

1 **Alternative MyD88 -Cyclin D1 signaling in breast cancer cells**
2 **regulates TLR3 mediated cell proliferation**

3 Aradhana Singh¹, Ranjitsinh Devkar^{2#}, Anupam Basu^{1*}

4 From the ¹Molecular Biology and Human Genetics Laboratory, Department of Zoology, The
5 University of Burdwan, Golapbag Burdwan, 713104, West Bengal, India.

6 ²Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat
7 390002, India

8
9 To whom correspondence should be addressed: Prof. Anupam Basu, Dept. of Zoology, The
10 University of Burdwan, Purbo Bardhaman-713104, India abasu@zoo.buruniv.ac.in.

11 #Co-corresponding Author: E-mail: rv.devkar-zoo@msubaroda.ac.in.

15
16 Running Title: MyD88 -Cyclin D1 axis used by TLR3 in breast cancer

18

19

20

21

22

23

24

25 **Abstract:**

26 TLR3 mediated apoptotic changes in cancer cells are well documented and hence several
27 synthetic ligands of TLR3 are being used for adjuvant therapy. But there are reports showing
28 contradictory effect of TLR3 signaling which includes our previous report that had shown cell
29 proliferation following surface localization of TLR 3. However, the underlying mechanism of
30 cell surface localization of TLR3 and subsequent cell proliferation lacks clarity. This study
31 addresses TLR3 ligand mediated signaling cascade that regulates a proliferative effect in breast
32 cancer cells (MDA MB 231 and T47D) challenged with TLR3 ligand in the presence of MyD88
33 inhibitor. Evidences were obtained using immunoblotting, co-immunoprecipitation, confocal
34 microscopy, Immunocytochemistry, ELISA, and flowcytometry. Results had revealed that TLR3
35 ligand treatment significantly enhanced breast cancer cell proliferation marked by an upregulated
36 expression of cyclinD1 but the same were suppressed by addition of MyD88 inhibitor. Also,
37 expression of IRAK1-TRAF6-TAK1 were altered in the given TLR3-signaling pathway.
38 Inhibition of MyD88 disrupted the downstream adaptor complex and mediated signaling through
39 TLR3-MyD88- NF- κ B (p65)-IL6-Cyclin D1 pathway. TLR3 mediated alternative signaling of
40 the TLR3-MyD88-IRAK1-TRAF6-TAK1-TAB1- NF- κ B axis leads to upregulation of IL6 and
41 cyclinD1. This response is hypothesized to be via the MyD88 gateway that culminates in
42 proliferation of breast cancer cells. Overall, this study provides first comprehensive evidence on
43 involvement of canonical signaling of TLR3 using MyD88 - Cyclin D1 mediated breast cancer
44 cell proliferation. The findings elucidated herein will provide valuable insights into understand
45 the TLR3 mediated adjuvant therapy in cancer.

46 **Keywords:** Toll like receptor 3, TLR3, MyD88, Cyclin D1 , ST2825, IRAK1, TRAF6, TAK1,
47 TAB1, cell surface, Poly (I:C)

48

49

50

51

52 **1. Introduction:**

53 Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) of viral origin, small
54 interfering RNAs, and self-RNAs derived from damaged cells (Bugge et al., 2017; Kawasaki and
55 Kawai 2014). TLR3 induces a potent antigen-specific CD8+ T-cell responses that directly
56 induces effector CD8+ T-cell and natural killer (NK) cells for IFN- γ release (Conforti et al.,
57 2010). TLR3 was reported to be expressed not only by immune cells but also in the various
58 cancer cells, such as breast cancers (Salaun et al., 2006), prostate cancer (Gambara et al., 2014),
59 epithelial adenocarcinoma (Helminen et al., 2016), and others. Classically TLR3 signaling is
60 mediated through the endosomal compartment of the cells. Intracellular TLR3 signaling can
61 directly induce apoptosis (Conforti et al., 2010; Salaun et al., 2006). TLR3 structure is
62 comprising of the leucine-rich repeat domain, a transmembrane region, a linker region, and a
63 Toll/IL-1 receptor (TIR) domain (Choe 2005; Takeda and Akira 2004). Ligand binding is
64 mediated by the leucine-rich domain, whereas intracellular signaling is propagated by the TIR
65 domain (Conforti et al., 2010; Salaun et al., 2006).

66 Canonical TLR signaling has been reported to be regulated by an array of molecules through
67 various mechanisms to adjust the consequences of associated autoimmune and inflammatory
68 diseases. In the canonical pathway, for most of the TLRs, upon ligand activation, MyD88
69 recruited as a dimer in the cytoplasmic TIR domain in a homophilic interaction (Chen et al.,
70 2018; Loiarro et al., 2010; Noursadeghi et al., 2008; Jia et al., 2014; Hsiao et al., 2014; Han et
71 al., 2002).

72 TLR3 agonists have been used in immunotherapy for various clinical and preclinical studies.
73 The majority of clinical studies establish TLR3 as a tumor suppressor using synthetic ligand
74 poly(I:C) or poly-ICLC for adjuvant therapy or targeted therapy (Jia and Wang 2015; Braunstein
75 et al., 2018; Ho et al., 2015, Schau et al., 2019). Ligand binding has been reported to induce
76 endosomal TLR3 mediated recruitment of TIR domain-containing adapter-inducing interferon β
77 (TRIF) (O'Neill and Bowie 2007) to trigger type-I IFN and to induce cellular apoptosis (Conforti
78 et al., 2010; Salaun et al., 2006; Gambara et al., 2014; Oshiumi et al., 2003; Yamamoto 2003).
79 On the contrary, TLR3 has been reported to be highly expressed in breast tumors and is

80 associated with poor prognosis of the disease (González-Reyes et al., 2010; Jia et al., 2014;
81 Odalys et al., 2019).

82 Induction of cell proliferation via surface localization of TLR3 has been shown by our research
83 group in breast cancer cells (Bondhopadhyay et al., 2014) and by other groups in diverse types of
84 cancers (Glavan and Pavelic 2014; Bugge et al., 2017). This mechanism is supposedly an
85 alternative to the endosomal mediated action but the exact mechanism of alternating TLR3
86 signaling lacks clarity. In this study, we have addressed the alternative signaling, independent of
87 TRIF activation to decipher the mechanistic cascade of alternative cellular proliferative mode of
88 TLR3 signaling.

89 **2. Materials and Methods:**

90 **2.1. Cell lines and cell culture conditions**

91 Human breast cancer cells MDA-MB-231, and T47D were obtained from National Center for
92 Cell Science, Pune, India. MDA-MB-231 cells were cultivated in L-15 medium (Himedia, India)
93 and T47D cells were grown in RPMI 1640. All the media were supplemented with 10% FBS
94 (GIBCO) and 1% L-Glutamine-Penicillin-Streptomycin (200mM L-Glutamine, 10,000 units/mL
95 Penicillin and 10mg/mL Streptomycin) (Himedia, India). T47D cells were maintained at 37°C
96 in a humidified incubator with 5% CO₂ while MDA-MB-231 cells were maintained at 37°C in a
97 humidified incubator without CO₂.

98 **2.2. TLR3 Ligand**

99 Poly(I:C) HMW (Invivogen, Catalog # tlrl-pic) was used as synthetic ligand of TLR3.
100 Accordingly, a dose of 10 µg/ml of Poly(I:C) was used in serum free culture media to bind with
101 TLR3 present in cell.

102 **2.3. MyD88 inhibitor**

103 MyD88 inhibitor ST2825 (MCE - HY-50937) was used to block the dimerization of MyD88.
104 Cells were treated with ST2825 (1µM), for 4 hours prior to addition of poly(I:C).

105 **2.4. Cell proliferation assay**

106 Breast cancer cells were seeded in 35 mm culture dish at a density of 40×10^4 cells in appropriate
107 culture media supplemented with 10% FBS and allowed to grow for 24 hours. After the cells
108 have reached nearly 40-50% confluence, cells were treated with MyD88 inhibitor, 4 hours prior
109 to addition of TLR3 ligand in serum-free media. At the end of incubation period, cells were
110 trypsinized and stained with trypan blue and counted the number of viable cells under
111 microscope. Two technical replicates per sample were run in each independent experiment.

112 **2.5. BrdU Incorporation assay**

113 To confirm active DNA synthesis as confirmatory index of cellular proliferation, BrdU
114 incorporation assay was carried out through flow cytometry. Briefly, cells were plated in 35 mm
115 culture dish at 40×10^4 cells per dish and allowed to adhere overnight in complete media at 37^0C
116 and treated with MyD88 inhibitor, 4 hours prior to addition of TLR3 ligand. At the end of
117 culture, 10uM BrdU (BD Pharmingen BrdU Flow Kit, San Diego, CA, USA) was added and the
118 target cells were incubated for another 30 minutes, the medium was discarded and the cells were
119 fixed at room temperature for 30 minutes. Cells were permeabilized and FITC conjugate anti-
120 BrdU antibody (BD Pharmingen), was allowed to bind with the incorporated BrdU. After
121 washing, cells were incubated with 7AAD and acquired through BD FACSVerse flow cytometer
122 (BD Biosciences, San Diego, CA, USA).

123 **2.6. Immunocytochemistry**

124 To check expression of TLR3 in cell surface as well as the level of IL-6 in the cytoplasm,
125 immunocytochemistry was performed. Briefly, 40×10^4 cells were seeded on cover slip in 35mm
126 culture dish in complete media. Cells were allowed to adhere for overnight and treated. Four
127 hours before the addition of TLR3 ligand, MyD88 inhibitor was added and incubated for 24
128 hours. For TLR3 surface expression, cells were fixed and allowed to bind with TLR 3 antibody
129 (Invitrogen- PA5-29619) and Alexa 594 conjugated secondary anti-rabbit goat antibody
130 (Invitrogen- A11012). For IL-6 expression Cells were fixed, permeabilized and incubated with
131 primary IL-6 antibody (Invitrogen- AMC0862) and Alexa 488 conjugated anti-mouse goat

132 antibody (Invitrogen- A11001) and mounted with Vecta Shield – DAPI to counter stain nuclei
133 and observed under fluorescence microscope (Leica DMI 6000B).

134 **2.7. Confocal microscopy study**

135 Confocal microscopy was carried to study the change in nuclear localization of NF- κ B in breast
136 cancer cells after TLR3 ligand activation. Cells were seeded with a density of 40×10^4 on
137 coverslip with 35 mm culture plate. Cells were treated with TLR3 ligand with or without MyD88
138 inhibitor for 30 minutes, 60 minutes and 90 minutes. Cells were fixed with 3% PFA
139 (paraformaldehyde solution) for 15 minutes at room temperature, washed with PBS and
140 transferred to 100% methanol for 5 minutes, washed with PBS and permeabilized with PBS
141 containing 0.25% Triton X-100 for 5 min. After fixation and permeabilization, blocking was
142 done using PBS containing 1% BSA for 1 hours. After blocking, cells were allowed to bind with
143 NF- κ B p65 antibody (Invitrogen- PA1-186) for overnight at 4°C followed by anti-rabbit antibody
144 conjugated with Alexa-594 for 1 hours at room temperature in dark. Coverslips were mounted
145 with Vecta Shield-DAPI to counterstain nuclei and analyzed by Zeiss LSM 710 inverted
146 confocal microscope (Zeiss, Germany) with an 63X plan apochromat objective. Image analysis
147 was performed using ImageJ v3.91 software (<http://rsb.info.nih.gov/ij>).

148 **2.8. ELISA**

149 IL-6 was quantified from the cell supernatant of the challenged cells by ELISA. Briefly, cells
150 were seeded at a density of 100×10^4 cells in 35 mm culture plate and grown to confluence.
151 Confluent monolayer was washed twice and kept in media supplemented with 1% ITS. Then
152 incubation with TLR3 ligand and MyD88 inhibitor was performed for 36 hours. Two replicates
153 per sample were run in each independent experiment. At the end of incubation, condition media
154 was collected and estimated quantity of the secretary IL-6 using commercially available ELISA
155 kit (R&D Systems, DY 206-05) with human IL6 antibody (R&D Systems, DY 008).

156 **2.9. Western blotting**

157 Cells were cultured at a density of 100×10^4 cells in 60 mm culture plate (Tarsons-960020). Four
158 hours before the addition of TLR3 ligand, MyD88 inhibitor was added and incubated for 24

159 hours. Cells were lysed using RIPA buffer and gel electrophoresis was performed using
160 acrylamide gel. Proteins were transferred to PVDF Membranes and blotted with antibodies
161 against IRAK1 (Invitrogen- 38-5600), phospho IRAK1-Thr209, (Invitrogen- PA5-38633),
162 TAK1 (Invitrogen- 700 113), phospho TAK1-Thr184/187 (Invitrogen- MA5-15073), TAB1
163 (Invitrogen- PA5-28683), TRAF-6 (Invitrogen- PA5-29622), and Cyclin D1 (Invitrogen-
164 AHF0082). The antibody against β -actin (Invitrogen- MA191399) was used as a loading control.

165 **2.10. Co-immunoprecipitation**

166 Cells were cultured at a density of 100×10^4 cells in 60 mm culture plate (Tarsons-960020). Four
167 hours before the addition of TLR3 ligand, MyD88 inhibitor ST2825 was added and incubated for
168 24 hours. Cells were lysed with non-denaturing lysis buffer (20mM Tris-HCl, 137mM NaCl, 1%
169 Triton X-100, 2mM EDTA with protease inhibitor cocktail. The lysate was incubated on ice for
170 30 minutes, and centrifuged at 10,000 rpm for 20 minutes at 4^0C . Supernatant were incubated
171 with 1 μg of indicated antibody and dynabeads (Invitrogen-10003D) for overnight at 4^0C . The
172 dynabeads were pellet down and washed with lysis buffer after overnight incubation. The
173 precipitates were resolved in SDS-PAGE and subjected to western blotting with the indicated
174 antibodies.

175 **2.11. Statistical analysis**

176 Statistical analysis was performed with GraphPad Prism version 7. The difference between two
177 groups were determined by two-tailed Student's T - test. Two or more groups were compared
178 with one-way ANOVA. A p-value <0.05 was considered for statistically significant.

