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Abstract 

A major barrier to the successful application of nanotechnology for cancer treatment is the 

efficient delivery of therapeutic payloads to metastatic tumor deposits. We have previously 

discovered that cabozantinib, a tyrosine kinase inhibitor, triggers neutrophil-mediated anti-

cancer innate immunity, resulting in tumor regression in an aggressive PTEN/p53-deficient 

genetically engineered murine model of advanced prostate cancer. Here, we specifically 

investigated the potential of cabozantinib-induced neutrophil activation and recruitment to 

enhance delivery of bovine serum albumin (BSA)-coated polymeric nanoparticles (NPs) into 

murine PTEN/p53-deficient prostate tumors. Based on the observation that BSA-coating of 

NPs enhanced association and internalization by activated neutrophils in vitro, relative to 

uncoated NPs, we systemically injected BSA-coated, dye-loaded NPs into prostate-specific 

PTEN/p53-deficient mice that were pre-treated with cabozantinib. Flow cytometric analysis 

revealed a 4-fold increase of neutrophil-associated NPs within the tumor microenvironment 

(TME) of mice pre-treated with cabozantinib relative to untreated controls. At steady-state, 

following 3 days of cabozantinib/NP administration, 1% of systemically injected dye-loaded 

NPs selectively accumulated within the TME of mice that were pre-treated with cabozantinib, 

compared to 0.11% uptake for mice that did not receive cabozantinib pre-treatment. 

Strikingly, neutrophil depletion with Ly6G antibody abolished NP accumulation in tumors to 

baseline levels, demonstrating targeted neutrophil-mediated NP delivery to the prostate TME. 

In summary, we have discovered a novel nano-immunotherapeutic strategy for enhanced 

intratumoral delivery of injected NPs, which results in significantly higher NP accumulation 

than reported strategies in the nanotechnology literature to-date.  
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Introduction 

Prostate cancer (PCa) is the most commonly diagnosed cancer in the United States, 

with an estimated 160,000 new diagnoses each year (1). An estimated 1 in 6 men will be 

diagnosed with PCa in their lifetime, most with localized disease. Metastatic PCa accounts 

for 29,430 deaths in the US annually, with 5-year survival rates at less than 29% (1,2). The 

majority of men with metastatic PCa will develop resistance to primary androgen deprivation 

therapy, leading to metastatic, castration-resistant prostate cancer (mCRPC) (3). Several 

therapies have been FDA approved for mCRPC over the last 10 years. These include 

sipuleucel-T vaccine, androgen-receptor targeted agents like abiraterone and enzalutamide, 

taxane chemotherapy and Radium-223, that improve overall survival in mCRPC (4). 

However, most patients still develop therapeutic resistance, highlighting an unmet need to 

establish more potent, curative treatments with minimal toxicity (5).  

In recent years, there has been considerable success of immune checkpoint blockade 

(ICB) therapy across multiple cancers (6). However, there are still large subsets of patients 

across multiple cancers that do not respond to these therapies. The responses of mCRPC to 

ICB have been limited, highlighting the critical need to design novel therapeutic strategies 

that can harness the immune system to enhance therapeutic efficacy (7). We have previously 

demonstrated that cabozantinib, a promiscuous receptor tyrosine kinase (RTK) inhibitor, 

FDA approved in medullary thyroid, renal, and hepatocellular carcinoma, unleashes a potent 

neutrophil-mediated innate immune response, resulting in tumor eradication in mice with 

probasin-Cre driven conditional prostate-specific knockout of PTEN/p53 (Pb-Cre; 

PTENfl/flp53fl/fl) (8). This study demonstrates the potential of cabozantinib to reprogram 

neutrophil-mediated innate immunity to eradicate advanced CRPC, and has led to >20 

combination clinical trials of cabozantinib and ICB across multiple malignancies. In 

particular, a recent Phase II clinical trial evaluating cabozantinib and atezolizumab (COSMIC 
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021) in multiple different tumor types, demonstrated an overall response rate of 32%, disease 

control rate of 80% and a PSA decline rate of 50% in the cohort of men with CRPC (9). 

Based on these promising results, a Phase III registration trial of this combination is currently 

being planned in mCRPC. 

 Over the past decade, nanoparticles (NPs) have been investigated as a drug delivery 

system to enhance chemotherapeutic concentrations within tumors, while minimizing off-

target toxicity (10). However, efficient NP delivery has been a major challenge for clinical 

translation, with studies indicating that 0.7% (median) of injected NPs are actually delivered 

to the tumor (11). Polymeric NPs made of materials such as poly(lactic-co-glycolic acid) 

(PLGA) are a popular choice for chemotherapeutic delivery due to their tunability, versatility 

and ability to provide controlled drug release (12). NPs often rely on the enhanced 

permeability and retention effect in tumors for delivery, resulting in NPs becoming trapped 

away from their intended target and preventing efficient delivery of chemotherapeutic agents 

to tumor cells (13). While several approaches have been explored to improve NP delivery 

using active cellular targeting, the majority have not demonstrated success in clinical trials 

(14). Therefore, a critical need exists to improve the targeting and delivery of polymeric NPs 

to tumor deposits.  

