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Highlights

e Genomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation
fetus

e Determining correlated gene modules (CGMs) in different cell types by MALBAC-
DT

e Measuring chromatin open regions in single cells with high detectability by
METATAC

e Integrating transcriptomics and chromatin accessibility to reveal key TFs fora CGM

Summary

By circumventing cellular heterogeneity, single cell omics have now been widely
utilized for cell typing in human tissues, culminating with the undertaking of human
cell atlas aimed at characterizing all human cell types. However, more important are
the probing of gene regulatory networks, underlying chromatin architecture and critical
transcription factors for each cell type. Here we report the Genomic Architecture of
Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address
the above needs with the goal of understanding the functional genome in action. GeACT
was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq
(METATAC) methods of high detectability and precision. We exemplified GeACT by
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first studying representative organs in human mid-gestation fetus. In particular,
correlated gene modules (CGMs) are observed and found to be cell-type-dependent.
We linked gene expression profiles to the underlying chromatin states, and found the

key transcription factors for representative CGMs.

Keywords

single-cell transcriptome landscape, single-cell chromatin state landscape, correlated

gene module, human fetus

Introduction

A human individual cell, as the basic biological unit of our bodies, carry out its
functions through rigorous regulation of gene expression, exhibit heterogeneity among
each other in every human tissue. Single-cell sequencing technologies have allowed us
to characterize genomic profiles (e.g. genome, transcriptome, methylome, chromatin
architectures and 3D structures) of individual cells, and have become the most effective

way of cell typing, i.e. categorizing each cell type by its genomic features.

Single-cell RNA-seq by next-generation sequencers, since its inception (Tang et al.,
2009), has been rapidly advanced by high-throughput development (Klein et al., 2015;
Macosko et al., 2015) and widely applied to overcome the cellular heterogeneity, which
is particularly suited for tissue samples contain multiple cell types (Cao et al., 2019a;
Pijuan-Sala et al., 2019; Wen and Tang, 2019). This prompted the emergence of cell
atlases of different organisms, including humans by virtue of cell typing (Cao et al.,

2019a; Han et al., 2018; Tabula Muris Consortium, 2018).

Although current scRNA-seq methods have led to discoveries of new and rare cell types,
their low RNA detectability limited the number of detected genes in each individual
cell. In general, existing methods reporting only expression levels of genes provided

little information about gene-gene interactions and regulatory networks. Such
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information would be available through pairwise correlations between any two genes,

but remains unmeasurable with the low RNA detectability (Chapman et al., 2020).

Recently MALBAC-DT (see Methods) has improved RNA detectability, allowing not
only more genes to be detected, but also the covariance matrix of all expressed genes,
yielding the correlated gene modules (CGMs), i.e. clusters of intercorrelated genes that
carry out certain biological functions together. It was found in cell lines that genes
within a CGM have a higher probability for protein-protein interactions (Chapman et

al., 2020). However, whether CGMs exist in human tissues remains uncharted.

ATAC-seq was first developed to identify genome-wide accessible chromatin regions
(Buenrostro et al., 2013), which are critical for the regulation of gene expression.
Chromatin accessible regions are cell-type-specific (Cusanovich et al., 2015). Single-
cell ATAC-seq has been widely used for cell typing, creating the cis-regulatory maps of
the whole organism such as Drosophila and mouse (Cusanovich et al., 2018a;
Cusanovich et al., 2018b). However, scATAC-seq has been conducted with limited
detectability, resulting in false negatives of accessible regions in a single cell
(Buenrostro et al., 2018; Cusanovich et al., 2018a; Preissl et al., 2018). It is highly

desirable to have such a map for humans with low dropout rate.

In this work, we used a novel high-detectability method named METATAC (Xie et al.,
2018) (see Methods), which exhibited a ~100-fold increase in unique DNA fragments
from accessible chromatin regions compared with the previous method (Cusanovich et
al., 2018a). We used it to generate a chromatin accessibility map of different human

tissues, together with the MALBAC-DT data.

Chromatin open regions are accessible by transcription factors (TFs) (Buenrostro et al.,
2013), which regulate gene expression, program cell functions, dictate cell
differentiation and development (Lambert et al., 2018). Although binding motifs for

TFs are available from the database derived from ChIP-seq data, most of them are false
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positive binding sites according to the futility theory (Wasserman and Sandelin, 2004).
Having the CGM and genome architecture at the same time, we could delineate the key

TFs associated with the CGMs.

Powered with the two newly developed single-cell techniques (MALBAC-DT and
METATAC), we set out to determine GeACT for human tissues. Here, as the first
application, we present human mid-gestation (19-21-week) fetuses (Table S1), during
which the human fetus undergoes massive organ development and maturation. To the

best of our knowledge, this has not been reported previously.

We profiled well-curated transcriptomic and chromatin accessibility landscapes of
multiple organs across the digestive, immune, circulatory, respiratory, reproductive, and
urinary systems. We identified hundreds of CGMs, co-expressed in one or more cell
types. Integrative analyses in two modalities offer a unique opportunity to find cell-
type-specific cis-regulatory elements for a particular gene, to quantify contributions of
the open-chromatin architecture to gene expression, and furthermore, to identify key

transcription factors responsible for each CGM.

All the gene expression/activity data, computational tools and pipelines in this study

are publicly released on the website at http://geact.gao-lab.org. The precise mapping

drafted here will be of important reference values for the study of diseases related to

human organ development, carrying potential clinical applications.

Results

Construction of the single-cell transcriptome landscape for six major systems in
human fetus

To essentially cover the whole human body, we collected 17 representative organs
(esophagus, stomach, small intestine, large intestine, liver, pancreas, kidney, bladder,

bronchus, lung, bone marrow, spleen, thymus, heart with artery, diaphragm, ovary and
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testis) in 31 different sampling positions (e.g. fundus, body and antrum of the stomach)
from human fetuses at 19-21 weeks post-gestation (Figure 1A). After dissociation and
non-marker-based FACS sorting, we adopted the high-precision single-cell RNA-seq
method (MALBAC-DT) (Chapman et al., 2020) for library preparation and cDNA
sequencing, which produced the transcriptome profile in 42,912 cells (Figure 1B). After
rigorous quality control, we retained 31,208 high-quality cells, and on average each cell
contained 1.9 million clean reads, 4,610 detected genes and 25,630 UMIs (Figure S1).
At the same time, we also created the open chromatin landscape (Figure 1B, see below
for more details). These two landscapes laid a foundation for further investigation of
CGMs at both genetic and epigenetic levels (Figures 1C and 1D, see below for more

details).

To explore the cell composition of each organ, we processed the single-cell data and
obtained 228 cell clusters (Table S2), each of which was annotated according to well-
known marker genes from the literature (Gao et al., 2018; Li et al., 2017; MacParland
et al., 2018; Pellin et al., 2019; Young et al., 2018). Then all the cells were clustered to
make up the global transcriptome landscape (Figures 1B and 2A), which consisted of 6
primary cell groups common in most organs (epithelial cells, endothelial cells,
fibroblasts, glial cells, immune cells and erythrocytes) (Figure 2B) as well as several
cell clusters specific to sexual organs such as Granulosa cells in the ovary and Sertoli

cells in the testis.

Interestingly, compared with those in the human adult (Cao et al., 2019b; Stuart et al.,
2019), the cells in the human fetus showed higher similarity within cell groups,
especially for immune cells (Figure 2C). The fibroblasts showed the highest similarity
between the fetal and adult stage, which indicates their unsynchronized differentiation
and maturation during development and suggests the earlier development and

maturation of fibroblasts than other types of cells at mid-gestation stage (Figure 2D).

As one of the organs in the digestive system, the stomach is important for food digestion
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and absorption (Carey et al., 1983). Different from previous work (Gao et al., 2018),
which focused on the epithelial cells, we leveraged the full repertoire of stomach cells
to create a single-cell landscape for the whole organ. There were 20 distinct cell types
revealed in the current analysis (Figure S2A). Besides the epithelial cells (C1), where
EPCAM was highly expressed, most cells belong to mesenchyme due to the specific
expression of VIM (Figure S2B). Among them, we found 8 types of fibroblasts (C5-
C12) according to the commonly expressed COLIAI but different signature genes
(Figure S2C). For example, C6 was the most abundant fibroblasts where ADAM?28 was
highly expressed. C12 was the proliferative fibroblasts with the high expression of cell
cycle-related genes such as 7YMS. Moreover, we found 3 types of immune cells, such
as B cells (C14), dendritic cells or macrophages (C15), and T cells (C16). We also
identified endothelial cells (C2), smooth muscle cells (C3 and C4), glial cells (C13),
and CACNAI1A+ cells (C17 and C18) and erythrocytes (C19). Besides the signature
genes used to define cell types, transcription factors (TFs) showed distinct expression
patterns across cell types (Figure S2D). For example, FOXA2 and EGR were
specifically expressed in epithelial cells and endothelial cells, respectively. Interestingly,
ELF3, which played an important role in epithelial cell differentiation, was specifically
expressed in both CACNA 1A+ cells and epithelial cells, indicating that CACNA1A4+
cells may be a group of epithelial-like cells. Based on the gene ontology (GO)
enrichment analysis against signature genes, we investigated the putative functions of
each cell type. Unexpectedly, different fibroblast cell types showed distinct putative
functions (Figure S2E). For example, the Fibro-FBLN1 and Fibro-NRK cells were
related to extracellular matrix organization but the Fibro-KCNJS cells were related to
tube morphogenesis. Benefit from the sampling from different physiological positions,
we were able to explore the spatial-specific cell-type composition. Most of the cell
types showed a similar composition across different positions of the stomach. However,
the body of the stomach showed a higher fraction of Fibro-FBLNI cells but a lower

fraction of visceral smooth muscle cells than the fundus and antrum (Figure S2F).

As the largest solid organ in the human body, the liver carries out many biological
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functions such as nutrients processing (Petersen et al., 2017) and blood storage (Brauer,
1963). In our dataset, we found 19 cell types in the liver (Figure S3A). Different from
the stomach, the liver contained a substantial proportion of immune cells and
erythrocytes (Figure S3B). Based on the signature genes (Figure S3C), we defined
different subtypes of immune cells such as B cells (C7-C9), dendritic cells or
macrophages (C10), the progenitor of Mast cells (C11), NKT cells (C12-C14) and T
cells (C15). Interestingly, we found two types of erythrocytes: non-proliferative (C17)
and proliferative ones (C18), which may reflect the process of blood formation. Besides
several common cell types such as epithelial cells (C1), endothelial cells (C2-C4) and
fibroblasts (C5), we also observed multipotent progenitors (MPPs) (C6) with the high
expression of CD34 and hepatocytes (C16) with the specific expression of CYP3A7.
We then explored the expression of TFs across these cell types (Figure S3D).
Interestingly, MYC, a proto-oncogene, was specifically expressed in the epithelial cells.
Instead, HMGAZ2 and TFDP1 were specifically expressed in MPP cells and proliferative
erythrocytes, respectively. As for the putative functions of each cell type, we were
surprised to find that the Endo-DNTT cell type showed immune-related functions
(Figure S3E) despite little PTPRC (CD45) expression. Although most of the cell types
showed similar composition in different positions, the fraction of erythrocytes declined
from segment 1V to around regions (segment VII/VI/11/111) (Figure S3F), highlighting
the important roles of blood supply in the segment IV (Alghamdi et al., 2017).