179 **3. Results:**

180 **3.1. TLR3 ligand induces cell proliferation which is restricted by the MyD88
181 inhibitor**

182 To verify the alternative TLR3 signaling, breast cancer cells were pretreated with MyD88
183 inhibitor (ST2825) for 4 hours followed by stimulation of TLR3 by addition of the TLR3 ligand.
184 This was followed by incubation of the cells for 24 hours. We have observed a significant
185 increase in cell proliferation of MDA-MB-231 and T47D cells. The MyD88 inhibitor impaired

186 the proliferative effect of TLR3 ligand poly(I:C) in both MDA-MB-231 and T47D cells (Fig.
187 1A-B).

188 Further to confirm cellular proliferation, BrdU incorporation assay was undertaken that revealed
189 higher percentage of BrdU incorporated in S-phase cells in TLR3 ligand treated cells as
190 compared to untreated cells. The proliferative effect of TLR3 ligand treatment was nullified by
191 treatment with the MyD88 inhibitor (Fig.1C-D). There was no cytotoxic or cell proliferating
192 effect has been observed in the cells that has been treated with only MyD88 inhibitor.

193 **3.2. TLR3 ligands stimulates the expression of surface TLR3**

194 To confirm our previous findings of expression of TLR3 on the surface breast cancer cells
195 (Bondhopadhyay et al., 2014), in this study we had verified the membrane expression of TLR3 in
196 MDA-MB-231 and T47D breast cancer cells in the absence or presence of exogenous TLR3
197 ligand and MyD88 inhibitor by immunocytochemistry. TLR3 expression was markedly
198 increased in the presence of exogenous TLR3 ligand in comparison to the unstimulated cells,
199 while the addition of MyD88 did not effect on TLR3 expression (Fig 2).

200 **3.3. MyD88 inhibitor reduces the production of proinflammatory cytokine IL-6
201 in TLR3 ligand treated breast cancer cells**

202 To assess, whether TLR3 ligand able to induce IL-6 production and be reversed, cells were
203 treated with MyD88 inhibitor 4 hours. Accordingly, MyD88 inhibitor pretreated cells were
204 challenged with TLR3 ligand and level of IL6 was determined by immunocytochemistry in
205 cytoplasm and by ELISA in condition media. We have observed that TLR3 ligand treatment
206 significantly induces the immunofluorescence and secretion of IL-6 compared to the control
207 group. Pretreatment of MyD88 inhibitor reduced the production of IL-6 in spite of stimulation
208 with TLR3 ligand (Fig. 3).

209 **3.4 MyD88 inhibitor attenuates TLR3 ligand-induced NF-κB nuclear localization**

210 In the previous section we have showed that there was reduction in the IL-6 expression after
211 addition of MyD88 inhibitor despite the presence of TLR3 ligand. Previously it was reported
212 that early phase activation (0.5-2h) of NF-κB leads to the production of pro-inflammatory
213 cytokines (Han et al., 2002). In the present work, we had assessed the early phase nuclear

214 localization of p65 subunit of NF- κ B. Accordingly, it has been observed that MyD88 inhibitor
215 nullifies TLR3 ligand induced nuclear localization of p65 (Fig 4). TLR3 ligand elicits highest
216 translocation of p65 into the nucleus at the 60-minute time point in both the cell lines compared
217 to control untreated cells (Supplementary Figure 1).

218 **TLR3 ligand induced the expression of Cyclin D1 and halted by the MyD88 inhibitor**

219 To address that TLR3 mediated cell proliferation, whether regulated through the cyclin D1 gene
220 expression, we investigated the expression of cytosolic cyclin D1 through western blotting using
221 cell lysate. TLR3 ligand stimulation elevates the expression of cyclin D1. However, the addition
222 of MyD88 inhibitor recorded a decrement in the level of cyclin D1 suggesting a break in the
223 signaling cascade of TLR3 ligand (Fig. 5A-B).

224 **MyD88 inhibitor reduced the exogenous TLR3 ligand -induced expression of adaptor
225 proteins -IRAK1, TAK1, TAB1 and TRAF6**

226 To understand the involvement adopter complex to transmit the effect of TLR3 ligand for the
227 expression of Cyclin D1, we have checked the expression IRAK1, TRAF6, TAK1, TAB1 in the
228 presence or absence of the MyD88 inhibitor. To confirm our hypothesis, protein level of all the
229 above adaptor proteins has been estimated by western blotting. The significant increase in
230 expression of IRAK1, TRAF6, TAK1, and TAB1 following induction of TLR3 ligand has been
231 observed compared to untreated cells. However, addition of MyD88 inhibitor ST2825 reduced
232 the level of IRAK1, TRAF6, TAK1, and TAB1(Fig 5A-B).

233 **MyD88 inhibitor reduces TLR3 ligand mediated phosphorylation of adaptor protein
234 IRAK1 and TAK1**

235 IRAK1, a serine-threonine kinase, was reported to be phosphorylated upon lipopolysaccharide
236 (LPS) mediated signaling stimulation (Dong et al., 2006). We, have assessed IRAK-1 and TAK1
237 phosphorylation in MDA-MB-231 and T47D cells in presence and absence of MyD88 inhibitor
238 following the induction by TLR3 ligand. Increased in the level of phosphorylated IRAK1 and
239 TAK1 in the response of exogenous TLR3 ligand addition potentially explain the activation of

240 IRAK1 and TAK1. We found that MyD88 inhibitor suppressed the TLR3 ligand mediated level
241 of phosphorylated IRAK1 and TAK1 (Fig. 5 C-D).

242 **3.4. TLR3 ligand induces IRAK1/TRAFF6, p-IRAK1 /TAK1 and**
243 **TRAFF6/TAK1/TAB1 interactions which are disrupted by MyD88 inhibitor**

244 As there were change of expression and phosphorylation, further we have addressed the
245 involvement of signaling complex formation of the above adopter proteins. Accordingly, cells
246 were treated with TLR3 ligand in presence or absence of MyD88 inhibitor, thereafter
247 immunoprecipitated with IRAK1 antibody and immunoblotted with TRAF6 antibody were
248 investigated. In TLR3 ligand stimulated cells there was a marked increase in association. In cells
249 pretreated with MyD88 inhibitor before TLR3 ligand addition, the interaction of TRAF6 and
250 IRAK1 was decreased markedly. This suggests that MyD88 inhibition interferes with the
251 formation of the TLR3 ligand-induced IRAK1/TRAFF6 complex. (Figure 6A).

252 On the other hand, cell lysate was immunoprecipitated with pIRAK1 antibody and
253 immunoblotted with TAK1 antibody. In TLR3 ligand stimulated cells there was a marked
254 increased association. In cells pretreated with MyD88 inhibitor, the interaction of TAK1 with
255 Phospho-IRAK1 was decreased markedly. This suggests that MyD88 inhibitor ST2825 interferes
256 with the association of TLR3 ligand induced complex of pIRAK1/TAK1 (Figure 6B). It is also
257 worthy to mention that we did not find any immunoprecipitation of TAK1 when precipitated
258 thorough non phosphorylated IRAK1 antibody. As we had mentioned in Fig. 5A and 5B,
259 inhibition of MyD88 dimerization, block the proinflammatory signaling and lower the level of
260 TRAF6, TAK1, and TAB1. Herein, we hypothesize that MyD88 inhibitor interferes with the
261 formation of TLR3 ligand induced MyD88 mediated TRAF6/TAK1/TAB1 signaling complexes.
262 To evaluate this hypothesis, cells were pretreated with MyD88 inhibitor ST2825 for 4 hours
263 prior to stimulation by TLR3 ligand. Cell lysates were collected and immunoprecipitated with
264 TRAF6 and phosphoTAK1 antibodies, followed by immunoblotting using TAB1, TRAF6, and
265 TAK1 antibodies. In TLR3 ligand stimulated cells, there was a distinct increase in the
266 association; whereas, in the cells pretreated with MyD88 inhibitor, the interaction of TAK1 with
267 either TRAF6 or TAB1 was decreased markedly. This suggests that MyD88 inhibitor (ST2825)
268 interferes with the formation of signaling complex as mentioned above (Fig. 6 C and 6D).

269 **4. Discussion:**

270 In this present study, we had reported the mechanistic pathway of TLR3 ligand-induced breast
271 cancer cell proliferation through MyD88 mediated gateway. ST2825 is well established as a
272 MyD88 inhibitor in several studies (Kawasaki and Kawai 2014; Deng et al., 2016; Shiratori et
273 al., 2017; Loiarro et al., 2007) and hence, was used to address the ligand-mediated alternative
274 cell proliferative action of TLR3. Care was taken that ST2825 is used at a concentration that is
275 neither cytotoxic nor cell proliferative to the breast cancer cell lines (MDA MB 231 and T47D).
276 TLR3 was reported to be expressed only by immune cells and unstimulated TLR3 mainly
277 resides in ER. Stimulation of TLR3 with ligand poly (I:C) it gets translocated from ER into the
278 endosomal compartment (Johnsen et al., 2006). Though, regulation of this translocation is
279 reported to be controlled by UNC93B1 protein, its inhibition has only a partial effect on TLR3
280 mediated signaling (Bugge et al., 2017). Further, cell surface expression of TLR3 has been
281 reported in a variety of cells such as pulmonary cells, hepatocytes, breast cancer, prostate cancer
282 and epithelial adenocarcinoma (Salaun et al., 2006; Gambara et al., 2014; Helminen et al., 2016)
283 indicate that it signaling occurs through the plasma membrane. Dynasore, a dynamin inhibitor
284 that inhibits endocytosis of the receptors, only partially affects the poly(I:C) mediated TLR3
285 signaling. This suggests that TLR3 signaling may occur independent to ligand-internalization
286 (Bugge et al., 2017). Our result shows the increase in surface expression of TLR3 in breast
287 MDA-MB-231 and T47D cells upon TLR3 ligand activation. Addition of MyD88 inhibitor does
288 not have any effect on the level of surface TLR3 expression suggesting that TLR3 signaling
289 occurs from the cell surface in MyD88 dependent manner.

290 We have shown in our initial experiments that exogenous stimulation of TLR3 by its
291 ligand promotes the cellular proliferation in breast cancer cells (Bondhopadhyay et al., 2015).
292 But this proliferative effect has been perturbed by the addition of MyD88 inhibitor suggesting
293 that the said effect of TLR 3 is mediated by the MyD88. In the present investigation, TLR3
294 activation through TLR3 ligand stimulated the expression of downstream signaling factors,
295 including IRAK1, TRAF6, TAB1, and TAK1 and suppressed the MyD88 inhibitor that
296 correlates with other signaling cascade (Kong et al., 2017). It has been reported that activation of
297 other TLRs, in contrast to TLR3, can induce canonical pathway through MyD88 mediated
298 activation of Interleukin 1 Receptor Associated Kinase 1(IRAK1). Activation of this signaling

299 pathway further regulates IRAK1 mediated activation of TNF Receptor Associated Factor 6
300 (TRAF6) and Transforming growth factor beta-activated kinase 1 (TAK1) that further causes
301 activation of TGF-Beta Activated Kinase 1 (TAB1). Thus our findings are well correlated with
302 earlier reports for different convergent signaling pathways (Kong et al., 2017; Dong et al.,
303 2006; Cui et al., 2012; Xiong et al., 2011, Johnsen and Whitehead 2006; Rhyasen and
304 Starczynowski 2014, O'Neill and Bowie 2007, Conforti et al., 2010; Salaun et al., 2006;
305 Gambara et al., 2014; Oshiumi et al., 2003; Yamamoto 2003, Ma et al., 2018, Klein and Assoian
306 2008, Alt et al., 2000).

307 Though, MyD88 does not have any catalytic activity, its activation causes dimerization
308 leading to the activation of downstream kinases (Chen et al., 2018). It has been shown that the
309 progression of signaling pathways occur due to the phosphorylation of two key adaptor proteins
310 IRAK1 and TAK1. IRAK1, a serine-threonine kinase, was reported to be phosphorylated via
311 MyD88 upon lipopolysaccharide (LPS) stimulation (Dong et al., 2006) that also triggers its
312 dissociation from the membrane and translocation into cytosol. IRAK1 activation is also required
313 for phosphorylation of TAK1 (Dong et al., 2006). We had observed that activation of IRAK1
314 leads to its complex formation with TRAF6 and TAK1. Phosphorylation of IRAK1 helps in
315 dissociation of TRAF6 complex from the membrane, and may facilitate formation of TRAF6,
316 TAK1, and TAB1 complex in the cytosol. Later, the phosphorylated IRAK1 may get
317 ubiquitinated and degraded as suggested by other research groups (Kong et al., 2017; Dong et al.,
318 2006; Cui et al., 2012; Xiong et al., 2011). Thus, dissociation of the complex from the membrane
319 may lead to phosphorylation of TAK1, as has been shown by research groups in other signal
320 pathways (Cui et al., 2012). In our study, the level of phosphorylation of IRAK1 and TAK1, as
321 well as the association of signaling complex IRAK1/TRAF6, pIRAK1/TAK1 and
322 TRAF6/TAK1/TAB1, was found to be elevated upon TLR3 induction. But, the level of
323 phosphorylation and as well as the interaction and formation of signaling complexes was found
324 to be reduced by administration of MyD88 inhibitor. These findings indicate the TLR3 act in the
325 TLR3-MyD88-IRAK1-TRAF6-TAK1 axis to promote cellular proliferation.

