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 9 

Abstract 10 

Motivation: Copy-number variants (CNVs) are one of the major causes of genetic disorders. 11 

However, current methods for CNV calling have high false-positive rates and low concordance, and 12 

a few of them can accurately genotype CNVs. 13 

Results: Here we propose CNV-PG (CNV Predicting and Genotyping), a machine-learning 14 

framework for accurately predicting and genotyping CNVs from paired-end sequencing data. CNV-15 

PG can efficiently remove false positive CNVs from existing CNV discovery algorithms, and 16 

integrate CNVs from multiple CNV callers into a unified call set with high genotyping accuracy. 17 

Availability: CNV-PG is available at https://github.com/wonderful1/CNV-PG  18 

 19 

1 Introduction 20 

Copy-number variants (CNVs) are one of the major causes of genetic disorders[1], making accurate 21 

detection of CNV essential for diagnosis of such diseases. Currently, many next-generation sequencing 22 

(NGS)-based CNV detection methods have been proposed[2]. However, most of these show high false-23 

positive rates because of the noises in the sequencing data, such as sequencing error and artificial 24 

chimeric reads, and ambiguous mapping of reads cause by repeat- and duplication-rich regions[2]. To 25 

identify a set of high-confidence CNVs, a strategy that takes intersecting CNVs generated by two or 26 

more algorithms is widely used. However, due to different CNV-property-dependent and library-27 

property-dependent features use by CNV detection methods, they show low concordance, causing a 28 

large number of potentially true CNVs to be discarded. Besides, a few of present software can 29 

accurately give the genotype of a CNV, causing a challenge for accurate detection of de novo CNVs. 30 

Here, we present CNV-PG, a machine-learning framework that aims at accurately predicting and 31 

genotyping true CNVs from identified results by various software. CNV-PG an open-source 32 

application written in Python, including two parts (Figure 1): CNV predicting (CNV-P) and CNV 33 
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genotyping (CNV-G). For CNV-P, we trained a model on a subset of validated CNVs from 5 34 

commonly used software for CNV detection separately, and obtained the corresponding classifier for 35 

predicting true CNVs. For CNV-G, providing accurate genotypes for CNVs, it is compatible with 36 

existing CNV detection algorithms.  37 

 38 

2 Methods 39 

2.1 Data sets 40 

 In CNV-P, The gold-standard CNV sets of 9 individuals (NA19238, NA19239, NA19240, 41 

HG00512, HG00513, HG00514, HG00731, HG00732, HG00733) were download from Chaisson et al 42 

2019[3]. The whole genome sequences (WGS) data (~30x) of these 9 individuals were downloaded 43 

from National Center for Biotechnology Information (NCBI) with accession number of SRP159517 44 

(Supplemental table. S1, S2). For Validation sets, the sequencing data of NA12878 and HG002 were 45 

also downloaded from NCBI with accession number SRP159517 and SRP047086 respectively. The 46 

gold-standard CNV dataset for NA12878 was generated by three data sets: the Database of Genomic 47 

Variants (http://dgv.tcag.ca/dgv/app/home?ref=GRCh37/hg19)[4], the 1000 Genomes Project phaseIII 48 

(https://ftp.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/) [5], and the PacBio CNV data 49 

from Pendleton, M. et al.2015[6]. The gold-standard CNV dataset for HG002 was downloaded from 50 

Zook, J. M. et al.2019[7]. 51 

In CNV-G, validated genotypes and aligned bam files for 26 individuals were downloaded from 52 

the 1000 Genomes Project (https://ftp.ncbi.nih.gov/1000genomes/ftp/phase3/data/). Sequencing data 53 

of validation sample NA12878 was downloaded from NCBI with accession number SRR7782683 and 54 

its genotypes were collected from Conrad. D. F. et al.2009[8] (Supplemental table. S1, S3). 55 

 56 

2.2 Predicting 57 

A total of five commonly-used softwares (Lumpy[8], Manta[9], Pindel[10], Delly[11] and 58 

breakdancer[12]) were chosen in our study. Although these software detect CNVs based on different 59 

variables, such as Pindel using the signal of split reads and Breakdancer using the information of paired 60 

reads, there are consistent features for a certain CNV. We choose commonly used features in all 61 

software to characterize CNVs in our training model, including size, read depth, information of paired 62 

and spited read, and GC content of CNV body, as well as all these features around CNV’s boundaries 63 

(Supplemental Table S1, S2). 64 

 65 

2.3 Genotyping  66 

 Training features were collected based on seven informative signals: depth of coverage, GC 67 
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content, split-reads, discordant paired-ends, CNV size ranges, CNV type, and the number of 68 

chromosomes. All of these characteristics may contribute to genotyping (Supplemental Table S1, S3). 69 

