  
874 or circulation (bottom right panel) of each mouse. **F.** Representative flow plot (left panel) and  
875 quantitation (right panel) of D<sup>b</sup>-PA tetramer positive CD44<sup>hi</sup> CD8<sup>+</sup> memory T cells from the  
876 spleen. Data is representative of 1 of 2 repeats with 3 pairs each. \* p<0.05 Student's two-tailed  
877 t-test with unequal variance.

878

879 **Figure S4. scRNA-seq on D<sup>b</sup>-NP T<sub>RM</sub> cells from young or aged lungs.**

880 **A.** Percent of peripheral blood CD8 T cells in CD45<sup>+</sup> white blood cells were evaluated 48 hours  
881 following FTY720 or vehicle treatment in young and aged memory mice. **B.** Survival (top) and  
882 weight loss (bottom) following lethal X31 infection of naive young or aged mice in the presence  
883 of FTY720. **C.** Sorting scheme for D<sup>b</sup>-NP specific T<sub>RM</sub> cells. Following CD8 enrichment  
884 (Miltenyi kit), CD44<sup>Hi</sup>CD69<sup>+</sup>i.v.CD90.2<sup>-</sup>D<sup>b</sup>-NP-PE<sup>+</sup>/ D<sup>b</sup>-NP-APC<sup>+</sup> cells were sorted from young  
885 (n=18) or aged (n=11) mice at 60 d.p.i. for scRNAseq. **D.** Heat map of top 20 DEGs by cluster  
886 for scRNA seq data. scRNAseq data is from a sorted pool of 18 young or 11 aged mouse lungs.  
887 **A & B** are each single replicates.

888

889 **Figure S5. D<sup>b</sup>-PA or OT-I T<sub>RM</sub> cells from aged hosts show equivalent of cytokine  
890 production as those of young hosts.**

891 Young or aged mice were infected with PR8. **A.** Percent of IFN- $\gamma$ <sup>+</sup> splenic CD8<sup>+</sup> T cells  
892 following stimulation with increasing amount of NP 366-374 peptide (0.01 – 10 ng/mL) at 60  
893 d.p.i. **B.** Representative plots (left) or percent of IFN- $\gamma$ <sup>+</sup> TNF<sup>+</sup> lung-resident CD8<sup>+</sup> T cells  
894 following stimulation with PMA/Ionomycin at 60 d.p.i. **C.** Representative plots (left) or percent  
895 of IFN- $\gamma$ <sup>+</sup> TNF<sup>+</sup> lung-resident CD8<sup>+</sup> D<sup>b</sup>-NP<sup>+</sup> T cells following stimulation with PMA/Ionomycin  
896 at 60 d.p.i. **D.** Percent of IFN- $\gamma$ <sup>+</sup> TNF<sup>+</sup> lung-resident CD8<sup>+</sup> T cells following stimulation with

897 increasing amount of PA 224-233 peptide (0.01 – 10 ng/mL) at 60 d.p.i. **E, F**. OT-I T cells  
898 (CD90.1<sup>+</sup>) from young donors were adoptively transferred into Young or Aged C57 BL6 mice 1  
899 day prior to infection with PR8-OVA virus. Representative flow plots (**E**) or percent (**F**) of IFN-  
900  $\gamma^+$  TNF<sup>+</sup> lung-resident or splenic OT-I cells following stimulation with increasing amount of  
901 SIINFEKL peptide at 50 d.p.i. **A-D** are representative of 3 experiments each and **E & F** are  
902 representative of 2 experiments. \* p<0.05 Student's two-tailed t-test with unequal variance.  
903

904 **Figure S6. High dose of CD8 Ab treatment diminishes lung inflammatory responses.**

905 Aged or young C57BL/6 mice were infected with PR8. Mice received high or low dose of anti-  
906 CD8 treatment starting at day 21 as indicated. **A.** Splenic CD8<sup>+</sup> T cell numbers in aged mice  
907 following CD8 Ab treatment. **B.** Resident CD4 and B cells were quantitated in the lungs. **C.**  
908 Complete set of DEGs (1.5 fold) from Nanostring data in Figure 6 G. **D.** Select nanostring DEGs  
909 showing CD8-related gene depletion after high, but not low dose Ab treatment in aged mice at  
910 60 d.p.i. **A & B** are 2 pooled experiments, **C & D** are a single experiment in triplicate or pooled  
911 from 3 mice ( $\alpha$ CD8<sup>Lo</sup>). \* p<0.05 ANOVA with correction for multiple tests.  
912

913

914

915

916

917

918

919

920

921

922

923

924

925 **References:**

- 926 1. Thome, J.J., et al., *Spatial map of human T cell compartmentalization and maintenance over*  
927 *decades of life*. *Cell*, 2014. **159**(4): p. 814-28.
- 928 2. Akondy, R.S., et al., *Origin and differentiation of human memory CD8 T cells after vaccination*.  
929 *Nature*, 2017. **552**(7685): p. 362-367.
- 930 3. Goronzy, J.J., et al., *Naive T cell maintenance and function in human aging*. *J Immunol*, 2015.  
931 **194**(9): p. 4073-80.
- 932 4. Sant, S., et al., *Single-Cell Approach to Influenza-Specific CD8(+) T Cell Receptor Repertoires*  
933 *Across Different Age Groups, Tissues, and Following Influenza Virus Infection*. *Front Immunol*,  
934 2018. **9**: p. 1453.
- 935 5. Po, J.L., et al., *Age-associated decrease in virus-specific CD8+ T lymphocytes during primary*  
936 *influenza infection*. *Mech Ageing Dev*, 2002. **123**(8): p. 1167-81.
- 937 6. Valkenburg, S.A., et al., *Early priming minimizes the age-related immune compromise of CD8(+) T*  
938 *cell diversity and function*. *PLoS Pathog*, 2012. **8**(2): p. e1002544.
- 939 7. Nikolich-Zugich, J., *The twilight of immunity: emerging concepts in aging of the immune system*.  
940 *Nat Immunol*, 2018. **19**(1): p. 10-19.
- 941 8. Decman, V., et al., *Cell-intrinsic defects in the proliferative response of antiviral memory CD8 T*  
942 *cells in aged mice upon secondary infection*. *J Immunol*, 2010. **184**(9): p. 5151-9.
- 943 9. Davies, B., et al., *Cutting Edge: Tissue-Resident Memory T Cells Generated by Multiple*  
944 *Immunizations or Localized Deposition Provide Enhanced Immunity*. *J Immunol*, 2017. **198**(6): p.  
945 2233-2237.
- 946 10. Steinert, E.M., et al., *Quantifying Memory CD8 T Cells Reveals Regionalization of*  
947 *Immunosurveillance*. *Cell*, 2015. **161**(4): p. 737-49.
- 948 11. Wang, Z., et al., *Establishment of memory CD8+ T cells with live attenuated influenza virus*  
949 *across different vaccination doses*. *J Gen Virol*, 2016. **97**(12): p. 3205-3214.
- 950 12. Wu, T., et al., *Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-*  
951 *protection against pulmonary virus infection*. *J Leukoc Biol*, 2014. **95**(2): p. 215-24.
- 952 13. Li, C., et al., *The Transcription Factor Blh40 Programs Mitochondrial Regulation of Resident*  
953 *CD8(+) T Cell Fitness and Functionality*. *Immunity*, 2019. **51**(3): p. 491-507 e7.
- 954 14. Hayward, S.L., et al., *Environmental cues regulate epigenetic reprogramming of airway-resident*  
955 *memory CD8(+) T cells*. *Nat Immunol*, 2020.
- 956 15. Ruf, B.R. and M. Knuf, *The burden of seasonal and pandemic influenza in infants and children*.  
957 *Eur J Pediatr*, 2014. **173**(3): p. 265-76.
- 958 16. Rolfs, M.A., et al., *Annual estimates of the burden of seasonal influenza in the United States: A*  
959 *tool for strengthening influenza surveillance and preparedness*. *Influenza Other Respir Viruses*,  
960 2018. **12**(1): p. 132-137.
- 961 17. Zhu, N., et al., *A Novel Coronavirus from Patients with Pneumonia in China, 2019*. *N Engl J*  
962 *Med*, 2020. **382**(8): p. 727-733.
- 963 18. Casas-Aparicio, G.A., et al., *Aggressive fluid accumulation is associated with acute kidney injury*  
964 *and mortality in a cohort of patients with severe pneumonia caused by influenza A H1N1 virus*.  
965 *PLoS One*, 2018. **13**(2): p. e0192592.
- 966 19. Keilich, S.R., J.M. Bartley, and L. Haynes, *Diminished immune responses with aging predispose*  
967 *older adults to common and uncommon influenza complications*. *Cell Immunol*, 2019. **345**: p.  
968 103992.
- 969 20. Chen, J., et al., *Long term outcomes in survivors of epidemic Influenza A (H7N9) virus infection*.  
970 *Sci Rep*, 2017. **7**(1): p. 17275.
- 971 21. Hosseiny, M., et al., *Radiology Perspective of Coronavirus Disease 2019 (COVID-19): Lessons*  
972 *From Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome*. *AJR Am J*  
973 *Roentgenol*, 2020: p. 1-5.