326 In recent studies, TAK1 has been identified as a key regulator of various immune
327 responses and inflammatory reactions that promote tumorigenesis, fibrosis, and multiple
328 inflammatory disorders. Accordingly, we have observed that, induction of TAK1

329 phosphorylation as a MyD88 activation cascade, induces the NF- κ B activation followed by
330 secretion of IL-6. This observation is supported by an earlier study wherein inhibition of TAK1
331 phosphorylation inhibits IL-6 production through an NF- κ B dependent manner (Hsiao et al.,
332 2014). As NF- κ B is dimer composed of p65 and p50 subunits (McFarland et al., 2013; Yang et
333 al., 2014; Brasier 2010), activation of this TAK1/TAB complex activates NF- κ B signaling
334 pathway, which induce nuclear localization of p65 (Brown et al., 2010). In our study, we had
335 recorded an early phase activation of NF- κ B that had triggered IL-6 release by TLR3 ligand
336 induction, but had shown a downregulation following inhibition of MyD88. LPS induction in
337 mice leads to biphasic stimulation of NF- κ B. In the early phase activation (0.5-2h) the
338 production of pro-inflammatory cytokines, tumor necrosis factor (TNF), and IL-1 β is seen
339 whereas, the late phase activation (8-12 h) is associated with expression of cyclooxygenase 2-
340 derived anti-inflammatory prostaglandins and the anti-inflammatory cytokines and transforming
341 growth factor- β 1 (Han et al., 2002). Our observation is well correlated with this report wherein,
342 an early phase activation leading to production of pro-inflammatory cytokines is observed
343 herein.

344 The induction of breast cancer cell lines (MDA MB 231 and T47D) with TLR3 ligand induces
345 cellular proliferation through MyD88 dependent manner via induction of pro-inflammatory
346 cytokine IL-6 and Cyclin D1. The addition of MyD88 inhibitor disrupts the signaling pathway
347 that leads to a decreased level of IL-6 secretion as well as lower in cyclin D1 activation. Cyclin
348 D1 controls cell cycle progression through the G1 phase and G1-to-S transition (Ma et al., 2018).
349 Induction of IL-6 has been reported to stimulate cyclin D1 promoter (Ma et al., 2018). Cyclin D1
350 has been reported to be induced during MyD88-TRAF-6 and TAK-1 signaling pathway via NF-
351 κ B-cyclin D1-STAT 3 pathway (Klein and Assoian 2008) and cyclin D1 exported from nucleus
352 to cytoplasm during S-phase of the cell cycle (Alt et al., 2000). TLR3 ligand stimulation elevates
353 the expression of cyclin D1. However, in the present study, it has been observed that addition of
354 MyD88 inhibitor breaks the signaling cascade of TLR3 ligand and hence a decrease in the level
355 of cyclin D1 was recorded. Earlier it has been reported that an elevated IL-6 level in dsRNA-
356 treated TLR3 positive mice, but not in TLR3 negative tumors (Salaun et al., 2011).
357 TLR3 synthetic ligands were used with conventional chemotherapies or radiotherapy in clinical
358 trials for the treatment of cancer patients (Braunstein et al., 2018; Aranda et al., 2014; Smith et

359 al., 2018). This reported tumor suppressive and apoptotic effect of TLR3 is achieved
360 predominantly by induction of type I IFN and activation of effector cells, when TLR3 is located
361 within the endosomal compartment (Bugge et al., 2017; Gambar et al., 2014; Braunstein et al.,
362 2018). TLR3 synthetic ligand poly-ICLC with Sorafenib significantly reduces tumor growth,
363 both in-vitro and in-vivo in hepatocellular carcinoma (Ho et al., 2015). The mechanistic of anti-
364 tumorigenic effect of TLR3 is well established, wherein TRIF dependent classical pathway
365 induces apoptosis in cancer cells through the endosomal compartment.

366 However, there are several contradictory reports on the working mechanism and failure in
367 clinical trials. It has also been reported to promote cellular proliferation in head and neck and
368 multiple myeloma cell lines via c-Myc- and NF- κ B, respectively following TLR3 ligand
369 poly(I:C) stimulation (Braunstein et al., 2018). In squamous cell carcinomas of the head and
370 neck (HNSCC), triggering the TLR3 signaling pathway along with cisplatin that induces
371 production of the pro-inflammatory cytokine IFN- β , IL-6 and CCL5 to promote cellular survival
372 (Chuang et al., 2018). In a study on metastatic intestinal epithelial cells (IECs), full-length and
373 cleaved form of surface TLR3 has been reported but activation of endosomal TLR3 by poly(I:C)
374 neither induced IFN- β production, nor it induced cell-apoptosis that implies towards the cell
375 surface signaling of TLR3 (Bugge et al., 2017). We had previously reported the surface
376 localization of TLR3 and its proliferative effect on breast cancer cells (Bondhopadhyay et al.,
377 2015). In the present study, we have shown the proliferation of two different types of breast
378 cancer cell lines viz a triple-negative breast cancer cell MDA-MB-231 and an estrogen receptor-
379 positive cells - T47D cells by induction of TLR3 ligand which was downregulated by the
380 addition of the MyD88 inhibitor.

381 Taken together, the present work generates valuable evidence on the TLR3 mediated alternative
382 signaling of the TLR3-MyD88-IRAK1-TRAF6-TAK1-TAB- NF- κ B axis leading to upregulation
383 of IL-6 and cyclinD1 and culminating in proliferation of breast cancer cells; a response that is
384 regulated via MyD88 gateway. Accordingly, a mechanism scheme of alternative TLR3 signal
385 transduction responsible for the proliferation of the cancer cells have been presented (Fig. 7).
386 The outcome of the present study will help in better understanding of the differential response
387 observed in therapeutic use of TLR3. Based on the findings, it is recommended that a targeted
388 delivery of TLR3 ligand to the endosomal compartment, bypassing the MyD88 signaling and

389 subsequently causing activation of TRIF signaling can trigger the apoptotic cascade in cancer
390 cells.

391

392 **The abbreviations used are:** ANOVA, analysis of variance; dsRNA, double-stranded RNA;
393 ER, endoplasmic reticulum; HMW, high-molecular-weight; MyD88, Myeloid differentiation
394 primary response 88; poly(I:C), Polyinosinic:polycytidylic acid; TLR 3, Toll-like receptor 3;
395 TRIF, TIR domain-containing adaptor-inducing interferon.

396

397 **Data Availability Statement**

398 The data used to support the findings of this study are available from the corresponding author
399 upon request.

400 **Ethical approval:** Not applicable

401 **Authors contribution:** AS performed the experiments. RSD helped in some experiments. AB
402 designed and Supervise the entire study.

403 **Funding:** The work is supported by the financial assistance received from the DST, SERB,
404 Government of India (Project Ref No: SB/SO/HS/008/2014). Fellowship of AS is provided by
405 State-funded Fellowship program, West Bengal.

406 **Conflict of interest:** The authors have declared that no conflict of interest exists.

407 **Acknowledgements**

408 The authors acknowledge DST – SERB for providing funds for the project. The Authors also
409 like to express they're thanks to CRNN, the University of Calcutta and Prof. Suman Dhar,
410 Special Centre for Molecular Medicine, JNU for providing their Flowcytometry facility for this
411 work. The authors also thank NCCS, Pune for providing the breast cancer cell line from the
412 National facility of cell repository. Authors also acknowledge central imaging facility,
413 Department of Biological Sciences, ISSER Kolkata and CIF, IIT Gandhinagar for providing
414 confocal microscope facility.

415 [Declaration: The part of the current work has been presented in ESMO Breast Cancer
416 conference, Berlin 2019 held on May 2-4, 2019 and appeared in Abstract book of ESMO Breast
417 cancer 2019, at Annals of Oncology, Volume 30. Issue supplement _3].

418 **References:**

- 419 1. Alt, J. R., Cleveland, J. L., Hannink, M., & Diehl, J. A. (2000). Phosphorylation-dependent
420 regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation.
421 *Genes & Dev.* 14, 3102-3114. <http://doi.org/10.1101/gad.854900>.
- 422 2. Aranda, F., Vacchelli, E., Obrist, F., Eggemont, A., Galon, J., Sautès-Fridman, C., et al.
423 (2014). Trial Watch: Toll-like receptor agonists in oncological
424 indications. *Oncoimmunology* 3, e29179. <https://doi.org/10.4161/onci.29179>.
- 425 3. Bondhopadhyay, B., Moirangthem, A., & Basu, A. (2015). Innate adjuvant receptor Toll-like
426 receptor 3 can promote breast cancer through cell surface. *Tumor. Biol.* 36,1261-1271.
427 <https://doi.org/10.1007/s13277-014-2737-8>.
- 428 4. Brasier, A. R. (2010). The nuclear factor- κ B-interleukin-6 signalling pathway mediating
429 vascular inflammation. *Cardiovasc. Res.* 86, 211-218. <https://doi.org/10.1093/cvr/cvq076>.
- 430 5. Braunstein, M. J., Kucharczyk, J., & Adams, S. (2018). Targeting toll-like receptors for
431 cancer therapy. *Target. Oncol.* 13,583-598. <https://doi.org/10.1007/s11523-018-0589-7>.
- 432 6. Brown, J., Wang, H., Hajishengallis, G. N., & Martin, M. (2011). TLR-signaling networks:
433 an integration of adaptor molecules, kinases, and cross-talk. *J. Dent. Res.* 90, 417-427.
434 <https://doi.org/10.1177/0022034510381264>.
- 435 7. Bugge, M., Bergstrom, B., Eide, O. K., Solli, H., Kjønstad, I. F., Stenvik, J., et al. (2017).
436 Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces
437 inflammatory cytokine production and promotes invasiveness. *J. Biol. Chem.* 292, 15408-
438 15425. <https://doi.org/10.1074/jbc.M117.784090>
- 439 8. Chen, J., He, J., Yang, Y., & Jiang, J. (2018). An analysis of the expression and function of
440 myeloid differentiation factor 88 in human osteosarcoma. *Oncol. Lett.* 16, 4929-4936.
441 <https://doi.org/10.3892/ol.2018.9297>.

442 9. Choe, J., Kelker, M. S., & Wilson, I. A. (2005). Crystal structure of human toll-like receptor
443 3 (TLR3) ectodomain. *Science* 309, 581-585. <https://doi.org/10.1126/science.1115253>

444 10. Chuang, H. C., Chou, M. H., Chien, C. Y., Chuang, J. H., & Liu, Y. L. (2018). Triggering
445 TLR3 pathway promotes tumor growth and cisplatin resistance in head and neck cancer cells.
446 *Oral. Oncol.* 86, 141-149. <https://doi.org/10.1016/j.oraloncology.2018.09.015>.

447 11. Conforti, R., Ma, Y., Morel, Y., Paturel, C., Terme, M., Viaud, S., et al. (2010). Opposing
448 effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to
449 optimize the anticancer efficacy of TLR3 ligands. *Cancer. Res.* 70, 490-500.
450 <https://doi.org/10.1158/0008-5472.CAN-09-1890>.

451 12. Cui, W., Xiao, N., Xiao, H., Zhou, H., Yu, M., Gu, J., et al. (2012). β -TrCP-mediated IRAK1
452 degradation releases TAK1-TRAF6 from the membrane to the cytosol for TAK1-dependent
453 NF- κ B activation. *Mol. Cell. Biol.* 32,3990-4000. <https://doi.org/10.1128/MCB.00722-12>.

454 13. Deng, Y., Sun, J., & Zhang, L. D. (2016). Effect of ST2825 on the proliferation and apoptosis
455 of human hepatocellular carcinoma cells. *Genet. Mol. Res.* 15,15016826.
456 <https://doi.org/10.4238/gmr.15016826>.

457 14. Dong, W., Liu, Y., Peng, J., Chen, L., Zou, T., Xiao, H., et al. (2006). The IRAK-1-BCL10-
458 MALT1-TRAF6-TAK1 cascade mediates signaling to NF- κ B from Toll-like receptor 4. *J. Biol. Chem.* 281,26029-26040. <https://doi.org/10.1074/jbc.M513057200>.

460 15. Gambara, G., Desideri, M., Stoppacciaro, A., Padula, F., De Cesaris, P., Starace, D., et al.
461 (2015). TLR 3 engagement induces IRF3-dependent apoptosis in androgen-sensitive
462 prostate cancer cells and inhibits tumour growth in vivo. *J. Cell. Mol. Med.* 19,327-339.
463 <https://doi.org/10.1111/jcmm.12379>.

464 16. González-Reyes, S., Marín, L., González, L., González, L. O., del Casar, J. M., Lamelas, M.
465 L., et al. (2010). Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association
466 with metastasis. *BMC cancer* 60, 217-226. <https://doi.org/10.1186/1471-2407-10-665>.

467 17. Han, S. J., Ko, H. M., Choi, J. H., Seo, K. H., Lee, H. S., Choi, E. K., et al. (2002). Molecular
468 mechanisms for lipopolysaccharide-induced biphasic activation of nuclear factor- κ B (NF- κ B). *J. Biol. Chem.* 277, 44715-44721. <https://doi.org/10.1074/jbc.M202524200>.

470 18. Helminen, O., Huhta, H., Lehenkari, P. P., Saarnio, J., Karttunen, T. J., & Kauppila, J. H.
471 (2016). Nucleic acid-sensing toll-like receptors 3, 7 and 8 in esophageal epithelium, barrett's

472 esophagus, dysplasia and adenocarcinoma. *Oncoimmunology* 5, e1127495.
473 <https://doi.org/10.1080/2162402X.2015.1127495>.

474 19. Ho, V., Lim, T. S., Lee, J., Steinberg, J., Szmyd, R., Tham, M., et al. (2015). TLR3 agonist
475 and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular
476 carcinoma progression. *Oncotarget* 6, 27252. <https://doi.org/10.18632/oncotarget.4583>.

477 20. Hsiao, H. M., Thatcher, T. H., Levy, E. P., Fulton, R. A., Owens, K. M., Phipps, R. P., et al.
478 (2014). Resolvin D1 Attenuates Polyinosinic-Polycytidylic Acid-Induced Inflammatory
479 Signaling in Human Airway Epithelial Cells via TAK1. *J. Immunol.* 193,4980-4987.
480 <https://doi.org/10.4049/jimmunol.1400313>.

481 21. Jensen, L. E., & Whitehead, A. S. (2003). Pellino3, a novel member of the Pellino protein
482 family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein. *J.*
483 *Immunol.* 171, 1500-1506. <https://doi.org/10.4049/jimmunol.171.3.1500>.

484 22. Jia, D., & Wang, L. (2015). The other face of TLR3: A driving force of breast cancer stem
485 cells. *Mol. Cell. Oncol.* 2, e981443. <https://doi.org/10.4161/23723556.2014.981443>.