In this study, we tested the hypothesis that cabozantinib-mediated neutrophil 

activation/infiltration will result in enhanced delivery of systemically injected NP into the 

prostate tumor bed. Prior studies have used bovine serum albumin (BSA) to enhance 

internalization of NPs into neutrophils, which can then carry NPs to the tumor bed (15-17). In 

this study, we utilized PLGA-based NPs coated with native BSA (see below), which offer 

several advantages over BSA-only NPs, including their ability to encapsulate a wider variety 

of agents, the ease of tuning size and drug-loading, and the ability to modify drug release 

rates based on application. Here we designed PLGA NPs coated with native BSA (commonly 
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referred to as BSA) to achieve neutrophil-specific delivery to prostate tumors. BSA-coated, 

dye-loaded PLGA NPs (BSA-NPs) were injected systemically into genetically engineered 

mice that develop prostate tumors as a result of prostate-specific PTEN and p53 loss (Pb-Cre; 

PTENfl/flp53fl/fl mice). We observed that accumulation of dye-loaded NPs in the tumor was 

enhanced in mice pre-treated with cabozantinib, relative to untreated controls. Furthermore, 

the enhanced intratumoral NP accumulation with cabozantinib pre-treatment was abrogated 

via concomitant administration of Ly6G antibody, which depletes neutrophils, suggesting that 

NP delivery is neutrophil-mediated. This novel nano-immunotherapeutic strategy has the 

potential to deliver cancer medicines with narrow therapeutic indices (low efficacy/toxicity 

ratios), thus overcoming current challenges to passive and active targeting of NPs into 

tumors.   

 

Materials and Methods 

Preparation & Characterization of Nanoparticles. PLGA NPs were prepared by single 

emulsion as previously described (12).  50 mg of 50:50 poly(DL-lactic-co-glycolic)-COOH 

(Lactel Absorbable Polymers, cat. B6013-1) and 10 μL of 1 mM Vybrant(R) Cell-Labeling 

DiO or DiR dye (ThermoFisher, cat. V22889) was added to 2 mL of dichloromethane (Sigma 

Aldrich). Once PLGA/dye was fully dissolved, the solution was sonicated for 10 seconds 

before being added dropwise to 1% wt/vol solution of filtered poly-vinyl alcohol (Sigma 

Aldrich), while homogenizing at 35000 rpm for 2 minutes. Particle suspension was stirred 

and organic solvent was allowed to evaporate for 4 hours. Particle suspension was washed 3 

times with 10 mL of distilled water by centrifuging solution in 15 mL centrifuge tubes at 

1000g for 5 minutes. After the final wash, particles were resuspended in 1 mL of distilled 

water and characterized by dynamic light scattering for size and zeta-potential. For coating, 

NPs were incubated at 5 mg/mL in a 20 μg/mL Bovine Serum Albumin (BSA; Sigma-
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Aldrich) solution for 2 hours at 37oC. NPs were washed twice with distilled water at 1000g 

for 5 mins and resuspended in PBS at the desired concentration. BSA coating was verified 

using UV spectroscopy.  

 

In vitro Studies. For human experiments, near-confluent PC3 cells cultured in RPMI-1640 

with 0.1% BSA and 1% penicillin/streptomycin, were treated with 5 uM cabozantinib for 24 

hours. The supernatant was collected and utilized as PC3-conditioned media, to activate 

human neutrophils for in vitro experiments. For murine experiments, near-confluent 

PTEN/p53-deficient prostate tumor-derived SC1 cells cultured in PrEGM Bulletkit media 

supplemented with 10% FBS and 1% penicillin/streptomycin, were treated with 10 uM 

cabozantinib for 24 hours. The supernatant was collected and utilized as SC1-conditioned 

media to activate and murine neutrophils. 

 

Isolation of Neutrophils. Human neutrophils were isolated from 10 mL of human whole 

blood obtained from Research Blood Components (Boston, MA). Informed consent was 

obtained from blood donors by Research Blood Components prior to collection. The 

EasySep™ Direct Human Neutrophil Isolation Kit was used as per standard protocol 

(StemCell Technologies, cat. 19666). Isolation cocktail containing antibodies and 

RapidSpheres™ were added to the whole blood sample and immunomagnetic negative 

selection was performed. Neutrophils were collected in serum-free RPMI-1640 (Gibco) with 

1% penicillin/streptomycin for in vitro studies. Neutrophil population was verified using anti-

CD11b antibody (Biolegend 101257) and anti-CD16 antibody (Biolegend 302025) staining 

by flow cytometry. 

 Murine neutrophils were isolated from 500 uL of whole blood obtained from Pb-Cre; 

PTENfl/fl, p53fl/fl mice, in accordance with NIH guidelines and protocol approved by the 
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IACUC at University of Chicago. The EasySep™ Mouse Neutrophil Enrichment Kit was 

used as per the included protocol (StemCell Technologies, cat. 19762). Isolation cocktail 

containing antibodies and RapidSpheres™ were added to the whole murine blood sample and 

immunomagnetic negative selection was performed. Neutrophils were collected in phosphate 

buffer saline pH 7.4 (Corning) with 2% fetal bovine serum (FBS, Gemini) and 1mM 

ethylenediaminetetraacetic acid (EDTA, Thermofisher Scientific) penicillin/streptomycin for 

in vitro studies. Neutrophil population was verified using anti-CD11b antibody (Biolegend 

101257) and anti-GR1 antibody (Biolegend 108422) staining by flow cytometry. 

  

In Vitro Human Neutrophil Activation/NP Internalization/Imaging. Neutrophils were 

activated by incubating with PC3-conditioned media on an 8-chamber slide at 37oC for 3 

hours. Following this incubation, the non-adherent neutrophils were washed twice with PBS. 