The kidney is an important organ in the urinary system. Although much endeavor has
been made for the fetal kidney (Hochane et al., 2019; Wang et al., 2018; Young et al.,
2018), the 19-20 weeks post-gestation, a key period when glomerular filtration started
to significantly contribute to amniotic fluid (Rosenblum et al., 2017), was rarely
covered. In the analysis of the data from the high-precision library preparation method,
we were able to find 27 cell types in the kidney (Figure S4A). Different from the organs
mentioned above, the kidney contained substantial epithelial cells with the specific
expression of EPCAM (Figure S4B), some of which directly reflected the physiological

structures of the kidney such as proximal tubules (C1), loop of Henle (C2 and C3),
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distal tubules (C4), principle cells (C5 and C6), ureter epithelium cells (C7). We also
identified proliferative epithelial cells (C8). Interestingly, we found a type of EPCAM-
positive podocytes (C9), which was different from the traditional one (C10) (Figure
S4C). Besides epithelial cells, we also observed cap mesenchyme (C11) as well as
several common cell types in other organs such as endothelial cells (C12-C14), smooth
muscle cells (C15), fibroblasts (C16-C22), glial cells (C23), immune cells (C24),
CACNAIA+ cells (C25) and erythrocytes (C26). Different cell types showed distinct
expression patterns of TFs (Figure S4D). For example, HNF4G and SIM2 were
specifically expressed in proximal tubules and loop of Henle, respectively, but IRF6
was highly expressed in ureter epithelium cells. Moreover, two TFs in SOX family,
SOX17 and SOXI, were specifically expressed in endothelial cells and glial cells,
respectively. Despite diverse expression across epithelial cell types, the common
development-related terms indicated their common developmental stage (Figure S4E).
On the other hand, several cell types showed a highly spatial-specific pattern, which
may indicate the different functions across kidney positions (Figure S4F). For example,
Epi-Ureter, as it was named, was specially located in Pelvis. Instead, endothelial cells

were enriched in Medulla as expected.

Furthermore, the single-cell gene expression for the other 14 organs was also
systematically investigated (see the website for more details). These resources made up
the most comprehensive high-precision single-cell transcriptome landscape in the

human for the first time.

The architecture of gene expression profiles across organs

The comprehensive transcriptome dataset paves the way to systematically exploring the
similarity of expression profiles in different organs at the single-cell resolution. Based
on the hierarchical clustering of all expressed genes, cell types from different organs
but with similar physiological identities (e.g. epithelial cells, endothelial cells and
fibroblasts) were tended to be grouped together, suggesting their similar functions and

gene expression patterns across different organs (Figure 3A). A similar pattern was also
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found in the clustering based on only TFs, cell surface markers or IncRNAs, which
indicated that they may all contribute to the specific functions of each cell identity

(Figure S5).

On the other hand, even cells with similar identities showed distinct features across
different organs. For example, the epithelial cells could be largely clustered by the
corresponding organs (Figure 3B). The cells tended to be grouped with the ones from
the organ in the same system, such as lung and bronchus, which indicated that this
pattern was contributed by physiological differences instead of technical batch effects
across organs. Several genes showed distinct expression patterns in the epithelial cells
across different organs (Figure 3C). For example, the esophagus epithelial cells showed
the specific expression of KRT15, which was reported as a signature gene of the
esophagus mucosa (Mele et al., 2015). Instead, MUC13 was specifically expressed in
the epithelial cells of the small intestine and large intestine. Moreover, several TFs
contributed to the differences in the epithelial cells across organs (Figure 3D). For
example, PAX9, which played critical roles during fetal development (Mansouri et al.,
1996), was specifically expressed in the epithelial cells of the esophagus. Instead, MYB

was highly and specifically expressed in epithelial cells of the liver.

Consistent with the previous report (Tabula Muris Consortium, 2018), we found that
multiple TFs significantly contribute to the variability across different cell types (Figure
3E), including PBX3, a key homeobox transcription factor for mesodermal commitment

(Slenter et al., 2018).

The construction of single-cell open chromatin landscape

To further explore the epigenetic mechanisms underlying the cell-type-specific gene
expression profile, we isolated nuclei from 14 representative organs (except for ovary,
testis, bronchus) from the corresponding fetuses. After dissociation, we used a high-
precision single-cell ATAC-seq method (METATAC) for library preparation, followed

by deep sequencing. In total, we captured 23,520 cells from 30 different sampling sites.


https://doi.org/10.1101/2020.04.12.038000
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.12.038000; this version posted April 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

After rigorous quality control (QC) for each organ, 21,381 cells were kept for
downstream analyses (Figure S1C). Averagely, each cell passed QC contained 717,814
clean reads, 79,146 unique fragments, and 38,916 detected peaks (Figure 1D and Table
S3), which was much higher than previously reported mammalian tissue data

(Cusanovich et al., 2018).

In order to identify cell types, we first generated 333,614 accessible chromatin regions.
Then for each organ, cell types were annotated based on the cell co-embedding of the
transcriptome landscape and Cicero gene activity scores (Pliner et al., 2018) using
Seurat (Stuart et al., 2019), and 177 cell clusters were obtained (see Methods). The
global open chromatin landscape of all cells was in accordance with the transcriptome
landscape, further confirming the reliable cell typing for METATAC data (Figures 1A,
4A as well as Figures S6A and S6B). Interestingly, the genomic accessibility in TF
motifs was strongly correlated with TF RNA expression levels (Figure 4B), which
suggested that the chromatin accessibility could reflect TF activity veritably (Granja et
al., 2019).

With the advantage of multiple sampling sites for each organ, we could compare cell
type composition of different sampling sites. As an example, we showed small intestine,
which was divided into upper, middle, and lower segments. We detected 19 cell types
in the small intestine, including epithelial cells, endothelial cells, 4 types of immune
cells, erythrocyte, 8 types of fibroblasts, glial cells, CACNAIA+ cells and two types of
smooth muscle cells. Most cell types consisted of cells from all three parts, except for
Fibro-KCNN3 and CACNA 1A+ cells, almost all cells of which belong to the upper part.
We noticed some types of fibroblasts tended to cluster according to sampling sites, such

as Fibro-COL14A1 (Figures 4C and 4D).

To unravel the regulatory program underlying cell-type-specific transcriptional
programs, we inferred activated TFs for each cell type based on TF motif accessibility

Z scores (Figure 4E). Interestingly, we found that TF motifs significantly more
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accessible in the epithelial cells were all involved in epithelial-mesenchymal transition
(EMT), like HNF1A, HNF1B, FOS and JUN family proteins. Previous research in mice
showed the prevalence of epithelial cells with mesenchymal features during
organogenesis (Dong et al., 2018), which revealed the mesenchymal features of
epithelial cells are important for the establishment of proper organ morphology during
organogenesis. For the endothelial cells, we identified SOX9, SOX13, ETV2, FEV,
ERG, some of which were known essential for endothelial cell development, like SOX9
(Akiyama et al., 2004), ETV2 (Oh et al., 2015) and ERG (Birdsey et al., 2008). Two
smooth muscle cell types have different marker TFs. EBF1 (Jin et al., 2014) and
MEF2A (Black and Olson, 1998) binding peaks were only accessible in SM-Vascular
cells but not in SM-Visceral cells, while TEAD (Liu et al., 2014) family binding peaks
were more accessible in SM-Visceral cells, which may contribute to their different
functions. Forkhead family motifs showed high TF Z scores in Fibro-COL6AS and
Fibro-ZEB1 but not in other fibroblasts, while marker TFs of Fibro-COL14A1 included
neuron related TFs, such as NEUROD2 and OLIG1. In T cells, RUNX family TFs were
significantly enriched, which was known to regulate T cell maturation and lineage

choice (Collins et al., 2009; Egawa et al., 2007).

The architecture of open chromatin profiles across organs

Based on the comprehensive chromatin accessibility information, we sought to explore
the similarities and differences of epigenetic state across different organs with single-
cell resolution. We clustered all non-immune cells based on all accessible peaks, results
were highly consistent with transcriptome, which showed cells of similar epigenome
but from different organs tended to cluster together (Figure 5A). Interestingly,
erythrocytes from the kidney, large intestine, lung, and stomach were clustered to other
cell types from the same organ instead of erythrocytes of other organs, which was
different from RNA expression profiles, indicating some potential interactions with

surrounding cells.

To characterize the overall cellular heterogeneity for epithelial, we clustered epithelial
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cells across diverse tissues. In accordant with RNA expression profiles, epithelial cells
from the same organ largely clustered together (Figure 5B). For signature genes of
epithelial cells from different organs, we associated their gene-body and promoter
peaks with distal regulatory elements based on Cicero co-accessibility scores (Pliner et
al., 2018), to compare the regulatory relationship across different organs. For instance,
CLPS is specifically expressed in pancreas epithelial cells, which is a cofactor of
pancreatic lipase for efficient dietary lipid hydrolysis (Borgstrom and Erlanson, 1973).
The peak-to-gene connections of CLPS in the pancreas are much more abundant and
stronger than in other organs (Figure 5C). Similar results were observed for other
signature genes, such as MUC13, a marker gene of epithelial cells in the small intestine
(Figure S6C), and KRT15, a marker gene of epithelial cells in the esophagus (Figure
S6D). Interestingly, although MUC13 was only expressed in epithelial cells of the small
intestine at this embryonic stage (Figure 3C), the gene locus also showed strong and
abundant connections in epithelial cells of the pancreas, esophagus, stomach and large
intestine. Previous research revealed that MUC13 is a cell surface glycoprotein highly
expressed in epithelial tissues of gastrointestinal and respiratory tracts (Williams et al.,
2001), and is a potential pancreatic cancer diagnostic marker (Khan et al., 2018). The
open chromatin profiles indicate the regulatory potential for future expression in these

organs.

Based on TF motif accessibility Z scores (Schep et al., 2017), we inferred TFs that
regulate the distinguishable expression profiles (Figure 5D). GATA1-TALI complex
showed specific activity in liver epithelial cells. CDX2 exhibited high activity in small
intestine epithelial cells, but not in large intestine epithelial cells, though it is highly
expressed in both cell groups (Figure 3D). TP63 was active in both esophagus epithelial
cells and renal pelvis Epi-Ureter cells. GATA6 showed high activity in epithelial cells

of the liver, small intestine and stomach.

