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Abstract 15 

Summary: The emerging in situ RNA sequencing technologies which can capture and 16 

amplify RNA within the original tissues provides efficient solution for producing spatial 17 

expression map from dozens to thousands of genes. Most of in situ RNA-seq strategies 18 

developed recently infer the expression patterns based on the fluorescence signals from the 19 

images taken during sequencing. However, an automate and convenient tool for decoding 20 

signals from image information is still absent. Here we present an easy-to-use software 21 

named IRIS to efficiently decode image signals from in situ sequencing into nucleotide 22 

sequences. This software can record the quality score and the spatial information of the 23 

sequencing signals. We also develop an interactive R shiny app named DAIBC for data 24 

visualization. IRIS is designed in modules so that it could be easily extended and compatible 25 

to new technologies. 26 

Availability and implementation: IRIS and DAIBC are freely available under BSD 3-27 
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Clause License at: https://github.com/th00516/ISS_pyIRIS. 28 

Contact: guojie.zhang@bio.ku.dk 29 

Supplementary information: Supplementary information are available at xxx online. 30 

Introduction 31 

Spatial transcriptomics is an emerging field that aims to characterize the gene expression 32 

profiling together with the spatial context of the tissues(Burgess, 2019; Stark, et al., 2019). It 33 

offers solutions to address many fundamental questions on cellular function. Several in situ 34 

RNA-seq technologies have been developed recently allow the high throughput detection of 35 

gene expression in situ with the high resolution fluorescence image (Chen, et al., 2015; Ke, et 36 

al., 2013). These technologies usually involve the visualization and quantitative analyses of 37 

transcriptome with spatial resolution from the fluorescence images of tissue sections. 38 

However, there is no any software to decode the sequencing signals from images, which 39 

limits the application of these new technologies for downstream analyses. Here, we 40 

demonstrate an open source software IRIS (Information Recoding of In situ Sequencing) to 41 

decode image signals into nucleotide sequences along with quality and location information. 42 

We also present an R shiny app DAIBC (Data Analysis after ISS Base Calling) for interactive 43 

visualization of called results. IRIS shows good performance in both data processing 44 

efficiency and accuracy at gene expression and location levels. We also designed it in 45 

modules so its compatibility could also be further extended to other technologies.  46 

Implementation 47 

We employ image and directory structure of in situ sequencing (ISS) (Ke, et al., 2013) as our 48 

default input data structure. Images are organized as split channels and sorted in different 49 

cycles. Each cycle includes five image channels, which are marked by the fluorescent dyes, 50 

Y5, FAM, TXR, Y3, DAPI, representing dyes for base A, T, C, G and nucleus, respectively 51 

(Fig. 1A). Different with images in traditional next generation sequencing (NGS), ISS images 52 

contain not only fluorescent spots, but also background like nucleus and cytoskeleton 53 

(Supplementary Fig. 1), which produce background noise that need to be filtered before 54 

decoding. Thus, we took several steps including registration, blob detection and connection to 55 

decode image signals into barcodes.   56 
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Intermediate data structure and images registration among different 57 

cycles 58 

Because the positions of cells and transcript amplification products in different cycles can be 59 

shifted during experiment operation, the first step of IRIS is image registration, which aligns 60 

images from different cycles to the same coordinate system. Images from the same cycles 61 

doesn’t need to be registered as their differences are mainly raised from exposure time. 62 

During registration, key points are first identified from the images and used as makers to 63 

align images from different cycles. Then transformation matrices are calculated based on the 64 

matched key points pairs between two images and used to align images from different cycles 65 

to the same coordinate system.  66 

 67 

In order to reduce error in registration, we first remove noise in each image. A low-pass filter 68 

is performed to filter out pixels with the 40% highest signal frequency after Fast Fourier 69 

Transformation. We by default implement of 'ORB' algorithm (Rublee, et al., 2011) to collect 70 

the coordinates and measure the scales and orientations of key points (i.e. description of key 71 

points). We further identify matched key point pairs with similar description between every 72 

image from cycle N to image from cycle 1 with  k-Nearest Neighbor (kNN) on the 73 

description matrix of key points (Altman, 1992) (Supplementary Fig. 2). Then we iteratively 74 

filter out matched key point pairs outlier with large distance that might be false-positive 75 

caused during matching process. The final key point pairs are used to calculate homography 76 

after being sorted by pair distance. This process generates one transform matrix for each 77 

cycle, which can be used to register every channel in each cycle respectively (Fig. 1C, 78 

Supplementary Fig. 2). In some ISS technologies, DAPI is used to capture nucleus structure 79 

thus is present in all cycles. In each cycle it harbors more key points thus provides an ideal 80 

information for image registration. If this image is available, we make it as the default images 81 

for registration in IRIS (Fig. 1A). 82 

Blobs detection in each cycle 83 

Hybridization signals are presented as light-spot of certain size under dark background in the 84 

image, thus can be treated as blobs in computer vision area. Blobs of registered image in each 85 

channel will be exposed by tophat transformation under 15x15 ellipse kernel. We roughly 86 

detected blobs from each exposed image with ‘SimpleBlobDetector’ of OpenCV (Bradski 87 
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and Kaehler, 2000). To obtain a non-redundant blob set for each cycle, the detected blobs 88 

from all channels in the same cycle will be mapped to a single size-equivalence layer with no 89 

background to obtain a non-redundant blob set for each cycle (Fig. 1D and E, Supplementary 90 