100μg of BSA-coated DiO-loaded PLGA NPs were suspended in PC3-conditioned media and 

incubated with adherent neutrophils on an 8-chamber slide at 37oC for 1 hour. Media was 

removed and chambers were washed once with PBS. Neutrophils were stained with DiI 

(1:1000, ThermoFisher Scientific) at 37oC for 15 minutes to delineate the plasma membrane. 

Neutrophils were washed three times with PBS at 37oC for 10 minutes to remove excessive 

DiI dye. Next, nuclei were stained with Draq5 (1:1000, ThermoFisher Scientific) at 37oC for 

5 minutes and imaging was carried out using a Leica SP5-STED microscope. The 

internalized NPs appeared green and surface-bound NP appeared fluorescent red-yellow in 

color.  

 

In Vitro Murine Neutrophil Activation/ImageStream. Neutrophils were activated by 

incubating with SC1-conditioned media at room temperature for 15, 60, 120 and 180 minutes. 

For the aforementioned times, neutrophils were incubated with 10, 100 and 1000μg of BSA-
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coated DiR-loaded PLGA NPs in 1.4 mL of conditioned media at room temperature. 

Neutrophils were stained with DAF-FM diacetate (ThermoFisher Scientific D23844) at room 

temperature for 15 minutes before completion of incubation period to assess nitric oxide 

(NO) level per neutrophil. Following incubation, neutrophils were analyzed for associated NP 

and NO using ImageStream Mark II (Amnis; Luminex). Neutrophils were passively bound to 

1 or 2 BSA-NP, whereas activated ones could bind >2 BSA-NP. MFI of NP were assessed 

only for activated (or more than 2NP associated) neutrophils.  

 

In vitro Murine Neutrophil Cytokine assay. Neutrophils were activated by incubating with 

1.4 mL of SC1-conditioned media containing 0, 10, 100, 1000μg of BSA-coated DiR-loaded 

PLGA NPs at room temperature for 6 hours. After incubation period, neutrophils were 

centrifuged and supernatants were collected for estimation of neutrophil-secreted cytokines. 

Cytokine array kits containing anti-viral response panel (Cat no. 740622) and 

proinflammatory chemokine panel (Cat no. 740451) were used according to manufacturer 

protocol (LegendplexTM platform, Biolegend).  

 

In vitro Murine Neutrophil Phagocytosis assay. SC1 cells were treated in vitro with 

cabozantinib for 24 hours, and media was replaced with DiI dye (ThermoFisher, Cat. no. 

V22885) containing PBS for 20 minutes, to stain membranes of tumor cells. Following 

aspiration of dye, SC1 cells were next washed with PBS (3x) to completely remove dye 

within wells. 500,000 neutrophils were suspended in SC1-conditioned media containing 0, 

10, 100, 1000μg of BSA-coated DiR-loaded PLGA NP and further added on the top of DiI 

dye-stained SC1 cells. After 6 hours incubation, anti-CD11b antibody (Biolegend 101257) 

and anti-GR1 antibody (Biolegend 108422) were added at dilution of 1:100 in wells for 30 

minutes. Neutrophils were further fixed and lifted by trypsinization to determine DiI dye per 
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neutrophil using flow cytometry (18,19). Percent phagocytosis was calculated by scaling MFI 

of DiI per neutrophil in presence and absence of SC1-conditioned media to 100% and 0%, 

respectively.  

 

In Vivo Studies. Pb-Cre;PTENfl/flp53fl/fl mice were screened for prostate tumor development 

at 16 weeks of age by ultrasound. Following the development of solid tumors, the mice were 

treated with cabozantinib (100 mg/kg/day, oral gavage) when the tumors reached a long-axis 

diameter of 10 mm. One hour after cabozantinib treatment, 50 μg of BSA-coated or uncoated 

DiO-loaded PLGA NPs and 50 μg of BSA-coated or uncoated DiR-loaded PLGA NPs (total 

100 μg NPs) were intravenously injected every 12 hours for 3 days. Mice were sacrificed at 

72 hours and peripheral blood and the following tissues were collected: prostate, liver, 

kidney, spleen, lungs, and femur/tibia. Imaging was conducted using the In Vivo Imaging 

System (IVIS) and processed by spectral unmixing to control for background signal and 

capture fluorescence from DiR particles. These fluorescent images were then overlaid with 

bright field images of the organs for qualitative and quantitative analysis. Images were 

analyzed with ImageJ, and mean fluorescence was obtained for each tumor for comparison.  

 

Flow Cytometry. For neutrophil/NP association analysis within tumor and spleen, tissues 

were homogenized using liberase, and filtered with HBSS through a 70-μm cell strainer. The 

resulting cell suspension was centrifuged and incubated for 2 mins in 1 mL of ACK solution 

to lyse red blood cells. ACK was neutralized with 10 mL of HBSS and the cell suspension 

was centrifuged at 1800 rpm for 5 minutes. This was repeated 3 times or until no red cells 

were visible (whichever came first). The final cell pellet was resuspended in 5 mL of HBSS 

and distributed in equal volumes for flow cytometry. Cells were centrifuged at 1800 rpm for 

5 mins and then incubated in 2 μg/mL solution of anti-CD11b antibody (Biolegend 101257) 
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and anti-GR1 antibody (Biolegend 108422) for 30 minutes in the dark. Cells were washed 

once with HBSS and run on BD Fortessa 4-15 flow cytometer until 10,000 events were 

captured in the population gated for mouse neutrophils. For analysis of peripheral 

neutrophil/NP association, blood was incubated for 2 minutes in 1 mL of ACK solution to 

lyse red blood cells, then centrifuged and the supernatant was aspirated. The pellet was 

subsequently stained with anti-CD11b antibody (Biolegend 101257) and anti-GR1 antibody 

(Biolegend 108422) for flow cytometry analysis of NP-associated circulating neutrophils.  