 70 

3 Results 71 

3.1 CNV-P identified a set of high-confidence CNVs with high precision and recall 72 

rates 73 

To illustrate the efficiency and characteristics of the CNV-P, we used CNVs from six samples in 74 

Chaisson et al 2019[3] for training, the remaining 3 samples for evaluation (Supplemental Table. S2). 75 

We first identified CNVs of nine samples using five frequently-used CNV callers (Lumpy[8], Manta[9], 76 

Pindel[10], Delly[11] and breakdancer[12]) respectively. For each CNV set, we removed CNVs with low 77 

quality and locating on N region of genome to get the “row CNVs”. Then, we labeled CNVs as either 78 

“True” or “False” based on a 50% reciprocal overlap with the gold-standard CNVs. Finally, the labeled 79 

CNVs were used to train CNV-P using a Random Forest classifier and the remaining CNVs were used 80 

to evaluate its performance (Fig. 1). we trained the CNV-P classifier on 10-fold cross-validation for 81 

optimal parameter selection (Supplemental Fig. S1). Thus, we obtained a Random Forest classifier 82 

for each CNV detection method. 83 

Using the evaluation set mentioned above, each caller-specific CNV-P classifier realized 84 

accurately classified the CNVs as either true or false at over 91% precision (95% for Lumpy, 93% for 85 

Manta, 93% for Pindel, 92% for breakdancer, 91% for Delly) and over 87% recall rates (96% for 86 

Lumpy, 95% for Manta, 93% for Pindel, 95% for breakdancer, 87% for Delly). The overall diagnostic 87 

ability of each classifier, measured as the area under the Receiver Operating Characteristic (ROC) 88 

curve (AUC), was 97% for Lumpy, 94% for Manta, 97% for Pindel, 93% for breakdancer, and 96% 89 

for Delly (Supplemental Fig. S2.A, B). Additionally, we noticed that after our classification, a large 90 

number of false positive CNVs were removed, and majority of the true CNVs were remained 91 

(Supplemental Fig. S2.C). To dissect the principle of the CNV-P classifier, we assessed the relative 92 

importance of each feature for corresponding classifiers. As expected, for all classifiers, read-depth 93 

provided the most discriminatory power to make accurate CNV predictions (Supplemental Fig. S3). 94 

While the second important feature inconsistent in different classifiers, it may reflect caller-specific 95 

CNV signals.  96 

To evaluate the robustness of each CNV-P, we trained each CNV-P on varying proportions of 97 

training data (from 10% to 90% in increments of 20%). The results show a steady improvement in 98 

accuracy (precise and recall rate) with an increase in the number of training data (Supplemental Fig. 99 

S4). CNV-P performed well based on even 10% of training sets, showing over 90% precise rate and 100 

87% recall rate. We further assessed the performance of CNV-P for different size of CNVs. We divided 101 
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CNVs into three sets based on their size: CNV_S (100bp to 1kb), CNV_M (1kb to 100kb), CNV_L 102 

(>100kb). The overall precision of each size interval was greatly improved, comparing with the row 103 

CNVs achieved by the corresponding CNV callers (Supplemental Fig. S5). We noticed that almost 104 

all precise and recall rate in the size range of CNV_S and CNV_M were over 90%, while the theses 105 

value in CNV_L was slight lower. This may be due to the insufficient number of CNV_L in our 106 

training data, since they all come from healthy individuals who do not have a lot of large size of CNVs. 107 

As a result, each input CNV would get a probability score predicted by CNV-P, it can be used as a 108 

measurement of CNV confidence (Supplemental Fig. S6).  109 

 We also implanted two additional predictors to CNV-P, Gradient Boosting classifier (GBC) and 110 

Support Vector Machine (SVM) classifier. When compared these different supervisor machine 111 

learning classifiers, we found little qualitative difference between GBC and Random Forest Classifier, 112 

Random Forest showed slightly better performance, and SVM was the worst performer (Supplemental 113 

Fig. S7).  114 

 To further validate the performance of CNV-P, we implemented two independent WGS datasets 115 

from NA12878 and HG002 (Supplemental Table. S1). In this part, each caller-specific classifier was 116 

trained on data of all nine individuals mentioned above. Consistent with the above results, CNV-P 117 

produced the optimal performance with AUCs of 0.94,0.93,0.93,0.88 and 0.95 for Lumpy, Manta, 118 

Delly, Pindel and breakdancer respectively in NA12878 (Fig. 2A). Most of false-positive CNVs were 119 

removed with a small true positive loss (Fig. 2B, C). Likewise, HG002 presents the same performance 120 