974 22. Kulkarni, U., et al., *Excessive neutrophil levels in the lung underlie the age-associated increase*  
975 *in influenza mortality*. *Mucosal Immunol*, 2019. **12**(2): p. 545-554.

976 23. Lanzer, K.G., et al., *Virtual memory cells make a major contribution to the response of aged*  
977 *influenza-naive mice to influenza virus infection*. *Immun Ageing*, 2018. **15**: p. 17.

978 24. Keeler, S.P., et al., *Influenza A Virus Infection Causes Chronic Lung Disease Linked to Sites of*  
979 *Active Viral RNA Remnants*. *J Immunol*, 2018. **201**(8): p. 2354-2368.

980 25. Misharin, A.V., et al., *Monocyte-derived alveolar macrophages drive lung fibrosis and persist in*  
981 *the lung over the life span*. *J Exp Med*, 2017. **214**(8): p. 2387-2404.

982 26. Anderson, K.G., et al., *Cutting edge: intravascular staining redefines lung CD8 T cell responses*.  
983 *J Immunol*, 2012. **189**(6): p. 2702-6.

984 27. Sueblinvong, V., et al., *Predisposition for disrepair in the aged lung*. *Am J Med Sci*, 2012.  
985 **344**(1): p. 41-51.

986 28. Yager, E.J., et al., *Age-associated decline in T cell repertoire diversity leads to holes in the*  
987 *repertoire and impaired immunity to influenza virus*. *J Exp Med*, 2008. **205**(3): p. 711-23.

988 29. Tishon, A., et al., *Virus-induced immunosuppression. I. Age at infection relates to a selective or*  
989 *generalized defect*. *Virology*, 1993. **195**(2): p. 397-405.

990 30. Van Braeckel-Budimir, N., et al., *Repeated Antigen Exposure Extends the Durability of*  
991 *Influenza-Specific Lung-Resident Memory CD8(+) T Cells and Heterosubtypic Immunity*. *Cell*  
992 *Rep*, 2018. **24**(13): p. 3374-3382 e3.

993 31. Topham, D.J., et al., *The role of antigen in the localization of naive, acutely activated, and*  
994 *memory CD8(+) T cells to the lung during influenza pneumonia*. *J Immunol*, 2001. **167**(12): p.  
995 6983-90.

996 32. La Gruta, N.L., et al., *Primary CTL response magnitude in mice is determined by the extent of*  
997 *naive T cell recruitment and subsequent clonal expansion*. *J Clin Invest*, 2010. **120**(6): p. 1885-  
998 94.

999 33. Ely, K.H., et al., *Aging and CD8+ T cell immunity to respiratory virus infections*. *Exp Gerontol*,  
1000 2007. **42**(5): p. 427-31.

1001 34. Hashimoto, D., et al., *Tissue-resident macrophages self-maintain locally throughout adult life*  
1002 *with minimal contribution from circulating monocytes*. *Immunity*, 2013. **38**(4): p. 792-804.

1003 35. Jenkins, M.R., et al., *Addition of a prominent epitope affects influenza A virus-specific CD8+ T*  
1004 *cell immunodominance hierarchies when antigen is limiting*. *J Immunol*, 2006. **177**(5): p. 2917-  
1005 25.

1006 36. Adachi, T., et al., *Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell*  
1007 *homeostasis and lymphoma*. *Nat Med*, 2015. **21**(11): p. 1272-9.

1008 37. Nath, A.P., et al., *Comparative analysis reveals a role for TGF-beta in shaping the residency-*  
1009 *related transcriptional signature in tissue-resident memory CD8+ T cells*. *PLoS One*, 2019.  
1010 **14**(2): p. e0210495.

1011 38. Zhang, N. and M.J. Bevan, *Transforming growth factor-beta signaling controls the formation and*  
1012 *maintenance of gut-resident memory T cells by regulating migration and retention*. *Immunity*,  
1013 2013. **39**(4): p. 687-96.

1014 39. Skon, C.N., et al., *Transcriptional downregulation of Slpr1 is required for the establishment of*  
1015 *resident memory CD8+ T cells*. *Nat Immunol*, 2013. **14**(12): p. 1285-93.

1016 40. Slutter, B., et al., *Dynamics of influenza-induced lung-resident memory T cells underlie waning*  
1017 *heterosubtypic immunity*. *Sci Immunol*, 2017. **2**(7).

1018 41. Wang, Z., et al., *PD-1(hi) CD8(+) resident memory T cells balance immunity and fibrotic*  
1019 *sequelae*. *Sci Immunol*, 2019. **4**(36).

1020 42. Bergsbaken, T. and M.J. Bevan, *Proinflammatory microenvironments within the intestine*  
1021 *regulate the differentiation of tissue-resident CD8(+) T cells responding to infection*. *Nat*  
1022 *Immunol*, 2015. **16**(4): p. 406-14.

1023 43. McMaster, S.R., et al., *Airway-Resident Memory CD8 T Cells Provide Antigen-Specific*  
1024 *Protection against Respiratory Virus Challenge through Rapid IFN-gamma Production*. *J*  
1025 *Immunol*, 2015. **195**(1): p. 203-9.

1026 44. Haanen, J.B., et al., *Selective expansion of cross-reactive CD8(+) memory T cells by viral*  
1027 *variants*. *J Exp Med*, 1999. **190**(9): p. 1319-28.

1028 45. Guo, H. and D.J. Topham, *Multiple distinct forms of CD8+ T cell cross-reactivity and*  
1029 *specificities revealed after 2009 H1N1 influenza A virus infection in mice*. *PLoS One*, 2012. **7**(9):  
1030 p. e46166.

1031 46. Ballesteros-Tato, A., et al., *Epitope-specific regulation of memory programming by differential*  
1032 *duration of antigen presentation to influenza-specific CD8(+) T cells*. *Immunity*, 2014. **41**(1): p.  
1033 127-40.

1034 47. Guo, H., et al., *Induction of CD8 T cell heterologous protection by a single dose of single-cycle*  
1035 *infectious influenza virus*. *J Virol*, 2014. **88**(20): p. 12006-16.

1036 48. Richmond, J.M., et al., *Resident Memory and Recirculating Memory T Cells Cooperate to*  
1037 *Maintain Disease in a Mouse Model of Vitiligo*. *J Invest Dermatol*, 2019. **139**(4): p. 769-778.

1038 49. Hausmann, E. and W.F. Neuman, *Conversion of proline to hydroxyproline and its incorporation*  
1039 *into collagen*. *J Biol Chem*, 1961. **236**: p. 149-52.

1040 50. Nguyen, T.H.O., et al., *Perturbed CD8(+) T cell immunity across universal influenza epitopes in*  
1041 *the elderly*. *J Leukoc Biol*, 2018. **103**(2): p. 321-339.

1042 51. Crowe, S.R., et al., *Differential antigen presentation regulates the changing patterns of CD8+ T*  
1043 *cell immunodominance in primary and secondary influenza virus infections*. *J Exp Med*, 2003.  
1044 **198**(3): p. 399-410.

1045 52. Quinn, K.M., et al., *Extrinsically derived TNF is primarily responsible for limiting antiviral*  
1046 *CD8+ T cell response magnitude*. *PLoS One*, 2017. **12**(9): p. e0184732.

1047 53. Jergovic, M., M.J. Smithey, and J. Nikolich-Zugich, *Intrinsic and extrinsic contributors to*  
1048 *defective CD8+ T cell responses with aging*. *Exp Gerontol*, 2018. **105**: p. 140-145.

1049 54. Hussain, T. and K.M. Quinn, *Similar but different: virtual memory CD8 T cells as a memory-like*  
1050 *cell population*. *Immunol Cell Biol*, 2019. **97**(7): p. 675-684.

1051 55. Zhou, A.C., N.V. Batista, and T.H. Watts, *4-1BB Regulates Effector CD8 T Cell Accumulation in*  
1052 *the Lung Tissue through a TRAF1-, mTOR-, and Antigen-Dependent Mechanism to Enhance*  
1053 *Tissue-Resident Memory T Cell Formation during Respiratory Influenza Infection*. *J Immunol*,  
1054 2019. **202**(8): p. 2482-2492.

1055 56. Schenkel, J.M., et al., *Sensing and alarm function of resident memory CD8(+) T cells*. *Nat*  
1056 *Immunol*, 2013. **14**(5): p. 509-13.

1057 57. Park, S.L., et al., *Local proliferation maintains a stable pool of tissue-resident memory T cells*  
1058 *after antiviral recall responses*. *Nat Immunol*, 2018. **19**(2): p. 183-191.