 

Nanoparticle uptake determination. A 50 mg sample of harvested tumors was 

homogenized in 1 mL PBS then pelleted at 35,000 rpm for 1 min, and this step was repeated 

a total of three times. The concentrations of DiO NPs were measured in homogenates at 485 

nm excitation and 510 nm emission wavelengths using a fluorometer. Standard DiO NP 

solution was prepared using tumor homogenates of mice that were not treated with NPs and 

cabozantinib. The linearity range was 2-20 ng DiO NPs/uL (R=0.9674). The % NP uptake 

was calculated based on a single administered dose of NPs.  

 

Data Analysis. Unless otherwise indicated, data was analyzed using GraphPad Prism 7 

(GraphPad Software Inc.) and statistical analysis was performed using unpaired student t-test 

with p < 0.05 level of significance.  

 

Results 

BSA-coating of NPs enhanced association and internalization by activated neutrophils 

in vitro 

Figure 1A shows a schema for the design of BSA-NPs utilized in this study. DiO- and 

DiR-loaded NPs were initially characterized by Dynamic Light Scattering (DLS). DLS 
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revealed an average particle size of 450 nm with average size ranging from 400-500 nm 

across batches. These particles are significantly larger than the 100-200 nm BSA-coated 

PLGA NP used in prior studies (20), and may allow for increased drug loading with sustained 

release of drug(s) per unit NP (15,16). The NP surface charge, pre- and post-BSA coating, 

was on the order of -40 mV, consistent with previous studies of the expected charge of 

ovalbumin containing PLGA NPs. Scanning electron microscopy (SEM) confirmed the size 

distribution and surface morphology of NPs, which was on the order of 500 nm, consistent 

with DLS measurements. Furthermore, SEM showed smooth, spherical particles with 

minimal aggregation (Figure 1B).   

To determine whether BSA-coated NPs would preferentially associate with and be 

internalized by activated neutrophils relative to uncoated NPs, we performed an in vitro 

neutrophil activation assay. Neutrophils were activated in vitro with conditioned media from 

human PTEN/p53-deficient PC3 cells, and incubated with BSA-coated, DiO-loaded PLGA 

NPs. Using confocal microscopy, an increased number of DiO-loaded NPs were found to be 

associated with, and internalized by, activated neutrophils when pre-coated with BSA. An 

average of 8.15 ± 1.14 BSA-NPs were associated with activated neutrophils, compared to an 

average of 5.3 ± 0.7 uncoated NPs associated with activated neutrophils (p < 0.05). BSA 

coating resulted in an approx. 6-fold enhancement of the internalization of NPs (5.46 ± 0.92 

internalized NPs/neutrophil, p<0.001; 65.1 ± 5.85 % internalization of total neutrophil 

associated NPs, p<0.001) compared to uncoated NPs (0.76 ± 0.25 internalized NPs/cell; 

10.95 ± 3.22 % internalization of total neutrophil associated NPs, Figure 1C-G). 

 

 

BSA-NP association with neutrophils did not inhibit their activation in vitro 

Our prior studies have utilized nitric oxide (NO) level as an indicator of neutrophil 

activation following cabozantinib treatment, which correlates with neutrophil mediated anti-
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tumor immune responses in Pb-Cre;PTENfl/flp53fl/fl mice (8). To test the hypothesis that 

nanoparticle internalization within neutrophils does not negatively impact their activation, we 

incubated BSA-NPs with neutrophils in conditioned media harvested from cabozantinib-

treated murine PTEN/p53-deficient tumor-derived SC1 cells. We observed significantly 

increased NO levels following incubation with conditioned media (225.7+13.44 at 60 

minutes relative to 89.38+3.9 at baseline, p<0.05) in unloaded murine neutrophils within 60 

minutes, which was sustained up to 3 hours. When neutrophils were incubated with a 100 μg 

dose of BSA-NP containing conditioned media, DiR-loaded BSA-NP association (p<0.05) 

reached a plateau within 120 minutes, following neutrophil activation. NO levels were not 

changed in neutrophils before (225.7+13.44) and after (182.4+29.93) association of DiR-

loaded BSA-NP (Figure 2A and C). Additionally, NO staining was similar among DiR-

loaded BSA-NP associated neutrophils with different quantities of associated BSA-NPs 

(Figure 2A and B). Taken together, these data indicate that BSA-NP association and 

internalization by neutrophils, does not alter their activation status. 

 

BSA-NP association did not alter activation or functionality across a range of doses, and 

NP uptake  was completely saturated at 100 μg equivalent dose in vivo 

We next tested the impact of BSA-NP doses on binding capacity and functionality of 

murine neutrophils. When neutrophils were incubated with 10, 100 and 1000 μg doses of 

DiR-loaded BSA-NP in conditioned media, a significant (p<0.05) increase in BSA-NP 

association with neutrophils was observed at 100 μg dose, which was sustained at 1000 μg 

dose of DiR-loaded BSA-NP (50.93+6.298 and 46.12+9.659, respectively), compared to the 

10μg dose of DiR-loaded BSA-NP treated group (25.6+2.913, Figure 3A). None of the DiR-

loaded BSA-NP doses altered nitric oxide status of activated neutrophils (Figure 3B). 

