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Abstract 
Background: 

Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how 

such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the 

post-transcriptional level and have been shown to play key roles in various biological processes. Here, 

we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the 

breast cancer methylome and how DNA methylation may regulate miRNA expression. 

 

Results 

miRNA expression and DNA methylation data from two breast cancer cohorts were subjected to 

genome-wide correlation analysis. Clustering of the miRNA expression-DNA methylation association 

pairs significant in both cohorts identified distinct clusters of miRNAs and CpGs. These clusters 

recapitulated important biological processes associated with breast cancer pathogenesis. Notably, two 

major clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated 

with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor 

(ER) signaling. Studying the chromatin landscape surrounding the CpGs associated with the estrogen-

signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA 

methylation of enhancers bound by FOXA1, GATA2 and ER-alpha. Further, at the hub of the 

estrogen-cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein 

expression of the DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We 

found deregulation of hsa-miR-29c-5p already in pre-invasive breast lesions and postulate that hsa-

miR-29c-5p may trigger early event abnormal DNA methylation in ER positive breast cancer. 

 

Conclusions  

We describe how miRNA expression and DNA methylation interact and associate with distinct breast 

cancer phenotypes. 

 

Keywords 

miRNA, methylation, omics integration, breast cancer, systems biology 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.12.038182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.038182
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
	

Background 

Breast cancers are highly heterogeneous at the clinical and molecular level. Alterations of methylation 

at CpGs are found already in breast pre-invasive lesions [1] and are thought to shape the methylation 

patterns found in the different clinical and molecular breast cancer subtypes [2, 3]. The epigenome 

contributes to the cancer cells’ phenotype by regulating gene expression and the accessibility of 

regulatory regions. Previous studies have identified aberrant DNA methylation at gene promoters in 

breast cancer associated with clinically relevant subgroups. However, little attention has been given to 

DNA methylation at other non-coding regions. We recently showed that DNA methylation at 

enhancers identifies distinct breast cancer lineages [2]. The epigenome and the chromatin landscape 

are important features to explain breast cancer development and also progression, as recently 

demonstrated for endocrine resistance in breast cancer [4]. It is therefore essential to understand the 

crosstalk between the genome and the epigenome and its role in defining tumor phenotypes. Key 

enzymes, such as DNA methyltransferases (DNMTs) and Ten-eleven translocation enzymes (TETs) 

regulate the DNA methylation machinery and alterations of their expressions have been described in 

cancers with serious consequences in terms of cancer cell phenotype [5, 6]. However, how such 

enzymes may be early deregulated during carcinogenesis is still unclear. 

  

MicroRNAs (miRNAs) are a type of small (~22 nucleotides) non-coding RNAs regulating protein 

expression through targeting of messenger RNA (mRNA) for degradation or by inducing translational 

repression [7]. miRNAs play crucial roles in the regulation of cancer-associated processes such as 

proliferation, apoptosis, and differentiation, and are known to elicit context- and cell-type specific 

expression [8, 9]. In breast cancer, expression of miRNAs has been associated with clinical and 

molecular subtypes [10-12], progression [13-15], prognosis [16, 17] and expression of oncogenes [18]. 

Importantly, miRNAs have been shown to regulate the expression of epigenetic regulators such as 

DNMTs and TETs [19, 20]. We have previously shown how concerted alterations in copy number or 

promoter methylation affect miRNA expression in cis, resulting in up-regulation of oncogenic 

miRNAs and down-regulation of tumor-suppressor miRNAs [21]. However, how DNA methylation at 

distal regulatory regions is associated with miRNA expression in breast cancer remains poorly 

understood.  

 

The aim of this study was to elucidate how miRNA expression associates with genome-wide DNA 

methylation patterns in breast cancer in cis and in trans. Specifically, we studied the interplay between 

miRNA expression and DNA methylation and how it may impact breast cancer subtypes. To this end, 

we integrated whole-genome miRNA expression with CpG DNA methylation and performed a 

genome-wide correlation analysis identifying miRNA-methylation Quantitative Trait Loci 

(mimQTLs). We combined and integrated mimQTLs with mRNA/protein expression, clinical 

information, genome segmentation, Assay for Transposase-Accessible Chromatin using sequencing 
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(ATAC-seq) data, transcription factor (TF) binding, and Chromatin Interaction Analysis by Paired-

End Tag Sequencing (ChIA-PET) RNA polymerase II (Pol2) data to elucidate the miRNA-

methylation crosstalk in breast cancer.  

 

Results 

Identification of miRNA-methylation Quantitative Trait Loci (mimQTLs) 

To identify robust associations between the expression of miRNAs and DNA methylation at CpG 

sites, we correlated genome-wide miRNA expression and DNA methylation in two independent breast 

cancer cohorts: Oslo2 (n=297) and The Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma 

cohort (n=439; see Additional file 1 for workflow outline). Only miRNAs and CpGs found in both 

cohorts were considered for the estimation of the Spearman correlation between the expression of 346 

miRNAs and methylation of 142 804 CpGs, resulting in 140 443 (0.28%) and 1 351 887 (2.74%) 

significant miRNA-CpG associations (Bonferroni-corrected p-value<0.05) in the Oslo2 and TCGA 

cohorts, respectively (see Methods). With a greater sample size for TCGA, a larger number of 

significant associations were observed, as expected (Additional file 2). We identified 89 118 

significant correlations with the same sign in both cohorts, being the first evidence of robust 

associations between miRNA expression and DNA methylation (Additional file 3). These correlations 

involved 119 unique miRNAs and 26 746 unique CpGs (Additional file 4a, b). A significant 

correlation between the expression of a miRNA and methylation at a CpG is hereafter referred to as a 

miRNA-methylation Quantitative Trait Loci (mimQTL).  

  

Identification of mimQTL clusters 

To identify mimQTLs sharing similar features of biological relevance in breast cancer, we performed 

unsupervised hierarchical clustering of the Spearman correlation p-values binarized as -1 (negative) 

and +1 (positive), which led to the identification of three miRNA clusters (x-axis) and two CpG 

clusters (y-axis) (Figure 1a). miRNA clusters A, B, and C consisted of 23, 59, and 37 miRNAs, 

respectively. CpG clusters 1 and 2 contained 14 040 and 12 706 CpGs, respectively. For each miRNA 

cluster, the number of associated mimQTL pairs were 66 202 (74% in cluster A), 9252 (11% in B) and 

13 664 (15% in C), respectively. We observed more negative correlations (64%) than positive ones 

(Additional file 5). Of the CpGs associated with miRNAs in cluster C, 60% were also associated with 

miRNAs in cluster A. However, the sign of the correlation was inverted as shown by the opposite blue 

or red colors on the heatmap (Figure 1a). In contrast, most of the CpGs associated with miRNAs in 

cluster B were unique to this cluster. The number of CpG associations per miRNA varied from one up 

to 14 469 (hsa-miR-155-5p) with a median of 79 CpG associations (Additional file 4a and Additional 

file 6a). For the CpGs, the number of associations to miRNAs ranged from one up to 30 with a median 

of three; only a small subset (1.2%) of almost exclusively cluster 1 CpGs had more than 10 miRNA 
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associations (Additional file 4b and Additional file 6b). As expected, a high degree of co-expression 

and co-methylation was observed by the members of a given cluster (Additional file 7). These initial 

analyses led us to identify for the first time global and robust correlations between miRNA expression 

and CpG methylation across two breast cancer cohorts. 