486 23. Jia, D., Yang, W., Li, L., Liu, H., Tan, Y., Ooi, S., et al. (2015). β -Catenin and NF- κ B co-
487 activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast
488 cancer. *Cell. Death. Differ.* 22, 298-310. <https://doi.org/10.1038/cdd.2014.145>.

489 24. Johnsen, I. B., Nguyen, T. T., Ringdal, M., Tryggestad, A. M., Bakke, O., Lien, E., et al.
490 (2006). Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate
491 antiviral signaling. *EMBO J.* 25, 3335–3346. <https://doi.org/10.1038/sj.emboj.7601222>.

492 25. Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. *Front. Immunol.* 5,
493 461. <https://doi.org/10.3389/fimmu.2014.00461>.

494 26. Klein, E. A., & Assoian, R. K. (2008). Transcriptional regulation of the cyclin D1 gene at a
495 glance. *J. Cell. Sci.* 121,3853-3857. <https://doi.org/10.1242/jcs.039131>.

496 27. Kong, F., Liu, Z., Jain, V. G., Shima, K., Suzuki, T., Muglia, L. J., et al. (2017). Inhibition of
497 IRAK1 ubiquitination determines glucocorticoid sensitivity for TLR9-induced inflammation
498 in macrophages. *J. Immunol.* 199, 3654-3667. <https://doi.org/10.4049/jimmunol.1700443>.

499 28. Loiarro, M., Capolunghi, F., Fanto, N., Gallo, G., Campo, S., Arseni, B., et al. (2007). Pivotal
500 Advance: Inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a

501 novel peptidomimetic compound. *J. Leukocyte. Biol.* 82, 801-810,
502 <https://doi.org/10.1189/jlb.1206746>.

503 29. Loiarro, M., Ruggiero, V., & Sette, C. (2010). Targeting TLR/IL-1R signalling in human
504 diseases. *Mediat. Inflamm.* 2010, 1-12. <https://doi.org/10.1155/2010/674363>.

505 30. Ma, L., Feng, L., Ding, X., & Li, Y. (2018). Effect of TLR4 on the growth of SiHa human
506 cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling
507 pathways. *Oncol. Lett.* 15, 3965–3970. <https://doi.org/10.3892/ol.2018.7801>.

508 31. Matijevic Glavan, T., & Pavelic, J. (2014). The exploitation of Toll-like receptor 3 signaling
509 in cancer therapy. *Curr. Pharm. Des.* 20, 6555-6564.
510 <https://doi.org/10.2174/1381612820666140826153347>.

511 32. McFarland, B. C., Hong, S. W., Rajbhandari, R., Twitty Jr, G. B., Gray, G. K., Yu, H., et al.
512 (2013). NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in
513 glioblastoma. *PLoS ONE* 8, e78728. <https://doi.org/10.1371/journal.pone.0078728>.

514 33. Noursadeghi, M., Tsang, J., Haustein, T., Miller, R. F., Chain, B. M., & Katz, D. R. (2008).
515 Quantitative imaging assay for NF-κB nuclear translocation in primary human
516 macrophages. *J. Immunol. Methods.* 329, 194-200. <https://doi.org/10.1016/j.jim.2007.10.015>.

517 34. O'Neill, L. A., & Bowie, A. G. (2007). The family of five: TIR-domain-containing adaptors
518 in Toll-like receptor signalling. *Nat. Rev. Immunol.* 7, 353-364.
519 <https://doi.org/10.1038/nri2079>.

520 35. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., & Seya, T. (2003). TICAM-1, an
521 adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction.
522 *Nat. Immunol.* 4, 161-167. <https://doi.org/10.1038/ni886>.

523 36. Rhyasen, G. W., & Starczynowski, D. T. (2015). IRAK signalling in cancer. *Br. J.*
524 *Cancer.* 112, 232-237. <https://doi.org/10.1038/bjc.2014.513>.

525 37. Salaun, B., Coste, I., Rissoan, M. C., Lebecque, S. J., & Renno, T. (2006). TLR3 can directly
526 trigger apoptosis in human cancer cells. *J. Immunol.* 176, 4894-4901.
527 <https://doi.org/10.4049/jimmunol.176.8.4894>.

528 38. Salaun, B., Zitvogel, L., Asselin-Paturel, C., Morel, Y., Chemin, K., Dubois, C., et al. (2011).
529 TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer.
530 *Cancer Res.* 71, 1607-1614. <https://doi.org/10.1158/0008-5472.CAN-10-3490>.

531 39. Schau, I., Michen, S., Hagstotz, A., Janke, A., Schackert, G., Appelhans, D., et al. (2019).
532 Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-
533 conjugated nanoparticles induces type I-interferon response and apoptosis. *Sci. Rep.* 9, 3299.
534 <https://doi.org/10.1038/s41598-019-40032-8>.

535 40. Shiratori, E., Itoh, M., & Tohda, S. (2017). MYD88 inhibitor ST2825 suppresses the growth
536 of lymphoma and leukaemia cells. *Anticancer Res.* 37, 6203-6209.
537 <https://doi.org/10.21873/anticanres.12070>.

538 41. Smith, M., García-Martínez, E., Pitter, M. R., Fucikova, J., Spisek, R., Zitvogel, L., et al.
539 (2018). Trial Watch: Toll-like receptor agonists in cancer immunotherapy.
540 *Oncoimmunology* 7, e1526250. <https://doi.org/10.1080/2162402X.2018.1526250>.

541 42. Takeda, K., & Akira, S. (2004). TLR signaling pathways. *Semin. Immunol.* 16, 3-9.
542 <https://doi.org/10.1016/j.smim.2003.10.003>.

543 43. Torres-Luquis, O. J., & Mohammed, S. (2019). Abstract 2019A: TLR3 facilitate breast
544 cancer metastasis to lymph node. Atlanta, GA. Philadelphia (PA): AACR; Cancer Res
545 2019;79(13 Suppl): Abstract nr 2019A. <https://doi.org/10.1158/1538-7445.AM2019-2019A>.

546 44. Xiong, Y., Qiu, F., Piao, W., Song, C., Wahl, L. M., & Medvedev, A. E. (2011). Endotoxin
547 tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF- β -activated kinase 1
548 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated
549 factor 6, and I κ B kinase γ and increases A20 expression. *J. Biol. Chem.* 286, 7905-7916.
550 <https://doi.org/10.1074/jbc.M110.182873>.

551 45. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., et al. (2003). Role
552 of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. *Science*
553 301, 640-643. <https://doi.org/10.1126/science.1087262>.

554 46. Yang, H., Qi, H., Ren, J., Cui, J., Li, Z., Waldum, H. L., & Cui, G. (2014). Involvement of
555 NF- κ B/IL-6 pathway in the processing of colorectal carcinogenesis in colitis mice. *Int. J.*
556 *Inflam.* 2014, 1-7. <https://doi.org/10.1155/2014/130981>.

557

558

559

560

561
562
563
564
565
566
567
568

569 **Figure legends:**

570 **Fig 1** TLR3 ligand induces cell proliferation and stunted by MyD88 inhibitor. Breast cancer cells
571 were pre-treated with MyD88 inhibitor (1 μ M) 4 hours prior to addition TLR3 ligand (10 μ g/ml)
572 for 24 hours before cells were counted. Control indicates cells were not treated with TLR3 ligand
573 or MyD88 inhibitor. Growth kinetic assay. **(A)** T47D and **(B)** MDA-MB-231 showing
574 proliferative effect of TLR3 ligand. Inhibition of MyD88 dimerization restrict the proliferative
575 effect. **(C)** Contour plots for BrdU – Cell proliferation assay using T47D cells. Cells were pre-
576 treated with MyD88 inhibitor (1 μ M) 4 hours prior to addition TLR3 ligand (10 μ g/ml) for 24
577 hours before labelled with BrdU and detected by flow cytometry. Contour plots of DNA -7AAD-
578 A versus log BrdU-FITC showing G₀/G₁, S and G₂/M gates of Control cells, Cell treated with
579 TLR3 ligand, cells treated with TLR3 ligand and MyD88 inhibitor and cells treated with only
580 MyD88 inhibitor. **(D)** Bar graph showing percentage of S- phase gated cells among the different
581 experimental cell groups following BrdU incorporation. The results are presented as mean \pm S.D
582 and p< 0.05 is treated as significant).

583 **Fig 2** Effect of MyD88 inhibitor on surface localization of TLR3. Fluorescent microscopy
584 image of cells, treated with TLR3 ligand (10 μ g/ml) with or without MyD88 inhibitor (1 μ M)
585 following immunocytochemical staining with antibody against TLR3 and Alexa 594 tagged
586 secondary antibody and counterstained with DAPI. **(A)** T47D cell **(B)** MDA MB 231Cells.
587 **(C) and (D)** Bar graph showing the localization of TLR3 in cells surface after observe through
588 the microscope and analyse through the ImageJ package for all the experiment groups. The
589 results are presented as mean \pm S.D (p< 0.05 is treated as significant).

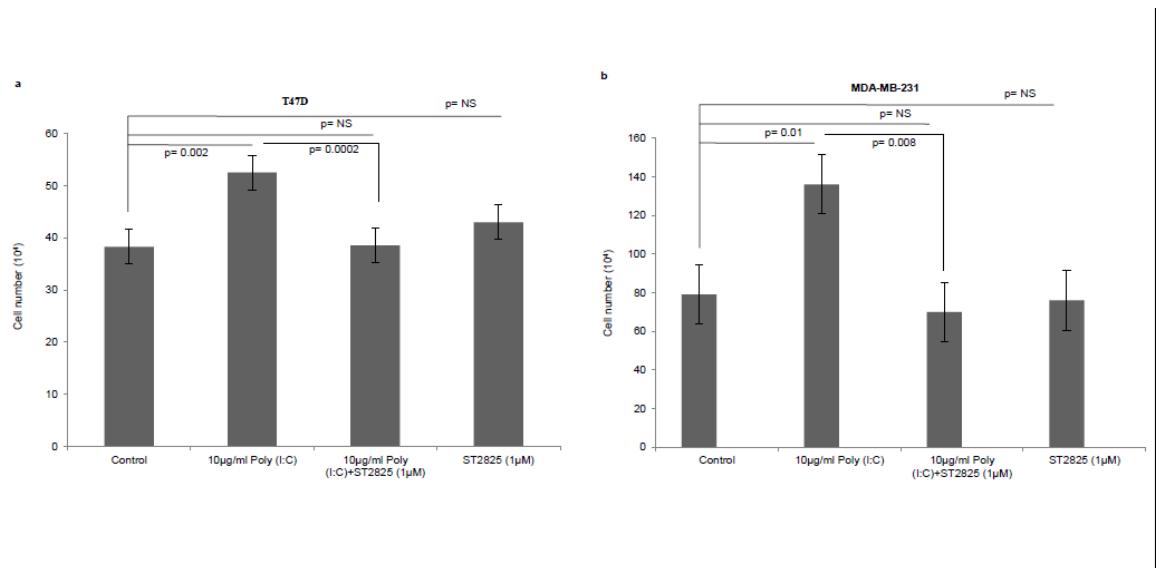
590 **Fig 3** Expression of IL-6 following MyD88 inhibitor and TLR3 ligand treatment. **(A)**
591 Fluorescent microscopy image of T47D cells, treated with TLR3 ligand (10 μ g/ml) with or
592 without MyD88 inhibitor (1 μ M) following immunocytochemical staining with antibody against
593 IL-6 and Alexa 488 tagged secondary antibody and counterstained with DAPI. Untreated
594 indicates the cells are not treated with TLR3 ligand. (magnification, 40X). **(B)** Bar graph
595 showing the expression of IL6 following observe through the microscope and analyse through
596 the ImageJ software for all the experiment groups. **(C), (D)** Expression of IL6 in the cell culture

597 supernatant as measured through the ELISA. The results are presented as mean \pm S.D (p< 0.05
598 is treated as significant).

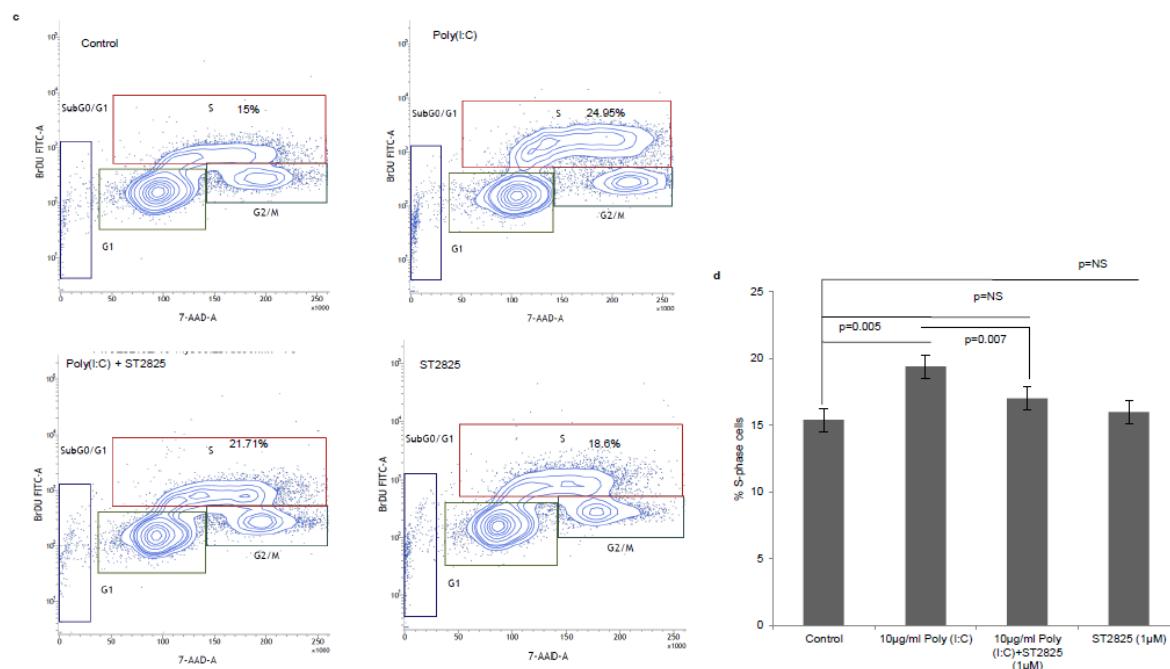
599 **Fig 4** Confocal microscopy for nuclear translocation of p65. **(A)** T47D cells, **(B)** MDA-MB-231
600 cells were pre-treated with MyD88 inhibitor for 4 hours prior to addition of TLR3 ligand
601 (10 μ g/mL) for 60 minutes. Cells were stained with antibody against p65 subunit of NF- κ B and
602 Alexa 594 tagged secondary antibody and counterstained with DAPI and image acquired through
603 confocal microscope (magnification, 63X); **(C) and (D)** Bar graph is presented as mean \pm S.D
604 for the quantitative measurements of nuclear localization of NF- κ B at 30 minutes, 60 minutes, 90
605 minutes of stimulation, analysed through Image J package. (p< 0.05 is treated as significant). e,f
606 Bar graph at 60 minutes of stimulation showing the highest nuclear localization of NF- κ B.

