

1 **TITLE:**

2
3 Implementation of single molecule FRET for visualizing intramolecular movement in CRISPR-Cas9
4

5 **AUTHORS & AFFILIATIONS:**

6
7 Haruka Narita, Hiroshi Ebata, Karibu Sakai, Katsuhiko Minami, Sotaro Uemura and Tomohiro
8 Shima*
9

10 *Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo,
11 Japan*

12
13 *Corresponding author. Tel: +81-3-5841-4399; Fax: +81-3-5841-4397;
14 E-mail: tomohiro.shima@bs.s.u-tokyo.ac.jp

15 **KEYWORDS:**

16 Single molecule FRET, CRISPR-Cas9, Genome editing, Conformational plasticity, Surface
17 passivation, Fluorescence anisotropy

18 **SHORT ABSTRACT:**

19 This paper summarizes how to visualize the flexible inter-domain movements of CRISPR-
20 associated protein Cas9 using single molecule FRET

21 **LONG ABSTRACT:**

22 The CRISPR-associated protein Cas9 is widely used as a genome editing tool because of its ability
23 to be programmed to cleave any DNA sequence that is followed by a protospacer adjacent motif.
24 The continuing expansion of Cas9 technologies has stimulated studies regarding the molecular
25 basis of the Cas9 catalytic process. Here we summarize methods for single molecule FRET
26 (smFRET) to visualize the inter-domain movements of Cas9 protein. Our measurements and
27 analysis demonstrate flexible and reversible movements of the Cas9 domains. Such flexible
28 movements allow Cas9 to adopt transient conformations beyond those solved by crystal
29 structures and play important roles in the Cas9 catalytic process. In addition to the smFRET
30 measurement itself, to obtain precise results, it is necessary to validate Cas9 catalytic activity.
31 Also, fluorescence anisotropy data are required to interpret smFRET data properly. Thus, in this
32 paper, we describe the details of these important additional experiments for smFRET
33 measurements.
34

35
36
37
38
39
40

41 **INTRODUCTION:**

42
43 The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated
44 proteins (Cas) system was first identified as a prokaryotic immune system that protects
45 prokaryotes from viral attack through acquired immunity¹⁻⁵. Among the various CRISPR-Cas
46 systems, CRISPR-Cas9 employs a single Cas9 protein that can be programmed to cleave any
47 specific DNA (deoxyribonucleic acid) sequence that is followed by a protospacer adjacent motif
48 (PAM) through its binding with single guide ribonucleic acid (sgRNA)^{6,7}. The programmable DNA-
49 cleavage ability of Cas9 leads it to play a central role in the field of genome engineering^{8, 9}.
50 Recently, much effort has been devoted to improve the efficacy and specificity of CRISPR-Cas9
51 gene-editing^{10, 11}. Also, the application of Cas9 has been expanded to a wide variety of biological
52 research techniques, such as the visualization and regulation of genomic DNA¹²⁻¹⁵.

53 Improvements and applications of the CRISPR-Cas9 system have brought greater attention
54 to the molecular basis of the Cas9 catalytic process. Structural studies have revealed a series of
55 conformational changes in Cas9 during the process¹⁶⁻²⁰. The Cas9 protein is mainly composed
56 of recognition (REC) and nuclease (NUC) lobes. Upon binding with sgRNA, the two lobes
57 relatively rotate to convert Cas9 into an active conformation that can bind to the target DNA.
58 After binding to the target DNA, the two catalytic domains in the NUC lobe (HNH and RuvC)
59 translocate their positions in the protein and cleave opposite strands of the DNA. These
60 structural studies have deepened our understanding of the catalytic process; however, the
61 dynamics of the conformational changes have remained elusive. In particular, no crystal
62 structures have shown direct interactions of the HNH catalytic domain and the cleavage point
63 in the target DNA^{18, 20}. Although bulk FRET measurements have proposed concerted DNA
64 cleavage by HNH and RuvC²¹, the averaged data of bulk conditions provides limited information
65 about the DNA cleavage mechanism. Instead, methods that detect when and how HNH
66 translocates to the cleavage point are required.

67 Here we explain how single-molecule fluorescence resonance energy transfer (smFRET)
68 measurements can monitor the dynamics of Cas9 conformational changes. smFRET can monitor
69 the dynamics of two fluorescent dyes (donor and acceptor) labeling a target molecule with sub-
70 nanometer accuracy and millisecond time resolution²². We have applied this system to reveal
71 the flexible and reversible movements of the HNH domain in the DNA-sgRNA-Cas9 ternary
72 complex²³. The HNH domain was positioned at the DNA cleavage point only during flexible
73 movements, suggesting the importance of domain flexibility in the Cas9 catalytic process. These
74 results demonstrate that smFRET is well suited for detecting inter-domain flexibility because of
75 its high spatial and temporal resolution but requires careful preparation before the
76 measurement. While general smFRET methodologies have already been introduced by several
77 papers^{22, 24}, we describe the preparation and analysis for successful smFRET measurements for
78 Cas9 in detail.

79

80 **PROTOCOL:**

81

82 **Fluorescent labeling of Cas9**

83

84 All three Cas9 constructs for FRET measurement (D435C-E945C, S355C-S867C and S867C-
85 N1054C) contain only two cysteine residues and are fluorescently labeled using Cyanine dye 3-
86 and Cyanine dye 5-maleimide.

87

88 1 Preparation of Cyanine dye 3- and Cyanine dye 5-maleimide stock solution

89

90 1.1 Dissolve Cyanine dye 3- and Cyanine dye 5-maleimide powder (one vial for labeling 1
91 mg/mL antibody) separately in 20 μ L dimethyl sulfoxide (DMSO) to make
92 approximately 20 mM stock solutions.

93

94 1.2 To determine the exact dye concentration, take small aliquot of the stock (1-2 μ L)
95 and dilute it 10,000 times by desterilized water. Measure the absorbance of the
96 diluted solution of Cyanine dye 3-maleimide at 550 nm and of Cyanine dye 5-
97 maleimide at 649 nm using an absorption spectrophotometer. The values of
98 measured absorbance should be in the range of between 0.2 and 0.8, in which range
99 the relationship between absorbance and concentration is linear according to the
100 Beer-Lambert law. Otherwise, adjust the dilution ratio and measure absorbance
101 again.

102

103 1.3 Calculate the concentration of Cyanine dye 3- and Cyanine dye 5-maleimide in the
104 diluted solution using the molar extinction coefficient of Cyanine dye 3-maleimide
105 ($150,000 \text{ M}^{-1}\text{cm}^{-1}$ at 550 nm) and Cyanine dye 5-maleimide ($250,000 \text{ M}^{-1}\text{cm}^{-1}$ at 649
106 nm), respectively.

107

108 1.4 Calculate the original concentration in the stock solutions according to the dilution
109 ratio used in step 1.2. Dilute the stock solution with DMSO to make 10 mM stock for
110 future use.

111

112 1.5 Aliquot the 10 mM stocks into 0.2-mL PCR (polymerase chain reaction) tubes. To
113 avoid hydrolysis, store the tubes in vacuum-sealed bags at -30 °C until use.

114

115 2 Fluorescent labeling of Cas9

116

117 2.1 Exchange buffer of the stocked Cas9 solution to labeling buffer (20 mM HEPES (4-(2-
118 hydroxyethyl)-1-piperazineethanesulfonic acid)-KOH pH 7.0, 100 mM KCl, 2 mM
119 MgCl_2 , 5% glycerol) by using a gel filtration spin column for 20 – 75 μ L solution (cut
120 off molecular weight of 40 kDa). Follow the manufacturer's protocol with one
121 modification.

122

123 NOTE: At the N-terminus of Cas9, BCCP (biotin carboxyl carrier protein)-tag is attached

124 for biotinylation in *E. Coli* (*Escherichia coli*) during protein expression. Since BCCP-tag
125 has no cysteine residue, it does not affect maleimide labeling. The influence of BCCP-
126 tag insertion on Cas9 activity was also evaluated using the DNA cleavage assay
127 described below.

128
129 2.1.1. Place the column in a centrifuge tube. Centrifuge the column for 2 min in a
130 microcentrifuge at $1,000 \times g$, $4^\circ C$ to remove liquid in the column.

131
132 2.1.2. Apply 500 μL of labeling buffer onto the gel resin and centrifuge for 1 min at
133 $1,000 \times g$, $4^\circ C$ to equilibrate the column. Discard liquid that flows through the
134 column. Repeat this equilibration step 3 times.

135
136 2.1.3. Apply an equivalent volume of labeling buffer to that of the sample being used in
137 the step 2.1.4. (20-75 μL) onto the resin. Centrifuge for 4 min at $1,000 \times g$, $4^\circ C$.

138
139 NOTE: This is the modification step from the manufacturer's protocol. By including this
140 step, the protein solution can be eluted without diluting the original solution.

141
142 2.1.4. Place a column in a clean 1.5 mL microcentrifuge tube. Carefully apply the
143 sample (20-75 μL) to the column.

144
145 2.1.5. After loading the sample, centrifuge the column for 4 min, $1,000 \times g$, $4^\circ C$. Collect
146 the flow-through sample solution.

147
148 2.2. Add 0.5 mM Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) to the Cas9 solution
149 and incubate on ice for 30 min to reduce disulfide bonds in Cas9.

150
151 NOTE:
152 DO NOT use dithiothreitol (DTT) or β -mercaptoethanol to reduce the disulfide bonds,
153 since these compounds contain sulfhydryl groups that react with maleimide.

154
155 2.3. Mix Cyanine dye 3- and Cyanine dye 5-maleimide with the Cas9 solution at a 1:20
156 (protein:dye) molar ratio.

157
158 NOTE: Fluorescent maleimide specifically reacts with the cysteine sulfhydryl group (Fig.
159 1).

160
161 2.4. Following incubation of the mixed solution on ice for 2 h, quench the reaction by
162 adding 10 mM DTT.