 

 
Figure 1. Identification of miRNA-methylation Quantitative Trait Loci (mimQTLs) clusters and 
corresponding annotation. a) Heatmap showing hierarchical clustering of the 89 118 significant mimQTLs 
found in both the Oslo2 and TCGA cohorts. miRNAs are shown in columns and CpGs in rows with blue color 
indicating a negative correlation and red color indicating a positive correlation between miRNA expression and 
CpG methylation. Three main miRNA clusters (cluster A, B and C) and two main CpG clusters (cluster 1 and 2) 
were identified. b-d) Barplots showing the top five most enriched pathways for genes co-expressed (miRNA-
mRNA expression Spearman correlation >0.4) with the miRNAs of cluster A (b), B (c) and C (d). The x-axes 
show the –log10(p-value) of the pathway enrichment obtained from Enrichr [22]. Bars are color-coded according 
to the associated miRNA cluster. e-g) Results from fitting generalized linear models (GLM) to model miRNA 
expression as a multivariate function of lymphocyte infiltration (obtained by Nanodissect [23]), fibroblast 
infiltration (obtained by xCell [24]) and ESR1 mRNA expression. The GLM coefficients are depicted with 95% 
confidence intervals for each of the top miRNAs from each miRNA cluster. Asterisks (***) denote a p-
value<0.001 and “ns” denotes not significant (p-value >0.05).   
 

miRNA clusters highlight important processes of breast cancer pathogenesis  

To identify biological functions shared by miRNAs in the same cluster (x-axis of the heatmap Figure 

1), we identified genes positively co-expressed with the miRNAs of each cluster (mRNA-miRNA 

Spearman correlation >0.4 in both cohorts; Additional file 4c) and performed gene set enrichment 

analyses (GSEA) using Enrichr [22].  

  

miRNA cluster A – the immune cluster 

miRNAs in cluster A were co-expressed with genes involved in immune cell differentiation and 

signaling (Figure 1b and Additional file 4d). The top five miRNAs with most correlations to CpGs in 

Cluster A (and also overall) were hsa-miR-155-5p (n=14 469), hsa-miR-146a-5p (n=12 546), hsa-
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miR-150-5p (n=11 679), hsa-miR-142-5p (n=8320), and hsa-miR-135b-5p (n=5766). Concordant with 

the GSEA, we have previously shown in a third independent breast cancer cohort that these miRNAs 

are highly associated with immune response processes [10]. To further confirm the association 

between miRNA cluster A and immune response, we used gene expression to score lymphocyte 

infiltration in each tumor using Nanodissect [23]. We found an enrichment of positive correlations 

between cluster A miRNA expression and tumor immune infiltration in both cohorts (hypergeometric 

test p-value<0.001 considering the correlation between all miRNAs and the lymphocyte score as 

background; Additional file 8a, b and Additional file 4e). Altogether, these results suggest that 

miRNAs in cluster A are either expressed by tumor infiltrating immune cells or mold the tumor 

microenvironment. This is further supported by their higher expression in estrogen receptor (ER) 

negative tumors (Additional file 4f and Additional file 9a, b), which have higher immune infiltration 

compared to ER positive tumors [25, 26]. 

 

miRNA cluster B – the fibroblast cluster  

miRNAs in cluster B were co-expressed with genes enriched for extracellular matrix (ECM) and focal 

adhesion (Figure 1c and Additional file 4d). As fibroblasts are strongly associated with biophysical 

forces of the tumor microenvironment and in shaping the ECM through the deposition of collagen 

[27], we computed a score reflecting the relative amount of fibroblasts in each sample using gene 

expression and the xCell [24] algorithm. We found that the expression of miRNAs in cluster B was 

significantly enriched for positive correlations to the fibroblast score (hypergeometric test p-

value<0.001 considering the correlation between all miRNAs and the fibroblast score as background; 

Additional file 8c, d and Additional file 4e). miRNAs of this cluster showed in general higher 

expression in ER positive compared to ER negative ones in the Oslo2 cohort, and consistent 

differential expression between PAM50 subtypes with highest expression found in the luminal A and 

normal-like subtypes (Additional file 4f and Additional file 9c, d). 

 

miRNA cluster C – the estrogen signaling cluster 

miRNAs in cluster C were co-expressed with genes associated with hormone-regulated processes lead 

by estrogen signaling (Figure 1d and Additional file 4d). Indeed, in both Oslo2 and TCGA the 

expression of cluster C miRNAs was significantly enriched for positive correlations to estrogen 

receptor mRNA (ESR1) expression (hypergeometric test p-value<0.001 considering the correlation 

between all miRNAs and ESR1 mRNA as background; Additional file 8e, f and Additional file 4e), 

and the miRNAs were mostly upregulated in ER positive tumors compared to ER negative ones 

(Additional file 4f and Additional file 9e, f). We identified hsa-miR-29c-5p as the hub of cluster C 

with the highest number of associations to CpG methylation (n=4764). This miRNA has been 

previously identified as one of the most significantly differentially expressed miRNAs between ER 

positive and negative tumors [10]. Thus, while miRNAs in cluster A and B reflected heterogeneity 
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within the tumor microenvironment, miRNAs in cluster C were associated with estrogen signaling and 

ER positive versus negative breast cancer diseases.  

To further investigate the association between miRNA expression and the three characteristics of the 

clusters identified above (immune and fibroblast infiltration, and ER status), we modeled miRNA 

expression as a multivariate function of lymphocyte and fibroblast infiltration as well as ESR1 mRNA 

expression. Figure 1e-g shows the coefficients for each characteristic to predict the expression of the 

miRNA with the highest number of CpG associations in each cluster. For nine out of 23 miRNAs in 

cluster A (Additional file 4g), including hsa-miR-155-5p, the ‘hub’ of cluster A (Figure 1e), the 

lymphocyte infiltration score was the most significant explanatory variable for expression. In cluster 

B, the fibroblast infiltration score was the variable significantly associated with miRNA expression for 

51 out of 59 miRNAs across both cohorts as demonstrated for hsa-miR-99a-5p (Figure 1f and 

Additional file 4g). For cluster C (Figure 1g), ESR1 mRNA expression (surrogate for ER status) was 

significantly associated with hsa-miR-29c-5p expression, the hub of cluster C. Altogether, our analysis 

of miRNA expression in the three mimQTL-miRNA clusters clearly identified distinct signaling 

pathways and processes associated with different biological and molecular aspects of breast cancer. 