607 **Fig 5** Western-blotting for the expression of signalling protein. **(A) and (B)** Cell lysate were
608 collected and subjected to western blot assay to estimate the level of the expression of IRAK1,
609 TAK1, TAB1, TRAF-6 and cyclin D1. **(C) and (D)** Expression of pIRAK1 and pTAK1. β -actin
610 was used as loading control. The respective bar graphs are presented as densitometry analysis as
611 mean \pm S.D of experiments (p< 0.05 is treated as significant).

612 **Fig 6** Immunoprecipitation showing the involvement of the signalling complex **(A)** signalling
613 complex of IRAK1/ TRAF-6 was immunoprecipitated with antibodies against IRAK1 followed
614 by western blotting with anti-TRAF-6 and anti-IRAK1 antibody. **(B)** signalling complex of
615 pIRAK1/ TAK1 was immunoprecipitated with antibodies against pIRAK1 followed by western
616 blotting with anti-TAK1 and anti-pIRAK1 antibody. **(C)** signalling complex TAB1-TRAF6-
617 TAK1 was immunoprecipitated with antibodies against pTAK1 followed by western blotting
618 using anti- TRAF6, TAB1 and pTAK1 antibody **(D)** signalling complex TAB1-TRAF6-TAK1
619 was immunoprecipitated with antibodies against TRAF6 followed by western blotting analysis
620 using anti- TAK1, TAB1 and TRAF6 antibody.

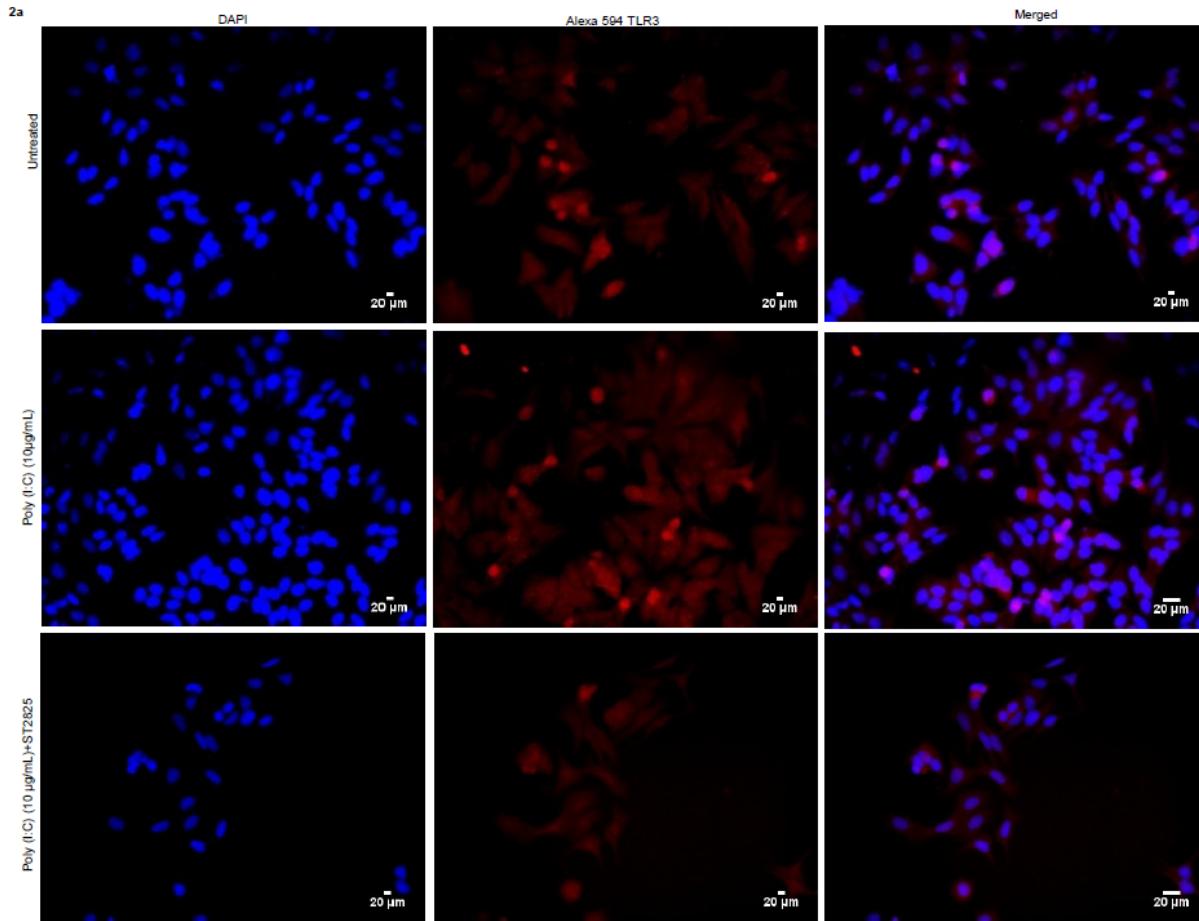

621 **Fig 7** Schematic diagram showing mechanistic of MyD88 adopter mediated surface TLR3
622 signalling. The diagram illustrating the how TLR3 ligand poly(I:C)-induce the recruitment of
623 MyD88 complex and activation of downstream signaling cascade. Downstream activation of

624 IRAK-1, TAK1, TRAF6 and TAB1 enables translocation of NF-κB, p65 to nucleus to induce the
625 secretion of proinflammatory cytokine IL-6 that induces cell proliferation via cyclin D1.

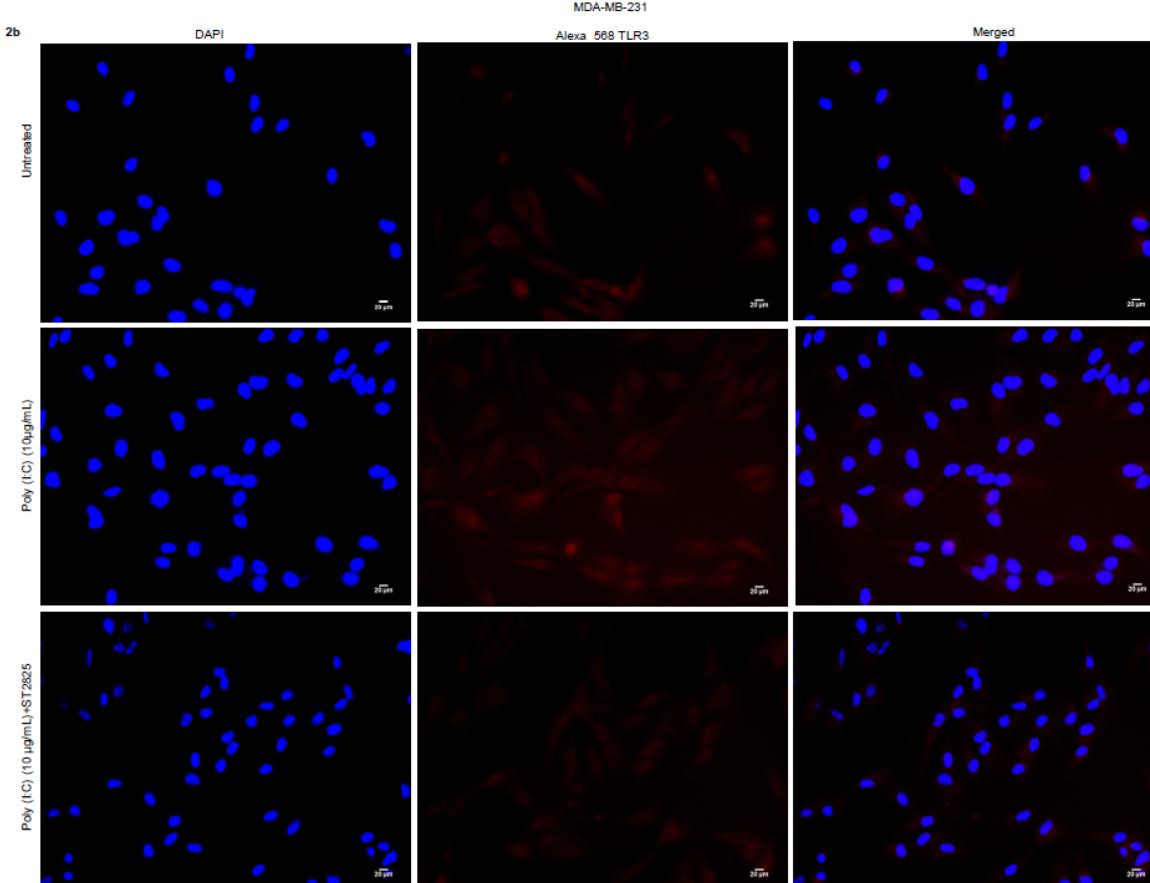

626 **Supplementary Fig 1** ST2825 attenuates poly(I:C) induced MyD88 dependent early phase
627 activation of NF-κB activation for nuclear translocation of p65 in time dependent manner. **(A)**
628 T47D cells and **(B)** MDA-MB-231 cells were pre-treated with ST2825 for 4 hours prior to
629 addition of poly(10 μ g/mL) for 30 minutes, 60 minutes and 90 minutes. Cells were stained with
630 antibody against p65 subunit of NF-κB and Alexa 594 tagged secondary antibody and
631 counterstained with DAPI and analyzed acquired through confocal microscope.

632

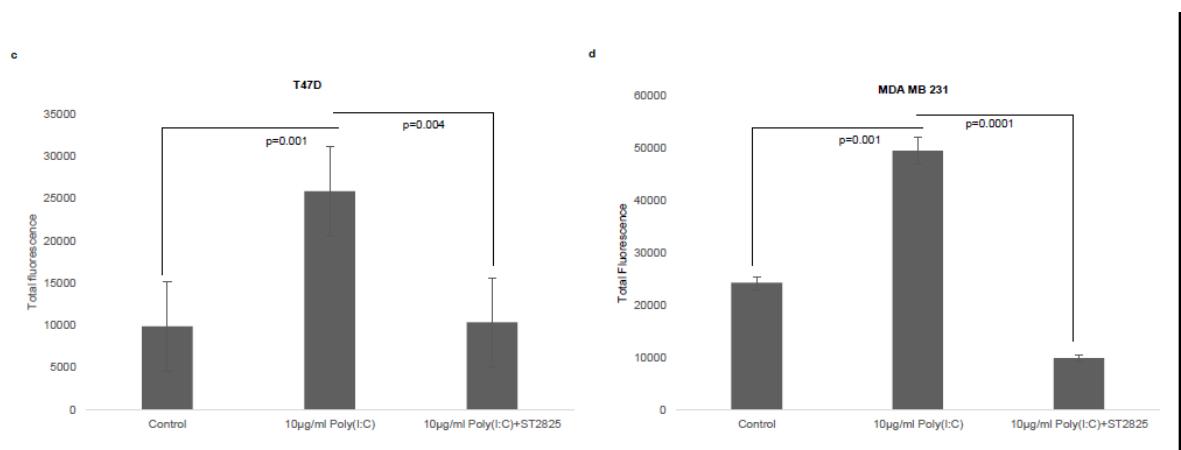
633



634

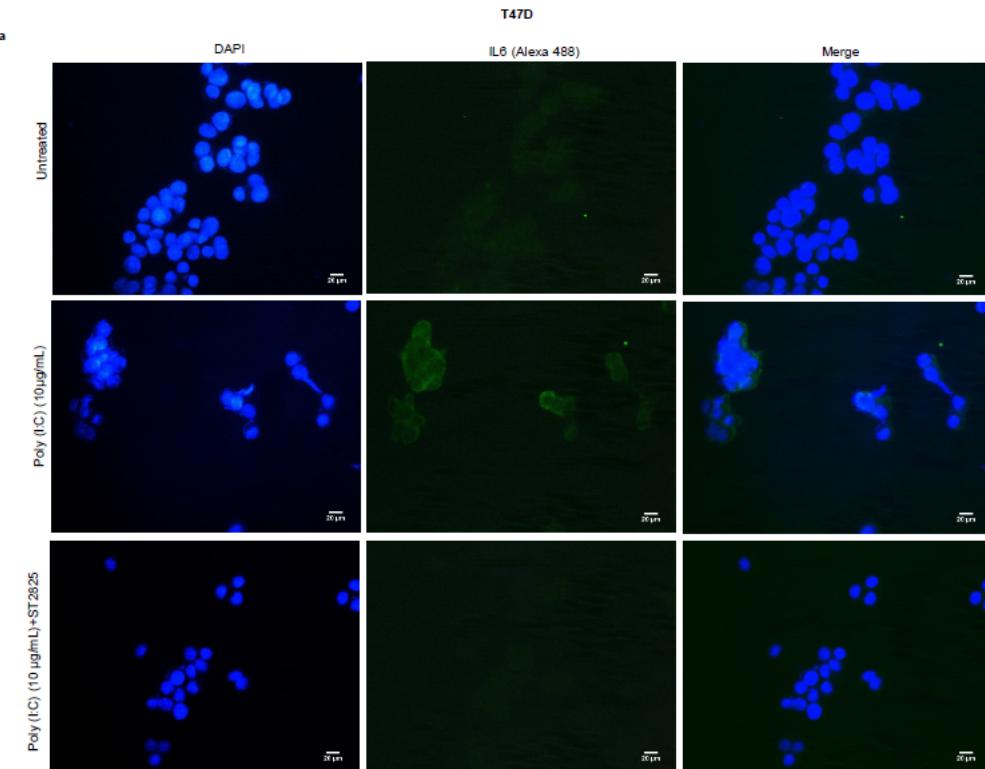

635

636 Fig 1: TLR3 ligand induces cell proliferation and is stunted by MyD88
 637 inhibitor. Breast cancer cells were pre-treated with MyD88
 638 inhibitor (1 μM) 4 hours prior to addition TLR3 ligand (10 μg/ml) for 24 hours before cells were counted. Control indicates cells
 639 were not treated with TLR3 ligand or MyD88 inhibitor. Growth kinetic assay. **a** T47D and **b** MDA-MB-231 showing
 640 proliferative effect of TLR3 ligand. Inhibition of MyD88 dimerization restrict the proliferative effect. **c** Contour plots for BrdU –
 641 Cell proliferation assay using T47D cells. Cells were pre-treated with MyD88 inhibitor (1 μM) 4 hours prior to addition TLR3
 642 ligand (10 μg/ml) for 24 hours before labelled with BrdU and detected by flow cytometry. Contour plots of DNA -7AAD-A
 643 versus log BrdU-FITC showing G₀G₁, S and G₂/M gates of Control cells, Cell treated with TLR3 ligand, cells treated with TLR3
 644 ligand and MyD88 inhibitor and cells treated with only MyD88 inhibitor. **d** Bar graph showing percentage of S- phase gated cells
 645 among the different experimental cell groups following BrdU incorporation. The results are presented as mean ± S.D and p<0.05
 646 is treated as significant).