163
164 NOTE:
165 Since DTT contains a sulfhydryl group, the addition of excessive DTT quenches the

167 activity of maleimide.
168
169 2.5. Remove excess fluorescent maleimide dye using a spin column gel filtration with assay
170 buffer (AB: 20 mM HEPES-KOH pH 7.5, 100 mM KCl, 2 mM MgCl₂, 5% glycerol, 0.5 mM
171 EDTA, 1 mM DTT) following the procedure described in step 2.1. Repeat this step twice
172 for complete removal of excess dye.
173
174 2.6. Measure the concentration of the labeled Cas9 and labeling efficiency.
175 2.6.1. Measure the absorbance of the labeled Cas9 at 280 nm and the absorption peak
176 of Cyanine dye 3 (550 nm) and Cyanine dye 5 (649 nm), respectively.
177
178 NOTE:
179 Use a clean disposal cuvette with ~50 μ L capacity and collect the sample in the cuvette
180 following the measurement.
181
182 2.6.2. Calculate the concentration of the labeled Cas9 and the labeling efficiency using
183 the molar extinction coefficients of Cas9, Cyanine dye 3 and Cyanine dye 5.
184
185
$$A_{280} = 127,565 \times [\text{Cas9}] + 108,450 \times [\text{Cyanine dye 3}] + 75,000 \times$$

186
$$[\text{Cyanine dye 5}]$$

187
$$A_{550} = 150,000 \times [\text{Cyanine dye 3}] + 161,000 \times [\text{Cyanine dye 5}]$$

188
$$A_{649} = 250,000 \times [\text{Cyanine dye 5}]$$

189
190 NOTE:
191 The molar extinction coefficient of Cas9 is estimated based on its amino acids
192 sequence using the ProtParam tool in ExPASy²⁵.
193
194 NOTE:
195 The molar extinction coefficient of Cas9 for 550-and 649-nm light and of Cyanine
196 dye 3 for 649-nm light are negligible.
197
198 2.7. Snap-freeze the fluorescent Cas9 in 2- 5 μ L aliquots using liquid nitrogen and store at -
199 80 °C until use.
200
201 NOTE: This basic method does not separate Cyanine dye 3-Cyanine dye 5 labeled
202 Cas9 from Cyanine dye 3-Cyanine dye 3 and Cyanine dye 5-Cyanine dye 5 labeled
203 Cas9. To separate these, the additional purification step using the hydrophobicity
204 interaction column can be employed²⁶.
205
206 **Cleavage assay of fluorescent Cas9s**
207
208 To check the activity of fluorescent Cas9, perform the cleavage assay (Fig. 2). Repeat this
209 cleavage assay for each sample multiple times (at least three times) to ensure the
210 reproducibility of the results.

211

212 1. Prepare pUC119 plasmid containing a single EcoRI recognition site and a 20-nt target
213 sequence followed by the NGG PAM.

214

215 NOTE: pUC119 plasmid contains a single EcoRI recognition site at its multi-cloning site.

216

217 2. On the day of the experiment, incubate sgRNA at 95 °C for 2 min. After gradual cooling to
218 room temperature, place sgRNA on ice until use.

219

220 3. Mix pUC119 plasmid, EcoRI, and Cas9-sgRNA with 10 µL of AB. Incubate the reaction
221 mixture at 37 °C for 5 min.

222

223 4. Stop the cleavage reaction by adding a solution of ethylenediaminetetraacetic acid (EDTA;
224 final 40 mM) and Protease K (final 1 mg/mL).

225

226 5. Load the reaction mixture on 1% agarose gel. Separate different lengths of DNA by
227 electrophoresis (100 V, 25 min).

228

229 6. Soak the agarose gel in liquid containing 0.5 µg/mL ethidium bromide or an alternative
230 fluorescent staining reagent for nucleic acids for 30 min at room temperature. Visualize
231 DNA bands using a UV (ultra violet) or blue-light transilluminator.

232

233 7. Capture the image of the DNA bands by camera. Quantify the intensity of each band using
234 the “Gel” analysis tool in ImageJ software²⁷.

235

236 Perrin plots to determine orientation factors

237

238 To evaluate distance between the two fluorescent dyes on Cas9 from FRET efficiency, each dye
239 should freely rotate during its fluorescence lifetime. Otherwise, orientation between the dyes
240 affects FRET efficiency. To access the rotational mobility of the dyes, the orientation factors are
241 measured using Perrin plots²⁸.

242

243 1. Prepare 100 µL of 100 nM fluorescent Cas9 (D435C-E945C, S355C-S867C, and S867C-
244 N1054C with no nucleic acid) in cuvettes with 50 µL capacity in buffer (AB + 2.5 mM TSY,
245 2.5 mM protocatechunic acid (PCA), and 2% protocatechunic acid dioxygenase (PCD)) with
246 or without methyl cellulose (0, 0.001, 0.01, or 0.1%) at room temperature.

247

248 NOTE: TSY is a commercially available triplet state quencher. Instead of TSY, 1-2 mM 6-
249 hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) is also available.

250

251 2. Set the parameters of the fluorescence spectrometer (slit width for the emission and
252 excitation, 5 nm; integration time, 1 s; fluorescence and excitation wavelengths for Cyanine
253 dye 3, 566 nm and 554 nm, respectively; fluorescence and excitation wavelengths for
254 Cyanine dye 5, 668 nm and 650 nm, respectively).

255

256 3. Measure the fluorescence intensities by manually placing the polarization filters in front of
257 the exciter and detector in the fluorescence spectrometer. Acquire four types of
258 fluorescence intensities:

259 I_{vh} , the fluorescence intensity of the horizontal polarization excited by the vertical polarized

260 light;

261 I_{vv} , the fluorescence intensity of the vertical polarization excited by the vertical polarized
262 light;

263 I_{hv} , the fluorescence intensity of the vertical polarization excited by the horizontal polarized
264 light;

265 and I_{hh} , the fluorescence intensity of the horizontal polarization excited by the horizontal
266 polarized light.

267

268 For better reproducibility, perform three or more measurements in total using
269 independently prepared solutions.

270

271 4. Calculate the fluorescence anisotropy, r , following the equation described below and using
272 the fluorescence intensities obtained in step 3.

273

$$r = (I_{vv} - G) / (I_{vv} + 2G)$$

$$G = I_{hv} I_{vh} / I_{hh}$$

274 T : absolute temperature

275 η : viscosities of the sample

276

277 NOTE:

278 η values for each methyl cellulose concentration are summarized in Table 1.

279

280 5. Plot $1/r$ against T/η . Calculate the y-intercept ($1/r_{0d}$, $1/r_{0a}$) by fitting the plot to a linear
281 function for each fluorescent Cas9 to estimate the anisotropy values. r_{0d} and r_{0a} are the
282 anisotropy of the donor dye (Cyanine dye 3) and acceptor dye (Cyanine dye 5) in zero
283 viscosity solution, respectively.

284

285 6. Using $1/r_{0d}$ and $1/r_{0a}$, calculate κ^2_{\max} and κ^2_{\min} as described below.

286

$$d_d = \sqrt{r_{0d}/0.4}$$

$$d_a = \sqrt{r_{0a}/0.4}$$

287

$$\kappa^2_{\max} = \frac{2}{3}(1 + d_d + d_a + 3d_d \cdot d_a)$$

288

$$\kappa^2_{\min} = \frac{2}{3}\{[1 - (d_d + d_a)/2]\}$$

289

295 **Preparation of PEG- and biotin-PEG-coated chambers**

296

297 Make PEG- and biotin-PEG-coated cover slips for smFRET measurements to avoid non-specific
298 binding of Cas9 to the glass surface²⁹ as illustrated in Fig. 3.

299

300 1. Clean the cover slips (No. 1S, 22 mm × 22 mm).

301

302 1.1. Place the cover slips on a rack (typically 10 cover slips). Rinse the cover slips using
303 ultrapure water. Put the rack in a beaker containing 1 N KOH. Clean the cover slips using
304 an ultrasonic washing machine for 20 min.

305 1.2. Rinse the cover slips with ultrapure water and put the rack in a clean beaker. Pour
306 and exchange ultrapure water in the beaker 20 times to remove KOH completely from
307 the surface of cover slips. Then dry the cover slips in a dryer for 30 min at 80 °C.

308

309 NOTE:

310 Perform all subsequent procedures in a clean bench.

311

312 1.3. Clean the cover slips for 5 min at room temperature using a plasma cleaner and
313 dry them in a dryer.

314

315 2. Silanize the cover slips.

316

317 2.1. Sandwich 10 µL of N-2 (aminoethyl)-3-aminopropyl-triethoxysilane with two cover
318 slips. Wrap the cover slips using plastic paraffin films.

319

320 2.2. Following incubation at room temperature for 20 min, detach the sandwiched cover
321 slips and place the cover slips on a rack.

322

323 NOTE:

324 DO NOT forget the silanized side of each cover slip.

325

326 2.3. Rinse the cover slips on the rack 20 times using ultrapure water and dry them in a dryer
327 for 30 min at 80 °C.

328

329 3. PEGylate the silanized side of the cover slips.

330

331 3.1. Sandwich 10 µL of 200 mg/mL N-hydroxysuccinimide-polyethylene glycol (NHS-PEG)
332 and 1 mg/mL NHS-PEG-biotin in 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS;
333 pH 7.5) for the observed surface of a flow chamber (8 cover slips in the case of 10 total
334 cover slips) and 200 mg/mL NHS-PEG in 50 mM MOPS (pH 7.5) for the non-observed
335 surface (2 cover slips in the case of 10 total cover slips).

336

337 3.2. Following incubation at room temperature for 2 h in a moist environment, detach the
338 sandwiched cover slips and place them on a rack.