Furthermore, cytokine array analysis of conditioned media after incubation of neutrophils 
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with 0, 10, 100 and 1000μg doses of BSA-NP, demonstrated a selective increase in 

neutrophil-secreted cytokines, CCL2 and CXCL10, following activation. DiR-loaded BSA-

NP did not alter secretion of these cytokines from neutrophils (Figure 3C and 3D, 

respectively) at any NP doses tested, suggesting no alteration in neutrophil functionality with 

NP binding/internalization. Consistent with these observations, neutrophil phagocytic 

capacity was also not affected by any doses of DiR-loaded BSA-NP (Figure 3E). Also, there 

was no statistical difference in MFI of DiR-loaded BSA-NP per neutrophil between the 100 

and 1000 μg doses of BSA-NP, indicating that neutrophils were bound and completely 

saturated with BSA-NP at the 100μg dose in vitro. Furthermore, the BSA-NP doses were re-

suspended in 1.4 mL (equivalent to average blood volume per mouse) of conditioned media 

in these in vitro experiments to mimic NP concentrations achieved in vivo. These data 

demonstrate that 100μg of BSA-NP is the optimal dose to achieve maximum association of 

BSA-NP with neutrophils in vivo.  

 

Cabozantinib enhanced in vivo delivery of BSA-NPs to prostate tumors via a neutrophil-

specific mechanism 

 We have previously shown that cabozantinib activates neutrophil-mediated anti-

cancer innate immunity within 72 hours in Pb-Cre; PTENfl/fl, p53fl/fl mice (8,21). Therefore, 

we tested the impact of cabozantinib on intratumoral delivery of dye-loaded BSA-NPs that 

can be internalized by neutrophils. Mice were either untreated or pre-treated with 

cabozantinib for 1 hour prior to the intravenous injection of dye-loaded uncoated NPs or 

BSA-NPs for three days. Activated neutrophils have a short half-life (6-8 hours), which could 

represent a barrier for optimal intratumoral delivery of NPs. To circumvent this issue, we 

administered twice daily dosing of NPs for 72 h and then assessed biodistribution of injected 

NPs via ex vivo fluorescence imaging of organs harvested from mice. We observed that 
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prostate tumors from mice that were pre-treated with cabozantinib followed by BSA-NP 

exhibited high fluorescence uptake, relative to other organs within the same mouse and 

prostate tumors from untreated control mice or mice treated with uncoated NP and 

cabozantinib (Figure 4A-C). To determine whether the increased dye-loaded, BSA-NP 

delivery was mediated via a neutrophil-specific mechanism, mice were pre-treated with both 

cabozantinib and Ly6G antibody, which systemically depletes neutrophils. Concomitant pre-

treatment with cabozantinib and Ly6G antibody abrogated the increased dye-loaded BSA-NP 

delivery observed with cabozantinib pre-treatment alone (Figure 4D). Quantitative analysis 

performed using ImageJ revealed a significant increase in mean fluorescence uptake between 

tumors of mice treated with cabozantinib/BSA-coated NPs (53.67+/-5.4/px2) vs. untreated 

mice (1.73+/-1.3/px2) or mice treated with either cabozantinib/uncoated NP (14.47+/-3.8/px2) 

or cabozantinib/BSA-NP/Ly6G antibody (4.93+/-2.5/px2) (p < 0.05) (Figure 4E). These 

results demonstrate that cabozantinib enhanced in vivo delivery of BSA-NP to PTEN/p53-

deficient murine prostate tumors via a neutrophil-specific mechanism. 

 

Flow cytometry analysis revealed an increase in neutrophil-associated, dye-loaded BSA-

NPs within prostate tumors of cabozantinib-treated mice 

 To directly quantify the association of neutrophil infiltration with enhanced delivery 

of DiO-loaded NP in vivo, tumors were analyzed for co-association of DiO-NP and 

neutrophil markers by flow cytometry. Consistent with our prior published work, we 

observed an increase in CD11b+Gr-1+ cells within the tumor, which represent tumor-

infiltrating neutrophils and polymorphonuclear myeloid derived suppressor cells (PMN-

MDSCs) from a baseline of 20.97% of the total cells sampled by flow cytometry in an 

untreated control mouse, to 65.1% (p<0.001) in a representative mouse treated with 

cabozantinib for 72h. The CD11b+Gr-1+ population in the tumor decreased to 6.3% 
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(p<0.001) for a representative mouse treated with cabozantinib and Ly6G antibody, 

confirming the opposing effects of cabozantinib and Ly6G antibody on neutrophil infiltration 

within the tumor (Figure 5A). Furthermore, we assessed the presence of DiO-BSA-NPs 

exclusively in association with neutrophils within prostate tumors; free NPs were excluded 

from the analysis, as they could not be retrieved during the process of preparing the tumor for 

flow cytometry. Consistent with the fluorescence imaging data in Figure 4, we observed an 

increased frequency of CD11b+Gr-1+ cells within the prostate tumors that associated with 

DiO-BSA-NPs in the cabozantinib-treated mice (77.37%, p<0.001), relative to untreated mice 

(16.47%, Figure 5B). When mice were treated with uncoated NP and cabozantinib, the 

proportion of CD11b+Gr1+ cells (58.67+3.71%) were increased in the tumor, similar to 

BSA-NP+cabozantinib treated group (65.1+5.86%, Figure 5A). However, the frequency of 

uncoated NP associated CD11b+Gr1+ cells was ~3 fold lower at 24.55% in the tumor 

following cabozantinib treatment, relative to BSA-NP+cabozantinib treated mice (77.37%, 