The correlated gene module and the integrative regulatory circuit

The high-precision data offered a great chance to delineate correlated gene modules
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(CGMs) across cell types (Chapman et al., 2020; Chihara et al., 2018). For better
robustness, we selected 10 cell types with the highest numbers of cells analyzed for
CGM detection (see Figures S7A-D for more details) and obtained 227 non-redundant
CGMs with the gene number in each CGM from 10 to 240 (Table S4). Each CGM
showed distinct correlation profiles across cell types (Figure 6A). Interestingly, more
than 60% of CGMs showed enriched TFs, which reflected on the contribution of TFs
on the regulation of co-expressed genes. The enriched protein-protein interactions (PPIs)
were observed in half of the CGMs, which indicated that the correlated transcription
was a key process for the synchronization of protein activities. On the other hand, 69.2%
and 47.6% of CGMs contained enriched GO terms and KEGG pathways, which
indicated the similar biological functions of correlated genes. Although protein-coding
genes constitute the majority (more than 90%) of CGMs, there were substantial non-
coding genes in each CGM (Figure 6B), which indicated the similar functions of
correlated genes with different gene types. Unexpectedly, for most of the CGMs, genes
were scattered in different chromosomes, expect two CGMs made up of mitochondrial
genes (Figure 6C), which indicated that correlated genes are merely connected by
genomic proximity (i.e. cis-effect). Instead, the CGMs with higher correlation were
more likely to contain common upstream TF regulators, which indicated frans-effect
was the primary driving force for correlated genes. In addition, high-correlation CGMs
tended to contain enriched PPIs, GO biological process and KEGG pathways, which

further highlighted the collaborative mode in the functioning of genes (Figure 6D).

A CGM may show different co-expression levels in different cell types (Figure 6A). We
assumed that if genes are highly co-expressed in a cell type, the epigenetic state of the
regulatory genomic elements of these genes should change synchronously in this cell
type. To verify this hypothesis, we quantified the co-accessibility of two genes using
the Jaccard index of binary gene activity scores of METATAC data calculated by Cicero
(Pliner et al., 2018). For 9 of the 10 cell types with more than 500 cells in RNA
expression profiles (except for ovary Granulosa-R-Al cell type due to the lack of open

chromatin profile of ovary), we calculated the average RNA expression Spearman
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correlation coefficients and average ATAC gene activity Jaccard index of all pairs of
genes within each CGM (Figure 6E), denoted as co-expression index and co-
accessibility index, respectively. In many cases a CGM with high co-accessibility
showed low co-expression in a cell type, however, almost all CGMs with co-expression
index higher than 0.2 have co-accessibility index higher than 0.5 in the corresponding
cell type. We next compared the co-expression and co-accessibility of each gene pair
within the same CGM for each of the 9 cell types, by setting different co-expression
threshold to analyze the ratio of highly co-accessible pairs, and vice versa. The ratio of
highly co-accessible pairs increases as the co-expression threshold (Figure 6F) and
reaches 100% when the co-expression threshold is larger than 0.8. The ratio of highly
co-expressed gene pairs also increases as the co-accessibility threshold, however, even
for totally co-accessible pairs, only less than 20% are highly co-expressed (Figure 6G).
These results indicated that the co-accessibility of gene regulatory regions is a

necessary but insufficient condition for co-expression of a pair of genes.

The CGMs ubiquitous in multiple cell types were usually involved in the basic
biological processes such as metabolism, protein folding and translation. For example,
MDS51, a CGM with 48 genes, was highly correlated in all the 10 cell types such as
Fibro-FBLNI in the stomach and Fibro-PAMR1+SOX6+ in the pancreas (Figures 7A
and 7B). There are many known functionally similar proteins included in this module,
such as 4 heat shock protein chaperons, 4 phosphatases, 4 Activator Protein-1 (AP-1)
TFs, 3 transcription initiation factors, 2 GTPase, 2 NF-kB inhibitors and so on. The
enrichment analysis showed that MDS51 was related to stress response and enriched in
the MAPK signaling pathway (Figure 7C). Moreover, the protein products of the genes
in MD51 such as FOS and JUN formed a complex (Figure 7D) related to stimulation
response, which was important for proliferation and differentiation (Angel and Karin,
1991; Cook et al., 1999). Similar to expression correlation, the genes in MD51 showed
highly accessibility correlation in both cell types (Figures 7F) and the similar difference
between the two cell types (Figure STE). To unravel the TF regulators, we performed

motif enrichment analysis in the regulatory regions of these genes, defined by Cicero
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co-accessibility (see Methods), and then calculated the average co-expression
coefficient with these genes for each TF. Six TFs showed both significant motif
enrichment within the regulatory regions and high co-expression with these genes
(Figure 7E). EGR family, C2H2-type zinc-finger TFs, such as EGR1, EGR2 and EGR3
were identified. EGR1 was involved in stress response under disease condition (Ponti
etal., 2015; Stuart et al., 2005), EGR2 was reported to suppress the c-Jun NH2-terminal
protein kinase (JNK)-c-Jun pathway, and EGR3 was an immediate-early growth
response gene which is induced by mitogenic stimulation (Patwardhan et al., 1991).
Both EGR2 and EGR3 played vital roles in the immune system (Taefehshokr et al.,
2017). IRF1 displayed a remarkable function in the regulation of cellular responses
(Kroger et al., 2002).

Meanwhile, the cell-type-specific CGMs usually reflected the function of the
corresponding cell type. For example, MD117, a CGM contained 87 genes, was shown
to be correlated only in SM-Visceral cells in the small intestine (Figures 7G and 7H).
The enrichment analysis showed many smooth muscle-related functions (Figure 71). In
the protein level, the genes in MD117 formed the actin and myosin (Figure 7J), which
was important for muscle contraction (Sweeney and Hammers, 2018). Interestingly,
although expression correlation showed a highly cell-type-specific pattern, the co-
accessibility patterns of MD117 genes were similar between SM-Visceral cells and
Fibro-COL6AS cells in the small intestine (Figure 7L and S7F). Based on the open
chromatin data, we identified 5 regulatory TFs that were positively correlated with these
genes and significantly enriched in their regulatory regions in SM-Visceral cells (Figure
7K). SRF and MEF2C were known essential TFs for myogenesis, and important in
maintaining the differentiated state of muscle cells (Black and Olson, 1998; Miano,
2003). PRDM6 was involved in the regulation of vascular smooth muscle cell (VSMC)
contractile proteins, suppression of differentiation and maintenance of the proliferative
potential of VSMC (Davis et al., 2006). Inhibition of STAT-5B suppressed thrombin-
induced VSMC growth and motility (Cao et al., 2006). RPBJ, the major mediator of

Notch signaling, was important for maintaining muscle progenitor cells and generating
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satellite cells (Vasyutina et al., 2007). TEAD1 played an important role in inhibiting
smooth-muscle specific gene expression by competing with myocardin binding to SRF
(Liu et al., 2014). Besides, TFs anti-correlated with module genes, such as SNAI2 and
MAPF, although without significant motif enrichment, were also functionally related to
this CGM. SNAI2 acts as a transcriptional repressor to prevent the occupancy of
MYOD on myogenic differentiation-specific regulatory elements (Soleimani et al.,
2012). MAF was a leucine zipper-containing TF acting as a transcriptional activator or
repressor, and was up-regulated during myogenesis through MYOD (Serria et al., 2003)
(Figure 7L). Different from the pattern in MDI117, the co-expression and co-
accessibility patterns in MD34 were both quite different between different cell types
(Figures S7G-I), further highlighting the effect of open chromatin stages on the

correlated gene expression levels within CGMs.

Discussion

In the mid-gestation, the human fetus undergoes massive organ development and
maturation. Our high-precision single-cell omics data identified over 200 distinct types
of cells in all six major systems. Each cell type presents unique gene expression patterns,
chromatin states as well as biological functions. Comparative analysis on epithelial
cells among distinct organs showed that, while harboring similar marker genes, these
cell types presents organ-specific gene/TF-expression patterns, implying that these
critical molecules potentially regulate the organ-specific functions at their

microenvironments.

Genes with high inter-tissue expression correlation usually shared similar upstream
regulators or similar functions (Segal et al., 2004). However, little was known for
correlated gene module (CGM) profiles within cell types during fetal development
(Chapman etal., 2020; Chiharaet al., 2018). We, for the first time, delineate core CGMs
and underlying circuits based on the unbiased, high-precision omics data across

multiple fetal organs. The 227 identified CGMs from ten cell types largely enriched
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potential functional TFs. Of note, the tissue/cell-type-specific CGMs showed clear
transcription factor-based gene regulatory networks among the known and unknown

regulon genes.

With the advantage of our high-precision single-cell transcriptome and open chromatin
data, we could further combine co-accessible peaks’ motif enrichment and transcription
factor-gene co-expression information to reveal functional TFs regulating each CGM
(Figure 7E). Meanwhile, we show that co-accessibility is a necessary but not sufficient
condition for co-expression (Figures 6F and 6G). The sophisticated symphony-like
coordination between the epigenetic chromatin status and gene transcription we
revealed could contribute to the effective regulation of cell-type-specific functions, as

well as the establishment and maintenance of cell identity during development.

It is evident that GeACT has provided much needed and high-precision dataset as well
as novel insights much beyond cell typing. We anticipate that GeACT, when expanding
to all human tissues, normal or diseased, will eventually provide the understanding of

the human functional genome.
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KEY RESOURCES TABLE
REAGENT or RESOURCE ‘ SOURCE IDENTIFIER
Equipment and consumables (RNA-seq)
Biomek FXP Single Arm | Beckman A31842
System
Biomek FXP Dual Arm | Beckman A31844
System
Multipette E3 Eppendorf 4987000010
C1000 Touch™  Thermal | Bio-Rad 1851196
Cycler with 96-Well Fast
Reaction Module



https://www.bio-rad.com/en-us/sku/1851196-c1000-touch-thermal-cycler-with-96-well-fast-reaction-module?ID=1851196
https://www.bio-rad.com/en-us/sku/1851196-c1000-touch-thermal-cycler-with-96-well-fast-reaction-module?ID=1851196
https://www.bio-rad.com/en-us/sku/1851196-c1000-touch-thermal-cycler-with-96-well-fast-reaction-module?ID=1851196
https://doi.org/10.1101/2020.04.12.038000
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.12.038000; this version posted April 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Multi-Mode Microplate | Molecular Devices F3

Readers

PCR-Cooler (0.2 mL) Eppendorf 3881000015
DNA LoBind tubes 5.0 mL Eppendorf 0030108310
96 Well LoBind PCR Plates Eppendorf 0030129504
Aluminum PCR Microplate | Axygen PCR-AS-600
Sealing Film

Microseal 'B' PCR Plate | Bio-Rad MSB1001
Sealing Film

Reagents (RNA-seq)

SuperScript IV~ Reverse | Thermo Fisher 18090200
Transcriptase

SUPERase*In™ RNase | ThermoFisher AM2696
Inhibitor

ERCC RNA Spike-In Mix ThermoFisher 4456740
IGEPAL CA-630 Sigma 18896

Betaine solution Sigma B0300
Deoxynucleotide (ANTP) | NEB NO447L
Solution Mix

Exonuclease I (E. coli) NEB MO0293L

Deep Vent® (exo-) DNA | NEB M0259L
Polymerase

TruePrep DNA Library Prep | Vazyme TD501-02

Kit

AMPure XP Beckman A63882
Equipment and consumables (ATAC-seq)

Echo 525 Liquid Handler | Labcyte Echo 525
System

96 Well LoBind PCR Plates Eppendorf 0030129512
Select-A-Size DNA Clean & | ZYMO D4080
Concentrator

DNA Clean & Concentrator 5 | ZYMO D4014

Cell Strainer 40um ThermoFisher FIS22-363-547
Eppendorf Research Plus 8 | Eppendorf ES-8-10, ES-12-100
channel pipette