339
340 NOTE:
341 DO NOT forget the PEGylated and biotin-PEGylated side of each cover slip.
342
343 3.3. Rinse the cover slips on the rack 20 times with ultrapure water and completely dry
344 them in a dryer.
345
346 4. Make 0.5- μ L volume micro-chambers (Fig. 4A, B).
347
348 4.1. Cut a PEG-coated cover slip into four equal parts (11 mm \times 11 mm) using a glass cutter.
349
350 4.2. Make three lanes of 1.5 mm width on the PEG-biotin-coated side of 22 \times 22 mm cover
351 slip using double-sided adhesive tape (30 μ m thickness). Place a PEG-coated small
352 cover slip of 11 \times 11 mm, which was cut in the above process, over a PEG-biotin-coated
353 22 \times 22 mm cover slip.
354
355 NOTE:
356 The PEG-coated side of the small 11 mm \times 11 mm cover slip should face the PEG-biotin-
357 coated side of the 22 mm \times 22 mm cover slip.
358
359 Note: A well prepared chamber will show no significant leakage (Fig. 4C). Additionally,
360 following wash-out of the colored solution, the remaining dye in the solution is not visible
361 (Fig. 4D). These observations suggest that the micro-chamber made with double-sided
362 adhesive tape is adequate for the following smFRET measurements.
363
364 4.3. Check the cleanliness of the micro-chamber and surface passivation by fluorescence
365 microscopy.
366
367 NOTE: The micro-chamber will show some fluorescent spots (Fig. 5A). The biotinylated
368 sample, such as biotinylated Cas9, specifically binds to the glass surface via avidin-biotin
369 binding (Fig. 5B).
370
371 4.4. Individually vacuum seal the micro-chambers and store them at -80 °C until use.
372
373 **Single-molecule FRET measurements under total internal reflection fluorescence microscopy
(TIRFM)**
374
375
376 1. Load 1 μ L of 0.1-1 mg/mL neutralized avidin in AB into the micro-chambers prepared in
377 step 4 of the previous section (Fig. 6A).
378
379 2. Following incubation for 2 min at room temperature, remove excess neutralized avidin
380 by three washes with 2 μ L AB.
381
382 Note:

383 Exchange liquid in the chamber by adding fresh liquid from an open end of the chamber,
384 while using a piece of sliced filter paper at the other end as an absorber (Fig. 6A).

385
386 3. Place the chamber on the stage and fix the corners of the chamber on the stage using
387 tape. Put a small cap with wet paper on the micro-chamber to keep a humid
388 environment (Fig. 6B).

389
390 4. Illuminate the glass surface in the micro-chamber with a 532-nm laser for 40 s per one
391 image field using fluorescence microscopy to photobleach residual fluorescent particles
392 on the glass surface.

393
394 NOTE:
395 Check “Multiple positions (XY)” in the “Multi-Dimensional Acquisition” panel and record
396 the xy-stage position by pushing the button “Edit position list”. During the xy-stage
397 position recording, only the XY position should be checked (the other options such as Z
398 and autofocus should be unchecked). The acquisition order should be “Time, position”.
399 After completion of the above settings, push the button “Acquire!” to initiate sequential
400 image acquisitions with the 532-nm laser (“Auto shutter” in the main panel should be
401 checked) using open source microscopy software (Micro-Manager, Open Imaging)³⁰. The
402 laser power is set to maximum power level for this procedure.

403
404 NOTE:
405 DO NOT move the chamber on the stage in the following procedure in order to acquire
406 fluorescent images in the same area.

407
408 5. In the meantime, incubate 0.3-1 nM fluorescent Cas9 with 200 nM single guide RNA
409 (sgRNA) for 2 min at room temperature in a 0.6-mL tube for sgRNA-bound fluorescent
410 Cas9 imaging, or with 200 nM sgRNA and 200 nM plasmid DNA containing the Cas9
411 cleavage site for sgRNA- and DNA-bound Cas9 imaging.

412
413 NOTE: Prior to mixing sgRNA and Cas9, heat the sgRNA at 95 °C for 2 min. Following
414 gradual cooling to room temperature, place the sgRNA on ice until use. This heating and
415 cooling process should be done on the day of use.

416
417 6. Load 2 µL of 0.3-1 nM biotinylated fluorescent Cas9 into the micro-chamber.

418
419 Note: As an alternative method, immobilize fluorescent Cas9 on the glass surface via
420 biotinylated nucleic acid (sgRNA or DNA). In this case, FRET efficiency of the Cas9 is
421 measurable only when the Cas9 molecule binds with biotinylated nucleic acid.

422
423 7. Following incubation of the biotinylated fluorescent Cas9 for 2 min at room temperature,
424 remove excess fluorescent Cas9 with three washes of 2 µL AB.

425
426 NOTE: Fluorescent Cas9 molecules specifically adsorb onto the glass surface via avidin-

427 biotin interactions. When 0.3 nM fluorescent Cas9 was applied to the chamber, the
428 fluorescent Cas9 density on the glass surface is $33.6 \pm 5.5 \times 10^{-3}$ fluorescent spots/ μm^2 [n
429 = 6 fields; mean \pm s.d. (standard deviation)], resulting in a microscopic field of about 55
430 μm^2 with few overlapping particles but a sufficient number of fluorescent spots (~ 100).
431

432 8. Load 2 μL AB with 2.5 mM TSY, 2.5 mM PCA, and 2% PCD solution into the micro-
433 chamber.
434

435 NOTE: Add 200 nM sgRNA to the buffer for sgRNA-bound fluorescent Cas9 imaging, or
436 200 nM sgRNA and 200 nM plasmid DNA for sgRNA- and DNA-bound Cas9 imaging.
437

438 9. Put a small cap with wet paper on the micro-chamber to keep a humid environment (Fig.
439 6B). Wait 5 min to avoid any large xy drift of the stage (Fig. 7). Alternatively, correct drift
440 of the image before analysis.
441

442 10. Set the acquisition parameter in the microscopy software. Acquire the fluorescence
443 image.
444

445 NOTE: Set the EMCCD in frame-transfer mode and select the laser power values
446 (typically 12.5 and 5 mW for 532-nm and 642-nm lasers, respectively). Data acquisition
447 is performed with an acquisition rate of 10 frames/s and total frame number of 1,201
448 for D435C-E945C and S355C-S867C and 401 for S867C-N1054C using Micro-Manager³⁰.
449 Illuminate the same field with the 642-nm laser to directly excite the Cy5 fluorescence
450 prior and following the smFRET measurement to count double-labeled Cyanine dye 3
451 and Cyanine dye 5 molecules and distinguish the termination of FRET from
452 photobleaching.
453

454 NOTE: Repeat at least three observations for each condition using different chambers to
455 confirm reproducibility.
456

457 Data analysis of single-molecule FRET

458 1. Load the time series of fluorescent images (tiff file sequence saved using Micro-
459 Manager) using the custom program written in Python.
460

461 2. Find Cyanine dye 3- and Cyanine dye 5- labeled fluorescent particles and make the
462 region-of-interest (ROI) with 6-pixel width around the centroid of the fluorescent
463 particle.
464

465 3. Convert the time series of the fluorescent images within each ROI into time trajectories
466 of fluorescence intensities ($I_{\text{obs_A}}$ and $I_{\text{obs_D}}$ for the acceptor and donor, respectively).
467

468 4. Calculate the background intensity based on the mean intensity in each ROI after the
469 photobleaching of fluorescent Cas9 ($I_{\text{back_A}}$ and $I_{\text{back_D}}$ for the acceptor and donor,
470

471 respectively). Subtract the background intensity from the observed fluorescence
472 intensity.

$$\begin{aligned} back_calibrated_I_A &= I_{obsA} - I_{backA} \\ back_calibrated_I_D &= I_{obsD} - I_{backD} \end{aligned}$$

477 To estimate accurate fluorescence intensities of the donor and acceptor, calibrate ratios
 478 of measured intensities of each dye in the different fluorescence channels. This ratio is
 479 called leakage ratio as it corresponds to leakage of fluorescence in undesired channel.
 480 Since the ratio highly depends on the utilized microscopy system (in particular, the filter
 481 set of the emission filter and dichroic mirror), the ratio should be estimated for each
 482 system used. In the below equation, *leak_calibrated_I_A* and *leak_calibrated_I_D* are the
 483 background and leakage-calibrated fluorescence intensity of the acceptor and donor,
 484 respectively. r_{DA} and r_{AD} are the leakage ratio of the donor fluorescence in the acceptor
 485 fluorescence channel and the leakage-ratio of the acceptor fluorescence in the donor
 486 fluorescence channel, respectively.

$$\begin{aligned} back_calibrated_I_A &= leak_calibrated_I_A + r_{DA} \cdot leak_calibrated_I_D \\ back_calibrated_I_D &= leak_calibrated_I_D + r_{AD} \cdot leak_calibrated_I_A \end{aligned}$$

5. Calculate the time trajectory of FRET efficiency using the equation based on the calibrated fluorescence intensities of Cyanine dye 3 and Cyanine dye 5.

$$E = \frac{I_A}{I_A + \gamma I_D}$$

$$\gamma = \frac{\Delta I_A}{\Delta I_D}$$

NOTE: I_A is the calibrated fluorescence intensity of Cyanine dye 5 (acceptor) and I_D is that of Cyanine dye 3 (donor). γ is the correction factor, which accounts for differences in the quantum yield and detection yield derived from the sensitivity of the camera and the properties of the dichroic mirrors and emission filter.

6. To determine the time of the state transitions in each smFRET time trajectory, perform the analysis based on a hidden-markov-model (HMM)²⁴.

NOTE: The `hmmlearn` package for Python³¹ and `HaMMMy`²⁴ are two good examples of a program for the HMM analysis.

7. Plot the transition density plot (TDP) using a graph visualization tool such as the matplotlib library for Python³² to visualize the relationship between successive

511 transitions in the states based on FRET efficiency²³ (Fig. 8).

512

513 8. To quantify state transitions based on TDP, classify the density into groups using the k-
514 means clustering method. Choose the optimal number of groups using Silhouette
515 analysis (Fig. 8).

516

517 NOTE: There are many analytical tools for k-means clustering³³. The scikit-learn package in
518 Python³⁴, for instance, can be utilized.