Figure 5B).  Thus there is an increase in the proportion of CD11b+Gr-1+ cells in the tumor as 

well as the proportion of NP-associated neutrophils following treatment with cabozantinib 

only when the NPs are coated with BSA. Consistent with data shown in Fig. 4, mice treated 

with both Ly6G antibody and cabozantinib had the lowest frequency of DiO-associated-

CD11b+Gr1+ cells (9.4%, p<0.001, Figure 5B). Taken together, cabozantinib treatment 

resulted in significantly increased neutrophil infiltration within PTEN/p53 deficient prostate 

tumors, and nearly 80% of these CD11b+Gr-1+ cells were associated with DiO-loaded BSA-

NPs. The BSA-NP delivery was neutrophil-mediated, as neutrophil depletion with Ly6G pre-

treatment abrogated NP delivery to the tumor in mice treated with cabozantinib. Next, we 

determined the % NP uptake using fluorometry, which revealed that the total uptake of BSA-

NP was 0.11%, which was significantly increased by cabozantinib treatment to 0.96% 
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(p=0.002) and decreased by Ly6G-mediated neutrophil depletion to 0.03% (p=0.0011, Figure 

5C).  

To determine whether neutrophil-mediated BSA-NP association and internalization 

differentially occurs within the periphery vs. tumor microenvironment (TME,) we analyzed 

circulating and splenic neutrophils using flow cytometry to determine the frequency of BSA-

NP-associated neutrophils, following 72 hours of treatment with BSA-NP alone or 

cabozantinib/BSA-NP. We observed that a small fraction of circulating (0.65+0.11%) and 

splenic (0.21+0.01%) neutrophils associated with BSA-NP in untreated mice, which was 

slightly enhanced to 1.46+0.08% (p<0.01) and 0.37+0.03% (p<0.05), respectively, in mice 

treated with cabozantinib (Figure 6). However, this was a very small fraction of the 80% 

BSA-NP-associated neutrophils harvested from the TME following cabozantinib treatment. 

Collectively, these data demonstrate that BSA-NPs are selectively internalized by tumor-

infiltrating neutrophils (TINs) following cabozantinib treatment. A schematic of our proposed 

mechanism is shown in Figure 6C.   

 

 

Discussion 

In this study, we discovered that cabozantinib, a multi-receptor tyrosine kinase 

inhibitor, enhanced the intratumoral delivery of BSA-NPs into prostate tumors that develop 

in the context of prostate-specific PTEN and p53 deletion. The Pb-Cre; PTENfl/flp53fl/fl mouse 

is an invasive and locally aggressive prostate cancer mouse model, that recapitulates features 

of advanced mCRPC (22). Mice treated with cabozantinib daily, and six injections of BSA-

coated, dye-loaded PLGA NPs for 72 hours (two injections were administered per day at 

interval of 12 h), demonstrated an increase in mean fluorescence uptake within the tumor and 

NP delivery 0.96% relative to untreated controls (0.11%). The enhanced BSA-NP uptake 

with cabozantinib was reversed when neutrophils were systemically depleted with Ly6G 
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antibody, thus demonstrating a neutrophil-dependent mechanism for BSA-NP delivery into 

the tumor. Furthermore, flow cytometry analysis demonstrated an increased association of 

NPs with tumor-associated CD11b+ Gr-1+ cell populations, suggesting that the BSA-NPs 

were associating with activated neutrophils within the prostate TME. In contrast, intratumoral 

CD11b+Gr-1+ neutrophils were significantly lower in mice treated with Ly6G antibody, 

resulting in a decrease of BSA-NP delivery to the tumor. This study demonstrates that the 

injection of BSA-NPs following treatment with cabozantinib can enhance the delivery of NPs 

to prostate tumors through a neutrophil-dependent mechanism. This nano-immunotherapeutic 

strategy achieved approximately 1% delivery of the systemically administered BSA-NPs into 

the prostate tumor, which is significantly higher than the 0.7% (median) of tumor targeted 

BSA-NP delivery reported in the literature to-date (11,16).  

We have demonstrated that approximately 80% of CD11b+/Gr-1+ cells within the 

TME are associated with BSA-NPs. There are several explanations to account for the 20% of 

CD11b+/GR-1+ cells that are not associated with BSA-NPs. First, the PTEN/p53-deficient 

prostate tumors have a high frequency of myeloid-derived suppressor cells within the TME, 

which are indistinguishable from neutrophils by flow cytometry. Second, pharmacokinetic 

factors that include a 1-hour lag time between the initial administration of cabozantinib and 

subsequent administration of the BSA-NPs, can be improved in future studies. Third, at 

steady state, a pool of neutrophils are likely already present within the TME prior to 

administration of cabozantinib. Despite these limitations, we observed a 4-fold increase in 

neutrophils associated with BSA-NPs within cabozantinib-treated prostate tumors relative to 

untreated tumors, which represents a significant enhancement of intratumoral NP delivery. 

Given our previous study demonstrating that cabozantinib enhances neutrophil infiltration 

within PTEN/p53-deficient prostate GEMM tumors, combined with other work 

demonstrating internalization of NPs by activated neutrophils, we propose that the BSA-
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coated polymeric NPs are associating with and internalized by TINs, resulting in enhanced 

retention and delivery of NPs within prostate tumors (8,15). While we have not excluded the 

possibility that neutrophils activated within the TME following cabozantinib treatment, are 

recycled back into the periphery where they may associate with and internalize NPs, the data 

in Fig. 6 suggests that NP uptake and internalization predominantly occurs within TINs.  