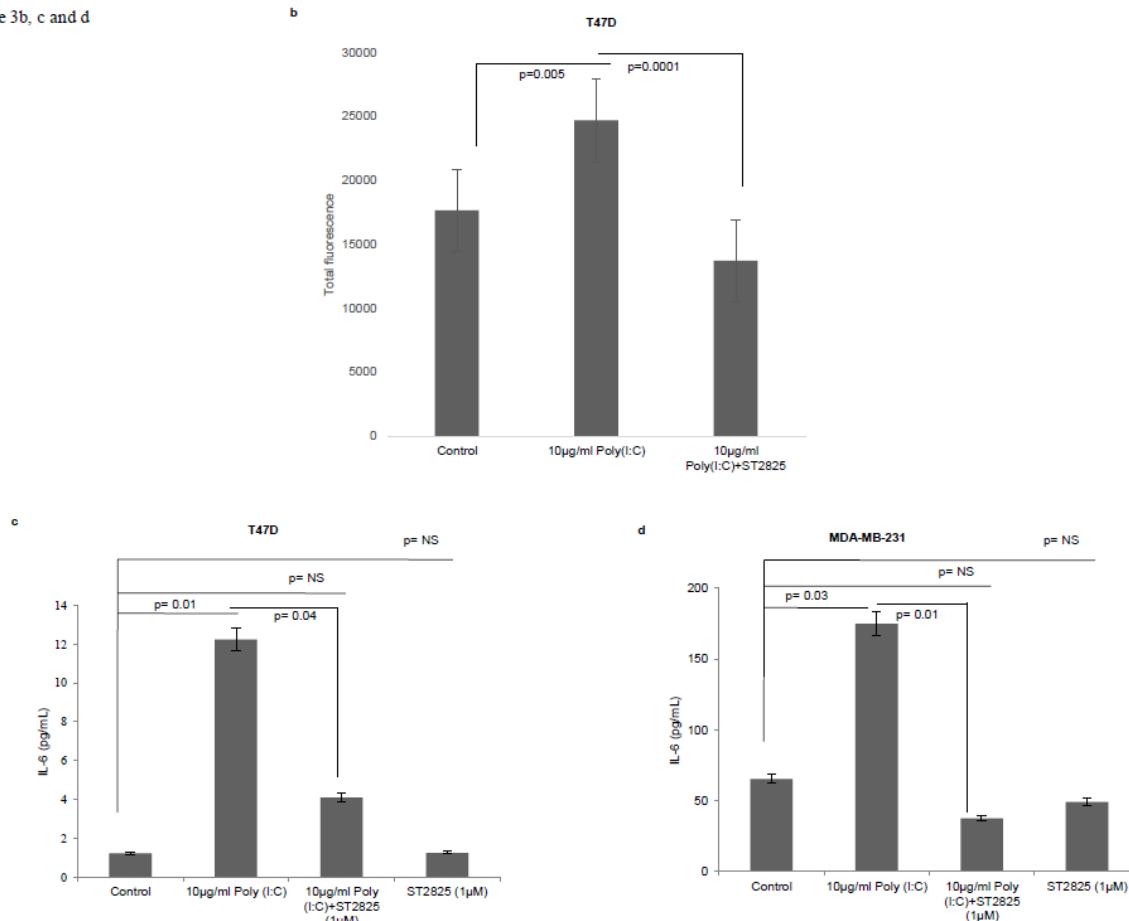


647

Fig 2b

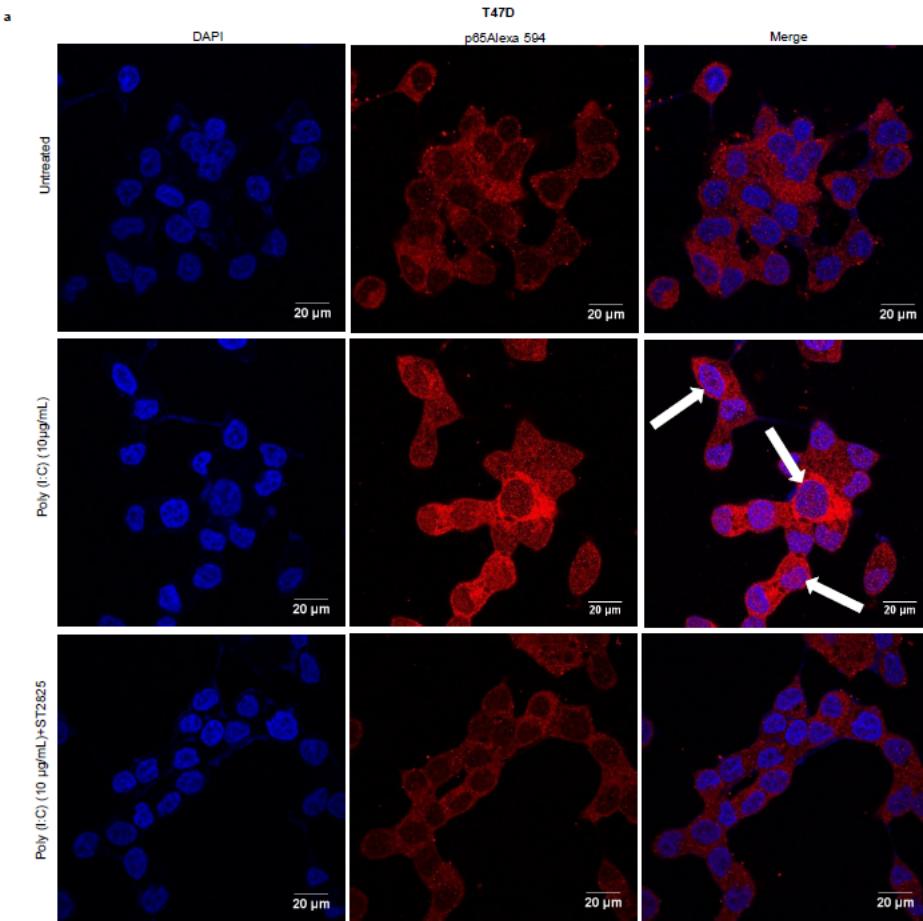


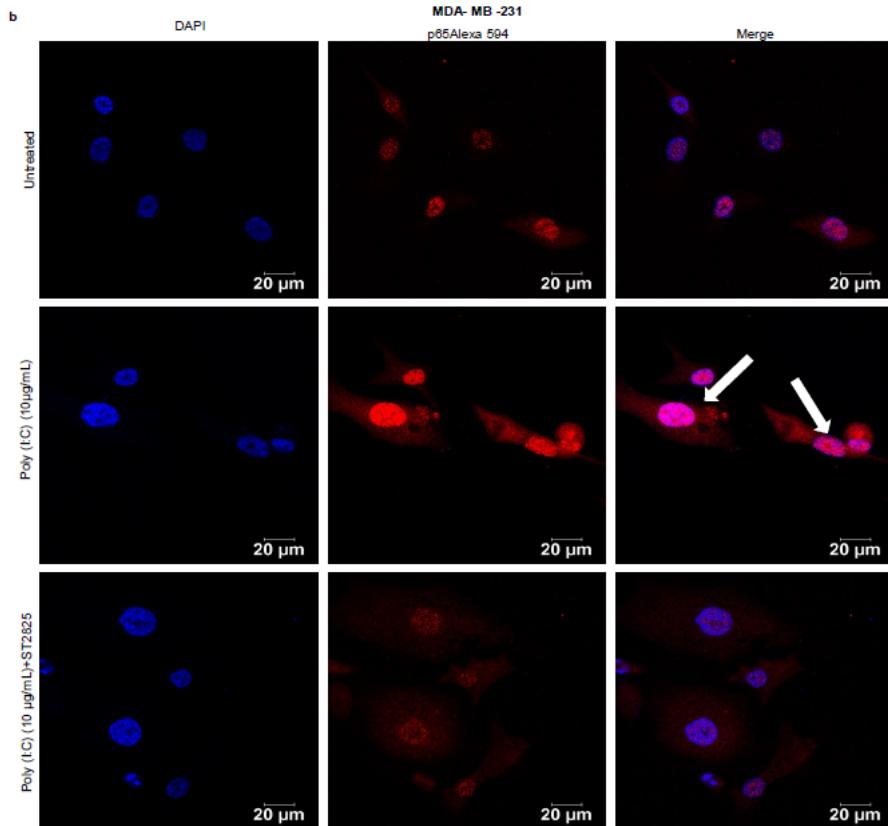
648


649

650 Fig 2: Effect of MyD88 inhibitor on surface localization of TLR3. Fluorescent microscopy image of cells, treated with TLR3
 651 ligand (10 μ g/ml) with or without MyD88 inhibitor (1 μ M) following immunocytochemical staining with antibody against TLR3
 652 and Alexa 594 tagged secondary antibody and counterstained with DAPI. **a** T47D cell **b** MDA MB 231Cells. **c,d** Bar graph
 653 showing the localization of TLR3 in cells surface after observe through the microscope and analyse through the ImageJ
 654 package for all the experiment groups. The results are presented as mean \pm S.D (p< 0.05 is treated as significant).

655

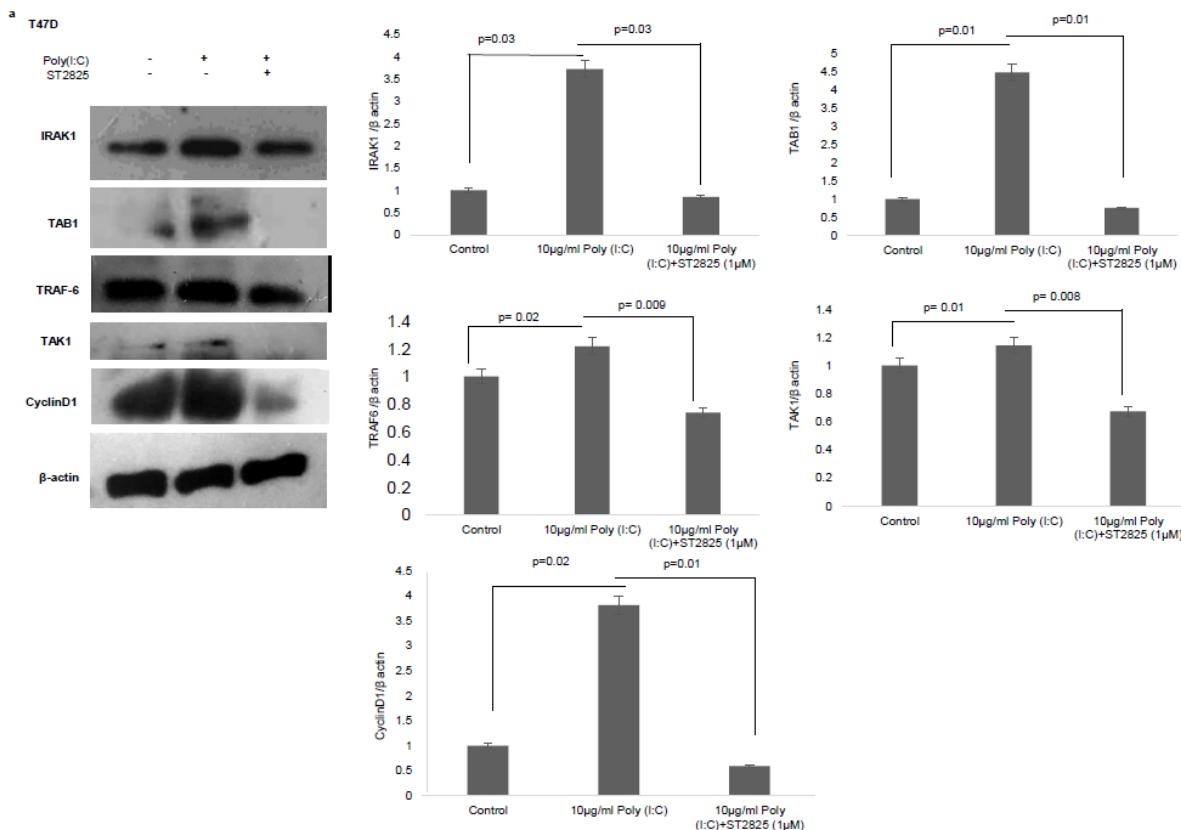

Figure 3b, c and d


656

657 Fig 3: Expression of IL-6 following MyD88 inhibitor and TLR3 ligand treatment. **a** Fluorescent microscopy image of T47D
658 cells, treated with TLR3 ligand (10µg/ml) with or without MyD88 inhibitor (1µM) following immunocytochemical staining with
659 antibody against IL-6 and Alexa 488 tagged secondary antibody and counterstained with DAPI. Untreated indicates the cells are
660 not treated with TLR3 ligand. (magnification, 40X). **b** Bar graph showing the expression of IL6 following observe through the
661 microscope and analyse through the ImageJ software²⁰ for all the experiment groups. **c,d** Expression of IL6 in the cell culture
662 supernatant as measured through the ELISA. The results are presented as mean ± S.D (p< 0.05 is treated as significant).