519

520 REPRESENTATIVE RESULTS:

521

522 smFRET measurements require a protein be labeled with two distinct fluorochromes and retain
523 its normal activity. In the present protocol, two cysteine residues were introduced into Cas9 by
524 genetic modification and labeled with Cyanine dye 3- and Cyanine dye 5-maleimide. Typical
525 labeling efficiency of each dye on Cas9 was 60-80%, indicating that approximately 40-60% of
526 Cas9 molecules were labeled with both dyes. The low labeling efficiency makes it difficult to
527 find two-colored Cas9 molecules. In these cases, we repeated the labeling procedure. The main
528 causes of the low labeling efficiency are the pH of the reaction mixture and the deterioration of
529 maleimide. The maleimide group reacts specifically with sulfhydryl groups between pH 6.5 and
530 7.5. It also reacts with primary amines and hydrolyzes into non-reactive maleamic acid at pH
531 over 8.5. Thus, keeping maleimide active by avoiding hydrolysis is crucial for efficient labeling of
532 the protein.

533

534 We also confirmed the DNA-cleavage activity of fluorescent Cas9. Approximately 3.2 kbp of
535 pUC119 plasmid was linearized by EcoRI restriction enzyme. In the presence of the sgRNA-Cas9
536 binary complex with Mg²⁺ ion, the linearized DNA was cleaved into 2.2 kbp and 1 kbp fragments
537 (Fig. 2A). From the intensity of the bands, we estimated the DNA-cleavage activity of each Cas9
538 protein. All fluorescent Cas9 showed almost the same level of DNA-cleavage activity (>90%) as
539 non-labeled wild-type Cas9 (Fig. 2B). The retained activity confirmed the feasibility of fluorescent
540 Cas9 for the following smFRET measurements.

541

542 For accurate smFRET measurements, the cleanliness and passivation of the glass surface on the
543 observatory chamber are important. The chamber should be prepared under clean conditions
544 using a general clean booth or biological clean hood of at least class 1,000 to class 10,000.
545 Otherwise, fluorescent artefacts are observed even on the washed glass surface. Even with ideal
546 cleaning and passivation conditions, sometimes fluorescent artefacts remained on the surface.
547 In these cases, the artefacts were photobleached before the smFRET observation (Fig. 5A),
548 allowing us to distinguish the signals from fluorescent Cas9 molecules. The procedures of the
549 neutralized avidin and Cas9 anchoring on the glass surface did not require a clean booth. With
550 filtered solutions, fluorescent artefacts did not increase significantly upon the introduction of
551 solutions into the glass chamber in a standard laboratory (Fig. 5A). Our method successfully
552 produced a clean glass surface with anchored Cas9 molecules.

553

554 To avoid protein inactivation caused by non-specific binding to the glass surface, it is necessary
555 to passivate the surface. We coated the surface with polyethylene glycol (PEG), which is widely
556 used for passivation of a glass surface. We mixed biotin-PEG with intact trimethyl-PEG. The
557 biotinylated Cas9 was anchored on the surface via avidin-biotin linkage. When the biotin binding

555 sites in neutralized avidin on the surface were blocked by excess free biotin, biotin-labeled
556 fluorescent Cas9 did not bind to the surface (Fig. 5B). This result suggests that PEG effectively
557 prevents non-specific binding on the surface, so that Cas9 molecules are specifically anchored on
558 the surface through their biotin moiety.

559 Following the above precautions, we performed smFRET measurements under TIRFM. Through
560 a color splitter, fluorescence from Cyanine dye 3 and Cyanine dye 5 were simultaneously
561 recorded on distinct positions of an electron-multiplier CCD camera. We found that the recorded
562 position of the Cas9 molecules moved 100-300 nm within 100 s immediately after the solution
563 exchange due to the drift of the microscope stage (Fig. 7). This movement corresponded to 1-3
564 pixels of the recorded movie; thus, image drift correction should be employed to track and
565 analyze Cas9 molecules. Alternatively, we started the recording 5 min after introducing the final
566 solution into the chamber. In this case, the stage drift was suppressed within 0.3 pixels during
567 120-s observations (Fig. 7). Because the fluorescence intensity in 6x6 pixel ROI was used to
568 estimate the fluorescence intensity derived from fluorescent Cas9, stage drift did not affect the
569 results in our observation time (120 s). Therefore, the movies taken with this method were
570 analyzed without drift correction. Furthermore, we concluded the solution drift inside the
571 chamber was also negligible, because we detected specific FRET efficiency distributions including
572 a static FRET efficiency by using three different FRET Cas9 constructs (D435C-E945C, S355C-S867C,
573 and S867C-N1054C) in four different nucleic acid-binding conditions (Apo, sgRNA binding,
574 sgRNA/target DNA binding and sgRNA/target DNA/Mg²⁺ binding).

575 In our assay, 68-96% of double-labeled Cas9 molecules showed anti-correlated changes in the
576 fluorescence intensities of Cyanine dye 3 and Cyanine dye 5, which indicates FRET between the
577 two dyes. The FRET efficiency was calculated from the intensities until photobleaching of one of
578 the dyes. Among the molecules showed anti-correlated intensities of the two dyes, ~80% of the
579 sgRNA-DNA-Cas9 ternary complexes showed relatively constant FRET efficiencies during the
580 observation period. Contrarily, the other ~20% of complexes showed fluctuations, suggesting
581 flexible inter-domain movements in the molecules (Fig. 8B). HMM and k-means analyses of the
582 FRET efficiency trajectories suggested that the HNH domain can translocate its position against
583 the REC lobe to adopt three conformations (Fig. 8). The highest FRET efficiency state only
584 appeared in the fluctuating complex. As the appearance of this state closely correlate the DNA
585 cleavage activity of Cas9, our results suggest that movements in the flexible domain of the Cas9
586 protein allow Cas9 to take a transient conformation that is responsible for cleavage of the target
587 DNA.

588 To interpret smFRET data, the orientation factor, κ^2 , should be calculated from the fluorescence
589 anisotropy data, because κ^2 determines the contribution of the orientation of the two dyes in
590 FRET efficiency. When the two dyes freely rotate during their fluorescence lifetime, κ^2 becomes
591 2/3 and the FRET efficiency directly reflects the change in distance between the two dyes.
592 However, Cyanine dye 3 and Cyanine dye 5 on Cas9 showed high (~0.3) anisotropy, meaning κ^2
593 is widely distributed (in the range of 0-4). In this case, the FRET efficiency is affected by both the
594 distance and the orientation between the dyes. Here, the Förster distance (R_0) is described using
595 the below equation.

596

$$597 R_0 = 0.211 \times [\kappa^2 n^{-4} \phi_D J(\lambda)]^{1/6}$$

598

599 (n: refractive index of the medium; ϕ_D : fluorescence quantum yield of the donor; $J(\lambda)$:
600 spectral overlap between the donor and the acceptor)

601
602 The widely distributed κ^2 for the Cyanine dye 3-Cyanine dye 5 pair on Cas9 obscure the value of
603 R_0 , resulting in ambiguous distances between the dyes based on the FRET efficiency according
604 to the equation:

605

$$606 FRET\ efficiency = \frac{1}{1 + (r/R_0)^6}$$

607
608 (r: distance between donor and acceptor).

609
610 However, high anisotropy is not necessarily undesirable, because conformational changes
611 coupled with not the distance but with the orientation of the dyes can be detected. In the case
612 that low anisotropy is preferred, another combination of fluorescent dyes with long fluorescence
613 lifetimes is recommended, because Cyanine dye 3 and Cyanine dye 5 show relatively short
614 lifetimes (< 1 ns)²³.

615
616 **DISCUSSION:**
617

618 Here we described a detailed procedure for Cas9 smFRET measurements. One of the critical
619 points of the measurement is to keep Cas9 molecules active after fluorescent labeling and
620 anchoring them to the glass surface. For fluorescent labeling, cysteine-maleimide coupling is
621 widely used. Our fluorescently labeled Cas9 retained robust DNA cleavage activity, but
622 sometimes the mutagenesis and labeling of the cysteine residues compromise protein activity.
623 In these cases, using other residues for cysteine-substitution or site-specific labeling methods,
624 such as click chemistry with unnatural amino acids, should be employed. As for anchoring on the
625 glass surface, passivation of the surface is essential, because non-specific hydrophobic
626 interactions between a protein and the surface could change the protein conformation. Note
627 that the appropriate reagents for passivation depend on the observed bio-molecules and the
628 surface conditions. For instance, casein is necessary for the single-molecule observation of
629 microtubule-based motor movement^{35,36}, but not in the case of Cas9 conformational changes^{23,}
630 ^{37,38}. It is always necessary to confirm that the observed protein has anchored on the surface via
631 the intended linker.

632 Our smFRET measurements detected the conformational dynamics of Cas9. Visualizing the
633 conformational dynamics is unique feature of smFRET compared to crystal and cryo-electron
634 microscopy structural analyses, which capture a snapshot of the conformation. Recent progress
635 on high-speed atomic force microscopy has enabled to visualize the conformational dynamics of
636 Cas9 during target DNA binding and cleavage while also capturing the whole structure of the
637 complex³⁹. This indeed is a big advantage of the atomic force microscopy, considering smFRET
638 can only detect the dynamics of fluorescently labeled positions. Yet, smFRET has higher spatial
639 and temporal resolutions than atomic force microscopy when monitoring two positions with
640 distance close to a Förster distance of fluorescence dyes (typically ~5 nm). Moreover, smFRET data

641 combined with molecular dynamics simulations can produce a complementary model for
642 conformational dynamics of whole domains in a protein⁴⁰, suggesting that this combination is a
643 prominent tool for studying nanoscale conformational dynamics.

644 The application of smFRET to study the dynamics of gene-editing proteins like Cas9 and Cas13
645 is improving our ability to design gene-editing proteins of higher efficiency such as hyper-
646 accurate Cas9 variant (HypaCas9)⁴¹. Furthermore, by utilizing fluorescent DNA targets, smFRET
647 have revealed how Cas9 distinguishes on-target and off-target DNA molecules⁴²⁻⁴⁴. Overall, the
648 revelation of protein dynamics through smFRET is expected to significantly advance the design
649 of better gene-editing tools.

650

651 **ACKNOWLEDGMENTS:**

652 This study is supported by JST, CREST, JPMJCR14W1 (to S.U), MEXT, Grand-in-Aid for Scientific
653 Research (C), 18K06147 (to T.S.), and MEXT, Grants-in-Aid for Young Scientists (B), 15K18514 (to
654 T.S.). We thank members of the Uemura and Nureki laboratories for valuable discussions. We
655 also thank P. Karagiannis (Sofia Science) for helpful discussions and comments on the manuscript.