In this study, we have demonstrated that BSA-coating of PLGA NPs promotes 

association with and internalization by activated neutrophils. This is consistent with prior 

studies demonstrating that NPs made from denatured BSA could target activated neutrophils 

in situ and deliver therapeutics across blood vessel walls (15). Intravenously injected BSA 

NPs were preferentially internalized by activated neutrophils and were able to cross the blood 

vessel wall in response to inflammation (15). A follow-up study evaluated an application of 

this principle and successfully demonstrated that drug-loaded, BSA-NPs, when co-

administered with TA99, a monoclonal antibody specific for gp75 antigen, resulted in 

enhanced neutrophil activation, recruitment and tumor growth inhibition via an antibody-

dependent cellular cytotoxicity mechanism, relative to NPs or TA99 alone (16). These 

experiments reflect the potential of harnessing neutrophil activation to promote efficient NP 

delivery to tumors. In our study, we integrate a novel tyrosine kinase inhibitor mediated 

neutrophil activation strategy to enhance BSA-coated PLGA-NPs uptake within the prostate 

tumors that develop in an aggressive, treatment-refractory mouse model of advanced PCa.  

In our previous study, we demonstrated that cabozantinib-mediated neutrophil 

infiltration lead to tumor clearance in prostate-specific PTEN/p53 GEMMs (8). Our findings 

in this study offer a potential anti-cancer strategy that integrates nanomedicine and cancer 

immunotherapy via activation of innate immunity. We have demonstrated that neutrophil 

internalization of BSA-coated drug-loaded PLGA NPs has no effect on neutrophil activation, 

which is consistent with prior studies that have demonstrated that BSA-NP uptake does not 
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affect the mobility, activation or cytokine release of neutrophils (15), and that PLGA NPs are 

not cytotoxic to neutrophils (23). This study opens the door to further investigation into next-

generation NP-targeting technologies. We used larger BSA-NPs (450 nm), relative to ~180 

nm diameter BSA-NPs used in previous tumors targeted delivery studies (15,16,20), as the 

450 nm particles can achieve higher drug loading and the reduced surface area to volume 

ratio enables longer controlled release. Future studies are needed to evaluate drug release 

kinetics of large (450 nm) vs small (100-200 nm) BSA-NPs. 

To maximize the potential clinical translation of this technology, it may also be 

possible to optimize this targeted approach by altering the BSA-coating – for example, by 

using denatured BSA rather than native BSA used in this study, and screening for additional 

tyrosine kinase inhibitors or precision medicine therapies which promote neutrophil 

activation and infiltration. Greater neutrophil infiltration has been associated with improved 

survival in early stage lung cancer and gastric cancer (24-26), highlighting the broad 

applicability of a neutrophil-mediated targeted NP delivery strategy in oncology. 

Furthermore, PCa most commonly metastasizes to the bone, and recent studies have shown 

that neutrophils are enriched within tumor areas in bone metastatic PCa patients. As 

metastatic prostate tumors evolve within the bone tumor microenvironment, the cancer cells 

evade neutrophil-mediated cell killing (13,27). Taken together, these data underscore the 

potential of cabozantinib-mediated neutrophil activation and intratumoral drug-loaded NP 

delivery, to have specific anti-cancer activity within bone metastases.  

From a translational standpoint, this activated neutrophil-based platform technology 

can be deployed to test novel combinatorial therapeutics to enhance intratumoral payload 

delivery. Given our findings that cabozantinib-induced neutrophil activation/NP uptake 

occurs within TINs and not peripheral neutrophils, this platform would allow for selective 

delivery of therapeutic payload to tumors, while mitigating non-specific organ toxicity 
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encountered with systemic targeted and chemotherapies. This is particularly relevant in the 

era of combinatorial targeted therapies, such as combination of kinase inhibitors and/or 

chemotherapy, which can result in profound systemic toxicity in advanced cancer patients. In 

summary, this convergent approach has the potential to harness drug-induced innate 

immunity and neutrophil-mediated nanomedicine delivery for effective and safe anti-cancer 

therapy.  
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Figure legends 

 

Figure 1. BSA-coated PLGA NPs (BSA-NPs) preferentially attach to activated human 

neutrophils in vitro, relative to uncoated NPs. (A) Schema illustrates proposed dye-loaded 

PLGA nanoparticle with and without BSA coating. (B) Scanning electron microscopy (SEM) 

performed to assess NP size and shape. (C, D) In vitro internalization of BSA-NPs by 

neutrophils. Human PC3 prostate cancer cells were treated with cabozantinib, and 

conditioned media was utilized to activate neutrophils followed by incubation with BSA-

coated or uncoated PLGA NPs. Cells were gently washed with PBS before imaging under 

confocal microscope to remove unassociated NPs. (E-G) Quantification of the average 

number of NPs associated with neutrophils for BSA coated and uncoated NPs was performed 

by counting the number of visible DiO particles and dividing by the number of nuclei in 

representative images per condition. The internalized NPs appeared green and surface-bound 

NP appeared fluorescent red-yellow in color. The % internalized NPs per neutrophil was 

calculated by the ratio of membrane associated (red-yellow fluorescent)/internalized (green) 

nanoparticles X 100. n=3 independent experiments. 