Centrifuge Eppendorf 5810 R
Thermomixer Eppendorf 5382000074
Reagents (ACTA-seq)

Collagenase, Type 11 GIBCO Cat#17101015
Collagenase, Type IV GIBCO Cat#17104019
DNase I Roche Cat#10104159001
Liberase (TM) Roche Cat#5401119001
PDS Kit, Inhibitor Vial (OI- | Worthington Cat#LLK003182



https://www.pipette.com/3125000010-Eppendorf-Research-plus-8-channel-pipette-0-5-10-uL-medium-grey-operating-button-for-use-with-20-uL-pipette-tips
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BSA)

TrypLE GIBCO Cat#12604021
DMEM/F12 GIBCO Cat#11330032
Red Blood Cell Lysing Buffer | Sigma-Aldrich Cat#R7757
7-AAD  Viability Staining | Biolegend Cat#420403
Solution

DPBS 1x Corning Cat#R21-031-CV
Triton X-100 Sigma 93443-100ML
IGEPAL CA630 Sigma 13021-50ML
Digitonin promega G9441

Q5 High-Fidelity 2X Master | NEB MO0492L

Mix

NEBNext Multiplex Oligos | NEB E7500S, E7710S, E7335S,
for [llumina E7730S

Nextera XT DNA Library | [llumina FC-131-1024
Preparation Kit

QIAGEN protease QIAGEN 19155

Software and Algorithms (RNA-seq)

Perl; version 5.16.3

The Perl Foundation

https://www.perl.org/

Gencode; version 26 (Frankish et al., | https://www.gencodegenes.
2019) org/
HISAT2; version 2.1.0 (Kim et al., 2015) https://dachwankimlab.gith
ub.io/hisat2/
Samtools; version 1.2 (Li et al., 2009) http://www.htslib.org/

HTSeq; version 0.11.0

(Anders et al., 2015)

https://htseq.readthedocs.io
/en/master/

R; version 3.5.1 The R Foundation https://www.r-project.org/
Rstudio; version 1.2.5033 RStudio, Inc. https://rstudio.com/
Seurat; version 2.3.4 (Butler et al., 2018) | https://satijalab.org/seurat/
Seurat; version 3.1.4 (Stuart et al., 2019) | https://satijalab.org/seurat/
topGO; version 2.34.0 (Alexa and | https://bioconductor.org/pa
Rahnenfuhrer, 2018) | ckages/3.8/bioc/html/topG

O.html

dynamicTreeCut; version | (Langfelder et al., | https://horvath.genetics.ucl
1.63-1 2008) a.edu/html/CoexpressionNe
twork/BranchCutting/
ComplexHeatmap;  version | (Gu et al., 2016) https://bioconductor.org/pa
2.2.0 ckages/3.8/bioc/html/Comp
lexHeatmap.html
AnimalTFDB; version 3.0 (Hu et al., 2019) http://bioinfo.life.hust.edu.
cn/Animal TFDB#!/
JASPAR; version 2020 (Fornes et al., 2020) | http://jaspar.genereg.net/

TRANSFAC®; version 2019.3

GeneXplain GmbH

http://genexplain.com/trans
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fac/

BEDTools; version 2.26.0

(Quinlan and Hall,
2010)

https://bedtools.readthedoc
s.io/en/latest/

MEME; version 4.10.0

(Bailey et al., 2009)

http://meme-suite.org/

clusterProfiler; version 3.10.1

(Yu et al., 2012)

https://bioconductor.org/pa
ckages/3.8/bioc/html/cluste
rProfiler.html

STRINGdD; version 1.22.0

(Szklarczyk et al.,
2015)

https://www.bioconductor.o
rg/packages/3.8/bioc/html/
STRINGdb.html

Software and Algorithms (ATAC-seq)

cutadapt; version 2.1 (Martin, 2011) https://github.com/marcelm
/cutadapt

Bowtie 2; version 2.3.4.3 (Langmead and | http://bowtie-

Salzberg, 2012) bio.sourceforge.net/bowtie
2/

MACS; version 2.2.6 (Zhang et al., 2008) | https://github.com/taoliu/M
ACS/

R; version 3.6.2 The R Foundation https://www.r-project.org/

chromVAR (Schep et al., 2017) | https://greenleaflab.github.i
o/chromVAR/

Cicero (Pliner et al., 2018) | https://cole-trapnell-
lab.github.io/cicero-
release/

Seurat; version 3.1.2 (Stuart et al., 2019) | https://satijalab.org/seurat/

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to, and will be fulfilled

by, the Lead Contact, X.S.X. (sunneyxie@pku.edu.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissues

This study was approved by the Reproductive Medicine Ethics Committee of Peking
University Third Hospital (Research License 2019SZ-004). The pregnant donors
underwent medical termination of pregnancy due to conditions such as cervical
insufficiency, infection, eclampsia, inevitable abortion, etc. All the patients voluntarily

donated the fetal tissues and signed the detailed forms of informed consent.
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METHOD DETAILS

Sample Dissection and Single-cell Isolation

Tissues were immediately processed to the single-cell dissociation after specimen
resection. 17 organs were included in the study and the protocols of individual organs

are described below.

Bladder

The urothelium was detached from the bladder muscle and washed twice with
resuspension buffer (DMEM + 10% FBS). Then it was minced with dissecting scissors,
followed by digestion at 37°C, 1000rpm sequentially in digestion buffer (2mg/ml
collagenase II + collagenase IV in DMEM) for 25min and TrypLE for 5min. Cells were
subsequently filtered through a 40um strainer. After wash, cells were collected by

centrifugation and then stained with 1:40 7-AAD before sorting.

Bone marrow

Bones that excised were firstly rinsed in DMEM/F12 with 10% FBS. The bone marrow
cells were flushed out by a 10ml syringe containing DMEM/F12 complemented with
10% FBS. The collagenase II/TIV at 2.5mg/ml was then used to flush the bone marrow
cells again. The aspirated cells were gone through a 40um filter, centrifuged at 300g
for 10 minutes. After carefully removed the supernatant, the cells were resuspended in
3ml PBS and incubated with 15ml of ACK lysis buffer for 3min at room temperature
to remove the red blood cells twice. In order to excluded nonviable cells, 7-AAD was

used before the FACS analysis.

Bronchus

Bronchus was divided into two parts, main bronchi 1-6 and main bronchi 7-12. Tissues
were washed by DMEM containing 10% FBS, and then transferred into tubes
containing 1 mL of papain (50 pg/ml). The tubes were incubated at 37°C for one hour
and twenty minutes with shaking at 1000 rpm. We pipetted up and down every 5

minutes to accelerate the process. After digestion, samples were filtered through a 40-
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um nylon cell strainer, and then centrifuged. The cell pellets were resuspended in
DMEM (contained 10% FBS), centrifuged at 300g for 5 min. The supernatant was
removed, 5 pl 7-AAD and 200 pl PBS (plus 0.1% BSA) were added to the cell pellets.
After incubation at RT for 10 min in a dark place, the cell suspension was mixed with
a certain amount of PBS (plus 0.1% BSA), depending on the cell number and ready for
FACS.

Diaphragm

The diaphragm was dissected, washed and minced in the digestion buffer (2mg/ml
collagenase II + collagenase IV in DMEM). After that, tissue pieces were digested in a
thermomixer at 37°C, 1000rpm for 25min and filtered through 40um strainer. The
collected cells were then washed twice with resuspension buffer (DMEM + 10% FBS),
centrifuged and resuspended in 0.1% BSA with 1:40 7-AAD. Following filtration,

single living cell was sorted into the well of 96-well plate with FACS.

Esophagus

Esophagus was firstly washed in DMEM which containing 10% FBS. It was then
transferred to a tube and minced with the scissor. After mechanically dissociation, 1.5ml
of 2.5mg/ml collagenase II/ IV mixture (GIBCO, 17101015, 17104019), 0.1 mg/ml
DNase I (Roche, 10104159001) were added. The tube was incubated on a shaker at 37°C
for further dissociation. After about 45 minutes, the isolated cells were collected by
certification (800g, Smin) and subsequently washed once in DMEM/F12 with 10% FBS.
Cells were filtered through 40um strainer, pelleted again, and resuspended in 200l
PBS (contained 0.1%BSA) with 5ul 7-AAD for dead cell exclusion. After 10 minutes
for incubation in the dark, the cells were finally resuspended in FACS buffer waiting

for cell sorting.

Heart
The sample covered four main zones (Left Atrium, Left Ventricle, Right Atrium, Right

Ventricle) and two valves (Left and Right). Besides, we also separated interventricular
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and aorta under a microscope. Tissues were washed with DMEM containing 10% FBS
and cut into pieces. Tissues were digested into single-cell suspension with 1 mL of
collagenase Il/collagenase IV (2.5 mg/ml) and DNasel (0.1 mg/ml) at 37°C for ten
minutes with shaking at 1000 rpm. We used a 40-um nylon cell strainer to filter the
digested tissues, follow by centrifugation at 800g for Smin. DMEM containing 10%
FBS was added to the cell pellets and the cell suspension was centrifuged again. After
removal of the supernatant, cell pellets were mixed with 5 ul dye and 100 ul PBS (plus
0.1 %BSA) and then incubated at RT for 10 min in a dark place. According to cell
number, PBS (plus 0.1 %BSA) was added to the cell suspension. All heart tissues were
treated the same way, except aorta needed a longer time than others due to harder

dissection and less cells.

Kidney

Kidney was dissected into three parts: renal cortex, renal medulla and renal pelvis. After
washed in DMEM/F12 which added 10% FBS, these three parts of the kidney were
minced respectively. 500ug/ml Liberase (TM) (Roche 5401119001) was firstly used to
digesting the tissues into single cells at 37°C for 40min, followed by 10 minutes of
digestion in TryplE with shaking. In assistance with dissociation, pipette the cells
during the incubation every 5 minutes. The dissociated cells were collected by
centrifugation (800g, S5Smin), and further washed by DMEM/F12 added 10% FBS. Cells
were resuspended and stained with 7-AAD before single-cell sorting. For METATAC,
the kidney was dissected into three parts, renal cortex, renal medulla and renal pelvis.
After dissection, large tissues were cut into small pieces by the blade in PBS, and
transferred to a 40-um cell strainer, then were homogenized with the rubber tip of a
syringe plunger (5ml) in 4ml PBS. The filtered cells were transferred to a 15ml tube
and pelleted by centrifuge at 500g for Smin at 4c, then wash once with ice-cold PBS.

All cells were cryopreserved in 90% fetal bovine serum and 10% DMSO.