656

657 **DISCLOSURES:**

658 The authors have no conflict to declare.

659

660 **REFERENCES:**

- 661 1. Jansen, R., Embden, J.D.A. van, Gaastra, W., Schouls, L.M. Identification of genes that are
662 associated with DNA repeats in prokaryotes. *Molecular microbiology*. **43** (6), 1565–75,
663 doi: 10.1046/j.1365-2958.2002.02839.x (2002).
- 664 2. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D. Clustered regularly interspaced short
665 palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. *Microbiology*
666 (*Reading, England*). **151** (Pt 8), 2551–61, doi: 10.1099/mic.0.28048-0 (2005).
- 667 3. Pourcel, C., Salvignol, G., Vergnaud, G. CRISPR elements in *Yersinia pestis* acquire new
668 repeats by preferential uptake of bacteriophage DNA, and provide additional tools for
669 evolutionary studies. *Microbiology* (*Reading, England*). **151** (Pt 3), 653–63, doi:
670 10.1099/mic.0.27437-0 (2005).
- 671 4. Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E. Intervening sequences of
672 regularly spaced prokaryotic repeats derive from foreign genetic elements. *Journal of*
673 *molecular evolution*. **60** (2), 174–82, doi: 10.1007/s00239-004-0046-3 (2005).
- 674 5. Barrangou, R. *et al.* CRISPR provides acquired resistance against viruses in prokaryotes.
675 *Science*. **315** (5819), 1709–12, doi: 10.1126/science.1138140 (2007).
- 676 6. Shmakov, S. *et al.* Diversity and evolution of class 2 CRISPR–Cas systems. *Nature*
677 *Publishing Group*. doi: 10.1038/nrmicro.2016.184 (2017).
- 678 7. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. A
679 programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
680 *Science (New York, N.Y.)*. **337** (6096), 816–21, doi: 10.1126/science.1225829 (2012).
- 681 8. Cong, L. *et al.* Multiplex genome engineering using CRISPR/Cas systems. *Science (New*
682 *York, N.Y.)*. **339** (6121), 819–23, doi: 10.1126/science.1231143 (2013).
- 683 9. Mali, P. *et al.* RNA-guided human genome engineering via Cas9. *Science (New York, N.Y.)*.
684 **339** (6121), 823–6, doi: 10.1126/science.1232033 (2013).

685 10. Kleinstiver, B.P. *et al.* High-fidelity CRISPR–Cas9 nucleases with no detectable genome-
686 wide off-target effects. *Nature*. **529** (7587), 490–495, doi: 10.1038/nature16526 (2016).

687 11. Tycko, J., Myer, V.E., Hsu, P.D. Methods for Optimizing CRISPR-Cas9 Genome Editing
688 Specificity. *Molecular Cell*. **63** (3), 355–370, doi: 10.1016/j.molcel.2016.07.004 (2016).

689 12. Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for
690 genome engineering. *Cell*. **157** (6), 1262–1278, doi: 10.1016/j.cell.2014.05.010 (2014).

691 13. Konermann, S. *et al.* Genome-scale transcriptional activation by an engineered CRISPR-
692 Cas9 complex. *Nature*. **517** (7536), 583–8, doi: 10.1038/nature14136 (2014).

693 14. Terns, R.M., Terns, M.P. CRISPR-based technologies: Prokaryotic defense weapons
694 repurposed. *Trends in Genetics*. **30** (3), 111–118, doi: 10.1016/j.tig.2014.01.003 (2014).

695 15. Sternberg, S.H., Doudna, J.A. Expanding the Biologist’s Toolkit with CRISPR-Cas9.
696 *Molecular Cell*. **58** (4), 568–574, doi: 10.1016/j.molcel.2015.02.032 (2015).

697 16. Anders, C., Niewoehner, O., Duerst, A., Jinek, M. Structural basis of PAM-dependent
698 target DNA recognition by the Cas9 endonuclease. *Nature*. **513** (7519), 569–73, doi:
699 10.1038/nature13579 (2014).

700 17. Jinek, M. *et al.* Structures of Cas9 endonucleases reveal RNA-mediated conformational
701 activation. *Science (New York, N.Y.)*. **343** (6176), 1247997, doi: 10.1126/science.1247997
702 (2014).

703 18. Nishimasu, H. *et al.* Crystal structure of Cas9 in complex with guide RNA and target DNA.
704 *Cell*. **156** (5), 935–949, doi: 10.1016/j.cell.2014.02.001 (2014).

705 19. Jiang, F., Zhou, K., Ma, L., Gressel, S., Doudna, J.A. A Cas9-guide RNA complex
706 preorganized for target DNA recognition. *Science*. **348** (6242), 1477–1481, doi:
707 10.1126/science.aab1452 (2015).

708 20. Jiang, F. *et al.* Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
709 *Science (New York, N.Y.)*. **351** (6275), 867–71, doi: 10.1126/science.aad8282 (2016).

710 21. Sternberg, S.H., LaFrance, B., Kaplan, M., Doudna, J.A. Conformational control of DNA
711 target cleavage by CRISPR-Cas9. *Nature*. **527** (7576), 110–3, doi: 10.1038/nature15544
712 (2015).

713 22. Roy, R., Hohng, S., Ha, T. A practical guide to single-molecule FRET. *Nat. Methods*. **5** (6),
714 507–516, doi: 10.1038/nmeth.1208 (2008).

715 23. Osuka, S. *et al.* Real-time observation of flexible domain movements in CRISPR-Cas9. *The
716 EMBO journal*. **37** (10), e96941, doi: 10.15252/embj.201796941 (2018).

717 24. McKinney, S.A., Joo, C., Ha, T. Analysis of single-molecule FRET trajectories using hidden
718 Markov modeling. *Biophysical journal*. **91** (5), 1941–51, doi:
719 10.1529/biophysj.106.082487 (2006).

720 25. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A. ExPASy: the
721 proteomics server for in-depth protein knowledge and analysis, *Nucleic Acids Res*. **31**,
722 3784-88, doi: 10.1093/nar/gkg563 (2003).

723 26. Fei, J. *et al.* A highly purified, fluorescently labeled in vitro translation system for single-
724 molecule studies of protein synthesis. *Methods in enzymology*. **472** (10), 221–59, doi:
725 10.1016/S0076-6879(10)72008-5 (2010).

726 27. Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
727 <https://imagej.nih.gov/ij/>, (1997-2018).

728 28. Dale, R.E., Eisinger, J., Blumberg, W.E. The orientational freedom of molecular probes.

729 The orientation factor in intramolecular energy transfer. *Biophysical journal*. **26** (2), 161–
730 193, doi: 10.1016/S0006-3495(79)85243-1 (1979).

731 29. Yokota, H. *et al.* Single-molecule Visualization of Binding Modes of Helicase to DNA on
732 PEGylated Surfaces. *Chemistry Letters*. **38** (4), 308–309, doi: 10.1246/cl.2009.308 (2009).

733 30. Edelstein, A.D., Tsuchida, M.A., Amodaj, N., Pinkard, H., Vale, R.D., Stuurman, N.
734 Advanced methods of microscope control using μ Manager software. *Journal of Biological
735 Methods*. **1** (2), 10, doi: 10.14440/jbm.2014.36 (2014).

736 31. Weiss, R., Du, S., Grobler, J., Lebedev, S., & Varoquaux, G. hmmlearn 0.2.1. Retrieved
737 from <https://github.com/hmmlearn/hmmlearn>, (2017).

738 32. Hunter, J. D. Matplotlib: A 2D Graphics Environment, *Computing in Science &
739 Engineering*, **9** (3), 90–95, doi: 10.1109/MCSE.2007.55, (2007).

740 33. MacQueen J Some methods for classification and analysis of multivariate observations.
741 *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*.
742 **1** (233), 281–297, doi: citeulike-article-id:6083430 (1967).

743 34. Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python, *Journal of Machine Learning
744 Research*, **12**, 2825–30, (2011).

745 35. Verma, V., Hancock, W.O., Catchmark, J.M. The role of casein in supporting the operation
746 of surface bound kinesin, *Journal of Biological Engineering*, **2** (14), 1–10, doi:
747 10.1186/1754-1611-2-14, (2008).

748 36. Kon, T., Shima, T., Sutoh, K. Protein engineering approaches to study the dynein
749 mechanism using a Dictyostelium expression system, *Methods in Cell Biology*, **92**, 65–81,
750 doi: 10.1016/S0091-679X(08)92005-7, (2009).

751 37. Dagdas, Y.S., Chen, J.S., Sternberg, S.H., Doudna, J.A., Yildiz, A. A conformational
752 checkpoint between DNA binding and cleavage by CRISPR-Cas9. *Science advances*. **3** (8),
753 eaa0027, doi: 10.1126/sciadv.aa0027 (2017).

754 38. Yang, M., Peng, S., Sun, R., Lin, J., Wang, N., Chen, C. The Conformational Dynamics of
755 Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET. *Cell Reports*. **22**
756 (2), 372–382, doi: 10.1016/j.celrep.2017.12.048 (2018).

757 39. Shibata, M. *et al.* Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-
758 speed atomic force microscopy. *Nature Communications*. **8** (1), 1430, doi:
759 10.1038/s41467-017-01466-8 (2017).

760 40. Matsunaga, Y., Sugita, Y. Linking time-series of single-molecule experiments with
761 molecular dynamics simulations by machine learning. *eLife*, **7**, e32668, doi:
762 10.7554/eLife.32668, (2018).

763 41. Chen, J.S. *et al.* Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, *Nature*,
764 **550** (7676), 407–10, doi: 10.1038/nature24268, (2017).

765 42. Rueda, F.O. *et al.* Mapping the sugar dependency for rational generation of a DNA-RNA
766 hybrid-guided Cas9 endonuclease. *Nature Communications*, **8** (1), 1610, doi:
767 10.1038/s41467-017-01732-9, (2017).