 

CpGs in mimQTL clusters reside in chromatin contexts associated with breast cancer subtypes 

Next, we aimed to biologically annotate the CpGs of clusters 1 and 2, starting with their genomic 

position. First, we assessed pathway enrichment of their closest associated gene to infer any functional 

pathway association. Second, ChromHMM segmentation of the genome of several cell lines spanning 

breast cancer subtypes and ATAC-seq data was analyzed to study the genomic context of the CpGs 

within cluster. Finally, we assessed their overlap with transcription factor (TF) binding sites (TFBSs) 

derived from computational TF binding models and Chromatin Immunoprecipitation Sequencing 

(ChIP-seq) data [28]. 

 

Cluster 1 CpGs 

CpGs in cluster 1 mapped to 4809 genes according to the annotation of the Illumina 

HumanMethylation450k array. With GSEA using Enrichr [22], we found these genes enriched in 

signaling and cancer-associated pathways such as the Ras and PI3K-Akt signaling pathways 

(Additional file 4h). According to the ChromHMM genome segmentation of breast cancer cell lines 

[29], cluster 1 CpGs were enriched at enhancers, especially of ER positive/luminal cell lines (Figure 

2a and Additional file 4i). ATAC-seq data from TCGA confirmed that the regions surrounding these 

CpGs were more accessible (open) in ER positive than in ER negative tumors (Wilcoxon p-value = 

6.38e-5; Figure 2b). Furthermore, using the UniBind [28] database storing direct TF-DNA interactions 

for 231 TFs using 1983 human ChIP-seq data sets, we found cluster 1 CpGs enriched at FOXA1/2, 

GATA2/3, TFAP2C, and ESR1 (encoding ER-alpha) binding sites; these TFs are known to drive ER 

positive breast cancers [2, 30] (Figure 2c). Unsupervised clustering of the DNA methylation values  
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Figure 2. Functional annotation of the CpG clusters. a) Genomic location enrichment of mimQTL CpGs in 
cluster 1 according to ChromHMM data from cell lines representing different breast cancer subtypes [29]. Active 
Genic Enhancer=Act_Gen_Enh, Active Transcription Flanking=Act_Transc_Flank, Bivalent 
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Enhancer=Biv_Enh, Active Intergenic Enhancer=Act_Intergen_Enh. b) Average normalized counts per tumor 
sample for all ATAC-seq peaks mapped to CpGs of cluster 1 (TCGA data). c) Swarm plot showing enrichment 
of TF binding sites (–(log10(p-value) using Fisher´s exact tests) on the y-axis for CpGs of cluster 1 (n=14 040) 
according to UniBind [28]. TF names of the top 10 enriched TF binding sites data sets are provided with 
dedicated colors. Data sets for the same TFs are highlighted with the corresponding colors. d) Heatmap showing 
hierarchical clustering of methylation levels of CpG cluster 1 (n=14 040) in the Oslo2 cohort (CpGs in rows and 
tumors in columns). Tumors are annotated according to PAM50 molecular subtypes; Lymphocyte infiltration 
(LI) quartile groups 1(low)–4(high); Fibroblast infiltration quartile groups (Fibro): 1(low)–4(high); Human 
epidermal growth factor receptor 2 (HER2) status; Estrogen receptor (ER) status. CpGs are annotated according 
to overlap with regions annotated as “Active Intergenic Enhancer” from ChromHMM. e) Boxplot showing 
average DNA methylation of CpGs from cluster 1 in normal breast tissue (n=17), ER positive (pos; n=223) and 
negative tumors (neg; n=60) of the Oslo2 cohort. f) Enrichment of mimQTL CpGs in cluster 2 according to 
ChromHMM data. g) Average normalized counts for ATAC-seq peaks mapped to CpGs of cluster 2. h) 
Enrichment of TF binding sites for CpGs of cluster 2 (n=12 706). i) Hierarchical clustering of methylation levels 
of CpG cluster 2 (n=12 706). j) Boxplot showing average DNA methylation of Cluster 2 CpGs when Oslo2 
tumors were separated into lymphocyte infiltration quartile groups from low (1) to high (4). Wilcoxon rank-sum 
p-values (two-group comparisons) and Kruskal-Wallis p-values (three or more groups) are indicated. 
 

associated with cluster 1 CpGs separated the tumors according to breast cancer subtypes (Figure 2d 

and Additional file 10a for the Oslo2 and TCGA cohorts, respectively). Cluster 1 CpGs showed 

overall lower DNA methylation in ER positive and luminal breast cancer subtypes (Figure 2e and 

Additional file 11a). These lines of evidence show that cluster 1 CpGs are found at accessible 

enhancers with ER-associated TFBSs and are hypomethylated in ER positive/luminal tumors.  

 

Cluster 2 CpGs 

Applying similar analyses to cluster 2 CpGs, we found the nearest genes (n=3865) associated with 

cancer and immune system-related pathways (Additional file 4j). Cluster 2 CpGs were enriched at 

breast cancer enhancer regions, but to a lower extent than cluster 1 CpGs, and more at enhancers from 

ER negative cell lines (Figure 2f and Additional file 4i). Further, CpGs in cluster 2 were at genomic 

regions more open in ER negative tumors than in ER positive ones, according to ATAC-seq data 

(Wilcoxon p-value = 0.02; Figure 2g). TFBSs associated with TFs involved in hematopoiesis and 

immune processes such as SPI1, TAL1, and RUNX1 were enriched close to cluster 2 CpGs (Figure 

2h). Unsupervised clustering using the DNA methylation of cluster 2 CpGs grouped breast cancer 

samples according to their level of lymphocyte infiltration derived from the Nanodissect scores 

(Figure 2i). Finally, DNA methylation of cluster 2 CpGs negatively correlated with lymphocyte scores 

(i.e. low methylation – high lymphocyte infiltration and vice versa; Figure 2j and Additional file 11b). 

Thus, the methylation of cluster 2 CpGs is driven by intra-tumor heterogeneity characterized by 

infiltration of immune cells. 

  

Functional interpretation of CpG and miRNA mimQTL clusters 

Functional association between CpG cluster 1 and miRNA cluster C 

Altogether, we found cluster 1 CpGs to be associated with regulatory regions important for ER 

signaling and residing in more open and less methylated genomic regions in ER positive tumors than 

in ER negative ones (Figure 2a, b). Hence, the negative correlations between CpG cluster 1 and 
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miRNA cluster C observed in Figure 1a represent functional CpG-miRNA associations of low 

methylation at cluster 1 CpGs (Figure 2e) correlated with higher expression of cluster C miRNAs in 

ER positive/luminal tumors (Additional file 4f). 

 

Functional association between CpG cluster 2 and miRNA cluster A 

On the other hand, cluster 2 CpGs were associated with immune infiltration and negatively correlated 

through mimQTL with cluster A miRNAs (Figure 1a), miRNAs themselves associated with immune 

infiltration [10]. We hypothesize that this observation is influenced by and reflect the variation in the 

presence of infiltrating immune cells in the tumors that have very different DNA methylation and 

miRNA expression than the cancer cells. To further support this interpretation we retrieved DNA 

methylation data from ER positive and negative breast cancer cell lines and from different immune 

cell types (Additional file 12). Focusing on the hub CpG of miRNA cluster A (the CpG with most 

associations to miRNAs in cluster A), a clear difference in methylation was observed between the 

cancer cell lines (hypermethylated) and immune cells (hypomethylated; Wilcoxon rank-sum p-value = 

4.56e-12). This is consistent with ER negative/basal-like breast cancers showing higher immune 

infiltration compared to ER positive/luminal tumors [26], as the methylation of cluster 2 CpGs was 

significantly lower (Additional file 11c, d) and the miRNAs of cluster A were more expressed 

(Additional file 4f) in ER negative/basal-like tumors.  