1059 58. Fonseca, R., et al., *Developmental plasticity allows outside-in immune responses by resident*  
1060 *memory T cells*. *Nat Immunol*, 2020. **21**(4): p. 412-421.

1061 59. Grant, E., et al., *Nucleoprotein of influenza A virus is a major target of immunodominant CD8+*  
1062 *T-cell responses*. *Immunol Cell Biol*, 2013. **91**(2): p. 184-94.

1063 60. Milner, J.J. and A.W. Goldrath, *Transcriptional programming of tissue-resident memory CD8(+)*  
1064 *T cells*. *Curr Opin Immunol*, 2018. **51**: p. 162-169.

1065 61. Ichikawa, T., et al., *CD103(hi) Treg cells constrain lung fibrosis induced by CD103(lo) tissue-*  
1066 *resident pathogenic CD4 T cells*. *Nat Immunol*, 2019. **20**(11): p. 1469-1480.

1067 62. Jabri, B. and V. Abadie, *IL-15 functions as a danger signal to regulate tissue-resident T cells and*  
1068 *tissue destruction*. *Nat Rev Immunol*, 2015. **15**(12): p. 771-83.

1069 63. Quinn, K.M., et al., *Age-Related Decline in Primary CD8(+) T Cell Responses Is Associated with*  
1070 *the Development of Senescence in Virtual Memory CD8(+) T Cells*. *Cell Rep*, 2018. **23**(12): p.  
1071 3512-3524.

1072 64. Quinn, K.M., et al., *Heightened self-reactivity associated with selective survival, but not*  
1073 *expansion, of naive virus-specific CD8+ T cells in aged mice*. Proc Natl Acad Sci U S A, 2016.  
1074 **113**(5): p. 1333-8.

1075 65. Thannickal, V.J., et al., *Blue journal conference. Aging and susceptibility to lung disease*. Am J  
1076 *Respir Crit Care Med*, 2015. **191**(3): p. 261-9.

1077 66. Wu, F., et al., *A new coronavirus associated with human respiratory disease in China*. Nature,  
1078 2020. **579**(7798): p. 265-269.

1079 67. Acosta, E., et al., *Determinants of Influenza Mortality Trends: Age-Period-Cohort Analysis of*  
1080 *Influenza Mortality in the United States, 1959-2016*. Demography, 2019. **56**(5): p. 1723-1746.

1081 68. Joynt, G.M., et al., *Late-stage adult respiratory distress syndrome caused by severe acute*  
1082 *respiratory syndrome: abnormal findings at thin-section CT*. Radiology, 2004. **230**(2): p. 339-46.

1083 69. Chan, K.S., et al., *SARS: prognosis, outcome and sequelae*. Respirology, 2003. **8 Suppl**: p. S36-  
1084 40.

1085 70. Han, R., et al., *Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19)*  
1086 *Pneumonia*. AJR Am J Roentgenol, 2020: p. 1-6.

1087 71. Xu, Y.H., et al., *Clinical and computed tomographic imaging features of novel coronavirus*  
1088 *pneumonia caused by SARS-CoV-2*. J Infect, 2020.

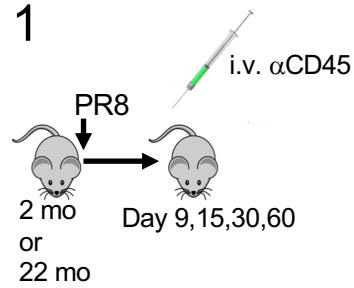
1089 72. Chan, J.F., et al., *A familial cluster of pneumonia associated with the 2019 novel coronavirus*  
1090 *indicating person-to-person transmission: a study of a family cluster*. Lancet, 2020. **395**(10223):  
1091 p. 514-523.

1092 73. Chan, J.F., et al., *Simulation of the clinical and pathological manifestations of Coronavirus*  
1093 *Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease*  
1094 *pathogenesis and transmissibility*. Clin Infect Dis, 2020.

1095 74. Chen, J., et al., *Clinical progression of patients with COVID-19 in Shanghai, China*. J Infect,  
1096 2020.

1097 75. Jolly, L., et al., *Influenza promotes collagen deposition via alphavbeta6 integrin-mediated*  
1098 *transforming growth factor beta activation*. J Biol Chem, 2014. **289**(51): p. 35246-63.

1099 76. Goplen, N.P., et al., *Tissue-Resident Macrophages Limit Pulmonary CD8 Resident Memory T*  
1100 *Cell Establishment*. Front Immunol, 2019. **10**: p. 2332.


1101 77. Huang, S., et al., *Macrophage PPAR-gamma suppresses long-term lung fibrotic sequelae*  
1102 *following acute influenza infection*. PLoS One, 2019. **14**(10): p. e0223430.

1103 78. Huang, S., et al., *PPAR-gamma in Macrophages Limits Pulmonary Inflammation and Promotes*  
1104 *Host Recovery following Respiratory Viral Infection*. J Virol, 2019. **93**(9).

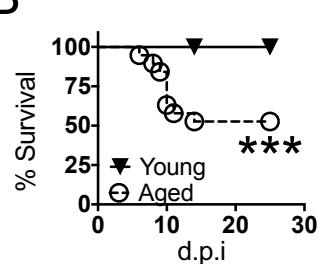
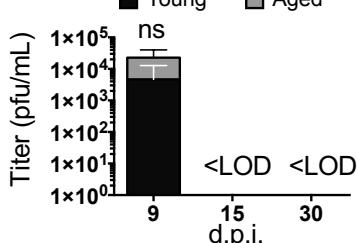