 

Figure 2. BSA-NP binding with murine neutrophils does not alter their activation 

status. (A) Experimental schema showing BSA-NP-associated neutrophil activation in vitro 

by nitric oxide (NO) staining. Murine SC1 prostate cancer cells were treated with 

cabozantinib, and conditioned media was collected to activate neutrophils. BSA-NP were 

added to conditioned media and incubated with neutrophils. NO staining was performed and 

fluorescence intensity was determined using ImageStream in BSA-NP associated or unbound 

neutrophils. (B) ImageStream images showed single neutrophil event in Brightfield camera 

and its staining with anti-CD11b antibody by red color. NO level and associated BSA-NP per 

neutrophil were represented by blue and green fluorescence, respectively. Each row 
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represented a single neutrophil, and depicts NO levels and NP uptake (C) Neutrophil 

activation after BSA-NP association was evaluated by determination of an average activation 

status (MFI of NO) and bound BSA-NP (MFI of DiR-BSA-NP) per neutrophil at different 

time points (0, 15, 60, 120 and 180 minutes) after incubating neutrophils with a 100μg dose 

of BSA-NP containing conditioned media. t indicated time in minutes; t0= 0 minute, t60= 60 

minutes, t120= 120 minutes after incubation of BSA-NP with neutrophils in conditioned 

media. n=3 independent experiments. 

 

Figure 3. Maximum association of BSA-NP with neutrophils achieved at 100 μg in vivo 

equivalent dose, without alteration in neutrophil activation/functionality in vitro. Murine 

neutrophils were incubated with 0, 10, 100 or 1000μg of BSA-NP containing SC1-

conditioned media for 3 hours and their BSA-NP binding capacity, (MFI of DiR-BSA-NP per 

neutrophil, A), and activation status (MFI of NO per neutrophil, B), were assessed. 

Furthermore, 22 cytokines were estimated using LEGENDplexTM bead-based immunoassay 

in conditioned media after 6 hours incubation of neutrophils with 0, 10, 100 and 1000μg 

doses of BSA-NP. Neutrophil secreted cytokines, CCL2 (B) and CXCL10 (D) are shown. For 

phagocytosis assay (E), SC1 cells were treated with cabozantinib (10uM) for 24 hours and 

stained with DiI dye, and then incubated with neutrophils for 6 hours in presence of 0, 10, 

100 and 1000μg of BSA-NP. To calculate percent phagocytosis, the uptake of DiI dye per 

neutrophil was monitored using flow cytometry. n=3 independent experiments. 

 

Figure 4. Cabozantinib treatment in vivo results in an increase in neutrophil-associated, 

dye-loaded BSA-NPs within prostate tumors. 

Pb-Cre; PTENflp53fl/fl mice (n=3 mice per group) with established prostate tumors, were 

treated with BSA-NP alone, cabozantinib plus uncoated NP, cabozantinib plus BSA-NP 
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cabozantinib plus BSA-NP plus Ly6G antibody, as described in Methods Tumor, kidney, 

spleen, bone, lung and liver were harvested from each mouse and IVIS imaging were 

performed to assess NP uptake in these organs. The fluorescence images of these organs were 

normalized using background fluorescence from respective non-NP treated organs on the 

IVIS system. The overlay of fluorescent images with bright field images were done on IVIS 

system and presented for (A) BSA-NP (B) cabozantinib+uncoated NP, (C) cabozantinib+ 

BSA-NP (D) cabozantinib+BSA-NP+Ly6G antibody (neutrophil depletion) treated groups. 

(E) Tumors were delineated on overlaid fluorescence/bright field images using image J, and 

mean fluorescence was obtained to evaluate NP uptake.  

 

Figure 5. Cabozantinib increases neutrophil-associated BSA-NP uptake into the 

prostate tumor microenvironment. Prostate tumors of Pb-Cre; PTENflp53fl/fl mice (n=3 

mice per group) were treated with BSA-NP, cabozantinib+uncoated NP, cabozantinib+BSA-

NP and cabozantinib+BSA-NP+Ly6G antibody for 3 days, as described in Figure 4. (A) 

Tumors were harvested and single cell suspensions were stained with anti-CD11b antibody, 

anti-Gr1 antibody and frequency of tumor-infiltrating neutrophil were analyzed using flow 

cytometry. The CD11b+Gr1+ populations were further gated for DiO-NP. (B) Representative 

flow plots showing frequency of DiO-NP-associated neutrophils within the TME. (C) To 

determine % NP uptake within the TME, the harvested prostate tumors were homogenized, 

and concentration of DiO-NP was determined by fluorometry analysis (λexcitation= 485 nm; 

λemission=510 nm). % NP uptake was calculated on the basis of administered NP dose. 

 

Figure 6. BSA-NPs do not significantly associate with blood or splenic neutrophils in 

response to cabozantinib treatment in vivo. Pb-Cre; PTENflp53fl/fl mice (n=3 mice per 

group) with established prostate tumors, were treated with BSA-NP and cabozantinib+BSA-
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NP for 3 days, as described in Figure 4. Single cell suspensions were prepared from 

peripheral blood and splenic tissue, and stained with anti-CD11b antibody and anti-Gr1 

antibody. The frequency of NP-associated neutrophils were quantified by gating 

CD11b+Gr1+DiO+ populations on flow cytometry. The representative flow plots showed 

frequency of DiO-NP associated circulating neutrophils (A) and splenic neutrophils (B). (C) 

Proposed model for cabozantinib-induced accumulation of BSA-coated PLGA NPs within 

prostate tumors. Cabozantinib enhances neutrophil activation, resulting in increased 

internalization of BSA-NPs within the prostate TME. This platform provides a novel 

nanoimmunotherapeutic strategy for enhanced therapeutic payload delivery within tumors. 
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Figure 2 
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Figure 3 
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Figure 4 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.13.037531doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.037531
http://creativecommons.org/licenses/by/4.0/


 
 

Figure 5 
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