 

Regulatory link between DNA methylation and miRNA expression 

We next focused on the regulatory networks of miRNAs in cluster C as our mimQTL analysis 

highlighted regulatory regions (e.g. enhancers) linked to these miRNAs in a breast cancer subtype-

specific manner. To find regulatory regions for miRNAs affected by DNA methylation, we targeted 

our analyses on the miRNA-CpG associations overlapping with (i) a catalogue of super-enhancers 

(SE) recently identified by Suzuki et al. [31] to drive miRNA expression, (ii) experimentally-derived 

long-range interactions with Pol2 binding (ChIA-PET Pol2 data) in the luminal MCF7 cell line [32] 

and (iii) binding regions for TFs known to drive ER positive breast cancers (ESR1, FOXA1 and 

GATA3) in the MCF7 cell line (ChIP-seq data).  

 

Altogether, 273 mimQTLs were identified where the CpG overlaps an annotated breast miRNA SE 

(Additional file 4k). Interestingly, CpGs of cluster 1 were found to be enriched for residing within 

miRNA SEs compared to the background of all CpGs (hypergeometric test p-value= 1.29 x10-26), 

further confirming the enrichment of cluster 1 CpGs at distal regulatory regions regulating miRNA 

expression. Of the 273 mimQTLs, 50 represented a direct in cis association where the CpG was found 

in a miRNA SE mapping [31] with the corresponding mimQTL miRNA. These 50 in cis mimQTLs 

represented eight unique miRNAs all found to be cluster C miRNAs and all with significant negative 

correlations with the corresponding CpGs (Spearman correlation ranging from -0.30 to -0.68; 
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Additional file 4k). This analysis suggests, for the first time to our knowledge, that DNA methylation 

at super-enhancers is an important regulatory feature for miRNA expression in breast cancer.  

 

In cis mimQTLs (i.e. CpG and miRNA on the same chromosome) were enriched at long-range 

chromatin interactions with Pol2 as defined with ChIA-PET in the luminal MCF7 cell line [32] 

(hypergeometric test p-value 4.51 x 10-4). Altogether, 168 Pol2 ChIA-PET loops linked 120 pairs of 

CpGs and miRNAs in mimQTLs (Additional file 4l). These mimQTLs represented 24 unique 

miRNAs, of which 15 were from miRNA cluster C. Thus, with the mimQTL analysis we identified 

how DNA methylation at regulatory regions including super-enhancers and long-range distance 

interactions regulate the expression of miRNAs predominantly from miRNA cluster C.  

 

Two examples of overlap between ChiA-PET Pol2 loops, miRNA-SE, and mimQTLs are shown for 

hsa-miR-342-3p/5p (Figure 3a) and hsa-let7b-5p (Figure 3b). We observed for these two examples 

that the SE/long-range interactions also overlap with TF binding regions for ERα, FOXA1, or 

GATA3. The combination of these evidences suggests that through the mimQTL analysis we identify, 

for miRNA cluster C, hypomethylated regulatory regions in ER positive breast cancer exemplified by 

hsa-miR-342-3p/5p (Figure 3c) and hsa-let7b-5p (Figure 3d), which may facilitate the binding of ERα, 

FOXA1, and GATA3. This may further lead to the increased expression of hsa-miR-342-3p/5p 

(Figure 3e) and hsa-let7b-5p (Figure 3f) in ER positive breast tumors. Altogether, these results suggest 

a direct regulatory link between the expression of cluster C miRNAs and DNA methylation at CpGs of 

ER-associated TF binding regions. 

 

 
Figure 3. Super-enhancer (SE) - miRNA interactions and impact of CpG methylation on miRNA 
expression. a) Example of mimQTLs (blue arcs) and ChIA-PET Pol2 loops (red arcs) where mimQTL CpGs 

a c
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(n=3) or one foot of the ChIA-PET Pol2 loop are located within the hsa-miR-342 SE (purple) and the other loop 
foot reside within hsa-miR-342-5p/-3p. Also shown are the location of 450k methylation array CpGs and ERα, 
FOXA1 and GATA3 binding regions obtained from ChIP-Seq experiments of the MCF7 cell line. The figure 
was made using the WashU Epigenome Browser v. 46.2 [33]. b) mimQTLs and ChIA-PET Pol2 loops where 
mimQTL CpGs (n=21) or one foot of the ChIA-PET Pol2 loop are located within the let-7b SE (purple) and the 
other loop foot reside within hsa-let-7b-5p. c) Boxplot showing average DNA methylation in Oslo2 estrogen 
receptor (ER) positive (pos) and negative (neg) tumors across all CpGs within the hsa-miR-342 SE and in 
mimQTL with hsa-miR-342-3p/-5p (n=3). d) Boxplot showing average DNA methylation in Oslo2 estrogen 
receptor (ER) positive and negative tumors across all CpGs within the let-7b SE and in mimQTL with hsa-let-
7b-5p (n=21). e) Boxplots showing hsa-miR-342-5p/-3p expression in ER positive and negative tumors of the 
Oslo2 cohort. f) Boxplots showing hsa-let-7b-5p expression in ER positive and negative tumors of the Oslo2 
cohort. P-values resulting from Wilcoxon rank-sum tests are indicated in the boxplots. 
 

 

miRNAs associated with global breast cancer DNA methylation alterations 

Further, we sought to identify miRNAs associated with methylation deregulation in breast cancer. We 

developed a global methylation alteration (GMA) score that reflects how overall DNA methylation in 

breast tumors deviates from healthy breast tissues. In brief, for each tumor, the deviation in 

methylation per CpG relative to that of normal breast tissue was summed up (see Methods for details). 

We found that ER positive and luminal B tumors showed a higher GMA score than ER negative 

tumors and other PAM50 subtypes (Figure 4 a-d). To identify which miRNAs may be the most potent 

at driving DNA methylation alterations, we correlated the expression of each of the 119 mimQTL 

miRNAs to the GMA score (Additional file 4m). We observed that miRNAs in cluster C were 

enriched for positive correlations to the GMA score when compared to the background of all miRNAs 

tested (hypergeometric test p-values<0.001; Figure 4 e, f). Table 1 lists the miRNAs positively 

correlated with the GMA score across both cohorts. Inversely, cluster A and B miRNAs were enriched 

for negative correlations with the GMA score (hypergeometric test p-values<0.001). Such cluster-

specific associations to the GMA score was further illustrated by plotting each miRNA’s expression 

correlation with the GMA score according to clusters (Figure 4 g, h).  
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Figure 4. Global Methylation Alteration (GMA) score in clinical breast cancer groups and correlation to 
miRNA expression. a, b) Boxplots showing the GMA score in estrogen receptor (ER) positive (pos) and 
negative (neg) tumors of the Oslo2 cohort (a) and TCGA cohorts (b). Wilcoxon rank-sum test p-values are 
denoted. c, d) Boxplots showing the GMA score in PAM50 molecular subtypes of the Oslo2 (c) and TCGA 
cohorts (d). LumA: Luminal A, LumB: Luminal B, Basal: Basal-like, Her2: HER2-enriched. Kruskal-Wallis test 
p-values are denoted. e, f) Plots showing density curves of the correlation between miRNA cluster members and 
the GMA score for the Oslo2 (e) and TCGA (f) cohorts. The density lines are color-coded according to miRNA 
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cluster. g, h) Barplots showing miRNAs decreasingly ranked according to GMA score correlation level (y-axis) 
in the Oslo2 (g) and TCGA cohorts (h). The bars are color-coded according to miRNA cluster.  
 