1105

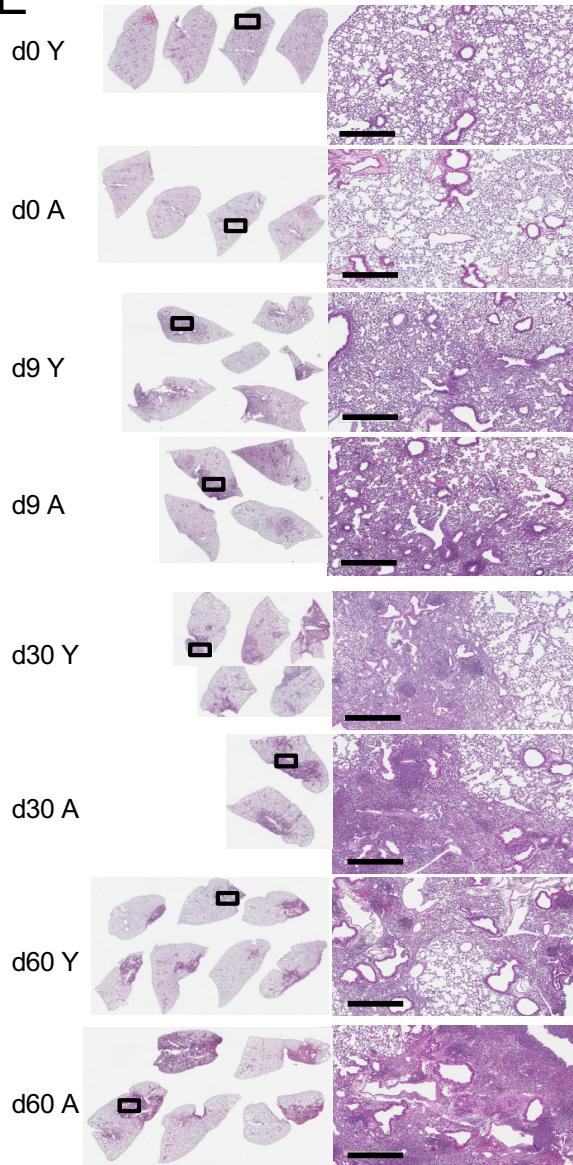
Figure 1


A

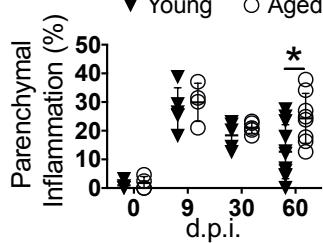



B

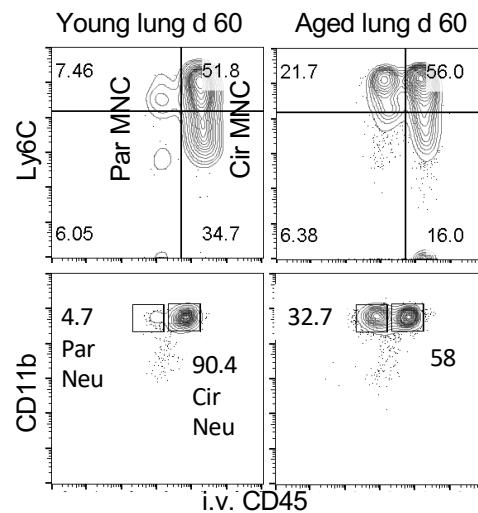



C