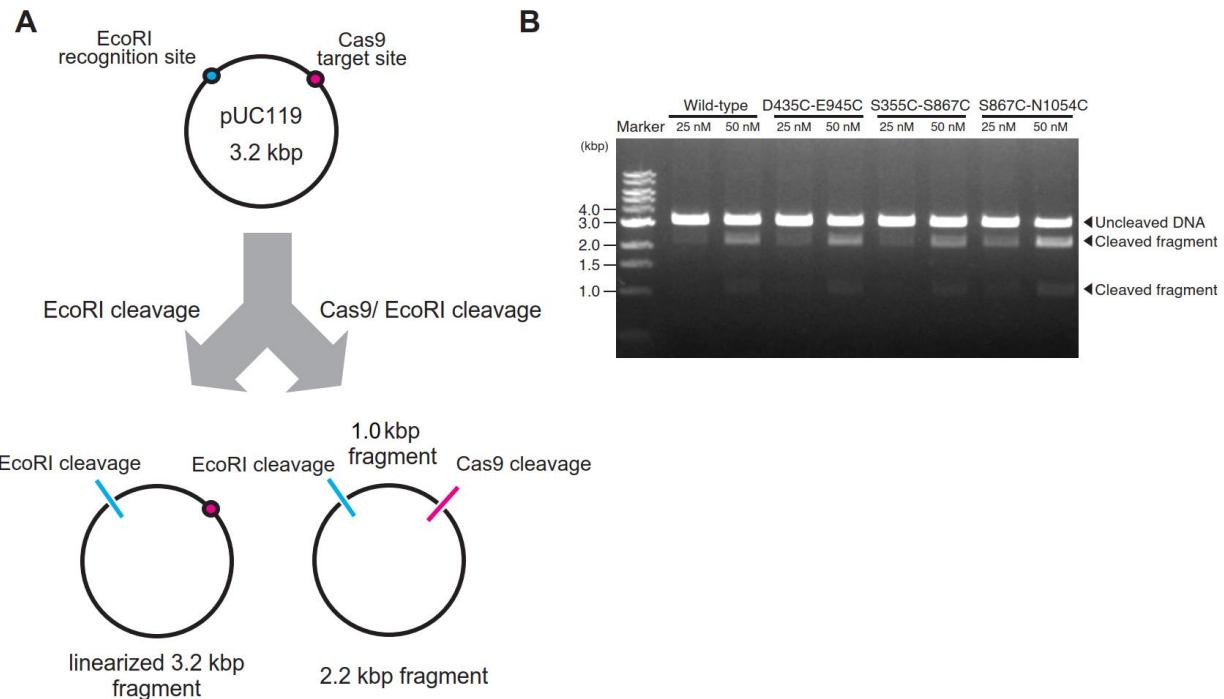
768 43. Cromwell, C.R., Sung, K., Park, J., Krysler, A.R., Jovel, J., Kim, S.K., Hubbard, B.P.
769 Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease
770 specificity. *Nature Communications*, **9** (1), 1448, doi: 10.1038/s41467-018-03927-0,
771 (2018).

772 44. Singh, D. *et al.*, Mechanisms of improved specificity of engineered Cas9s revealed by

773 single-molecule FRET analysis, *Nature Structural & Molecular Biology*, **25**, 347-54, doi:
774 10.1038/s41594-018-0051-7, (2018).
775

776 **FIGURES AND TABLE:**

777

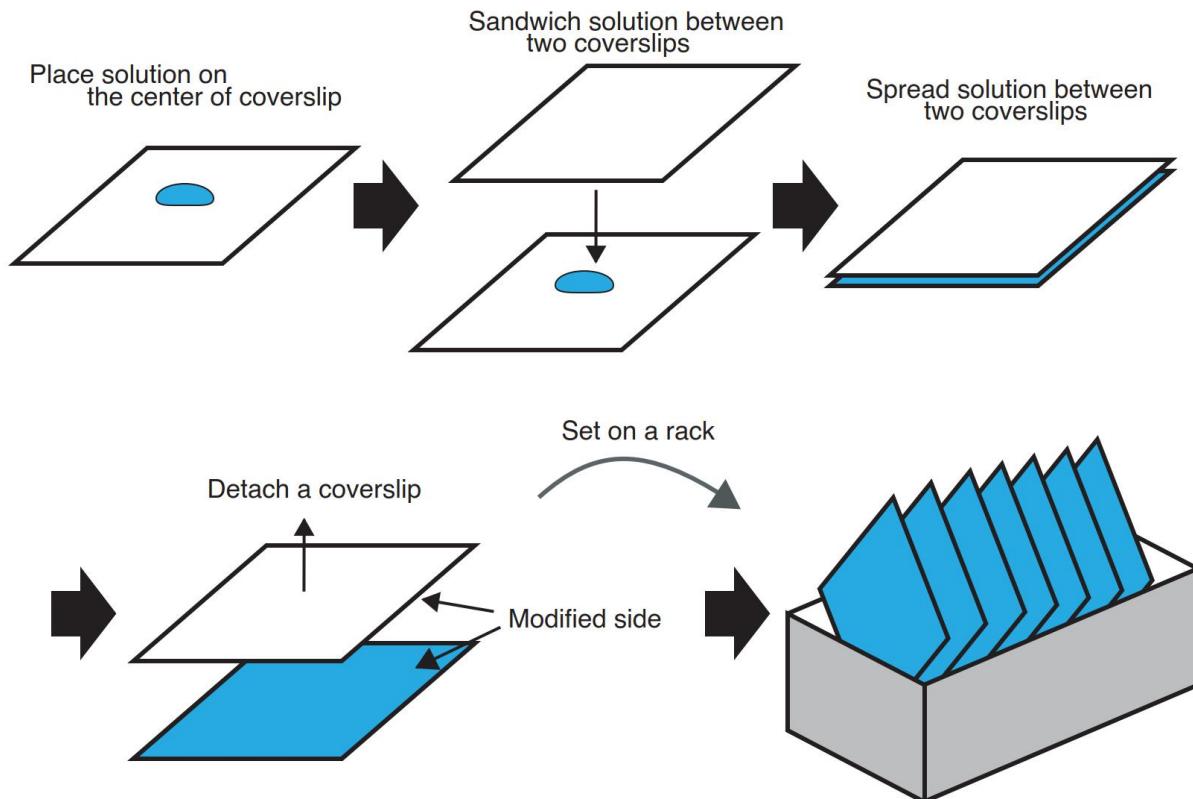


778

779

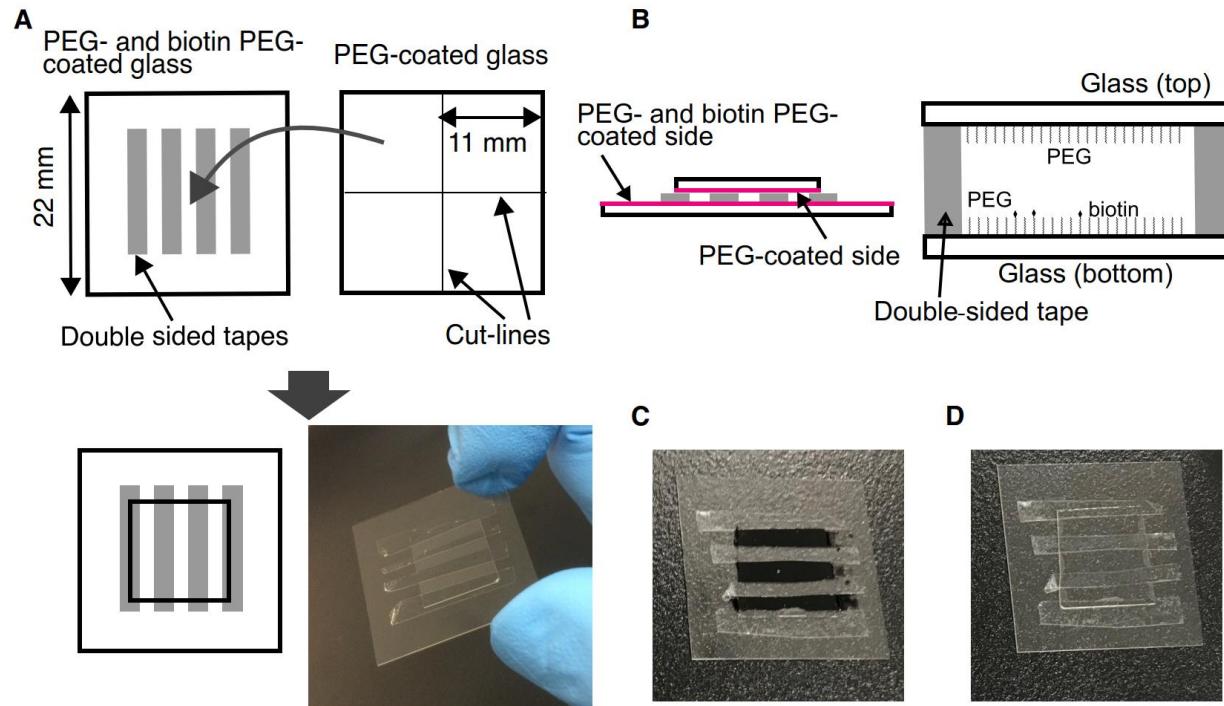
780 **Figure 1: The chemical reaction of maleimide coupling.** Maleimide conjugated to a fluorescent
781 dye specifically reacts with the cysteine sulfhydryl group, resulting in covalent binding between
782 the protein and the fluorescent dye.

783



784
785

Figure 2: DNA cleavage activity of fluorescent Cas9.