 
Table 1. miRNAs significantly positively correlated with the global methylation alteration (GMA) 
score across both cohorts. The table is sorted according to correlations in the Oslo2 cohort. 

MIMAT miRNA miRNA cluster 

Oslo2 
Spearman 
correlation 

miRNA 
expression - 
GMA score 

Oslo2 correlation p-
value 

TCGA 
Spearman 
correlation 

miRNA 
expression - 
GMA score 

TCGA correlation 
p-value 

MIMAT0003301 hsa-miR-33b-5p C 0.357 2.30E-10 0.440 3.50E-22 

MIMAT0002819 hsa-miR-193b-3p C 0.252 1.18E-05 0.324 4.44E-12 

MIMAT0000459 hsa-miR-193a-3p C 0.249 1.47E-05 0.258 4.65E-08 

MIMAT0000432 hsa-miR-141-3p C 0.246 1.94E-05 0.358 1.35E-14 

MIMAT0000728 hsa-miR-375 C 0.243 2.25E-05 0.286 1.20E-09 

MIMAT0000095 hsa-miR-96-5p C 0.221 1.19E-04 0.387 <1.00E-25 

MIMAT0000259 hsa-miR-182-5p C 0.220 1.30E-04 0.326 3.40E-12 

MIMAT0000682 hsa-miR-200a-3p C 0.219 1.39E-04 0.246 2.01E-07 

MIMAT0000688 hsa-miR-301a-3p C 0.206 3.46E-04 0.318 1.11E-11 

MIMAT0004673 hsa-miR-29c-5p C 0.204 3.96E-04 0.333 1.00E-12 

MIMAT0000261 hsa-miR-183-5p C 0.204 4.04E-04 0.353 3.16E-14 

MIMAT0000450 hsa-miR-149-5p C 0.198 6.14E-04 0.317 1.36E-11 

MIMAT0000617 hsa-miR-200c-3p C 0.192 8.76E-04 0.365 3.58E-15 

MIMAT0000252 hsa-miR-7-5p A 0.192 8.95E-04 0.212 7.64E-06 

MIMAT0003283 hsa-miR-615-3p C 0.187 1.24E-03 0.252 9.96E-08 

MIMAT0000267 hsa-miR-210 C 0.170 3.27E-03 0.377 1.65E-16 

MIMAT0000710 hsa-miR-365a-3p C 0.169 3.56E-03 0.260 3.76E-08 

MIMAT0004929 hsa-miR-190b C 0.164 4.49E-03 0.286 1.09E-09 

MIMAT0004614 hsa-miR-193a-5p C 0.128 2.75E-02 0.191 6.09E-05 

MIMAT0005949 hsa-miR-664-3p C 0.119 4.11E-02 0.148 1.86E-03 

 

 

hsa-miR-29c-5p is negatively correlated to DNA methyltransferase 3A and is deregulated early 

during breast cancer pathogenesis 

Hypothesizing that cluster C miRNAs may be positively correlated with the GMA score through 

regulation of enzymes involved in DNA methylation, we assessed the in silico target prediction 

database TargetScan [34] focusing on enzymes regulating DNA methylation (DNMTs and TETs). 

Altogether, 18 unique miRNAs belonging to miRNA cluster C were predicted to target DNMTs and/or 

TETs (Additional file 4n). We further found that three of the 18 miRNAs showed consistent and 

significant negative correlation to the mRNA of DNA methylation regulating enzymes (DNMT3A - 

hsa-miR-29c-5p (Figure 5a), TET1 - hsa-miR-365a-3p and TET1 - hsa-miR-375; Additional file 4n). 

We further confirmed the negative correlation between hsa-miR-29c-5p and DNMT3A also at the 
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protein level (Figure 5b, Spearman’s rho=-0.77) using proteome data [35] of the Oslo2 samples 

(n=45). Note that this inverse correlation between hsa-miR-29c-5p and DNMT3A protein levels was 

the third most negative correlation considering all correlations between miRNAs (n=713) and proteins 

(n=9995) in the Oslo2 cohort. Of note, a significant negative correlation was also observed between 

hsa-miR-29c-5p and DNMT3B/DNMT1 mRNA and protein levels (Additional file 13).  

 

 
 
Figure 5. Expression of hsa-miR-29c-5p and correlation to DNMT3A. a) DNMT3A mRNA expression (x-
axis) vs. hsa-miR-29c-5p expression (y-axis) measured in 377 samples of the Oslo2 cohort. Estrogen receptor 
(ER) positive (pos) tumors are plotted in blue and ER negative (neg) in red. b) DNMT3A protein expression (x-
axis) vs. hsa-miR-29c-5p expression (y-axis) measured in 45 samples of the Oslo2 cohort. c) hsa-miR-29c-5p 
expression in normal adjacent breast tissue (normal; n=76), ER positive (n=333) and ER negative tumors 
(n=106) of the TCGA cohort. Wilcoxon rank-sum test p-values are denoted. d) hsa-miR-29c-5p expression in 
ER positive (n=11) and ER negative (n=7) ductal carcinoma in situ (DCIS) samples and ER positive (n=9) and 
ER negative (n=5) invasive ductal carcinoma (IDC) samples from the same data set [13]. Wilcoxon rank-sum 
test p-values are denoted.  
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Furthermore, hsa-miR-29c-5p was found significantly upregulated in ER positive tumors compared to 

normal breast tissue and ER negative tumors (Wilcoxon rank-sum p-value = 1.39 x 10-6 and p-value < 

2.81 x 10-12; Figure 5c). To investigate whether the changes of hsa-miR-29c-5p expression may 

happen early during breast carcinogenesis causing DNA methylation alterations, we mined ductal 

carcinoma in situ (DCIS) samples (n=18) from an independent data set [13]. Indeed, in ER positive 

pre-invasive DCIS lesions, hsa-miR-29c-5p was significantly higher expressed than in ER negative 

DCIS lesions (Wilcoxon rank-sum p-value=0.002; Figure 5d), indicating that initial changes in hsa-

miR-29c-5p expression may drive early DNA methylation changes in DCIS as previously observed 

[1].   