(Fig. 2E-G). Moreover, CNV-P also showed a good performance on sequencing data generate by BGI-121 

500 sequencing platform (Supplemental Fig. S8).  122 

 123 

3.2 CNV-G provide accurate genotypes of CNVs 124 

 Many CNV callers have a function of genotyping CNVs, such as Manta, Delly and Lumpy with a 125 

companion tool svtyper[13]. However, some other software did not provide genotypes for CNVs. Here, 126 

we also developed a machine-learning approach, named CNV-G, for genotyping a certain CNV. Model 127 

selection was performed on training data using 10-fold cross-validation (Supplemental Fig. S9). The 128 

classifier performance was independently evaluated in the NA12878.  129 

 To verify the performance of CNV-G, we compared it to several widely used CNV genotyping 130 

tools including svtyper, Manta and Delly. We use Delly, Manta and Lumpy&svtyper to generate an 131 

initial CNV set. Then, CNV-G genotyped the union from Delly, Lumpy and Manta for the validation 132 

set of NA12878 whose genotypes generated by the Agilent 105K CNV genotyping array. We 133 

generated a receiver operating characteristic (ROC) curves for each genotyping method. Also, we 134 

implanted 3 predictors to CNV-G, Random Forest Classifier (RF), Gradient Boosting classifier (GBC) 135 
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and Support Vector Machine (SVM) classifier. CNV-G-RF (CNV-G based on Random Forest) 136 

produced the best genotyping accuracy with AUCs of 0.95, in contrast to CNV-G-GBC (CNV-G based 137 

on Gradient Boosting) and CNV-G-SVM (CNV-G based on Support Vector Machine) (Fig. 3).  138 

Likewise, when compared to other genotyping methods, we found that CNV-P-RF produced the 139 

optimal performance with AUCs of 0.95, while Manta performance resulted in an AUC of 0.91, Delly 140 

and svtyper producing AUCs of 0.93 and 0.82, respectively. 141 

  142 

Conclusions  143 

 CNV detection from WGS is error-prone because of short-read length and library-property-144 

dependent bias. Inflated false positives making a big challenge for researchers to identify clinically 145 

relevant CNVs, as it is time and money consuming to validate a large amount of false positive CNVs. 146 

To solve this problem, we provide CNV-PG, an effective machine-learning-based framework to 147 

acquire high-quality CNVs and their genotypes. Instead of handling the shortcomings of existing 148 

methods by developing another CNV caller, CNV-PG focused on creating a reliable integrative CNV 149 

set from existing CNV detection software. We demonstrate that CNV-PG can identify a set of high-150 

confidence CNVs with high precision and recall rates, and the accuracy of genotypes outperform 151 

present widely used CNV genotyping tools. Moreover, CNV-PG is robust to variation in the proportion 152 

of training sets, CNV size and sequencing platforms, indicating the utility of CNV-PG in a variety of 153 

clinical or research contexts. 154 

 The limitations of CNV-PG, is its dependency on a set of validated CNVs from several healthy 155 

individuals. Therefore, there were not enough large size CNVs in our training data and may have 156 

weaker power for large-size CNVs. Even though, our results demonstrate the utility of CNV-PG, which 157 

can serve as a proof-of-principle for future studies that accumulate enough large pieces of ‘gold 158 

standard’ CNVs curated from some disease samples as training data.  159 

 Overall, CNV-PG provides a well-performed machine-learning framework for accurately 160 

predicting and genotyping CNVs, which make great sense to generate a set of high-confidence CNVs, 161 

and benefit both the basic research and clinical diagnostic of genetic diseases. 162 
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FIGURE LEGENDS 204 

Figure 1: Overview of the CNV-PG.  205 

The CNV-PG consists of two parts: CNV predicting (CNV-P) and CNV genotyping (CNV-G). In CNV-206 

P, we trained a supervised machine learning model to classify candidate CNVs as True or False. Then, 207 

CNV-G was performed to accurately give the genotypes of these high-confidence CNVs. 208 

 209 

Figure 2: CNV-P detects high-confidence CNVs with high precision and recall rates.   210 

A, D) Receiver operating characteristic (ROC) curves of CNV-P;  211 

B, E) The number of classified CNVs by CNV-P from five commonly used tools;  212 

C, F) The precise and recall of CNV-P;  213 

 214 

Figure 3: CNV-G provides accurate genotypes of CNVs.  215 

Receiver operating characteristic (ROC) curves of genotyping for CNV-G (RF-based, GBC-based, and 216 

SVM-based), Delly, Svtyper, and Manta;  217 

 218 
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