Small intestine and Large intestine

After obtaining small intestine and large intestine from human embryo between 19w to
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22w, we divided the small intestine into upper, middle and lower parts and the large
intestine into transverse colon, ascendant colon and descendant colon parts. Then
washed them by DMEM medium (plus 10% PBS) twice. Striated muscular layer and
cut up, then added 500ul enzyme mix (2.5mg/ml Collagenase II Invitrogen, 2.5mg/ml
Collagenase IV Invitrogen and 0.1 mg/ml DNase I dissolved in DMEM medium), 37
°C and 1000rpm for 30-50min. Then added 500ml DMEM medium (plus 10% PBS)
and used 40um Pre-Separation Filters filter the cell suspension. Tissues that were not
fully digested were redigested with TrypLE. After centrifuging cell suspension at 800g,
Smin, added 200ul PBS (plus 1% BSA) resuspended and added 5ul 7-AAD at room
temperature for 10min. Then centrifuged cell suspension at 800g, Smin and used 500ul

PBS (plus 1% BSA) resuspend.

Liver

We washed the liver sample twice with cold PBS to remove impurities and fat mass,
then divide the liver into eight functionally independent segments (Segment I-VIII),
each segment with its blood vessels and bile circulation. Next, each sample was fully
minced with surgical scissors. We added the digestion buffer (2.5mg/ml II collagenase,
2.5mg/ml IV collagenase, 0.1 mg/ml DNase I in DMEM) and incubated the mixture at
37°C with shaking. We checked the proportion of single cells under the microscope
every 10 minutes and the entire digestion process was up to 90 mins. We stopped the
digestion procedure when the suspension contained 80-100% single cells. Cells were
then filtered through a 40 um strainer, pelleted (800g, 5 minutes), resuspended with
Red Blood Cell Lysis Buffer, and kept at room temperature for 5 minutes to remove red
blood cells. We then centrifuged (800g, Smin) and washed the pellet once with PBS.
Finally, the cells were resuspended in FACS buffer, stained with 7-AAD and sorted by
FACS.

Lung
Lung tissues were digested as two parts, lung center and lung peripheral. Both were

firstly washed by DMEM containing 10% FBS, and then transferred into tubes
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containing ImL of collagenase II/collagenase IV (2.5 mg/ml). The tubes were incubated
at 37°C for ten minutes with shaking at 1000 rpm for digestion. Then the digested
tissues were centrifuged to get cell pellets, which were resuspended in DMEM
containing 10% FBS later. Samples were filtered, centrifuged, and dyed as described in

bronchus sample collection. We collected 2000 cells for each part.

Testis and Ovary

Human gonad tissues include testis and ovary were obtained from human embryo from
19w to 22w. Washed the gonad tissues with DMEM medium (plus 10% PBS) twice and
cut them up. Then added 600ul Accutase Cell Detachment Solution (Millipore
#SCRO005) at 37 °C, 1000rpm for 15min. then used 40um Pre-Separation Filters to filter
the cell suspension. After centrifuging cell suspension at 800g, Smin, added 200ul PBS
(plus 1% BSA) resuspended and added 10ul KIT FACS antibody at 4 °C for 30min.
Then centrifuged cell suspension at 800g, Smin and used 200ul PBS (plus 1% BSA)
resuspend. After that added Sul 7-AAD at room temperature for 10min and centrifuged
at 800g, Smin. Then used 500ul PBS (plus 1% BSA) resuspend.

Pancreas

Pancreas was processed to single-cell isolation immediately after the separation from
the embryo. DMEM/F12 with 10% FBS was used to wash the pancreas for at least three
times. The pancreas was sequentially minced using scissors and digested with
dissociation buffer which containing collagenase Type II/IV (GIBCO, 17101015,
17104019) mixture and DNase I (Roche, 10104159001). After 30 minutes of incubation
at 37°C, the digested cells were pelleted (800g, 5 minutes), washed in DMEM/F12 with
10% FBS once, passed through 40um strainer, pelleted again. The cells were stained

with 7-AAD for the assessment of cells’ viability before sorting.

Spleen
Spleen was cut into pieces and ground through a 40um strainer with syringe plunger in

resuspension buffer (DMEM + 10% FBS). After centrifugation, cells were treated with
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ACK lysis buffer for 5min at 25°C twice, centrifuged, and washed twice with
resuspension buffer. Cells were stained with 1:40 7-AAD subsequently for FACS

sorting.

Stomach

After removing the muscle layer with tweezers under the stereomicroscope, the
stomach sample was divided into three parts, namely, fundus, body and antrum. Next,
we stripped the fatty layer and blood vessels of the sample, washed with cold PBS 2-3
times to remove mucus, minced in a centrifuge tube and added with digestion buffer
(2.5mg/ml type II/ IV collagenase, 0.1 mg/ml DNase I, in DMEM). After digestion 30
to 50mins at 37°C with multiple pipetting to promote digestion procedure, cells were
filtered through a 40 pm strainer, centrifuged at 800g for Smin, washed once with
resuspension buffer (DMEM + 10% FBS) and pelleted again (800g, 5Smin). Finally,
cells were resuspended with PBS containing 0.1% BSA and stained with 7-AAD.

Thymus

The thymus samples were crushed on a 100 um strainer. Cells were centrifuged (500g,
5 minutes), digested with digestion buffer (2.5mg/ml II collagenase, 2.5mg/ml IV
collagenase, 0.1 mg/ml DNase I, in DMEM) and incubated at 37°C for 30 minutes with
agitation. The digestions quenched with resuspension buffer (DMEM + 10% FBS).
Cells were pelleted (800g, 5 minutes), then resuspended in FACS buffer, and stained

with 7-AAD immediately before sorting.

Single-cell RNA-seq experiment

RNA-Seq was performed by the method of MALBAC-DT (Chapman et al., 2020). To
improve throughput and reproducibility, an automated workflow was developed by
using the Biomek FXP Workstation. A single-arm system with multichannel pipettor
was used for RNA amplification and a dual-arm system with multichannel pipettor and
Span-8 pipettors was used for sequencing library preparation. During RNA

amplification, plates were kept on PCR-Cooler while transferring liquid and vortexed
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and briefly centrifuged after all transferring steps. If the plate will be stored at -80°C, a
foil film was used for sealing; otherwise, an adhesive film was used. In this study, the
96 RT3-An primers with a distinct primer corresponding to each well were used to

eliminate the possibility of cross-contamination between wells.

First, 96-well single cell capture plates containing cell lysis buffer were prepared. Cell
lysis buffer of 2500 reactions consisting of 612.5uL H20, 1000ul 5x SSIV buffer,
250ul 10% ICA-630, 2000ul 5M betaine, 125ul SUPERase*In RNase Inhibitor,
500uL 10mM dNTP mix and 12.5 uL 8x10* diluted ERCC RNA Spike-In mix were
prepared in a SmL Eppendorf tube and distributed to three 8-strip tubes with 187uL in
each well manually. Next, 45ul of the mix was transferred to each well of a 96-well
master mix plate and then a transfer of SuLL 50uM barcoded RT-An primer from the
primer storage plate to the master mix plate by the robot. After that, 2ul lysis buffer was
distributed to each well of 24 capture plates from the master mix plate automatically
and then stored at -80°C. Before cell sorting, capture plates were thawed at 4°C and
spun down for 15 seconds to collect the lysis buffer to the bottom of the well. After cell
sorting, plates were spun down for another 15 seconds to ensure cell immersed into the

lysis buffer and immediately stored at -80°C until ready for amplification.

To perform reverse transcription, captured plates were incubated at 72°C for 3 minutes
and hold at 4°C to facilitate the open of RNA secondary structure and annealing of RT-
An primer. RT mix of 2230 reactions consisting of 1807ul. H20, 892uL 5x SSIV bulffer,
446ul 100mM DTT, 335uL SUPERase*In RNase Inhibitor, 536ul. 100mM MgSO4
and 446ul SuperScript IV were prepared in a SmL Eppendorf tube and distributed to
three 8-strip tubes with 185uL in each well manually. Next, 45uL of RT mix was
transferred to each well of a 96-well master mix plate by robot and 2ul RT mix were
distributed to each well of 20 captured plates automatically. Incubate plates at 55°C for

10minutes to synthesize first strand cDNA.

After reverse transcription, excess RT primers were digested by exonuclease I, RT-Bn
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primers were added for an indication of digestion efficiency in this step. Exonuclease
mix of 2230 reactions consisting of 2230ul. H20, 446ul. Exol buffer, 1338ulL Exol
were prepared in a SmL Eppendorf tube and distributed to three 8-strip tubes with
167uL in each well manually. Next, 41.4uL of the mix was transferred to each well of
a 96-well master mix plate and then a transfer of 4.6ulL 50uM barcoded RT-Bn primer
from the primer storage plate to the master mix plate by the robot. After that, 2ul
exonuclease mix was distributed to each well of 20 sample plates automatically and
incubate plates at 37°C for 30 minutes to digest excess primers then at 80°C for 20

minutes to inactive exonuclease 1.

For ¢cDNA amplification, PCR master mix of 2000 reactions consisting of 38.48mL
H20,6mL ThermoPol buffer, 800uL. 10mM dNTP mix, 320ul. 100mM MgS04, 200ul
200uM GAT-7N, 200uL 200uM GAT-COM and 2000ulL Deep Vent (exo-)) were
prepared in a S0mL tube and 250ul were added to each well of a 96-well master mix
plate with an Eppendorf Multipette® E3 pipetter . Then, 24ul PCR master mix was
distributed to each well of 20 sample plates from the master mix plate using the robot.
PCR amplification conditions were as described in MALBAC-DT protocol but the
cycles for exponential PCR were decreased from 18 to 15.

Finally, 2uLL 10uM Tru2-G-RT primer was added to each well of the sample plates by
robot and running an additional 5 cycles of PCR steps according to MALBAC-DT

protocol.

Before sequencing library preparation, SuL. from each well of a sample plate was
pooling to a 1.5mL tube automatically by Span-8 pipettors for one library preparation.
After pooling, 50ul from the pooled samples were transferred to a 96-well plate and
purified using 0.8x Ampure Beads. Next, the purified products were quantified using
FilterMax F3 plate reader and 50ng DNA input was used for library preparation.
[llumina sequencing adapters were added by tagmentation following manufacturer's
instructions of Vazyme TruePrep DNA Library Prep Kit. The PCR cycling conditions
were as follows: 72°C for 5 min; 98°C for 30 sec; 12 cycles of 98°C 10 sec,63°C 30 sec,
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72°C 1 min; 72°C for Smin. During PCR steps, Illumina Truseq read2 (Tru-R2) primers
and Nextera 5XX primers were used to selectively amplify the 3’ ends of transcripts
containing cell barcodes and UMIs. Paired-end sequencing was performed on an
[llumina NovaSeq 6000 using 2 x150bp reads with a custom sequencing primer for
read2. For a specific S4 run, 48 samples were sequenced with 12 samples multiplexed

in each lane.

Single-cell ATAC-seq experiment

Nuclei extraction

Quick thaw two tubes of each tissue cells at 37°C water bath, then wash once with ice-
cold PBS, count cell number, aliquot 50,000 to 1.5ml PCR tube (Eppendorf),
centrifugation at 500xg for Smin at 4°C with a swing bucket centrifuge. Nuclei were
extracted with Omni-ATAC protocol (Corces et al., 2017), add 50ul ice-cold cell lysis
buffer (10mM Tris, ph7.5, 10mM NaCl, 3mM MgCl,, 0.01% digitonin, 0.1 IGEPAL
CA630, 0.1% Tween 20), pipette to mix thoroughly, put on ice for 3min, then add 100ul
ice-cold wash buffer (10mM Tris, ph7.5, 10mM NaCl, 3mM MgCl,, 0.1% Tween 20),
pelleted by centrifuge at 500xg for 10min at 4°C, wash once with 100ul ice-cold wash

buffer, pelleted nuclei.