 

Discussion 
This study is to our knowledge the first to assess the global relationship between the expression of 

miRNAs and DNA methylation on a genome-wide scale in breast cancer. Using two large and 

independent breast cancer cohorts we have identified robust associations that point to how miRNA 

expression may be regulated through methylation at distal regulatory regions and how miRNAs may 

contribute to mold the epigenetic landscape of breast cancer. Further, the analysis points to how 

miRNA expression may reflect levels of infiltration from the surrounding microenvironment. The 

mimQTL approach identifies a positive or negative sign of the relation between a miRNA and a CpG, 

but does not infer the causality of the association, if any. Grouping of the mimQTLs using hierarchical 

clustering revealed aspects of underlying intra- and inter-tumor heterogeneity in the form of immune 

cell or fibroblast infiltration and tumor ER status. Expression of miRNAs in cluster A were positively 

associated with the lymphocyte score reflecting immune infiltration. Indeed, the miRNAs in this 

cluster with most CpG associations, hsa-miR-155-5p, hsa-miR-146a-5p, hsa-miR-150-5p, and hsa-

miR-142-5p, have previously been associated with immune related pathways [10] and lymphocytic 

infiltration [16] in breast cancer. Furthermore, in a study characterizing miRNA expression in various 

cell types and tissues from McCall et al. [9], these miRNAs were found to be most highly expressed in 

B- and T-cells, further suggesting that our miRNA cluster A reflect signals coming from infiltrating 

immune cells. This underlies a need for understanding more about which type of cells from bulk tumor 

samples are actually expressing nominated miRNA cancer biomarkers. Importantly, the context- and 

cell type specific expression of miRNAs give them an attractive potential for deconvolution tools. 

Using the deconvolution tool xCell [24] based on mRNA expression, we linked miRNAs in cluster B 

to fibroblast cells as their expression was positively correlated with the fibroblast score. Fibroblasts 

are providers of ECM-components [36] and the genes co-expressed with the miRNAs were enriched 

for ECM-associated pathways. Assessing the catalogue of cell- and tissue type specific expression of 

miRNAs [9] supported this finding with the top miRNAs of this cluster, hsa-miR-99a-5p, hsa-miR-

125b-5p, hsa-miR-379-5p, hsa-miR-381, and hsa-miR-100-5p, being highly expressed in tissue from 

skin where fibroblasts are a major component. Interestingly, hsa-miR-125b-5p was found to induce 
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cardiac fibrosis [37]. Other studies pointed to a tumor-suppressor role of these miRNAs in breast 

cancer, for instance hsa-miR-99a-5p reduces breast cancer cell viability by targeting mTOR [38], hsa-

miR-125b-5p was shown to induce cell cycle arrest and reduce cell growth in breast cancer cells [39] 

and hsa-miR-379-5p was shown to regulate Cyclin B1 expression [40]. More studies using for 

instance in situ hybridization of tumor tissue sections are needed to further validate the cells of origin 

of the immune- and fibroblast-associated miRNAs of cluster A and B, respectively, and will help to 

further refine the role of these miRNAs in breast cancer. 

 

The miRNAs with most CpG associations in cluster C were markers of the ER positive, luminal 

phenotype of breast cancer [10]. Integrating mimQTLs with data from various sources including 

ChIA-PET Pol2 loops, ATAC-seq, ChIP-seq, and miRNA SEs we showed how their expression may 

be promoted by ensuring open and active enhancer regions where ER-associated TFs bind and loop to 

the miRNA-encoding genomic regions boosting both their transcription and processing [31]. We 

speculate that the observed demethylation of the miRNA SE CpGs in ER positive tumors lead to 

binding of ER-associated TFs making the SE active. Through activation, the SE is looped with 

Drosha/DGCR8 - a protein complex important for processing of the primary miRNA transcript to the 

shorter precursor transcript [41]. This SE-mediated miRNA processing was previously shown with 

ChIP-seq peaks for DGCR8 observed at both the transcription start site (TSS) and precursor miRNA 

regions for SE-associated miRNAs [31]. The looping of the miRNA SE to the miRNA TSS or mature 

sequence boost the transcription and the processing of the miRNA [31], which was in our study further 

supported by the negative mimQTL correlation; low SE CpG methylation associated with high 

miRNA expression in ER positive tumors. This emphasizes an important regulatory role for SE CpG 

methylation on miRNA expression in breast cancer. Indeed, miRNA expression deregulation in breast 

cancer through methylation alterations was previously described [16, 21, 42], but the focus has mainly 

been on CpGs in proximal promoter regions. As the importance of enhancer region conformation and 

methylation is becoming increasingly appreciated and given the great impact of miRNAs on the 

establishment and maintenance of cell phenotype, exploring this field will give new insights into 

cancer development and progression. Cluster C miRNAs were consistently enriched for positive 

correlations to the GMA score indicating that ER positive, luminal tumors may be more severely 

altered at the methylation level compared to ER negative tumors which may be more driven by 

alterations at the copy number level [12] and which showed methylation patterns more similar to the 

normal breast tissue samples.  

 

Our analyses of the genomic positions and methylation of CpGs in each cluster highlighted CpG 

cluster 1 associated with differences in DNA methylation of enhancers and TFBS according to ER 

status. On the other hand, cluster 2 was associated with intra-tumor heterogeneity and infiltration of 

immune cells. Importantly, our CpG analyses mapped back to the biological functions associated with 
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the miRNA clusters and therefore point to the fact that not only correlative but also functional 

associations link (i) CpG-cluster 1 and miRNA cluster C as both being associated with estrogen 

response and ER status and (ii) CpG cluster 2 and miRNA cluster A being related to tumor immune 

infiltration. However, it is important to note that inter-tumor heterogeneity defined by ER status and 

intra-tumor heterogeneity defined by immune infiltration are to some aspects two sides of the same 

coin as ER negative tumors show a higher degree of immune infiltration [26]. 

 

We identified hsa-miR-29c-5p as a potential epigenetic hub in ER positive breast cancer as it was the 

miRNA in cluster C with most CpG associations, positively correlated with the GMA score, 

upregulated in ER positive tumors compared to both ER negative tumors and normal breast tissue, in 

silico predicted to target DNMT3A and negatively correlated to DNMT3A mRNA and protein levels. 

The miR-29 family has previously been shown to directly target DNMTs [19], confirming a role for 

these miRNAs as epigenetic regulators, although for hsa-miR-29c the attention has been on the -3p 

mature form rather than the -5p. Further functional validation is required to prove the direct causal role 

of hsa-miR-29c-5p in determining luminal breast cancer phenotype. Supporting our hypothesis of hsa-

miR-29c-5p being important for establishing the ER positive/luminal breast cancer phenotype by 

targeting DNMT3A which further leads to hypomethylation of CpGs at ER-associated TFBSs, Chou et 

al. [43] found that GATA3 acts as a TF inducing the expression of the miR-29 family. This and other 

studies have, however, pointed to a tumor-suppressor role of the miR-29 family in breast cancer as 

they are typically found higher expressed in less aggressive/better prognosis subtypes and with over-

expression in cell lines inhibiting metastasis, proliferation, migration and growth [43-45]. 