Fig. 3) 91 

 92 

A crucial feature of a real blob is that pixel grayscale increases dramatically in its core region 93 

compared with its periphery. While previous detection step could expose a number of blobs, 94 

it would also include some false-positive because some regions in the images might have 95 

elevated background brightness or noise surrounding which might be overexposed and falsely 96 

detected as blobs. To reduce false-positive, for each blob, we utilize the difference between 97 

the mean of grayscale in the core region (4x4) and that in the periphery (10x10), which 98 

reflects the signal strength difference between candidate blob and its surrounding background, 99 

defined here as 'base score'. Subsequently, for each blob, base scores from different channels 100 

in the same cycle will be sorted, and the base channel with the highest base score is 101 

considered as the true base of this cycle. We further calculate the error rate P as 1-q, where q 102 

is defined as the maximum base score (i.e. the score of the assigned base in the cycle) divided 103 

by the sum of score of all channels produced in that cycle. Then we calculate the base calling 104 

quality Q by � � �10 log��	
� similar as the Phred quality score in NGS platform. 105 

Bases sequence connection among different cycles 106 

Linking bases at the same location from different cycles to generate barcode sequences is a 107 

crucial and the most time-consuming step. Blobs from different cycles might not be 108 

completely overlap with each other, thus we collect all detected blobs from all cycles and 109 

project them into a new layer called ‘reference layer’ and detect blobs on this layer again to 110 

remove redundancy. This reference layer should cover all potential blobs without redundancy. 111 

Then, we take each blob in reference layer and connect bases from the first cycle to the last at 112 

each blob location. When there’s no blob detected at the location in one cycle, we add an ‘N’ 113 

with quality of one. In addition, although registration at the first step aligns most regions of 114 

images, blobs’ location might not be accurate at pixel level.  To resolve this problem, we first 115 

project the location of each blob in reference layer to cycle N (defined as the searching 116 

center), and search for any candidate linked base in a 6x6 region near the center (Fig. 1F). 117 

Error rate for each candidate base detected from the searching process would need to be 118 

calibrated. The distance from a blob center at reference layer to the pixel of searching center 119 
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at cycle N is defined to be one, and the distance from a searched pixel at cycle N to the 120 

searching center is defined to be D, then, we could adjust the error rate for the base at cycle N 121 

by multiplying the raw rate by √1� 
 �� (Supplementary Fig. 4). Thus, the longer distance 122 

between the candidate and the searching center is, the harder for the error rate will be 123 

penalized. The candidate with the smallest penalized error rate thus is selected as the base of 124 

the position in cycle N. All called sequences are included in the final raw output even when 125 

there’s one or more ‘N’s. And users could further filter the sequences based on the designed 126 

barcode list, base quality, etc.  127 
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 128 

Figure 1. General workflow and evaluation of IRIS.  We import all images from all cycles 129 

as matrices and store them into a stack data structure. (A) DAPI images from different cycles 130 
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are used as the representative image of each cycle for registration. (B) DAPI of each cycle is 131 

registered with DAPI of cycle 1 to obtain the transform matrix for each cycle. (C) These 132 

transform matrices are used to register all channels in their own cycles. (D) Blobs in each 133 

registered channel in all cycles are exposed by tophat transformation, and their coordinates 134 

are recorded. (E) Blobs’ coordinates from all cycles are map into a reference layer for 135 

redundancy removal and to generate a coordinate reference of all blobs. (F) This reference is 136 

used to connect all bases called from registered channels of different cycles. At last, base 137 

calling information is produced as output, composing of five columns for each blob, 138 

including blob ID, barcode sequence, quality, row and column in cycle 1 DAPI image. (G) 139 

The correlation between the expression signal detected by IRIS and TPM inferred from 140 

RNA-seq in HER2+ and VIM+ region. (H) The base score distribution of blob detected by 141 

IRIS is substantially higher than the score from random pixels. 142 

Application and evaluation 143 

We utilized the published ISS data (Supplementary Table 1) to evaluate the performance of 144 

IRIS. When dealing with the co-culture of human and mouse cells sample (HM), IRIS could 145 

detect 225 barcodes with 88.58% true positive rate (TPR). Specifically, when dealing with 146 

blob-dense regions, IRIS could detect all blobs without merging the spatially close ones 147 

(Supplementary Fig. 5). TPR could reach 72.42% in another breast tumor slice sample, where 148 

IRIS also achieved a higher correlation with RNA-seq expression level than previous result 149 

(Fig. 1G). In both cases, base score distribution of IRIS detected blobs was significantly 150 

higher than that of random pixels (Fig. 1H, Supplementary Fig. 6), implying the high 151 

accuracy rate of IRIS’ detecting blobs. Moreover, IRIS could deal with ISS data efficiently. 152 

For example, when dealing with the HM dataset, including a total of 20 images each with 153 

1330x980 resolution, IRIS could finish the run (4 cycles) in approximately 11.7 CPU seconds 154 

in a one-line command.  And when dealing with larger dataset like the breast tumor slices, 155 

which included 80 images each with c.a. 1390x1040 resolution, it took approximately 87.5 156 

CPU seconds in a parallel and a total of 725.2 CPU seconds for all 16 slices (Supplementary 157 

Table 3). We also found the computation performance was affected more by the number of 158 

detected blobs rather than the total input image size (Supplementary Fig. 8).   159 

 160 

IRIS can also handle image data generated by other ISS technologies by adding the 161 

corresponding input parser modules. For example, MERFISH utilizes binary barcodes to 162 
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represent genes, so two instead of four channels are treated in each cycle (Chen, et al., 2015). 163 

After minor modification of the input data structures, the following steps can be unified and 164 

barcode sequences and locations could be called automatedly.  165 
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