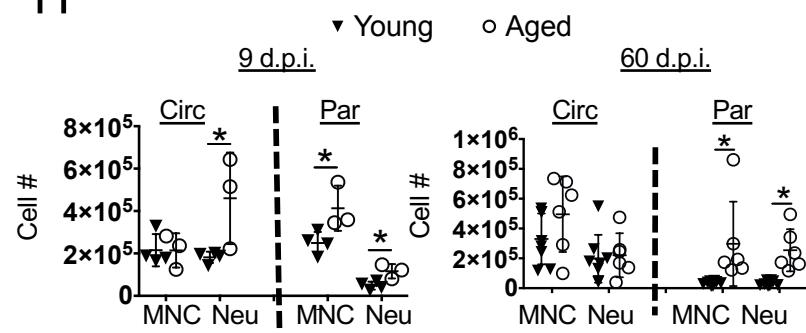



D

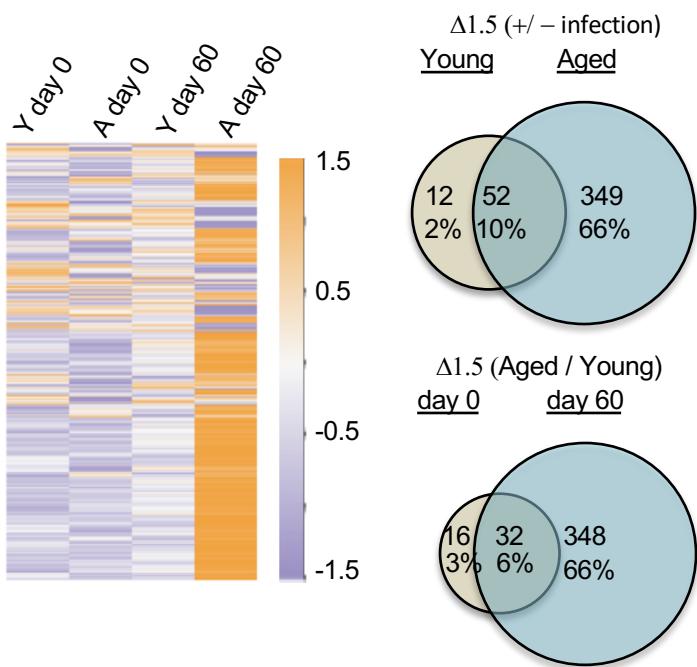



E




F




G



H



I



# Figure 2

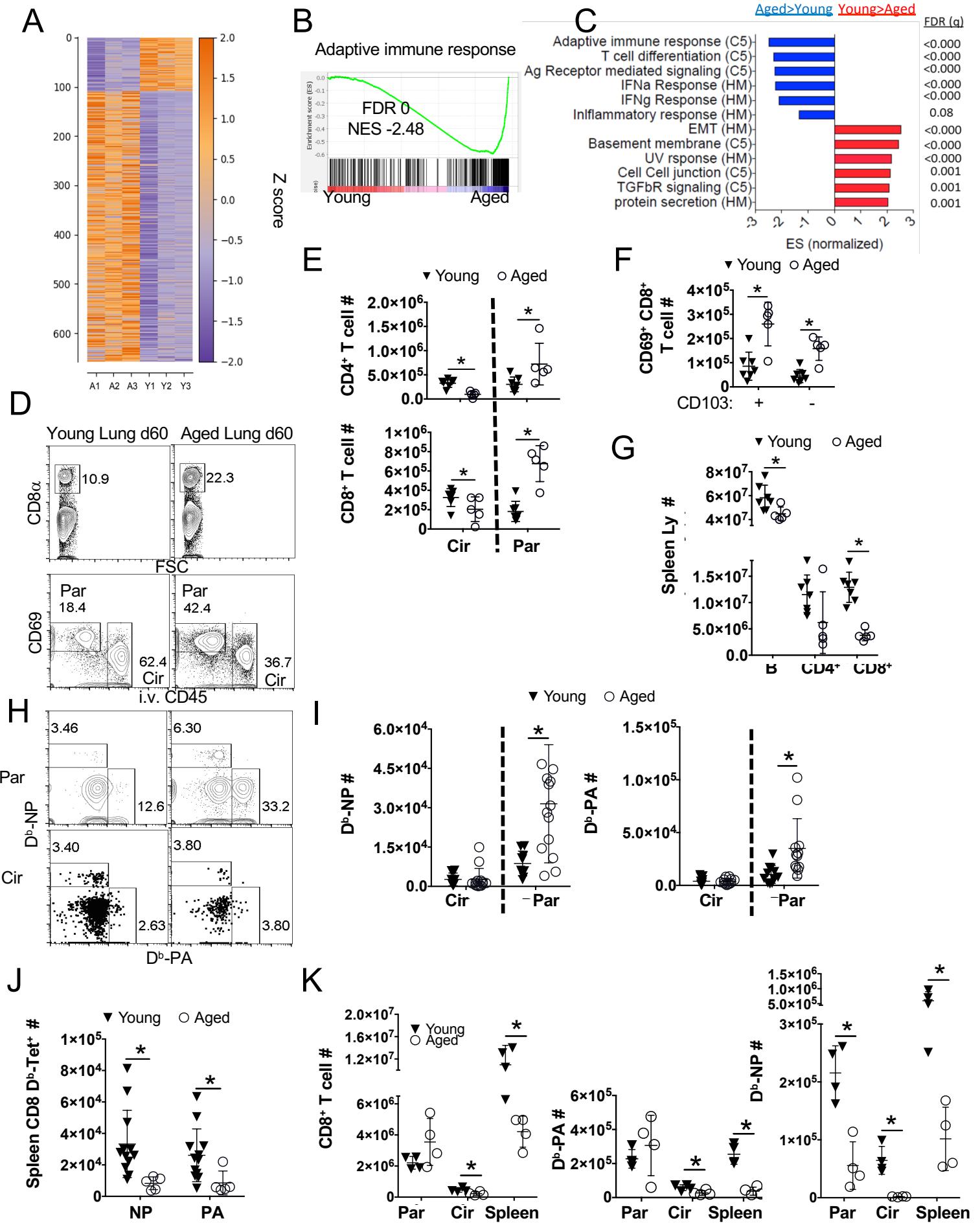