Nevertheless, these findings are not contradictory with our hypothesis of the epigenetic regulator role 

of hsa-miR-29c-5p within luminal phenotypes. Importantly, focusing on subtype-specific progression 

we previously found in an independent data set that hsa-miR-29c-5p is upregulated in expression from 

DCIS to luminal A and B tumors supporting the potential role of this miRNA in breast cancer 

progression within ER positive tumors [14].  

 

In conclusion, we find that CpG methylation at ER-associated TF binding regions is likely to be 

important for regulation of miRNA expression in breast cancer. Furthermore, our study highlights that 

deregulation of hsa-miR-29c-5p expression is an early event that may result in downregulation of 

DNMT3A, which could further lead to hypomethylation of CpG sites important for ER positive breast 

cancer cell identity. The CpG sites affected are at enhancer regions with TFBS for ER-alpha, FOXA1, 

and GATA3, all known to be important for the luminal breast cancer phenotype.  
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Methods  
Clinical materials 

Two independent breast cancer cohorts with DNA methylation and miRNA expression available were 

here used in parallel; the Oslo2 breast cancer cohort [17, 18] and The Cancer Genome Atlas Breast 

Invasive Carcinoma (TCGA-BRCA) cohort [12]. 

 

The Oslo2 breast cancer cohort has been previously described [17, 18] and is a consecutive study 

collecting material from breast cancer patients with primary operable disease at several hospitals in 

south-eastern Norway. Patients were included in the years 2006-2019. The study was approved by the 

Norwegian Regional Committee for Medical Research Ethics (approval number 1.2006.1607, 

amendment 1.2007.1125), and patients have given written consent for the use of material for research 

purposes. All experimental methods performed are in compliance with the Helsinki Declaration.  

 

The Illumina Infinium HumanMethylation450 microarray was used to measure the DNA methylation 

levels of more than 450 000 CpG sites for 330 patient tumors from the Oslo2 cohort as previously 

described [1, 46]. Preprocessing and normalization involved steps of probe filtering, color bias 

correction, background subtraction and subset quantile normalization. The DNA methylation data 

have been previously published [2]. For comparison of Oslo2 CpG DNA methylation levels to normal 

tissue, data from normal breast tissue from reduction mammoplasty (n=17) were available [1]. 

 

The one-color microarray Human miRNA Microarray Kit (V2) design ID 029297 from Agilent 

Technologies was used to measure miRNA expression for 425 tumors of the Oslo2 cohort using 100 

ng total RNA as input. Scanning was performed on the Agilent Scanner G2565A. Samples were 

processed using Feature Extraction version 10.7.3.1 (Agilent Technologies). The data were log2-

transformed and for each tumor sample, considering only expressed miRNAs, the data were median 

centered. All non-expressed miRNAs across tumors were set to a common minimum value. The 

miRNA and mRNA expression data have been previously published [17]. In total, 297 Oslo2 tumor 

samples had matched methylation and miRNA expression data. Furthermore, of these, 45 samples had 

protein expression available measured by mass spectrometry and published in Johansson et al. [35].  

 

The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) cohort [12], from here on 

named TCGA, has been previously described [12]. For the DNA methylation data (level 3), probes 

with more than 50% missing values were removed, and further missing values were imputed using the 

function pamr.knnimpute (R package pamr) with k = 10. The log2(RPM+1) miRNA mature strand 

expression data (level 3) measured by IlluminaHiseq were downloaded from the UCSC Xena browser 

[47]. In case of NAs, these were replaced with 0. Altogether, 439 TCGA breast cancer samples had 

matched methylation and miRNA expression data. In addition, DNA methylation level and miRNA 
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expression data were available for 97 and 76 adjacent TCGA normal tissue samples, respectively. 

TCGA gene expression data in the form of log2(norm_count+1) measured by 

IlluminaHiseq_RNASeqV2 were downloaded from the UCSC Xena browser [47]. 

 

miRNA expression from DCIS samples were available from Lesurf et al. [13]. In this data set, 26 

DCIS samples and 14 invasive ductal carcinoma (IDC) had miRNA expression data, and out of these, 

18 and 14, respectively, had estrogen receptor status available. 

 

Statistical and bioinformatical analysis 

All analyses were performed in the R software v. 3.5.3 [48] unless otherwise specified. mimQTL 

analysis R code is available from GitHub: https://github.com/miriamragle/mimQTL.git. 

 

Genome-wide correlation analysis 

Within each data set, CpGs with an interquartile range (IQR) >0.1 and miRNAs expressed in >10% of 

the samples were selected. Considering only CpGs and miRNAs present in both data sets resulted in 

142 804 CpGs and 346 miRNAs (Additional file 1). To test the correlation between the level of DNA 

methylation of CpGs and miRNA expression, the Spearman correlation statistics was applied (function 

cor.test with method="spearman" in R). An association was considered statistically significant if a 

Bonferroni-corrected p-value was <0.05. Only significant correlations with the same direction (sign) 

were kept. 

 

Hierarchical clustering of mimQTLs 

The significant correlations overlapping the two data sets from the genome-wide correlation analysis 

were transformed into binary terms with -1 for a significant negative correlation and +1 for a 

significant positive correlation. The hierarchical clustering of CpGs and miRNAs was performed on 

these values using the R package pheatmap version 1.0.12 [49] with correlation distance and average 

linkage. CpGs and miRNAs with at least one significant association were included in the clustering 

analysis. To identify and decide upon the number of CpG and miRNA clusters, the dendrograms were 

visually inspected using different cut-offs on the cutree_rows and cutree_cols functions of the 

pheatmap package. Cut-offs were manually selected to define the clusters depicted in Figure 1a (with 

cutree_rows = 2 and cutree_cols = 3). 

 

Biological annotation of miRNA clusters 

For each miRNA in a given cluster, its expression was correlated to the mRNA expression of all 

genes. Genes that were positively correlated (Spearman correlation >0.4 and Spearman correlation p-

value<0.05) in both the Oslo2 and TCGA cohorts were kept. For each miRNA cluster, the list of 

positively correlated genes (i.e. co-expressed genes) were selected and used as input to Enrichr [22] to 
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perform gene set enrichment analysis (on 13.09.2019). Results obtained from the KEGG 2019 Human 

Pathways database were used.  

 

Lymphocyte and fibroblast infiltration scores 

The Nanodissect algorithm [23] (http://nano.princeton.edu/) was used for in silico estimation of 

lymphocyte infiltration as previously described [2]. The xCell algorithm [24] was used to obtain a 

fibroblast score for Oslo2 samples. For TCGA, xCell scores were downloaded from 

https://xcell.ucsf.edu/xCell_TCGA_RSEM.txt. To assess enrichment of positive or negative 

correlations between miRNA expression and infiltration scores for a given miRNA cluster, the phyper 

function in R was used with all miRNAs (n=346) as background.  

 

miRNA expression modeled with generalized linear models 

Generalized linear modeling (glm function in R) was used to model miRNA expression as a function 

of lymphocyte infiltration, fibroblast infiltration, and ESR1 mRNA expression to estimate which 

variable(s) significantly associated with miRNA expression. The estimates plotted in Figure 1 

represent the multivariate analysis estimates with their 95% confidence intervals and significance of 

corresponding p-values are indicated.  