786 **A, Schematic of Cas9 DNA-cleavage assay.** The 3.2 kbp pUC119 plasmid contains both a single
787 EcoRI recognition site and a Cas9 target site. In the presence active Cas9, the plasmid is cleaved
788 into 2.2 kbp and 1 kbp fragments. In the presence of inactive Cas9 protein, the plasmid keeps its
789 original length.
790

791 **B, DNA cleavage activity of three Cas9 constructs labeled with Cyanine dye 3 and Cyanine dye**
792 **5.** After incubating 25 nM or 50 nM Cas9-sgRNA complex, EcoRI, and 5 nM target DNA for 5 min
793 at 37 °C, a fraction of the DNA was cleaved into two fragments. Band intensity analysis suggested
794 that the three FRET constructs retain nuclease activity comparable to that of non-labeled wild-
795 type Cas9 (1.1 ± 0.1 for D435C-E945C, 0.9 ± 0.1 for S355C-S867C, and 1.5 ± 0.3 for S867C-N1054C;
796 mean relative activity ± S.E.M. (standard error of the mean), n=3). This figure is reproduced from
797 Ref. 23.
798

799
800
801
802
803
804
805
806
807
808

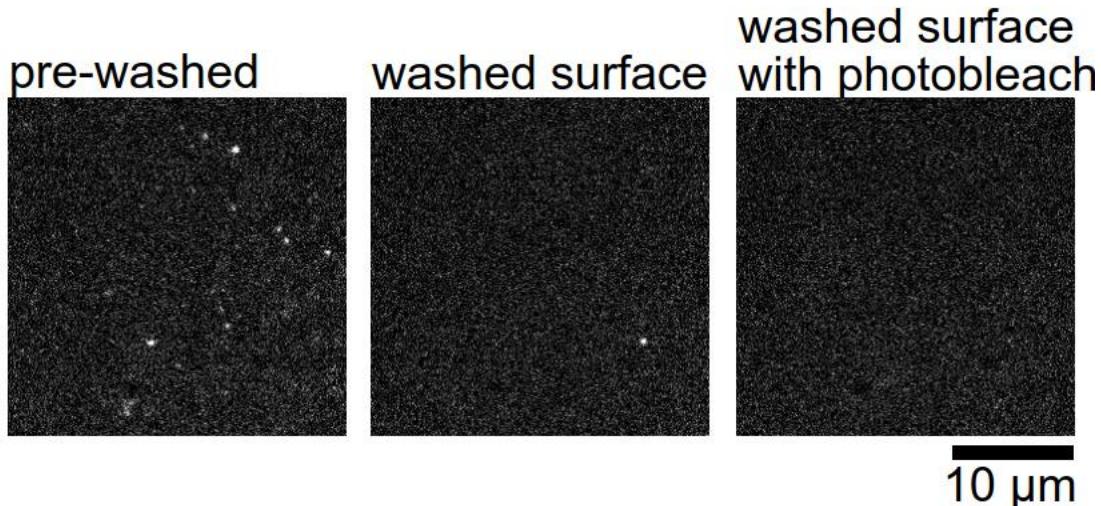
Figure 3: Protocol for modification of glass surface. 10 μ L solution containing silane and NHS-PEG or a mixture of NHS-PEG and NHS-biotin-PEG was placed on the center of the cover slip. Next, the solution on the cover slip was sandwiched by another cover slip. Following the spread of the solution between two cover slips, the cover slips were incubated for the time described in the protocol at room temperature. Following the incubation, the sandwiched cover slips were carefully detached using tweezers. Finally, each cover slip was set on a rack and rinsed with ultrapure water. This protocol was applied for both silanization and PEGylation processes except for PEGylation process the incubation was done at a different time in a humid environment.

809
810

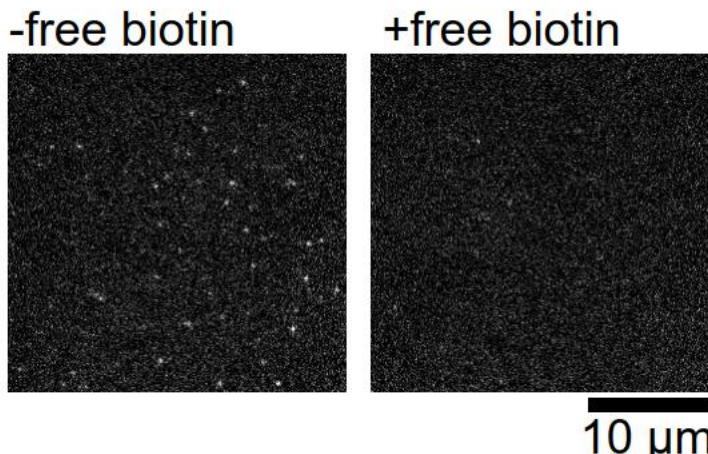
Figure 4: Preparation of the glass chamber

811 **A, Schematic of the glass chamber preparation.** Among 10 washed cover slips, 2 cover slips were
812 coated with PEG and the other 8 cover slips were coated with PEG and PEG-biotin. Each of the 2
813 PEG-coated cover slips were cut into four pieces. The glass chamber was made by adhering the
814 small PEG-coated and the large PEG-biotin-coated cover slips using 30- μ m thick double-faced
815 tape.

816 **B, PEG- and PEG-biotin-coated side of the cover slips.** To construct the glass chamber, the coated
817 side of the cover slips is shown in magenta. The top cover slip is coated with PEG, and the bottom
818 one is coated with PEG and PEG-biotin.


819 **C, Photograph of the glass chambers filled with dye solution.** The three lanes were filled with a
820 solution of black dye.

821 **D, Following three washes with 2 μ L of ultrapure water, the black dye solution in the chamber**

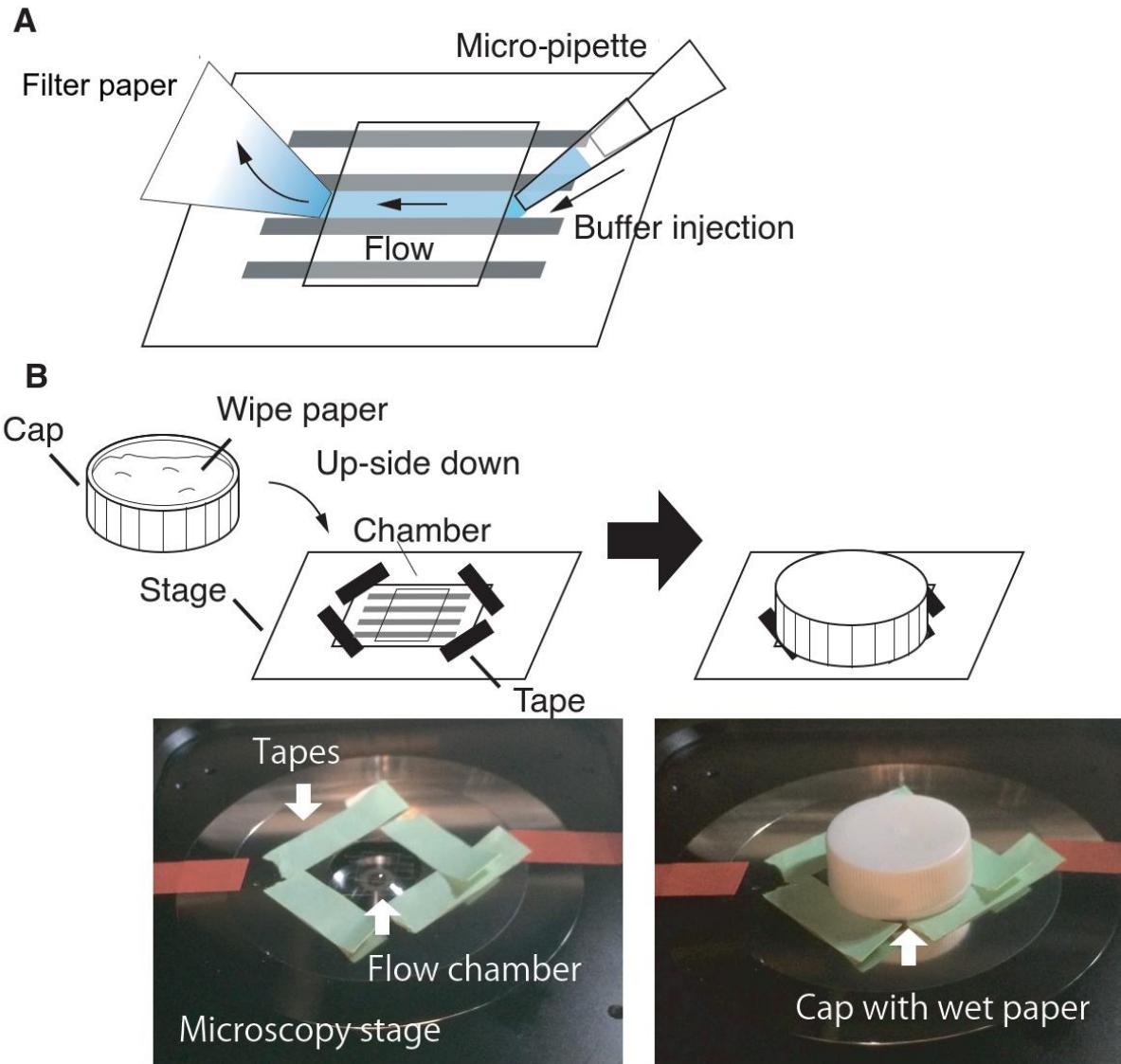

822 was replaced with transparent ultrapure water.