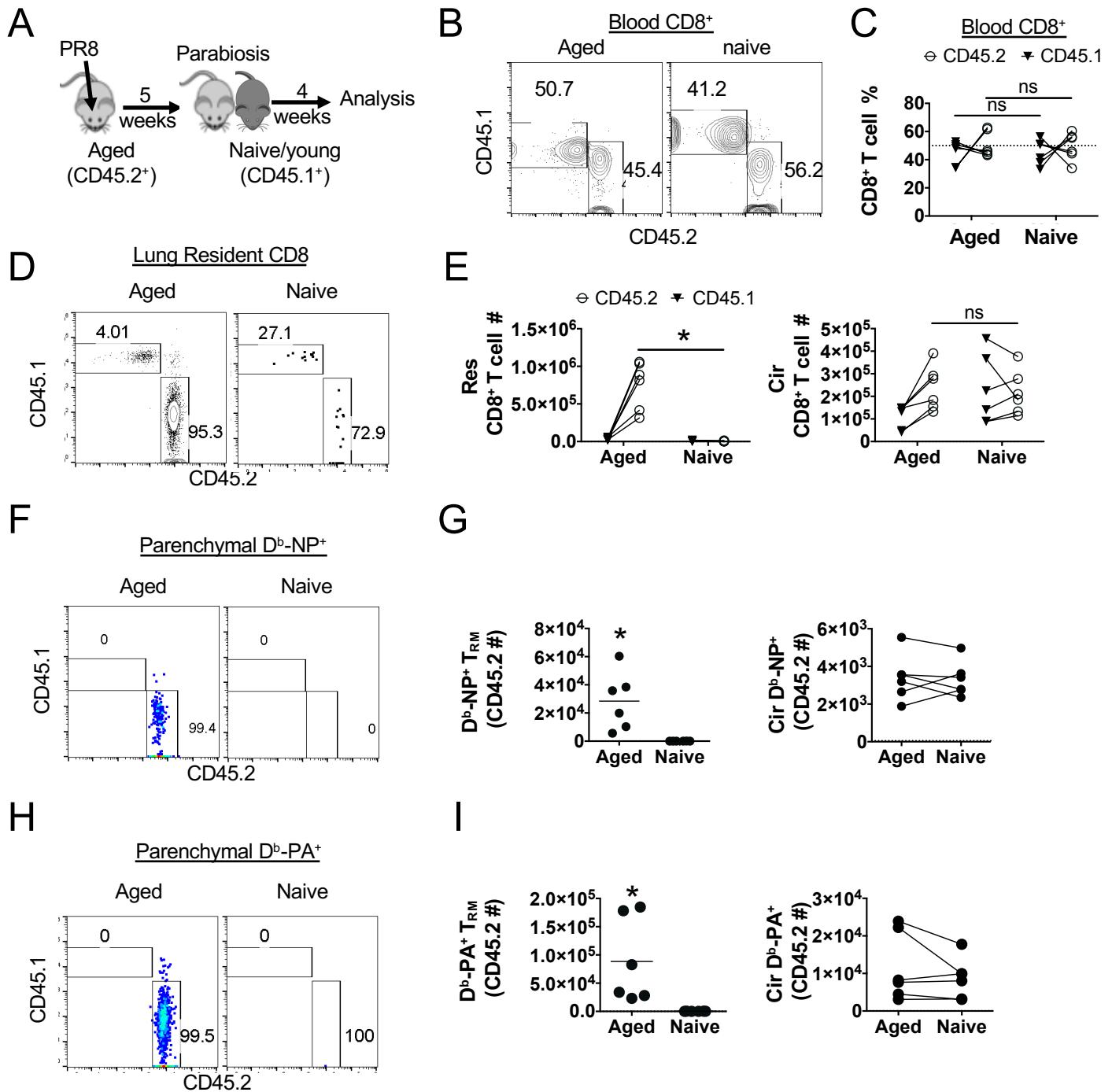
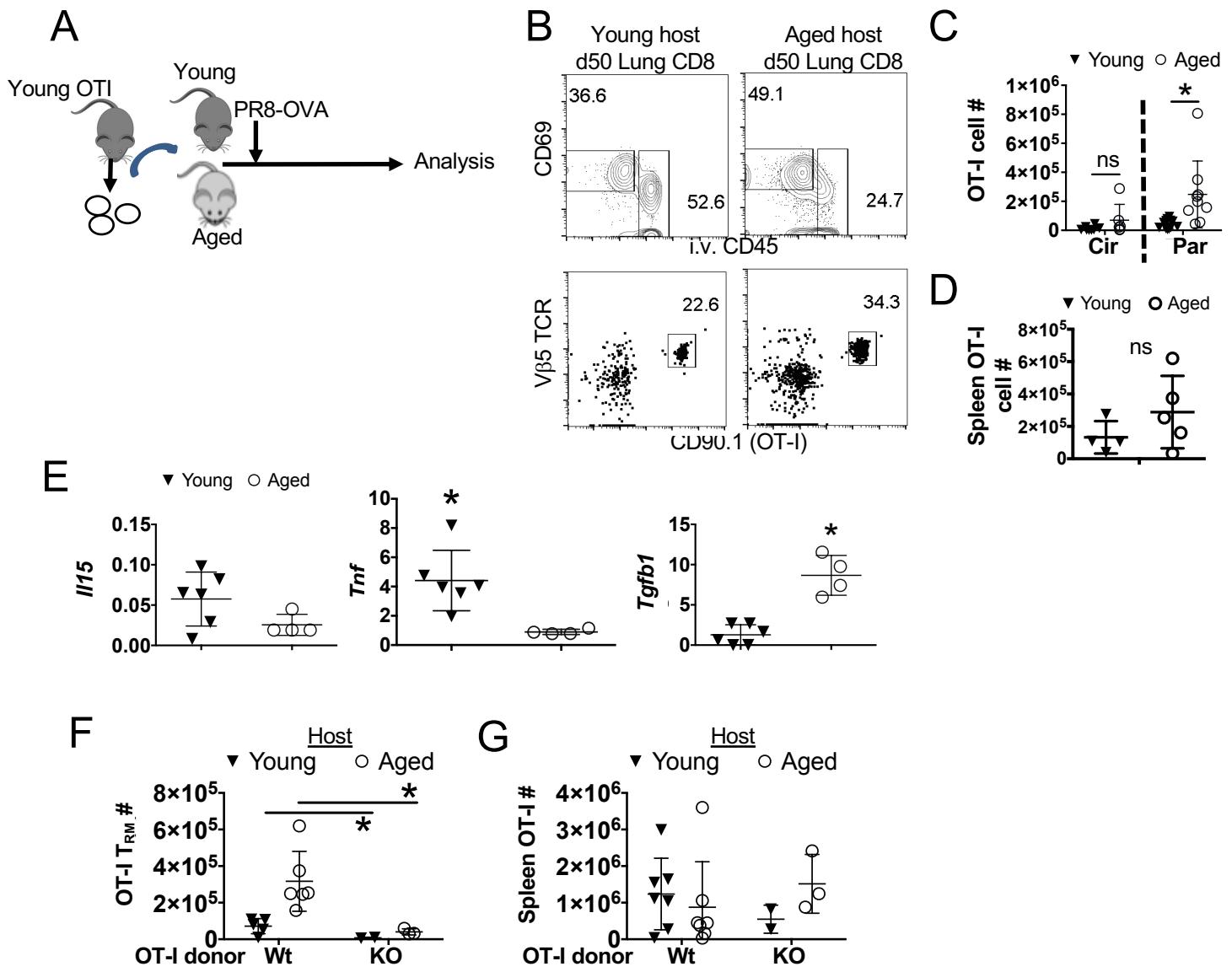
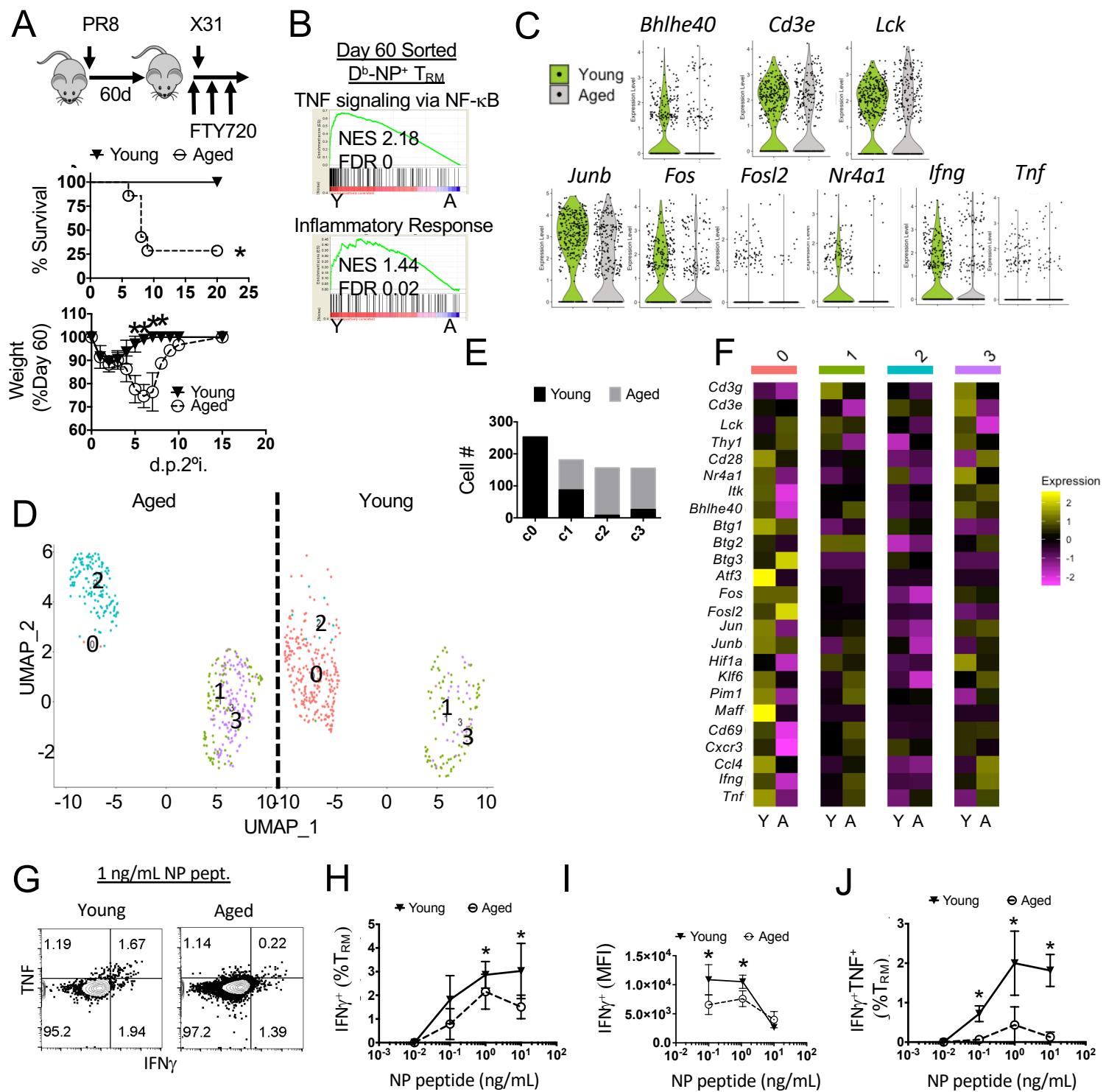
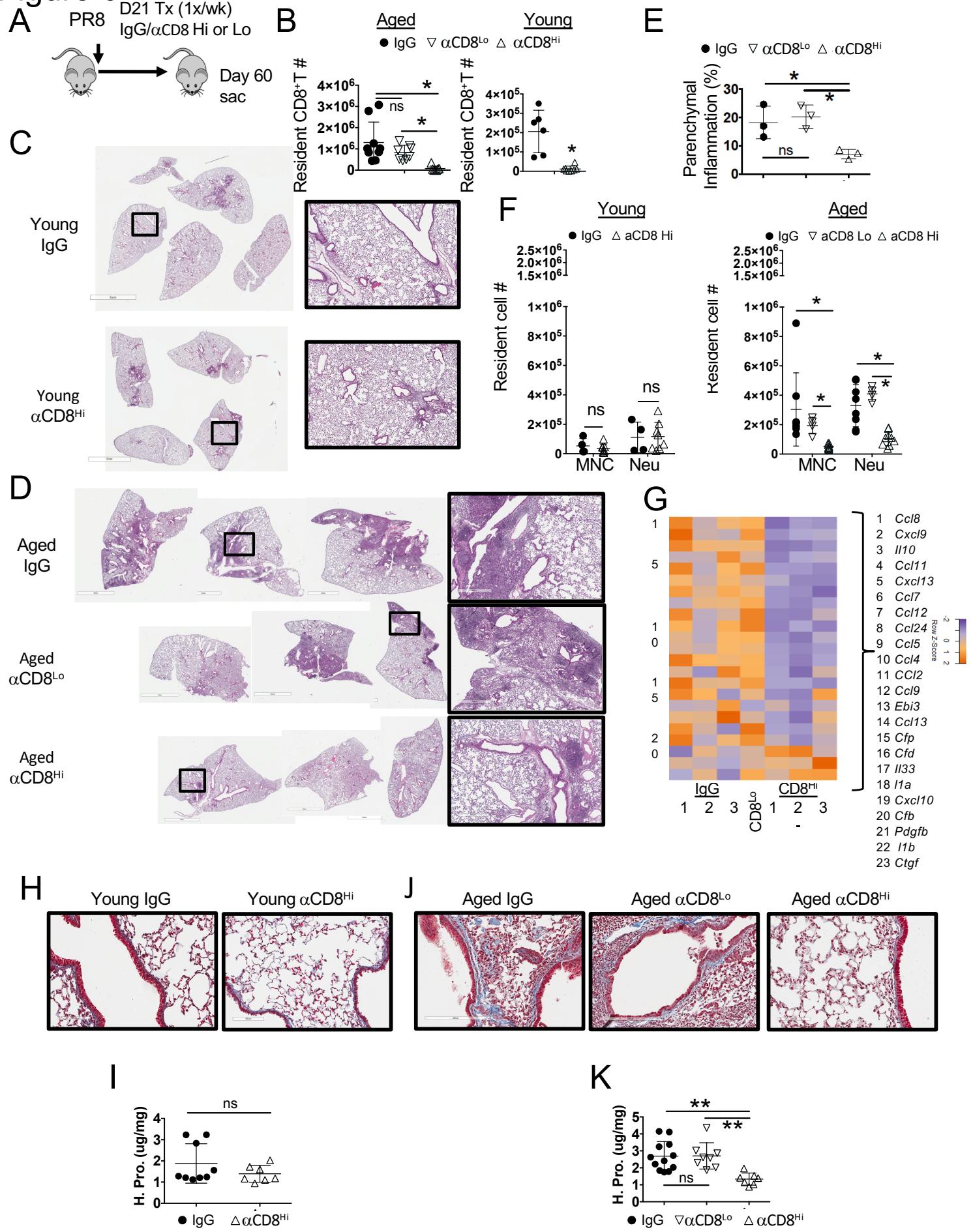