 

Pathway enrichment of genes mapped to mimQTL CpGs 

For each of the CpGs in the two mimQTL CpG clusters, the corresponding gene was obtained by 

intersecting the Illumina450k array annotation file. The two gene lists were used as input to Enrichr 

[22] to perform gene set enrichment analysis (on 11.10.2019). As output we exported the results from 

the KEGG 2019 Human Pathways database.  

 

Functional annotation of mimQTL CpGs 

For functional annotation of the CpGs, we utilized the ChromHMM segmentation from Xi et al. [29] 

obtained from cell lines representing different breast cancer molecular subtypes [29]: MCF7 and 

ZR751 (luminal A), MB361 and UACC812 (luminal B), AU565 and HCC1954 (HER2) and MB469 

and HCC1937 (basal). These segmentations were derived from ChIP-seq data for five histone 

modification marks (H3K4me3, H3K4me1, H3K27me3, H3K9me3, and H3K36me3) to predict 

thirteen distinct chromatin states: active promoters (PrAct) and promoter flanking regions (PrFlk), 

active enhancers in intergenic regions (EhAct) and genic regions (EhGen), active transcription units 

(TxAct) and their flanking regions (TxFlk), strong (RepPC) and weak (WkREP) repressive polycomb 

domains, poised bivalent promoters (PrBiv) and bivalent enhancers (EhBiv), repeats/ZNF gene 

clusters (RpZNF), heterochromatin (Htchr), and quiescent/low signal regions (QsLow). We assessed 

enrichment of CpG sets within each of the 13 chromatin states using hypergeometric tests (the R 
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function phyper) with all Illumina Infinium HumanMethylation450 BeadChip CpGs as background 

(n=485 512). P-values were corrected using the Benjamini-Hochberg (BH) procedure [50]. 

 

Normalized ATAC-seq peak signals (log2((count+5)PM)-qn) for 74 TCGA breast tumors were 

downloaded from the Xena browser [47] (https://xenabrowser.net/datapages/). The CpG positions 

from the Illumina 450k array were intersected with the peaks using BEDTools v2.29.2 [51]. To test for 

differential open regions between ER positive and negative tumors, the average normalized counts of 

the peaks containing each CpG within a CpG cluster was calculated per tumor and a Wilcoxon rank-

sum test was applied to test for statistical significance using R.  

 

Enrichment of mimQTL CpGs at TF binding regions  

To assess the enrichment of mimQTL CpGs close to TFBSs, we considered the direct TF-DNA 

interactions (i.e. TFBSs) stored in the UniBind database [28] at https://unibind.uio.no. These TFBSs 

were obtained by combining both experimental (through ChIP-seq) and computational (through 

position weight matrices from JASPAR [52]) evidence of direct TF-DNA interactions (see Gheorghe 

et al. [28] for more details) for 231 TFs in 315 cell lines and tissues. Note that a TF can have multiple 

sets of TFBSs derived from different ChIP-seq experiments. The genomic positions of all CpGs from 

the Illumina 450k array were lifted over from hg19 to hg38 and extended with 100 bp on each side 

using BedTools (v2.26.0). The enrichment of UniBind TFBS sets in regions surrounding clusters 1 

and 2 CpGs were assessed against a universe considering all CpG regions with the UniBind 

enrichment tool (https://unibind.uio.no/enrichment/, source code available at 

https://bitbucket.org/CBGR/unibind_enrichment/). Specifically, the enrichment is computed using the 

LOLA R package (version 1.12.0) [53] using Fisher´s exact tests. Figure 2 c, h plots the Fisher´s exact 

p-values using swarm plots (swarmplot function of the seaborn Python package, 

https://doi.org/10.5281/zenodo.824567) with annotations for the TFs associated with top 10 most 

enriched TFBS sets. 

 

Hierarchical clustering of methylation and miRNA expression 

Hierarchical clustering of CpG DNA methylation or miRNA expression was performed using the R 

package pheatmap version 1.0.12 [49] with Euclidean distance and average linkage. For visualization, 

miRNA expression values were centered and scaled with scale = "row".  

 

Statistical testing of methylation and miRNA expression between clinical groups 

When two groups were compared Wilcoxon rank-sum tests were used considering a significance level 

of p<0.05. For three or more groups, Kruskal-Wallis tests were used with the same significance level. 

When many tests were performed simultaneously, the resulting p-values were corrected using the 

Benjamini-Hochberg procedure [50].  
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ChIA-PET Pol2 data and ChIP-seq peaks 

ChIA-PET Pol2 loop data from the MCF7 cell line was retrieved from ENCODE, accession number 

ENCSR000CAA [32]. We investigated overlaps between ChIA-PET Pol2 loops and in cis (on the 

same chromosome) mimQTLs. A mimQTL (CpG-miRNA pair) was considered to be in a ChIA-PET 

loop if the CpG and the miRNA precursor were found in two different feet of the same loop. 

Enrichment was calculated using hypergeometric tests (phyper R function) with all possible in cis (i.e. 

on the same chromosome) pairs between miRNAs and CpGs of the 450k array as background. For the 

specific analyses of MCF7 TF ChIP-seq data sets, we retrieved hg19 ENCODE ChIP-seq peak regions 

from the ReMap 2018 [54] database (ENCSR000BST.GATA3.MCF7, ERP000783.ESR1.MCF7, and 

GSE72249.FOXA1.MCF7). 

 

miRNA SE breast tissue overlap with CpGs 

miRNA super-enhancers (SEs) were retrieved from Suzuki et al. [31]. Data from breast-associated cell 

lines HCC1954, HMEC, and MCF7 were considered. The overlap between CpG genomic positions 

and miRNA SEs were obtained using the GenomicRanges R package version 1.32.7 [55].  

 

Global Methylation Alteration (GMA) score 

To obtain one score per tumor measuring the global methylation pattern deviation of that tumor from 

that of normal breast cells, a Global Methylation Alteration (GMA) score was defined. Starting with 

the processed methylation data, for each CpG, the median beta value of all normal breast tissue 

samples (n=17 for Oslo2 and n=97 for TCGA) were calculated. The GMA score of a tumor i was then 

computed as: 

 

GMA scorei = ∑ | CpGj,i – median(CpGj,normals) | 

 

with CpGj,i corresponding to the beta value of CpG j in tumor i and CpGj,normals corresponding to the 

median of the beta values for CpG j in the normal breast tissue samples. Additional file 14 outlines the 

distribution of the GMA score in normal breast tissue samples compared to tumor samples (TCGA 

data) showing how tumors have a higher and much broader GMA score compared to normal breast 

tissue. 

 

In silico miRNA target predictions 

In silico predicted miRNA-target interactions were downloaded from TargetScan release 7.2 [34] 

(http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi), and both the Conserved and 

Nonconserved Site Context Scores were considered. From these predictions, we extracted the Homo 
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sapiens in silico predictions for six selected genes: TET1, TET2, TET3, DNMT1, DNMT3A, and 

DNMT3B. 
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