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15 Abstract

16 Summary: The emerging in situ RNA sequencing technologies which can capture and

17  amplify RNA within the original tissues provides efficient solution for producing spatial
18  expression map from dozens to thousands of genes. Most of in situ RNA-seq strategies

19  developed recently infer the expression patterns based on the fluorescence signals from the
20  images taken during sequencing. However, an automate and convenient tool for decoding
21  signals from image information is still absent. Here we present an easy-to-use software

22  named IRIS to efficiently decode image signals from in situ sequencing into nucleotide

23 sequences. This software can record the quality score and the spatial information of the

24 sequencing signals. We also develop an interactive R shiny app named DAIBC for data

25  visualization. IRIS is designed in modules so that it could be easily extended and compatible
26  to new technologies.

27  Availability and implementation: IRIS and DAIBC are freely available under BSD 3-
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Clause License at: https://github.com/th00516/ISS pyIRIS.
Contact: guojie.zhang@bio.ku.dk

Supplementary infor mation: Supplementary information are available at xxx online.

| ntroduction

Spatial transcriptomicsis an emerging field that aims to characterize the gene expression
profiling together with the spatial context of the tissues(Burgess, 2019; Stark, et a., 2019). It
offers solutions to address many fundamental questions on cellular function. Several in situ
RNA -seq technologies have been developed recently allow the high throughput detection of
gene expression in situ with the high resolution fluorescence image (Chen, et al., 2015; Ke, et
al., 2013). These technologies usually involve the visualization and quantitative analyses of
transcriptome with spatial resolution from the fluorescence images of tissue sections.
However, there is no any software to decode the sequencing signals from images, which
limits the application of these new technologies for downstream analyses. Here, we
demonstrate an open source software IRIS (Information Recoding of In situ Sequencing) to
decode image signals into nucleotide sequences along with quality and location information.
We also present an R shiny app DAIBC (Data Analysis after ISS Base Calling) for interactive
visualization of called results. IRIS shows good performance in both data processing
efficiency and accuracy at gene expression and location levels. We also designed it in

modules so its compatibility could also be further extended to other technologies.

| mplementation

We employ image and directory structure of in situ sequencing (ISS) (Ke, et al., 2013) as our
default input data structure. Images are organized as split channels and sorted in different
cycles. Each cycle includes five image channels, which are marked by the fluorescent dyes,
Y5, FAM, TXR, Y3, DAPI, representing dyes for base A, T, C, G and nucleus, respectively
(Fig. 1A). Different with images in traditional next generation sequencing (NGS), ISS images
contain not only fluorescent spots, but also background like nucleus and cytoskeleton
(Supplementary Fig. 1), which produce background noise that need to be filtered before
decoding. Thus, we took several stepsincluding registration, blob detection and connection to

decode image signals into barcodes.
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I ntermediate data structure and images registration among different
cycles

Because the positions of cells and transcript amplification products in different cycles can be
shifted during experiment operation, the first step of IRIS isimage registration, which aligns
images from different cycles to the same coordinate system. Images from the same cycles
doesn’t need to be registered as their differences are mainly raised from exposure time.
During registration, key points are first identified from the images and used as makersto
align images from different cycles. Then transformation matrices are calculated based on the
matched key points pairs between two images and used to align images from different cycles

to the same coordinate system.

In order to reduce error in registration, we first remove noisein each image. A low-pass filter
is performed to filter out pixels with the 40% highest signal frequency after Fast Fourier
Transformation. We by default implement of 'ORB' algorithm (Rubleg, et al., 2011) to collect
the coordinates and measure the scales and orientations of key points (i.e. description of key
points). We further identify matched key point pairs with similar description between every
image from cycle N to image from cycle 1 with k-Nearest Neighbor (kNN) on the
description matrix of key points (Altman, 1992) (Supplementary Fig. 2). Then we iteratively
filter out matched key point pairs outlier with large distance that might be false-positive
caused during matching process. The final key point pairs are used to calculate homography
after being sorted by pair distance. This process generates one transform matrix for each
cycle, which can be used to register every channel in each cycle respectively (Fig. 1C,
Supplementary Fig. 2). In some ISS technologies, DAPI is used to capture nucleus structure
thusis present in al cycles. In each cycleit harbors more key points thus provides an ideal
information for image registration. If thisimage is available, we make it as the default images
for registrationin IRIS (Fig. 1A).

Blobs detection in each cycle

Hybridization signals are presented as light-spot of certain size under dark background in the
image, thus can be treated as blobs in computer vision area. Blobs of registered image in each
channel will be exposed by tophat transformation under 15x15 ellipse kernel. We roughly
detected blobs from each exposed image with * SimpleBlobDetector’ of OpenCV (Bradski
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88 and Kaehler, 2000). To obtain a non-redundant blob set for each cycle, the detected blobs

89 from all channelsin the same cycle will be mapped to a single size-equivalence layer with no

90 background to obtain a non-redundant blob set for each cycle (Fig. 1D and E, Supplementary

91 Fig.3

92

93 A crucial feature of areal blob isthat pixel grayscale increases dramatically in its core region

94  compared with its periphery. While previous detection step could expose a number of blobs,

95 it would aso include some false-positive because some regions in the images might have

96 elevated background brightness or noise surrounding which might be overexposed and falsely

97  detected as blobs. To reduce false-positive, for each blob, we utilize the difference between

98 the mean of grayscalein the core region (4x4) and that in the periphery (10x10), which

99 reflects the signal strength difference between candidate blob and its surrounding background,
100 defined here as 'base score'. Subsequently, for each blob, base scores from different channels
101 inthe same cycle will be sorted, and the base channel with the highest base scoreis
102  considered as the true base of this cycle. We further calculate the error rate P as 1-g, where q
103 isdefined asthe maximum base score (i.e. the score of the assigned base in the cycle) divided
104 by the sum of score of all channels produced in that cycle. Then we calculate the base calling
105 quaity Qby Q = —10log,,(P) similar as the Phred quality scorein NGS platform.