Figure 3



Figure 4



# Figure 5



**Figure 6**



# Figure S1

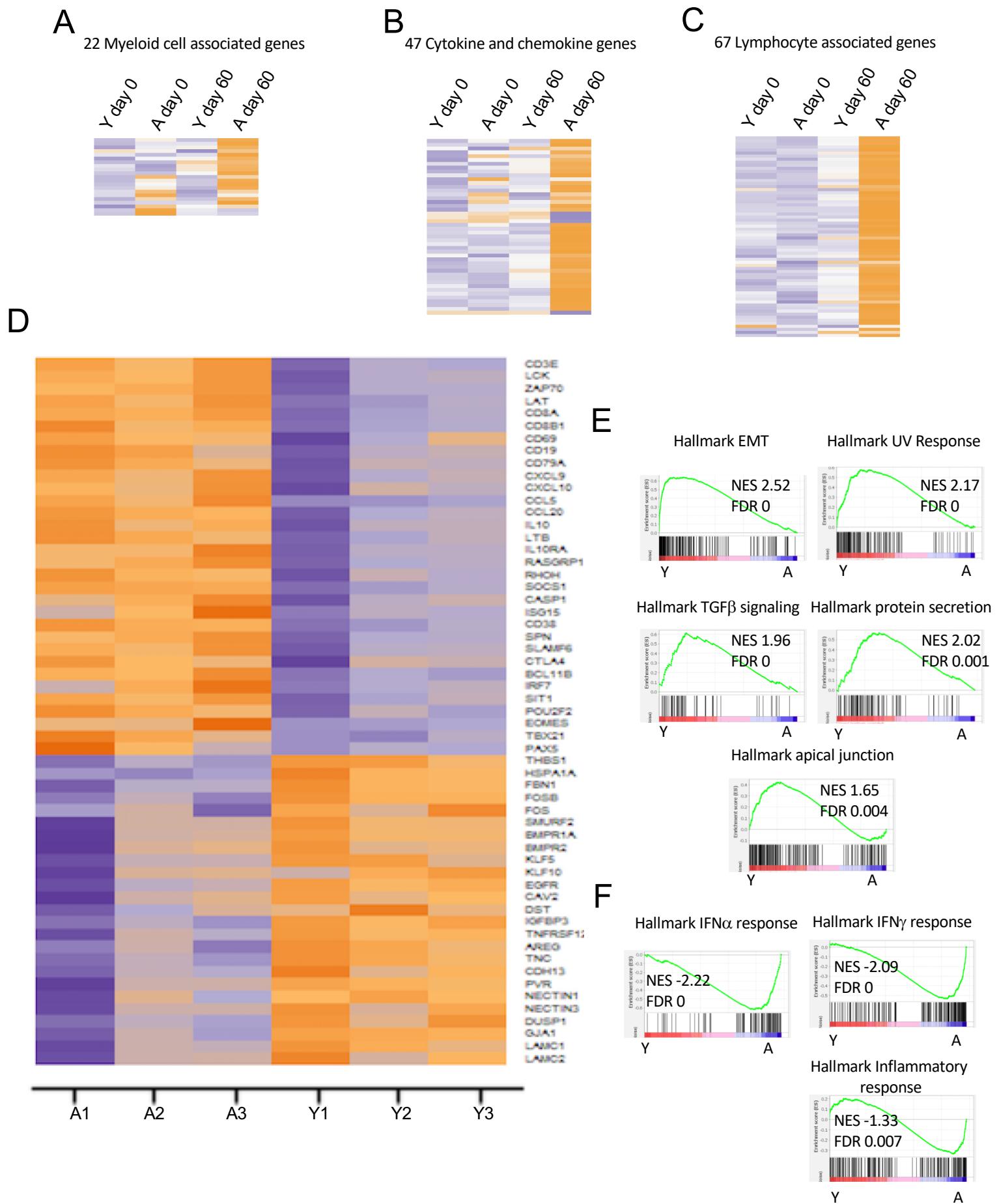
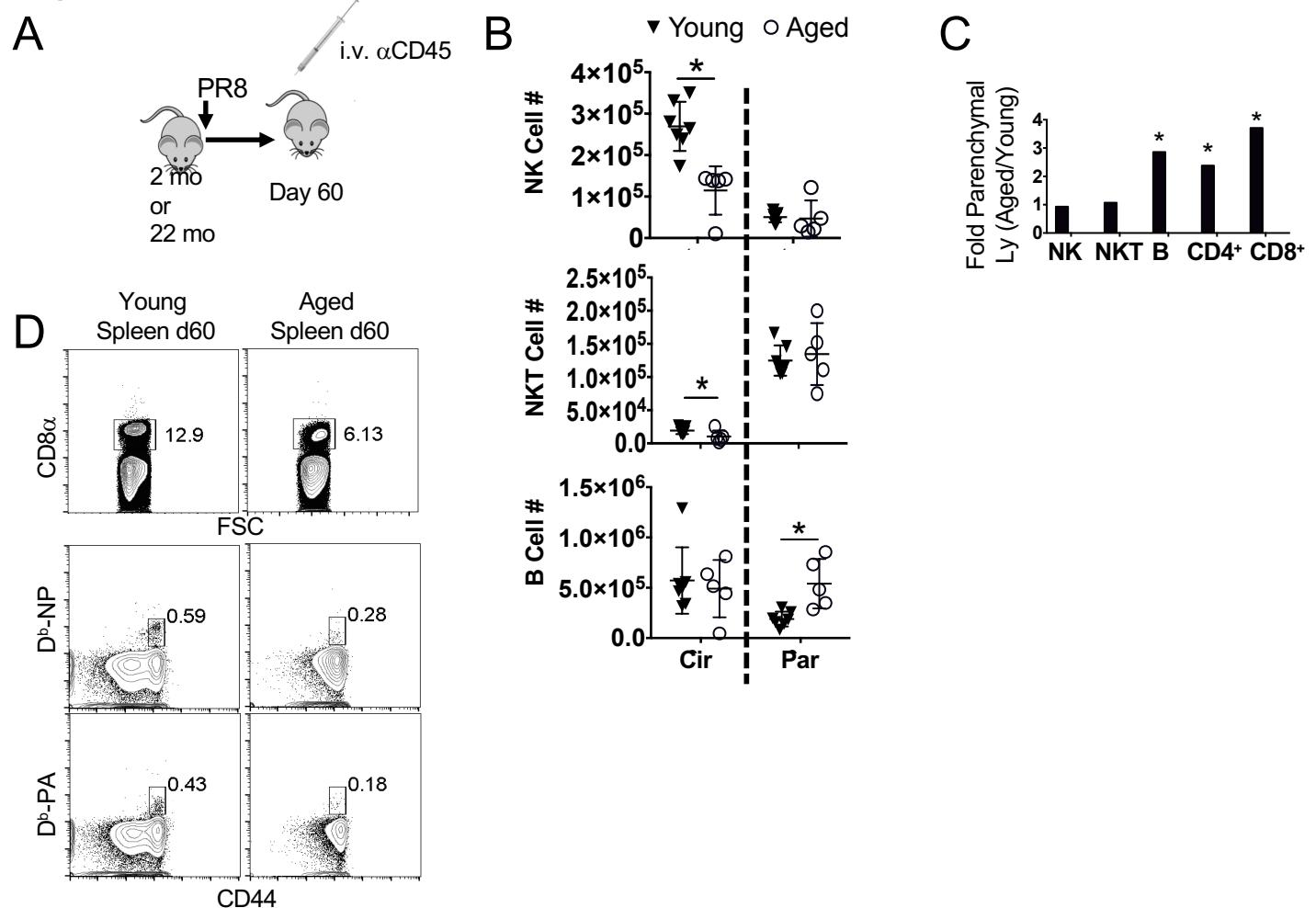