Assemble META transposome

We use META transposome (Tan et al., 2018) in the transposition step, to avoid half
loss as compared to the Nextera transposome. One strand of the transposon was 5'-
/Phos/-CTGTCTCTTATACACATCT-3’, while the other strand was in the form of 5'-
[META tag]-AGATGTGTATAAGAGACAG-3'". Each of the oligos (Invitrogen,
purification: PAGE) was dissolved in 0.1 X TE to a final concentration of 100 uM. For
each of the n = 16 META tags, two strands were annealed at a final concentration of 5
uM each. The 16 annealed transposons were then pooled with equal volumes. The
transposase was purified after expression from the pTXB1-Tn5 plasmid (Addgene).
Transposome was assembled at a final concentration of 1.25 uM dimer (2.5 uM

monomer).
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In this work, we use META with n=16 tags:
CGAGCGCATTAA
AGCCCGGTTATA
TCGGCACCAATA
GCCTGTGGATTA
GCGACCCTTTTA
GCATGCGGTAAT
GCGTTGCCATAT
GGCCGCATTTAT
ACCGCCTCTATT
CCGTGCCAAAAT
TCTCCGGGAATT
CCGCGCTTATTT
CTGAGCTCGTTTT

Transposition

Resuspend pellet in 25ul transposition mix (12.5ul 2x TD buffer from Nextera kit, 10ul
PBS ph7.5, 0.25ul 1% Digitonin, 0.25ul 10% Tween, 2ul 1.25uM META transposome),
pipette to mix thoroughly, then incubate in a thermomixer at 1000rpm for 30min at
37°C. After transposition, add 25ul 2 x STOP buffer (40mM EDTA, 10mM Tris pH 8.5,

ImM spermidine), incubate on ice for 15min to stop transposition.

FACS single nuclei and amplification

For FACS, resuspend transposed cells in 1.5ml 0.5% BSA in PBS, then sorted single
cells into 96-well plates containing 1ul lysis buffer (10mM Tris pH 8.0, 20mM NacCl,
ImM EDTA, 0.1% SDS, 500nM Carrier ssDNA, 60ug/ml QIAGEN protease) with a
BD flow cytometer (BD, Ariall). Events were first gated on FSC and SSC as “cells”,
and then on FSC and trigger pulse width as “singlets”. The sorting mode was “1.0 drop
single”. After sorting, plates were sealed with an aluminum sealing film (PCR-AS-600,

Axygen), centrifugation at 2800xg with swing bucket centrifuge for Imin at 4°C to


https://doi.org/10.1101/2020.04.12.038000
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.12.038000; this version posted April 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

ensure nuclei in lysis buffer, then store at -80°C until ready for PCR amplification.

We thawed plates, change with an adhesive sealing film (MSB1001, bio-rad), then
incubate at 65°C for 15min to release Tn5 from DNA on a thermocycler, then add 1ul
3% Triton X-100 to quench SDS. For amplification, first add 4ul preamp mix (3ul 2x
high fidelity Q5 Master mix, 0.192ul 50uM META16 primer mix, 0.05ul 100mM
MgCly, 0.758ul H>0) to each well, cycling conditions were as follows

* 72°C, 5min,

* 98°C, 30s

* 16 cycles:

98°C, 10s

62°C, 30s

72°C, Imin

* 72°C, 5min

* hold at 4°C

After preamplification, add 0.225ul 50uM indexed META16-ADP1 primer to each
column, and 0.225ul 50uM META16-ADP2 primer to each row to incorporate well-
specific cell barcodes, cycling conditions were as follows

* 98°C, 30s

* 5 cycles:

98°C, 10s

62°C, 30s

72°C, 1min

* 72°C, 5min

* hold at 4°C

After amplification, pool a whole plate, purify with DNA Clean & Concentrator-5
column (ZYMO).

META16 primer mix sequence in the form of 5-[META tag]-
AGATGTGTATAAG
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META16-ADP1 primer design in the form of 5’-
CTTTCCCTACACGACGCTCTT  CCGATCT-[Cell  Barcode]-[META  Tag]-
AGATGTGTATAAG. META16-ADP2 primers design in the form of 5’-
GAGTTCAGACGTGTGCTCTTCCGATCT-[Cell Barcode]-[META Tag]-
AGATGTGTATAAG.

ADPI cell barcodes as follows

GATATG, ATACG, CCGTCTG, TGCG, GAACTCG, ATGTAG, CCCG, TGTAG,
GAGTAAG, ATCG, CCTAG, TGACCG

ADP?2 cell barcodes as follows

ACTCTA, AGAGCAT, GGTATG, TCGATGC, CTACTAG, TATGCA,
CACACGA, GTCGAT

All liquid transfer steps were handled by a liquid handler platform Echo525.
Detailed calibration for each transfer steps is as follows:

Cell lysis buffer: 384PP_AQ_BP

3% Triton X-100: 384PP_AQ SPHigh

PCR master mix: 384PP_AQ BP

Primer mix: 384PP_AQ BP

Library preparation and sequencing

Each plate takes 120ng (9ul template) for library preparation, the library was performed
by addition of 21ul PCR mix (15ul 2x Q5 Master mix, 3ul NEBNext index primer i5,
and 3ul NEBNext index primer 17, 0.05ul 100mM MgCl2), here we use a unique dual
index combination for each plate to reduce index hopping. Then incubate as 98°C, 30s,
2 cycles [98°C, 10s, 68°C, 30s, 72°C, 1min], note only 2 cycles to avoid cell barcode
switching in case of any remaining cell barcode primers. Finally, the library
concentration was determined by Kapa qPCR master mix. For sequencing, the
equimolar libraries from each 96-well plate were pooled and sequenced on two runs of

a NovaSeq 6000 (Illumina).

Single-cell RNA-seq data analysis
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Data pre-processing

First, the raw data for each 96-well plate was demultiplexed according to the cell
barcodes in the R2 reads, where no mismatch was allowed. Then, the demultiplexed R2
reads which contained less than 3 bases inconsistent to designed UMI patterns and
contained at least 4 T in the Sbp downstream regions of UMIs were recognized, and the
corresponding R1 reads were extracted. For the remained R1 reads, the polyA
sequences were trimmed, followed by filtering for high-quality reads with the following
criteria: 1) at least 40bp; 2) more than half of the bases showing the sequence quality

scores greater than 38. 3) less than 10% of bases showing N.

Reads mapping and gene expression calculation

The processed R1 reads were mapped to the human genome (GRCh38.p10) using
HISAT2 (Kim et al., 2015) with the option of “--new-summary”’, where the genome and
gene annotation files (primary assembly) were download from Gencode (Frankish et
al., 2019). The reads mapped to multiple genomic positions were removed according to
the “NH:1” tags in the BAM files using Samtools (Li et al., 2009). The remained reads
were assigned to genes using htseq-count in HTSeq (Anders et al., 2015) with the
default options. Then for each gene, the reads with similar UMIs (no more than 2
hamming distance) were collapsed to remove redundant reads. Finally, the UMI count

for each gene was calculated to generate the gene expression matrix.

Cell and gene filtering

Several criteria were used for cell filtering in each organ: 1) the ratio of primer A in all
primers (A and B) >= 0.9; 2) clean reads number >= 0.4 million; 3) reads mapping
ratio >= 0.6; 4) detected gene number > 1000; 5) UMI number > 3000. 6) mitochondrial
gene UMI ratio < 0.15; 7) ERCC ratio < 0.25. To filter out doublets, the cells showing
extremely high gene number and UMI number were removed. In addition, a generalized
additive model (GAM) was fit for UMI number (y) against gene number (X) using gam
in mgev. The cells showing the observed UMI number great than 2-fold of the expected

UMI number were removed. After cell filtering, the genes were filtered using two
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strategies: 1) in each organ, the genes expressed in less than 10 cells were removed,
which produced the files used for analysis in each organ. 2) the gene expression
matrices in each organ were merged and then the genes expressed in less than 10 cells
were removed, which produced the file (47,468 genes by 31,208 cells) used for analysis

across 17 organs.

Cell type identification

For each organ, the gene expression matrix after filtering was used for cell clustering
using Seurat (Butler et al., 2018). Specifically, the highly variable genes were identified
using FindVariableGenes with the options of “mean.function = ExpMean,
dispersion.function = LogVMR, x.low.cutoff = 0.25, x.high.cutoff = 5, y.cutoff = 0.5”,
followed by PCA dimension reduction. The significant dimensions with the p-value less
than 0.001 were used for cell clustering. The resolution was optimized to produce
reliable clusters according to the /~-SNE plot. To avoid over-clustering, the similar cell
clusters were merged using ValidateClusters with the options of “top.genes = 30,
min.connectivity = 0.01, acc.cutoff = 0.85”. The differentially expressed genes
(signature genes) in each cell cluster were identified using FindMarkers, and only the
signature genes with power >= 0.4 and fold change >= 2 were selected. Based on
signature genes, cell identities were assigned to each cell cluster. Gene ontology
enrichment analysis was performed using runTest (Fisher's exact test) in topGO (Alexa

and Rahnenfuhrer, 2018), and only the terms with FDR < 0.05 were selected.

The comparison between fetal and adult cells
The single-cell RNA-seq data for the 6 organs (kidney, large intestine, liver, lung,
spleen and testis) in the human adult was downloaded from Single Cell Portal

(https://singlecell.broadinstitute.org/single cell) and literature (Guo et al., 2018;

Kinchen et al., 2018; MacParland et al., 2018; Madissoon et al., 2019; Stewart et al.,
2019). The cells with at least 500 detected genes were used for analysis. For each organ,
the adult cells were mapped into the fetal cells using Cell Blast (Cao et al., 2019b) with

the cutoff of 0.2 for cell type identification. To remove the batch effect, the expression
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matrix of fetal and adult cells was corrected for each organ using Seurat (Stuart et al.,
2019). To compare the heterogeneity between fetal and adult cells, pairwise Spearman
correlation was calculated between the cells within each organ and each cell group
(epithelial cells, endothelial cells, fibroblasts and immune cells) for fetal and adult data,
respectively. To compare the distance between fetal and adult cells across cell groups,
pairwise Spearman correlation was calculated between the fetal cells and the adult cells

within each organ and each cell group.

Cross-organ analysis

To perform hierarchy clustering across organs, the gene expression matrix containing
all the 17 organs was normalized into count per million (CPM). The cell types which
belonged to the same identity were grouped. For example, all the epithelial cells in the
kidney were grouped into kidney epithelial cells. For each cell group in each organ, the
average CPM was calculated. Then, the pairwise Pearson correlation was calculated
between cell types. Hierarchy clustering (average linkage) was performed based on the

distances (1 - correlation).

To identify the putative TFs playing roles in cell type commitment, the CPM for TFs
were extracted from the gene expression matrix containing all the 17 organs. Then
random forest classification was performed using randomForest in randomForest with
the option of “importance = T”. The TFs were decreasingly ordered by the mean

decrease in Gini index.