106 Bases sequence connection among different cycles

107  Linking bases at the same location from different cycles to generate barcode sequencesisa
108 crucia and the most time-consuming step. Blobs from different cycles might not be

109 completely overlap with each other, thus we collect all detected blobs from all cycles and
110  project them into anew layer called ‘reference layer’ and detect blobs on this layer again to
111  remove redundancy. This reference layer should cover all potential blobs without redundancy.
112  Then, wetake each blob in reference layer and connect bases from the first cycle to the last at
113  each blob location. When there’ s no blob detected at the location in one cycle, we add an ‘N’
114  with quality of one. In addition, although registration at the first step aligns most regions of
115 images, blobs’ location might not be accurate at pixel level. To resolve this problem, we first
116  project the location of each blob in reference layer to cycle N (defined as the searching

117  center), and search for any candidate linked base in a 6x6 region near the center (Fig. 1F).
118  Error rate for each candidate base detected from the searching process would need to be

119 cdlibrated. The distance from ablob center at reference layer to the pixel of searching center
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at cycle N is defined to be one, and the distance from a searched pixel at cycle N to the
searching center is defined to be D, then, we could adjust the error rate for the base at cycle N
by multiplying the raw rate by v12 + D? (Supplementary Fig. 4). Thus, the longer distance
between the candidate and the searching center is, the harder for the error rate will be
penalized. The candidate with the smallest penalized error rate thus is selected as the base of
the position in cycle N. All called sequences are included in the final raw output even when
there’'s one or more ‘N’s. And users could further filter the sequences based on the designed
barcode list, base quality, etc.
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128
129  Figurel. General workflow and evaluation of IRIS. Weimport all images from all cycles

130 asmatrices and store them into astack data structure. (A) DAPI images from different cycles
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131 areused as the representative image of each cycle for registration. (B) DAPI of each cycleis
132  registered with DAPI of cycle 1 to obtain the transform matrix for each cycle. (C) These
133  transform matrices are used to register all channels in their own cycles. (D) Blobs in each
134  registered channel in all cycles are exposed by tophat transformation, and their coordinates
135 arerecorded. (E) Blobs' coordinates from all cycles are map into a reference layer for

136 redundancy removal and to generate a coordinate reference of all blobs. (F) Thisreferenceis
137  used to connect all bases called from registered channels of different cycles. At last, base
138 cdlinginformation is produced as output, composing of five columns for each blob,

139 including blob ID, barcode sequence, quality, row and column in cycle 1 DAPI image. (G)
140  The correlation between the expression signal detected by IRIS and TPM inferred from

141 RNA-seqin HER2+ and VIM+ region. (H) The base score distribution of blob detected by
142  IRISis substantialy higher than the score from random pixels.

143 Application and evaluation

144  We utilized the published ISS data (Supplementary Table 1) to evaluate the performance of
145 IRIS. When dealing with the co-culture of human and mouse cells sample (HM), IRIS could
146  detect 225 barcodes with 88.58% true positive rate (TPR). Specifically, when dealing with
147  blob-dense regions, IRIS could detect all blobs without merging the spatially close ones

148  (Supplementary Fig. 5). TPR could reach 72.42% in another breast tumor slice sample, where
149 IRIS aso achieved ahigher correlation with RNA-seq expression level than previous result
150 (Fig. 1G). In both cases, base score distribution of IRIS detected blobs was significantly

151  higher than that of random pixels (Fig. 1H, Supplementary Fig. 6), implying the high

152  accuracy rate of IRIS detecting blobs. Moreover, IRIS could deal with ISS data efficiently.
153  For example, when dealing with the HM dataset, including a total of 20 images each with

154 1330x980 resolution, IRIS could finish the run (4 cycles) in approximately 11.7 CPU seconds
155 inaonelinecommand. And when dealing with larger dataset like the breast tumor slices,
156  which included 80 images each with c.a. 1390x1040 resolution, it took approximately 87.5
157 CPU secondsin aparallel and atotal of 725.2 CPU seconds for all 16 slices (Supplementary
158 Table 3). We also found the computation performance was affected more by the number of
159 detected blobs rather than the total input image size (Supplementary Fig. 8).

160

161 IRIS can aso handle image data generated by other ISS technologies by adding the

162  corresponding input parser modules. For example, MERFISH utilizes binary barcodes to
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represent genes, so two instead of four channels are treated in each cycle (Chen, et d., 2015).
After minor modification of the input data structures, the following steps can be unified and

barcode sequences and locations could be called automatedly.
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