663

664



666

667 Fig 4: Confocal microscopy for nuclear translocation of p65. a. T47D cells, b. MDA-MB-231 cells were pre-treated with
668 MyD88 inhibitor for 4 hours prior to addition of TLR3 ligand (10 µg/mL) for 60 minutes. Cells were stained with antibody
669 against p65 subunit of NF-κB and Alexa 594 tagged secondary antibody and counterstained with DAPI and image acquired
670 through confocal microscope (magnification, 63X); c,d Bar graph is presented as mean ± S.D for the quantitative measurements
671 of nuclear localization of NF-κB at 30 minutes, 60 minutes, 90 minutes of stimulation, analysed through Image J package. (p<
672 0.05 is treated as significant). e,f Bar graph at 60 minutes of stimulation showing the highest nuclear localization of NF-κB.

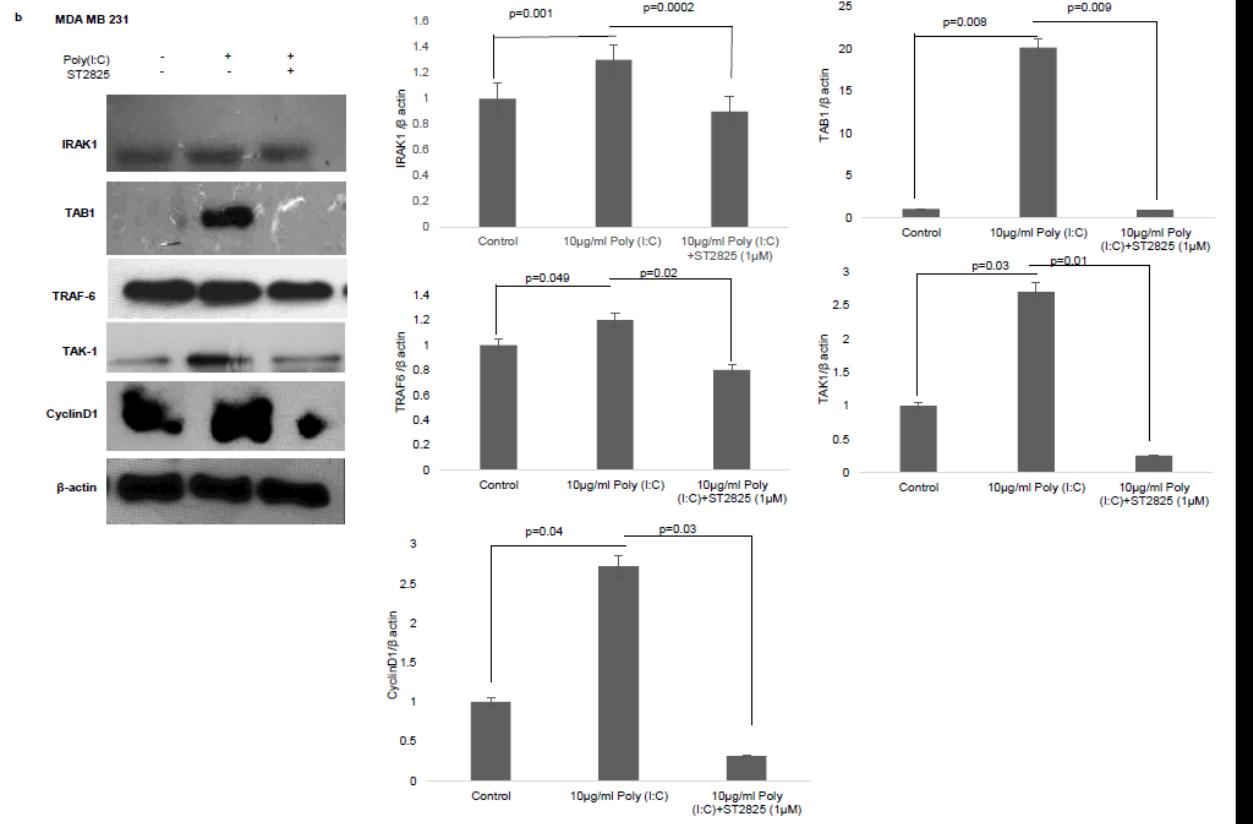
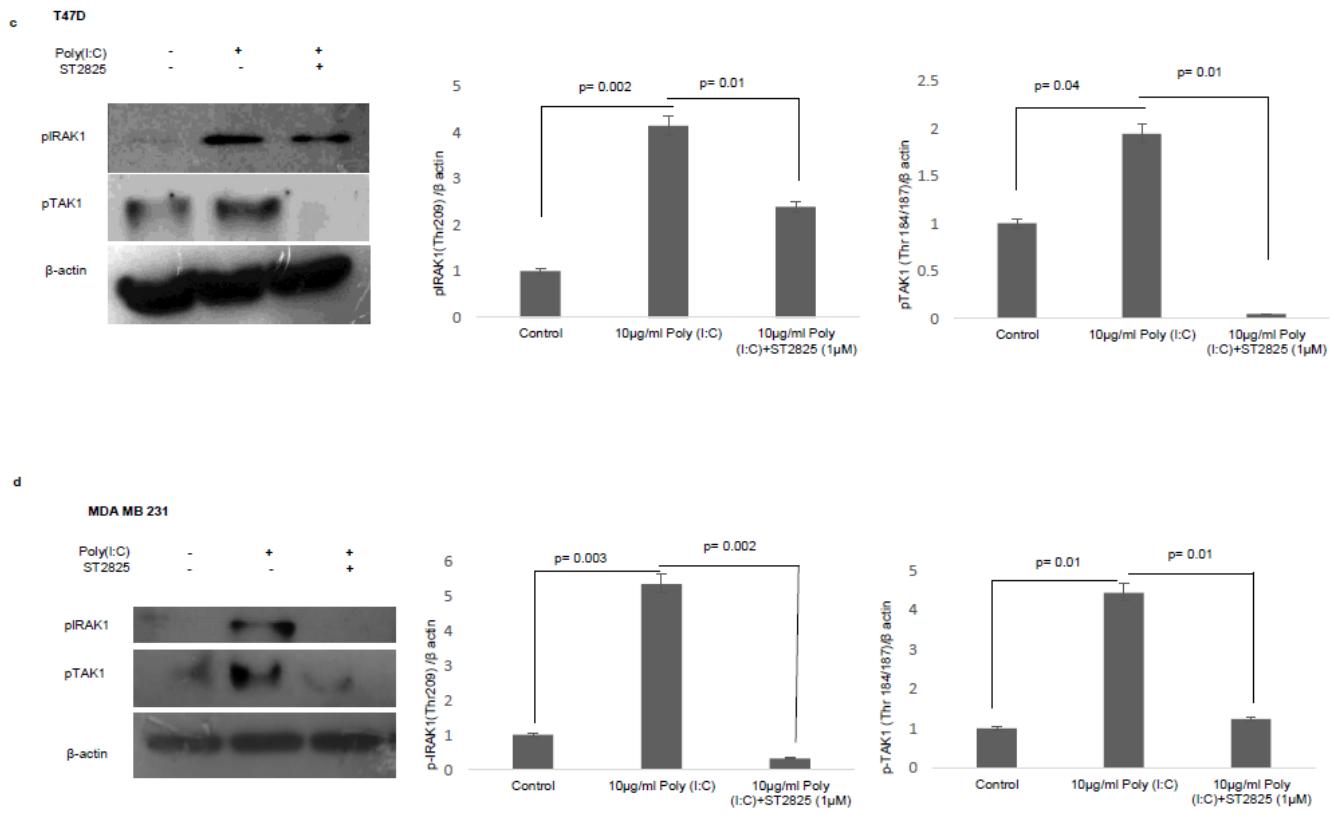