Figure S2



# Figure S3

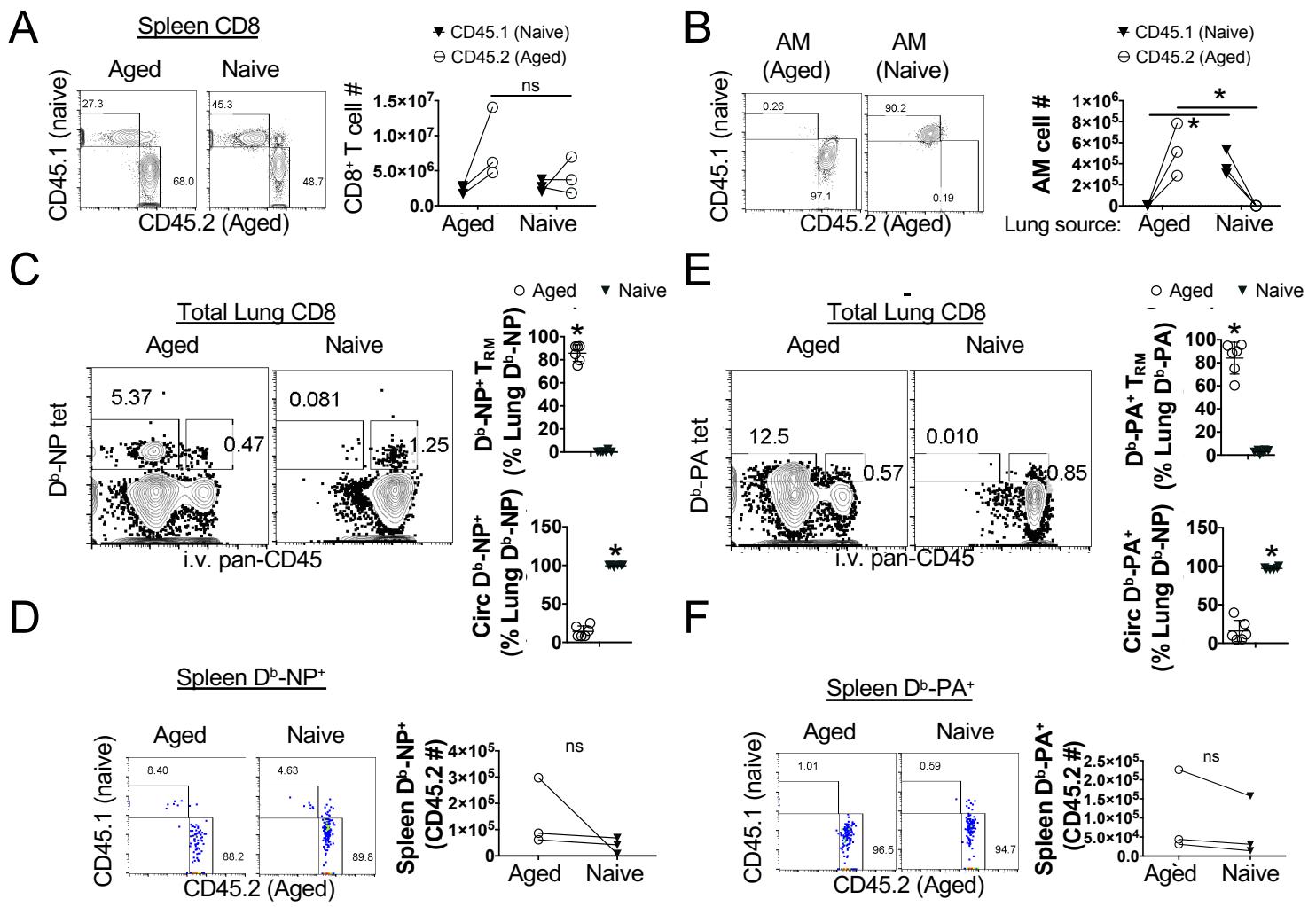



Figure S4

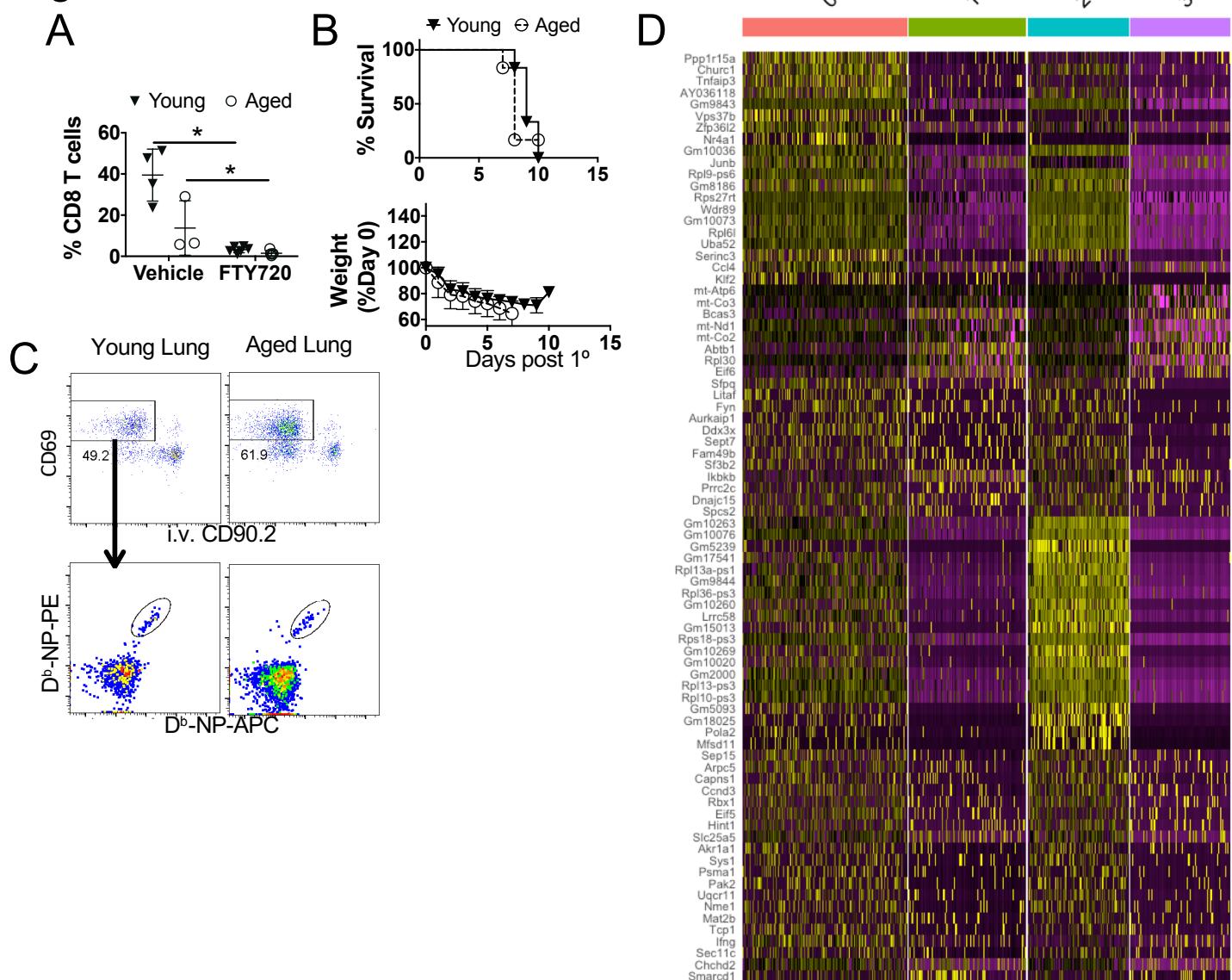



Figure S5

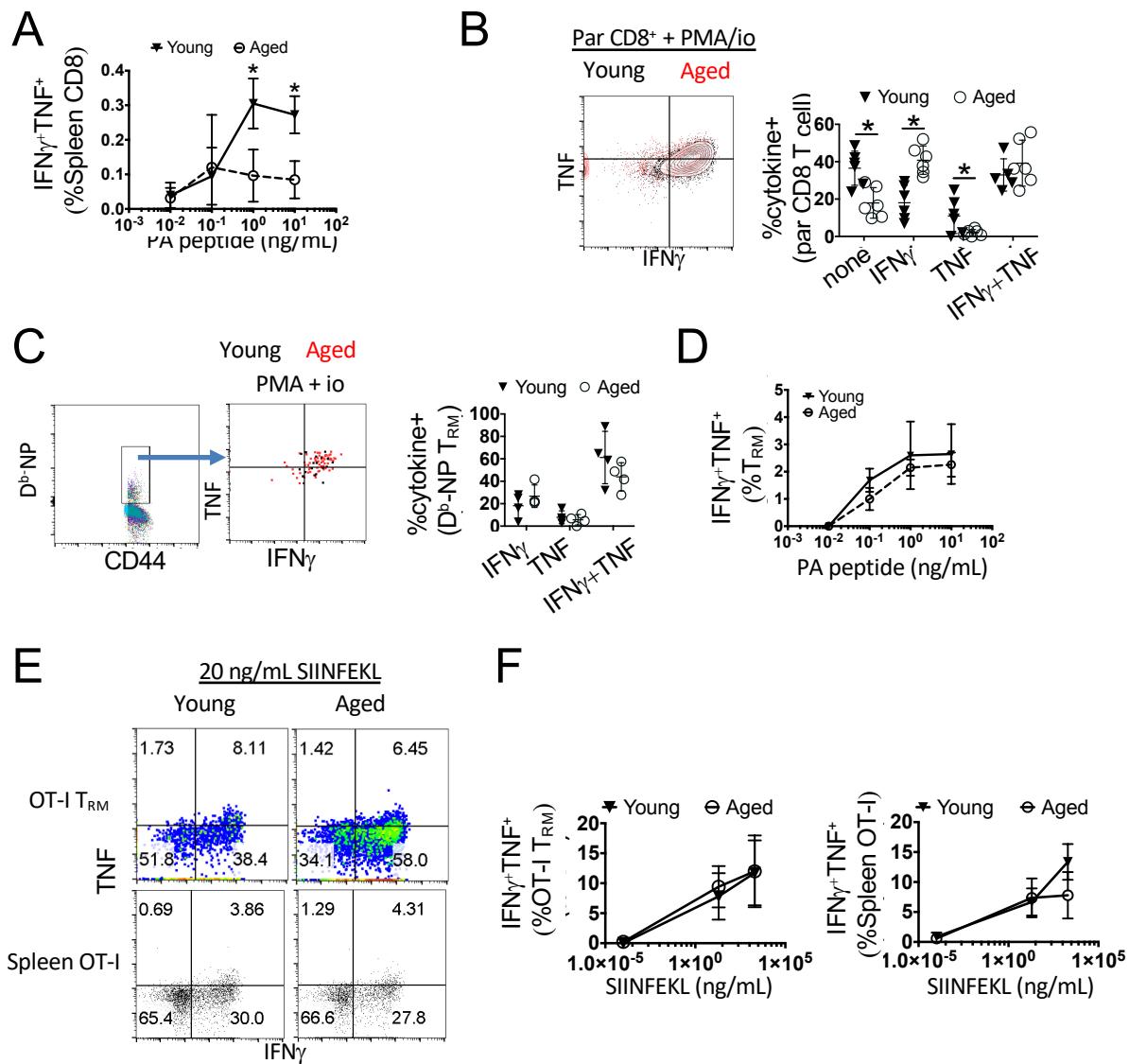
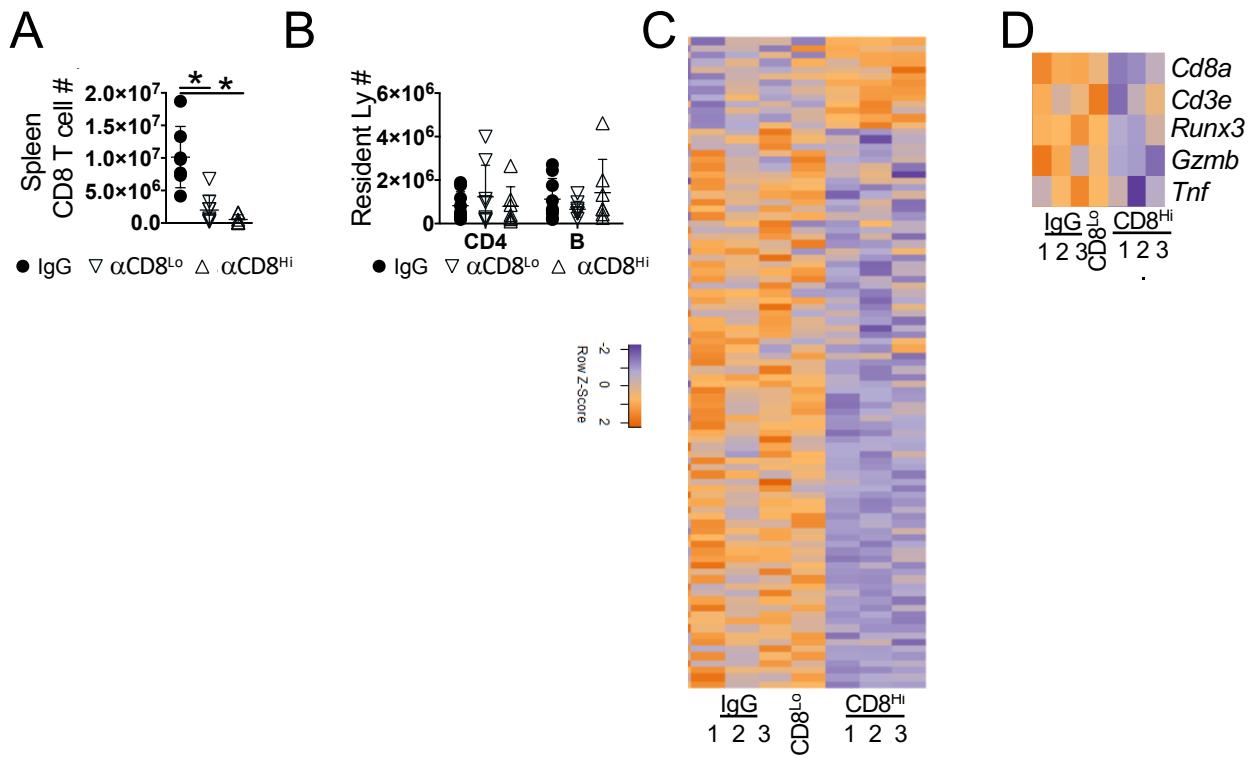




Figure S6