Correlated gene module (CGM) detection and annotation

To estimate the required cell number for CGM analysis, the most abundant cell type
(Fibro-ADAM28) was randomly subsampled into 100, 300, 500, ..., 1300, 1500, 1700
cells, respectively. For each group of sampled cells, the gene expression was normalized
into count per million (CPM) and pairwise gene correlation (Spearman) was calculated
to generate the background distribution of gene correlation. The 95% quantile of

correlation showed robust for the groups with at least 500 cells, thus 500 was used as
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the required cell number.

For each of the 10 cell types passing this requirement, 500 cells were randomly
subsampled for gene correlation calculation as mentioned above. Hierarchy clustering
(average linkage) was performed based on the distances (1 - correlation) and CGMs
were detected using cutreeDynamic in dynamicTreeCut (Langfelder et al., 2008) with
the options of “cutHeight = 0.99, minClusterSize = 10, method = "tree", deepSplit=F”,
and only the CGMs with the average correlation >= the 95% quantile of background
correlation (0.088) were selected. Then, the CGMs in different cell types were merged.
To remove redundancy, the pair of similar CGMs (the ratio of common genes number

to union genes number > 0.6) was replaced by their common genes.

To calculate the gene type composition for each CGM, the gene type was extracted
from the gene annotation file mentioned in reads mapping. The human TF list was

downloaded from Animal TFDB v3.0 (Hu et al., 2019).

To perform enrichment analysis for the genes in each of the 227 CGMs with high speed,

three types of datasets were built:

1) The dataset for TF enrichment.
The binding motifs were downloaded from JASPAR (CORE) and TRANSFAC®,
respectively. The human motifs were extracted and only the ones in the TF list
mentioned above were selected. For the TFs with more than one motif, only the
non-variants or the recommended one was chosen according to the motif annotation
information. For the TFs existing in both JASPAR and TRANSFAC®, only the one
in the former was chosen. Then, the gene promoter (upstream -2kb of TSS ~
downstream of TSS of genes) sequences were extracted using BEDTools (Quinlan
and Hall, 2010), followed by the Markov model estimation using fasta-get-markov
in MEME (Bailey et al., 2009). After that, TF binding sites were identified using
FIMO (Grant et al., 2011) in MEME with the options of “--parse-genomic-coord --

thresh le-5 --max-stored-scores 500000”. The genes whose promoter regions
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containing TFBSs were assigned to the target genes of the corresponding TFs.

2) The dataset for gene ontology (GO) enrichment
The gene ontology annotation file in the human (goa human.gaf.gz with the time
stamp of 2019-10-09) was downloaded from The Gene Ontology Consortium (The
Gene Ontology Consortium, 2019). The terms in the biological process aspect were
extracted.

3) The dataset for KEGG pathway enrichment
The KEGG pathway files in the human (with the time stamp of 2019-12-18) were
downloaded from the KEGG database (Kanehisa et al., 2017).

These three datasets were then processed and used for gene enrichment analysis using
enricher in clusterProfiler (Yu et al., 2012) with the options of “pAdjustMethod = "BH",
minGSSize = 1, maxGSSize = Inf, pvalueCutoff = 0.05”, and the results with the

adjusted p-value less than 0.05 were selected.

In addition, the protein-protein interaction (PPI) enrichment was performed using
STRINGdb (Szklarczyk et al., 2015), where the PPI data was imported using
STRINGdb$new with the options of “version = "10", species = 9606, score_threshold
=400" and enrichment test was performed using STRINGdb$get ppi_enrichment. The

results with the p-value less than 0.05 were selected.

Single-cell ATAC-seq data analysis

Data pre-processing and quality control

First, the raw data for each 96-well plate was demultiplexed according to the cell
barcodes in the R1 and R2 reads, where at most 1 mismatch was allowed. Then, reads
were trimmed using cutadapt (Martin, 2011) with the option “-e 0.22” to remove cell
barcodes, META tags and transposon sequences at both 5’ and 3’ ends. The trimmed
paired-end reads were aligned to the human genome (GRCh38.p10) using Bowtie2
(Langmead and Salzberg, 2012) with “-X 2000 --local --mm --no-discordant --no-

mixed” parameters. PCR duplicates and contaminated reads were subsequently
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removed for reads that aligned to the autosome and X chromosome with mapping
quality >= 20 using a custom python script based on the coordinates and META tags.
The cell filtering was based on the following criteria: 1) number of reads >= 100k; 2)
number of unique fragments >= 10k and <= 600k; 3) ratio of reads aligned to the nuclear

genome >= (.85; 4) ratio of reads aligned to the mitochondria <=0.1.

Peak calling and feature matrix

The unique fragments of all cells passing quality control from 14 organs were merged
together. Accessible peaks were called on the merged files using macs2 callpeak
command (Zhang et al., 2008) with “-f BEDPE --nomodel --nolambda --SPMR --keep-
dup all” as options. Peaks overlapped with the ENCODE blacklist were removed. Peaks
with size longer than 2kb were broke into ~1kb windows. 333,614 accessible peaks
were identified. For each cell, the accessibility of each peak was quantified by the count

of Tn5 insertion which occurred within this peak to construct the feature matrix.

TF binding site identification

We downloaded human TF motif position weight matrices from JASPAR core database
(2018) and TRANSFAC®, respectively. The peak sequences were extracted using
BEDTools (Quinlan and Hall, 2010), and the motif binding sites on each accessible
peaks were identified using FIMO with parameters “--thresh 0.0001 --max-stored-

scores 500000 --max-strand”.

TF motif accessibility score

We used chromVAR (Schep et al., 2017) to calculate the global TF motif accessibility
deviations. The peak-to-cell feature matrix and genomic coordinates were input to
“SummarizedExperiment” function to construct the object. “addGCBias” function was
applied to compute the GC content for peaks. The the JASPAR 2018 core database was
got using “getMatrixSet” function with “‘species’ = 9606, ‘all versions’=T" as options,
and mapped to hg38 genome by “matchMotifs” function with option “genome =

BSgenome.Hsapiens. UCSC.hg38”. The TF motif accessibility deviations were
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calculated using “computeDeviations” with default parameters based on the motif

annotation and the “SummarizedExperiment” object.

Co-accessibility and gene activity scores

We used R package Cicero (Pliner et al.,, 2018) to estimate gene activities from
METATAC data. In brief, the sparse binary cell-by-peak matrix of each organ was used
to create a cell data set. After “detect genes” and “estimate size factors”, we
performed Latent Semantic Indexing (LSI) and reduced dimensions by UMAP. The
UMAP coordinates were input to “make cicero cds” function, and then “run_cicero”

to get co-accessibility scores between peaks with default parameter “k = 50”.

After got the co-accessibility scores between peaks, we used “annotate cds by site”
function to annotate all peaks located in the gene body +2kb upstream of TSS, and then
used “build gene activity matrix” with default parameter “dist thresh = 250000,

coaccess_cutoff = 0.25” to calculate gene activity scores for each gene in each cell.

Cell type identification using Seurat’s canonical correlation analysis

We applied Seurat’s scATAC-seq + scRNA-seq integration pipeline to match the
cellular states across two modalities, and transfer cell labels from transcriptomic data
to chromatin accessibility data (Stuart et al., 2019). For each organ, scATAC-seq gene
activity score matrix and annotated gene expression matrix were normalized and scaled,

b

and then input to “FindTransferAnchors” function with “reduction = ‘cca’ as the
option to generate anchor set between two datasets. This anchor set was input to
“TransferData” function, weighted by the LSI reduced scATAC-seq peak-to-cell matrix,

to predict cell identity of scATAC-seq cells.

Cross-organ analysis
The peak-to-gene count matrix and the gene activity score matrix containing 14 organs
were log-normalized and scaled using Seurat “NormalizeData” and ‘“ScaleData”

functions. The cell types which belonged to the same identity were grouped, as
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mentioned in “Single-cell RNA-seq data analysis” part. For each cell group in each
organ, the average scaled accessibility of each peak and average scaled gene activity
score of each gene were calculated. We also calculated the Z scores for the TF motif
accessibility deviation matrix of 14 organs, and then took the average for each cell

group in each organ.

To compare the gene expressions and gene activity scores, we computed the Spearman
correlation between average scaled expressions and average scaled gene activity scores

for common cell types of both data.

To compare the TF expressions and TF motif accessibility scores, we computed the
Spearman correlation between average scaled TF expression and average scaled TF

motif accessibility scores for common cell types of both data.

To perform hierarchy clustering across organs, the pairwise Pearson of average scaled
peak accessibilities correlation was calculated between cell types. Hierarchy clustering

(complete linkage) was performed based on the distances (1 - correlation).

Regulatory regions for each gene

We re-calculated the co-accessibility and gene activity scores using Cicero for each cell
type with more than 100 cells, to get cell-type-specific co-accessibility scores. For each
gene in each cell type, the regulatory regions included the peaks located in the gene
body +2kb upstream of TSS, and co-accessible peaks with co-accessibility score >=

0.25 and within 25kb.

Comparison between co-expression and co-accessibility

The co-expression index of two genes is defined as the Spearman correlation coefficient
of their normalized gene expressions. The co-accessibility index of two genes is defined
as the Jaccard index of their binary gene activity scores, which is the number of cells

both gene activity score > 0, divided by the number of cells at least one of the two genes
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with activity score > 0.

The co-expression/co-accessibility index of a CGM is defined as the average co-
expression/co-accessibility indexes of all gene pairs within the corresponding CGM,

respectively.

Infer functional TFs for CGMs

For each CGM, we combined all regulatory peaks of its genes, and computed motif
enrichment false discovery rate (FDR) using the hypergeometric test for JASPAR and
TRANSFAC® motifs. For TF with multiple motifs, we only kept the one with minimum
FDR.

On the other hand, for each CGM and each TF, we calculated the average co-expression

index of TF and each gene.

Data and Code Availability

DATA RESOURCES: The accession number of the raw data files for the RNA-seq and
ATAC-seq experiment reported in this paper is X. To take full advantage of the resource
in the GeACT project, we made our data available for further exploration via an

interactive website at http://geact.gao-lab.org.

SOFTWARE: All software is freely or commercially available and is listed in the STAR
Methods description and Key Resources Table. The code is accessible at

https://github.com/gao-lab/GeACT.

Supplemental Information

Supplemental Information includes seven figures and four tables and can be found with

this article online.
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Figure Legends

Figure 1. The overview of GeACT project. (A) The workflow of single-cell data
production and analysis. (B) Upper panel: The -SNE plot of all 31,208 cells from
single-cell RNA-seq., Lower panel: The ~-SNE plot of all 21,381 cells from single-cell
ATAC-seq. Each point represents a cell, colored by organ. The clusters are annotated
with the primary cell type. (C) The heatmap shows the Spearman correlation of gene
expression for the CGMs genes in the stomach Fibro-ADAM?28 cells. (D) Co-
expression and co-accessibility network for the MD173 genes of the stomach Fibro-
ADAM28 cells. Each node represents a gene. Red lines: co-expression index > 0.1 and
co-accessibility index > 0.5. Blue lines: co-expression index > 0.1 only. Grey lines: co-
accessibility index > 0.5 only.