673

Figure 5 a

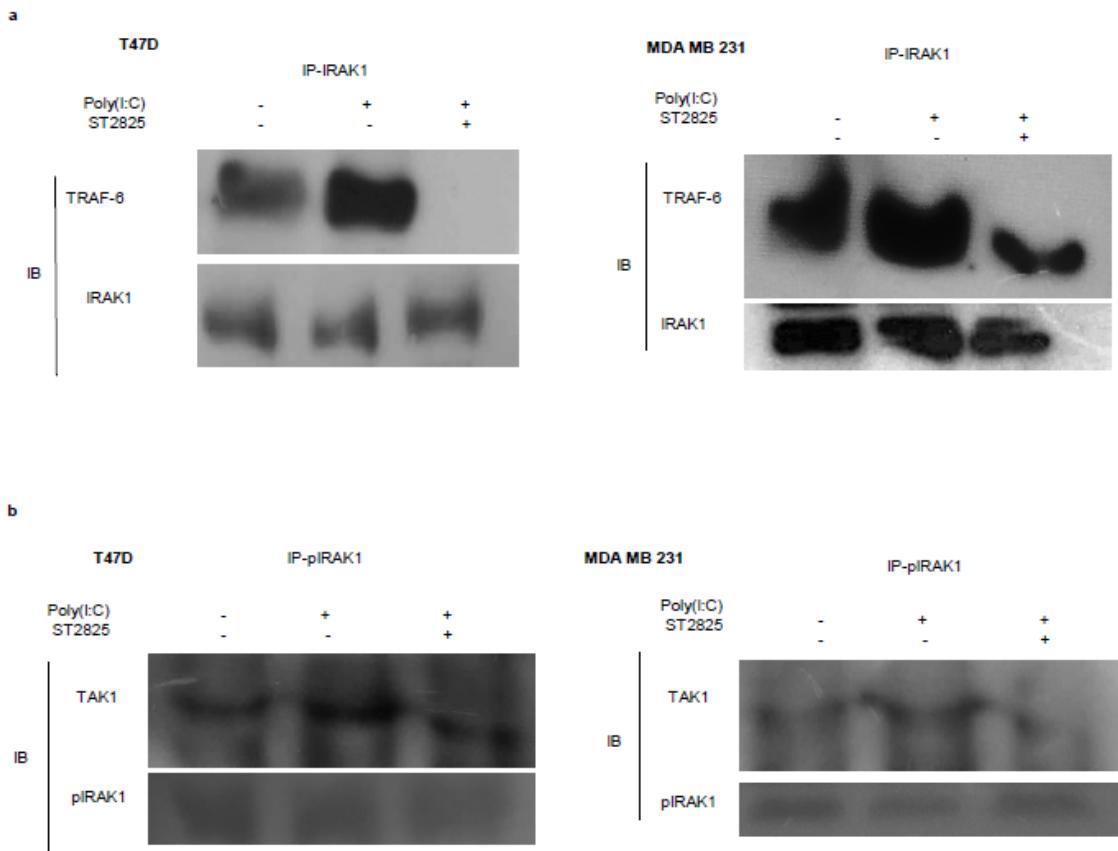
674

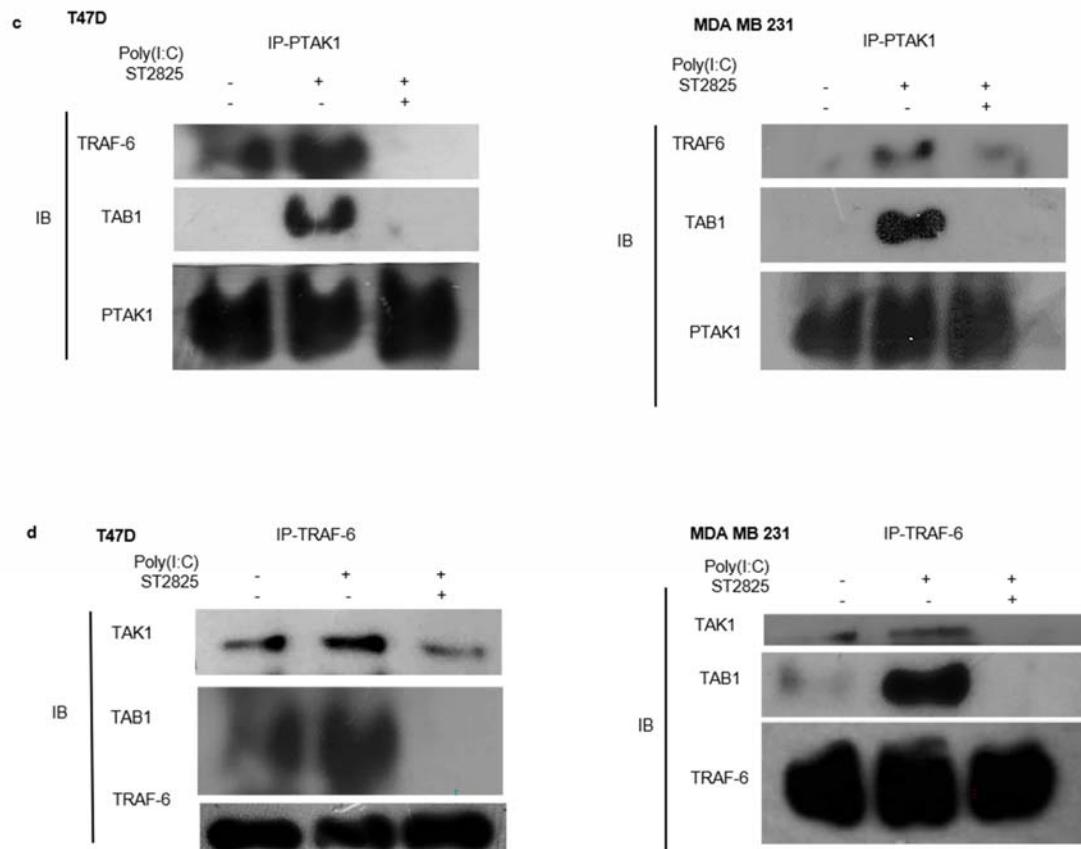

figure 5b

675

676

Figure 5 c and d




677

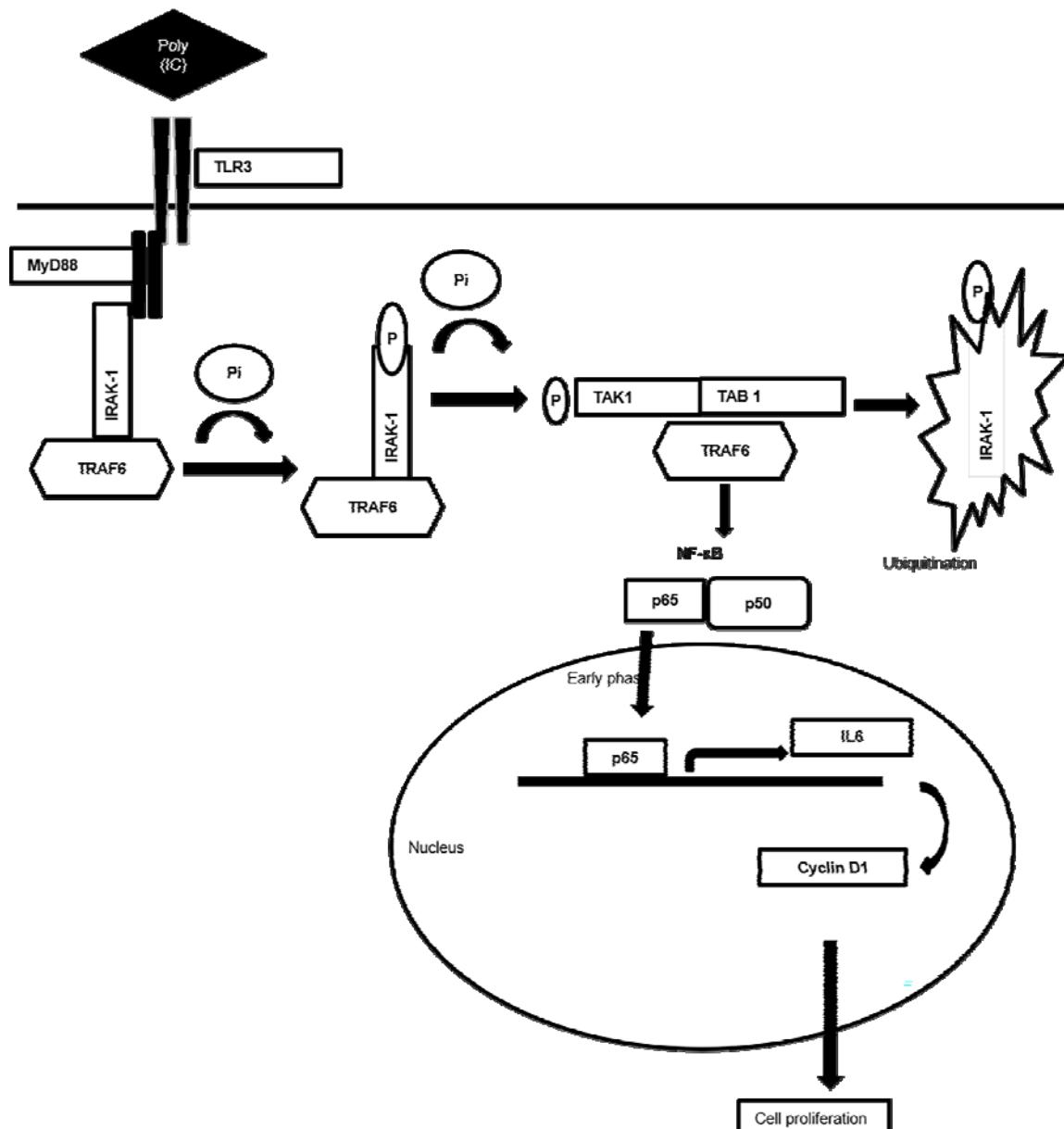
678 Fig 5: Western-blotting for the expression of signalling protein. a,b Cell lysate were collected and subjected to western blot assay
679 to estimate the level of the expression of IRAK1, TAK1, TAB1, TRAF-6 and cyclin D1. c,d Expression of pIRAK1 and pTAK1.
680 β -actin was used as loading control. The respective bar graphs are presented as densitometry analysis as mean \pm S.D of
681 experiments (p< 0.05 is treated as significant).

682

Figure 6 a and 6b

684

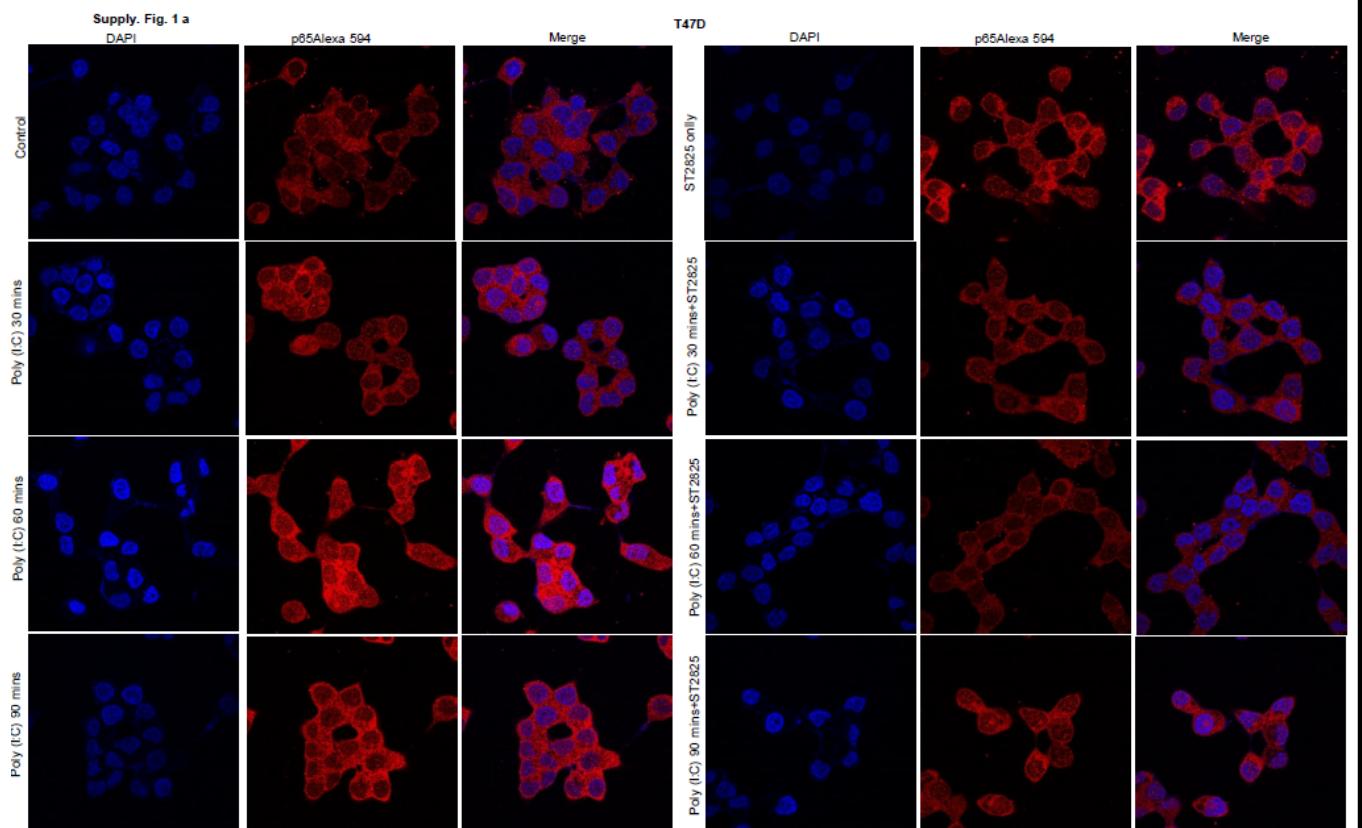
685


686 Fig 6. Immunoprecipitation showing the involvement of the signalling complex **a** signalling complex of IRAK1/ TRAF-6 was
687 immunoprecipitated with antibodies against IRAK1 followed by western blotting with anti-TRAF-6 and anti-IRAK1 antibody. **b**
688 signalling complex of pIRAK1/ TAK1 was immunoprecipitated with antibodies against pIRAK1 followed by western blotting
689 with anti-TAK1 and anti-pIRAK1 antibody. **c** signalling complex TAB1-TRAF6-TAK1 was immunoprecipitated with antibodies
690 against pTAK1 followed by western blotting using anti- TRAF6, TAB1 and pTAK1 antibody **d** signalling complex TAB1-
691 TRAF6-TAK1 was immunoprecipitated with antibodies against TRAF6 followed by western blotting analysis using anti- TAK1,
692 TAB1 and TRAF6 antibody.

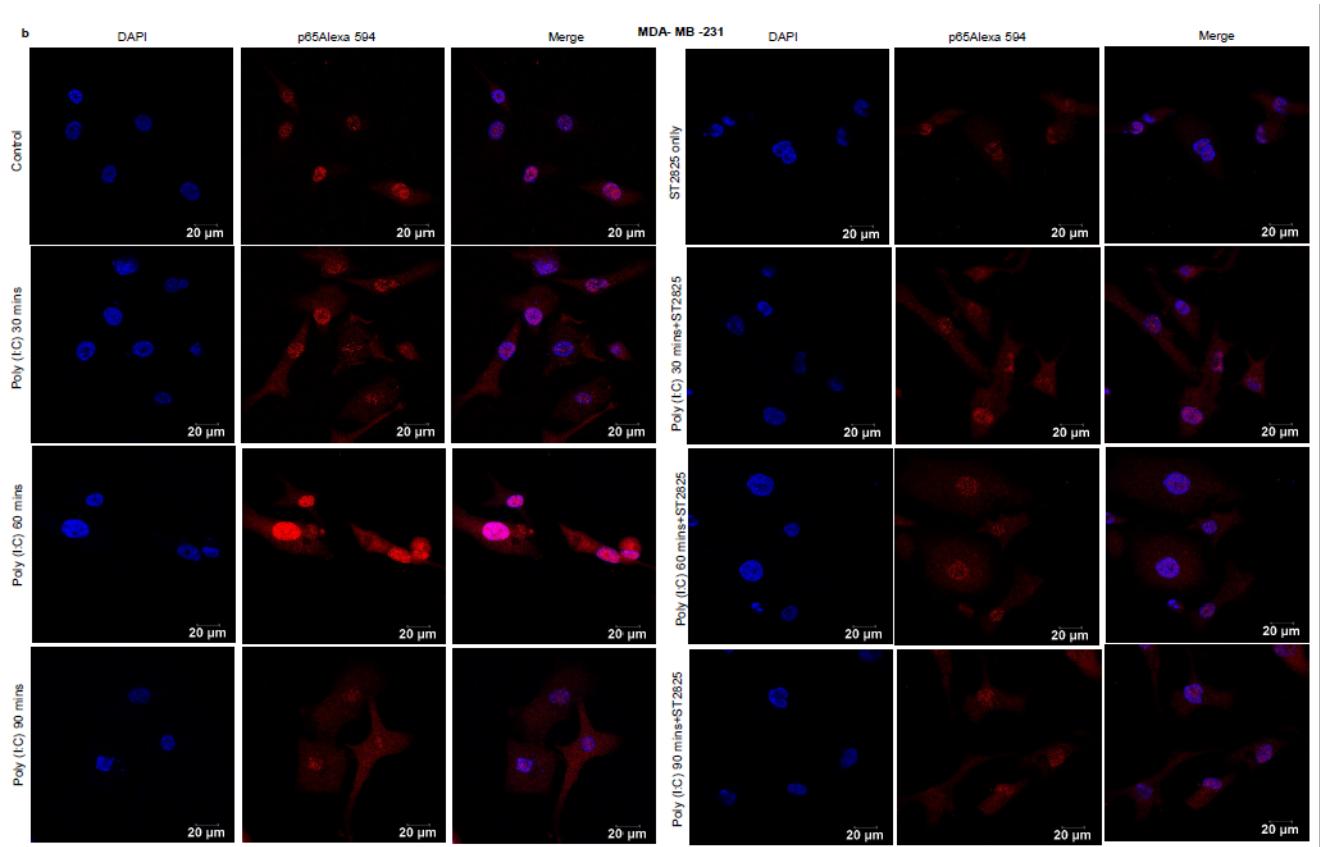
693

694

695


696

697


698 **Fig 7.** Schematic diagram showing mechanistic of MyD88 adopter mediated surface TLR3 signalling. The diagram illustrating
699 the how TLR3 ligand poly(I:C)-induce the recruitment of MyD88 complex and activation of downstream signaling cascade.
700 Downstream activation of IRAK-1, TAK1, TRAF6 and TAB1 enables translocation of NF-κB, p65 to nucleus to induce the
701 secretion of proinflammatory cytokine IL-6 that induces cell proliferation via cyclin D1.

702

703

704

705

706 **Supplementary Fig 1:** ST2825 attenuates poly(I:C) induced MyD88 dependent early phase activation
707 of NF- κ B activation for nuclear translocation of p65 in time dependent manner. **a** T47D cells and **b**
708 MDA-MB-231 cells were pre-treated with ST2825 for 4 hours prior to addition of poly(10 μ g/mL) for 30
709 minutes, 60 minutes and 90 minutes. Cells were stained with antibody against p65 subunit of NF- κ B and
710 Alexa 594 tagged secondary antibody and counterstained with DAPI and analyzed acquired through
711 confocal microscope.

712

713

714

715