823

A

B

825

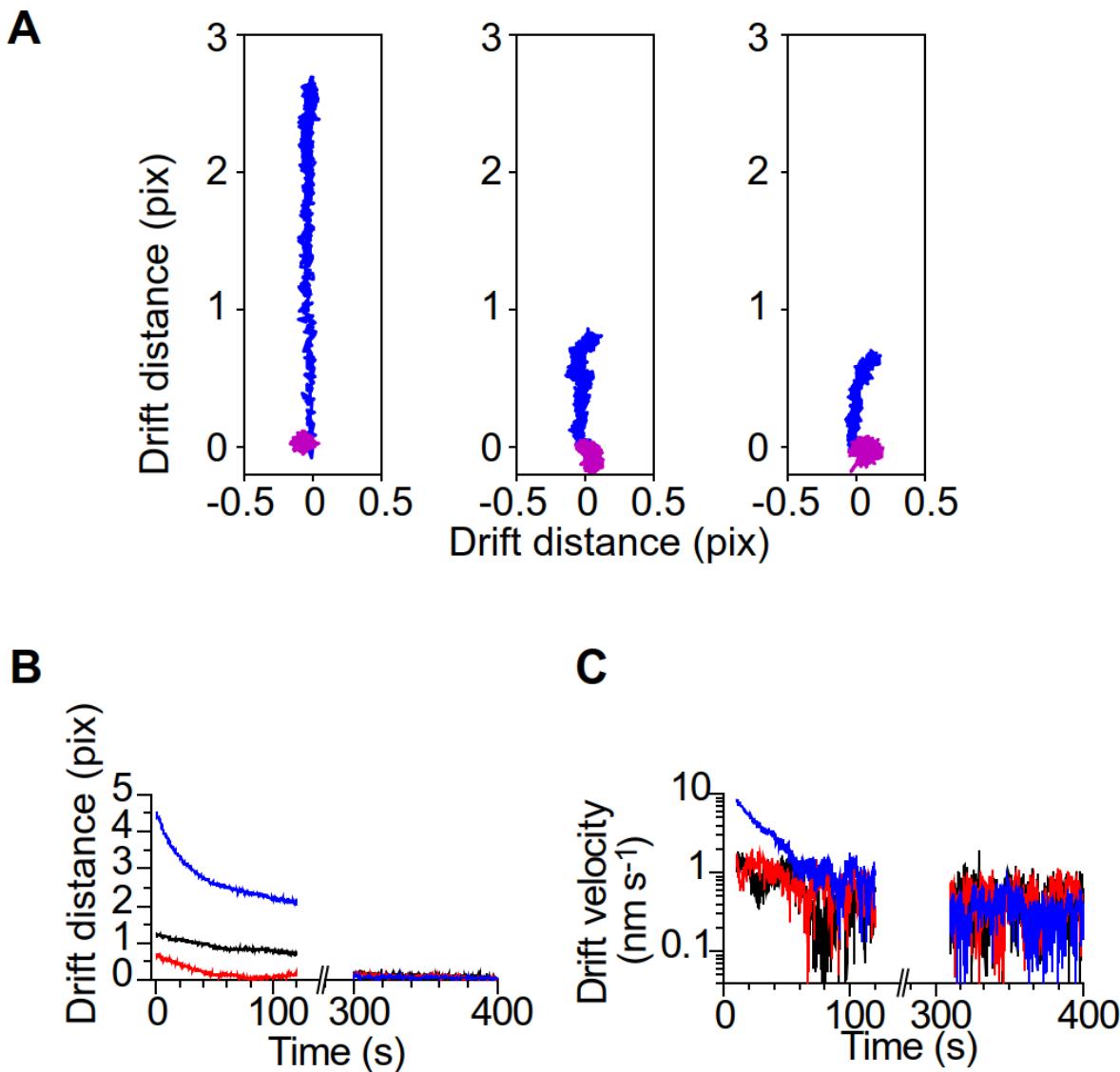

826

827 **Figure 5: Cleanliness and passivation of the glass surface.**

828 **A, Fluorescent images of the glass surface with and without cleaning.** Many fluorescent
829 artefacts were observed before cleaning (left panel), but only few of them remained after
830 cleaning (middle panel). The remaining artefacts were photobleached before introducing the
831 Cas9 molecules into the chamber (right panel).

832 **B, Confirmation of surface passivation by PEG.** Biotin-fluorescent Cas9 molecules (bright spots)
833 were anchored on the PEGylated surface through biotin-PEG and neutralized avidin (left panel).
834 However, when biotin binding sites in neutralized avidin were blocked by free biotin, the biotin-
835 fluorescent Cas9 molecules did not bind to the surface, suggesting that PEG effectively
836 suppresses non-specific binding on the surface.

837


838

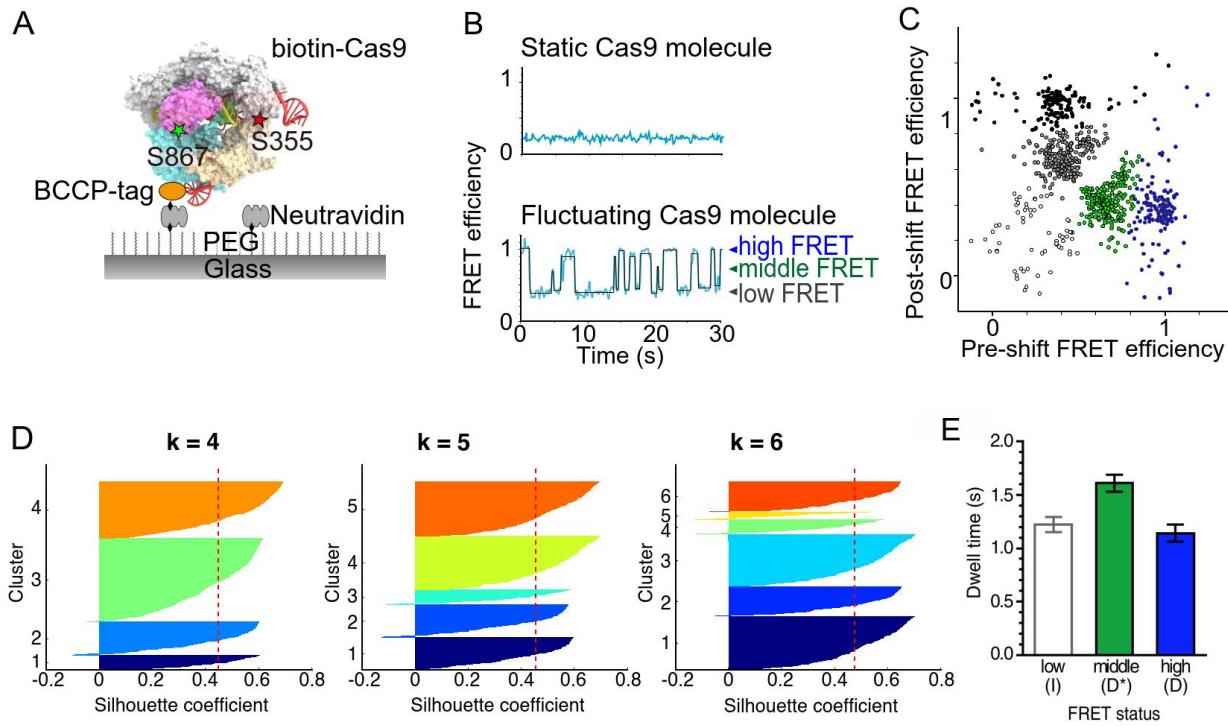
839

840 **Figure 6: Experimental procedures. A, Schematic drawing of buffer exchange.** To exchange the
841 buffer solution, new buffer (4 times the volume of the chamber capacity; i.e., 2 μ L buffer for a
842 0.5 μ L chamber) is injected from one side of the chamber using a micro-pipette, while the buffer
843 existing in the chamber was absorbed by filter paper on the other side.

844 **B, Schematic drawing and photograph of the experimental setup.** The four corners of the
845 microchamber were fixed on the microscope stage plate with four strips of tape (green). The
846 microscope stage plate was also fixed to the stage with at least two strips of tape (red) to prevent
847 rotation of the plate on the stage. A small cap (typically the cap of a centrifuge tube) was stuffed
848 with wet paper and placed on the microchamber fixed on the microscope stage to keep the
849 microenvironment humid.

850

851
852


Figure 7: Drift of the microscope stage.

853 **A, Time trajectories of fluorescent beads adsorbed on the glass surface.** Time trajectories of
854 fluorescent beads illuminated with a 532-nm laser were tracked for 2 min immediately after the
855 introduction of 2 μL AB into the chamber (blue) and 5 min after the introduction (magenta).
856 Centroid positions of the fluorescent beads were calculated using ImageJ. The initial point for
857 each tracking was set to [0, 0].

858 **B, Drift distances of the beads.** Three representative data sets show large stage drift in the first
859 2 min after the introduction of AB. After 5 min, the large drift (~1 pixel per 100 s) was not
860 observed (blue: left trajectory in A; black: middle trajectory in A, red: right trajectory in A).

861 **C, Velocity of the stage drift.** In the first ~50 s, the velocity was faster than 1 nm s^{-1} , which
862 corresponds to 1-pixel movement per 108 s. The color difference is the same as in B.

863
864

865
866

Figure 8: Inter-domain flexibility in the sgRNA-DNA-Cas9 complex.

867 **A, Schematic of the smFRET system.** The sgRNA-DNA-Cas9 ternary complex was anchored on a
868 PEG- and biotin-PEG-coated glass surface via neutralized avidin-biotin linkage.
869
870 **B, Representative time trajectory of S355C-S867C (HNH-REC) Cas9 construct.** ~80% of the Cas9
871 molecules showed stable low FRET efficiency (upper panel), while the rest of the molecules
872 demonstrated fluctuations (bottom panel). HMM analysis (black line) suggests that the
873 fluctuating molecules adopt three FRET states.

874 **C, Transition density plot of FRET efficiency fluctuations.** The k-means analysis classified the
875 plots into five groups, suggesting that direct transition between the high and middle FRET states
876 is rare. This figure is reproduced from Ref. 21 with some modifications.

877 **D, Silhouette plots.** The Silhouette coefficients, which were calculated using the machine
878 learning Python Package Scikit learn, are plotted for each cluster in the cases of k = 4, 5, and 6.
879 The vertical red dashed lines indicate the mean values of the Silhouette coefficients. In the cases
880 of k = 4 and 5, all clusters showed Silhouette coefficients higher than the mean values. This was
881 not true for k = 6, meaning that k = 5 is the most probable number of clusters for the transition
882 density plot shown in C.

883 **E, Bar plot of dwell times for each transition.** The mean dwell times were determined by fitting
884 the dwell time distributions (n = 399, 223, and 136 for low, middle, and high FRET states,
885 respectively) to a single exponential decay function. Error bars show SEM.
886 This figure is reproduced from Ref. 23.

887
888

Methyl cellulose concentration	0%	0.001% (v/v)	0.01% (v/v)	0.1% (v/v)
Viscosity (mPa s)	0.9	1.6	8.4	75.9

889
890
891

Table 1: Viscosity of the buffer against methylcellulose concentrations.