Figure 2. The single-cell transcriptome landscape in 17 organs. (A) The heatmap
shows the signature genes in each cell type. Each row represents a signature gene and
each column represents a cell. For each cell type, five cells were randomly selected for
show. (B) The #-SNE plot of the marker genes of epithelial cells (EPCAM), endothelial
cells (PECAM]I), tibroblasts (COL1A1) and immune cells (PTPRC). The color changed
from grey to blue as the gene expression levels increase. (C) The bar plot means the
average of pairwise Spearman correlation between the cells within each organ and cell
group for fetal and adult cells, respectively. The error bar means the standard derivation
(Wilcoxon rank-sum tests, *** means p-value < 0.001). (D) The violin plot means the
pairwise Spearman correlation between the fetal and adult cells within each organ and
cell group (Wilcoxon rank-sum tests, *** means p-value < 0.001 between the
corresponding cell group and any other groups).

Figure 3. The architecture of expression profiles across cell types. (A) The hierarchy
clustering plots of gene expression for non-immune cell types based on all the expressed
genes, colored by cell types. (B) The t-SNE plot shows the epithelial cells in different
organs. (C) The dot plot shows the signature genes of the epithelial cells in different
organs. (D) The violin plot shows the signature TFs of the epithelial cells in different
organs. (E) The dot plot shows the TFs classifying all cell types, ordered by mean Gini
importance of the random-forest model. Only the top 10 significant TFs are shown.

Figure 4. The single-cell open chromatin landscape in 14 organs. (A) Heatmap of
Spearman correlations between average gene expressions and gene activity scores for
common cell groups of scRNA-seq and scATAC-seq profiles. Clustered by major cell
types. (B) Heatmap of Spearman correlations between average TF expressions and TF
activities defined by chromVAR deviations. Clustered by major cell types. Epithelial
cells, endothelial cells, immune cells and fibroblasts are highlighted. (C-E) The single-
cell chromatin accessibility landscape in the small intestine. (C) The t-SNE plot shows
the cells colored by sampling positions. (D) The same as (C), colored by primary cell
type annotations. (E) Heatmap of marker TF motif scaled accessibilities for each cell
type in the small intestine.
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Figure 5. The architecture of the open chromatin profiles across cell types. (A) The
hierarchy plots of open chromatin for non-immune cell types based on all accessible
peaks, colored by cell types. (B) The t-SNE plot of the epithelial cells from different
organs. (C) Cicero peak-to-gene connections for the CLPS locus in different organs.
CLPS is a signature gene of epithelial cells in the pancreas. Only connections with co-
accessibility score >= 0.25 are shown. (D) TF activity (defined by chromVAR
deviations) overlay on single-cell ATAC t-SNE plot (as in B), showed signature TFs of
the liver (GATA1-TALI1 complex), small intestine (CDX2), esophagus (TP63) and
stomach (GATA®).

Figure 6. The co-expression gene module map across cell types. (A) Left: the bar
plot shows the number of genes in each gene module. Middle: the heatmap shows the
average Spearman correlation of gene expression levels in each gene module (row,
n=227) and each cell type (column, n=10). Right: the heatmap shows whether the genes
in a gene module have enriched TF or miRNA regulators, gene ontology (GO) terms,
KEGG pathways and protein-protein interactions (Hypergeometric test, FDR < 0.05).
Gene modules were grouped by similar biological functions and then sorted by average
correlation. (B) The bar plot shows the gene type composition in each gene module,
ordered by the fraction of protein-coding genes. PCG: protein-coding gene. (C) The
scatter plot shows the genomic distribution pattern of genes in each gene module. The
x-axis means the ratio of gene pairs in the same chromosome and the y-axis means the
average genomic distances of genes. The maximum correlation means the maximum
value of the average of gene-gene correlation for each cell type. (D) The ratio of gene
modules with enriched TF, protein-protein interaction (PPI), GO biological process and
KEGG pathway for gene modules with different maximum correlation scores. (E) The
scatterplot comparing the co-expression index and the co-accessibility index of each
CGM (n=225, two mitochondria-related CGMs: MD88 and MD101, were excluded
because these genes aren’t located in the nuclear genome) and each cell type (n=9).
225*9 = 2025 points in total. The co-expression index was defined by the average
Spearman correlation coefficients of the expression level each pair of genes within
CGM, and the co-accessibility index was defined by the average Jaccard indexes of
binary gene activity scores of each pair of genes (F) The line chart shows the ratio of
highly co-accessible (co-accessible index >= 0.98) gene pairs changes over the co-
expression threshold. (G) The line chart shows the ratio of highly co-expressed (co-
expression index >= (.2) gene pairs changes over the co-accessibility threshold.

Figure 7. Representative gene modules. Two gene modules are shown: MD51 (A-F)
and MD117 (G-L). (A and G) The heatmaps show the Spearman correlation of gene
pairs. The grey blocks mean the correlation of genes expressed in less than 10% cells
of the corresponding cell type. (B and H) The heatmaps show the relative gene
expression levels for each gene (row, ordered as A and G, respectively) in each cell
(column, only 500 randomly sampled cells are shown, ordered by expression level). (C
and I) The bar plots show the enriched terms for enriched GO terms. Only the top 10
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significant terms are shown. (D and J) The protein-protein interaction for the genes in
the specific gene module. The blue, purple and yellow lines mean the PPIs are supported
by curated databases, experimental determination and text mining, respectively. (E and
K) The scatter plots show the TF motif enrichment in regulatory regions (see Methods
for more details) of CGM genes (x-axis) and the average Spearman correlation
coefficients of TF with CGM genes in the pancreas Fibro-PAMRI1+SOX6+ cells (E)
and small intestine SM-Visceral cells (K). The TFs with the FDR < 1¢7 and the average
co-expression > 0.2 (E) <-0.1 or > 0.09 (K) are highlighted. (F and L) Co-expression
and co-accessibility network of MD51 genes and MD117 genes, respectively. Each
node represents a gene. Red lines: co-expression index > 0.25 and co-accessibility
index > 0.9. Blue lines: co-expression index > 0.25 only. Grey lines: co-accessibility
index > 0.9 only.
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Supplementary Figure Legends

Figure S1. The overview of GeACT project, Related to Figure 1. (A) The bar plot
shows the number of cells after quality control for each organ in the single-cell RNA-
seq data. (B and C) The distribution of detected gene number (B) and UMI number (C)
in the single-cell RNA-seq data. (D) The bar plot shows the number of cells after quality
control for each organ in the single-cell ATAC-seq data. (E and F) The distribution of
detected fragment number (E) and peak number (F) in the single-cell ATAC-seq data.

Figure S2. The single-cell transcriptome landscape in the stomach, Related to
Figure 2. (A) The -SNE plot shows the cells colored by cell types. Epi: epithelial cells.
Endo: endothelial cells. SM: smooth muscle cells. Fibro: fibroblasts. DC/Macro:
dendritic cells or macrophages. (B) The relative expression level of marker genes for
primary cell type groups. (C) The relative expression of signature genes in each cell
type. (D) The relative expression of TFs in each type. Only the top 1~2 significant TFs
are shown. (E) The bar plot shows the enriched terms of GO biological process. Only
the top 10 significant terms are shown. (F) The bar plot shows the composition of each
cell type.

Figure S3. The single-cell transcriptome landscape in the liver, Related to Figure
2. (A) The #-SNE plot shows the cells colored by cell types. Epi: epithelial cells. Endo:
endothelial cells. Fibro: fibroblasts. MPP: multipotent progenitors. DC/Macro:
dendritic cells or macrophages. “Prog” and “Prol” mean progenitor cells and
proliferative cells, respectively. (B) The relative expression level of marker genes for
primary cell type groups. (C) The relative expression of signature genes in each cell
type. (D) The relative expression of TFs in each type. Only the top 1~2 significant TFs
are shown. (E) The bar plot shows the enriched terms of GO biological process. Only
the top 10 significant terms are shown. (F) The bar plot shows the composition of each
cell type. IV, V and VIII mean the corresponding segments. Around means the segments
VII, VI, II and III.

Figure S4. The single-cell transcriptome landscape in the kidney, Related to Figure
2. (A) The #-SNE plot shows the cells colored by cell types. PT: proximal tubule. LoH:
loop of Henle. DT: distal tubule. PC: principal cells. Epi: epithelial cells. CM: cap
mesenchyme. Endo: endothelial cells. SM: smooth muscle cells. Fibro: fibroblasts.
“Prog” and “Prol” mean progenitor cells and proliferative cells, respectively. (B) The
relative expression level of marker genes for primary cell type groups. (C) The relative
expression of signature genes in each cell type. (D) The relative expression of TFs in
each type. Only the top 1~2 significant TFs are shown. (E) The bar plot shows the
enriched terms of GO biological process. Only the top 10 significant terms are shown.
(F) The bar plot shows the composition of each cell type.

Figure SS5. The architecture of expression profiles across cell types, Related to
Figure 3. The dendrograms show the clustering of gene expression for non-immune
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cell types based on TFs (A), cell surface markers (B) and IncRNAs (C), colored by cell
types.

Figure S6. The architecture of single-cell chromatin accessibility profiles across
organs and cell types, Related to Figures 4 and 5. (A) Comparison of cell type
proportion in each organ between METATAC data and MALBAC-DT, colored by
organs. (B) The same as (A), colored by cell types. (C and D) Cicero peak-to-gene
connections for the marker gene locus in different organs. Only connections with co-
accessibility score >= 0.25 are shown. Connections with co-accessibility score >= 0.4
are colored by purple. (C) is for MUC13, which is a marker gene of epithelial cells in
the small intestine. (D) is for KRT15, which is a signature gene of epithelial cells in the
esophagus.

Figure S7. The co-expressed gene modules (CGMs) map across cell types, Related
to Figures 6 and 7. (A) The distribution of Spearman correlation for all gene pairs
using 100, 500, 1100 and 1700 cells, respectively. (B) The quantile of correlation using
100~1700 cells, respectively. (C) The number of detected gene modules using
100~1700 cells, respectively. (D) The number of genes in gene modules using
100~1700 cells, respectively. (E-G) The heatmap of co-expression differences and the
co-accessibility differences of CGM genes between two cell types. The upper triangle
is the expression Spearman correlation in cell type 1 minus that in cell type 2, and the
lower triangle is the binary gene activity Jaccard index in cell type 1 minus that in cell
type 2. E: MD51, pancreas Fibro-PAMR1+SOX6+ cells compared with stomach Fibro-
FBLN1 cells. F: MD117, small intestine SM-Visceral cells compared with small
intestine Fibro-COL6AS cells. G: MD34, lung Fibro-0 cells compared with small
intestine T cells.
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Figure S5
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Supplementary Table Legends

Table S1. The summary of the samples and oligonucleotides used for sequencing,
Related to Figure 1.

Table S2. The metatable and signature genes for the single-cell RNA-seq data, Related
to Figure 2.

Table S3. The metatable for the single-cell ATAC-seq data, Related to Figure 4.

Table S4. The metatable for correlated gene modules (CGMs), Related to Figure 6.
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