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30 Abstract

31  Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly
32 in multiple plant lineages. However, the specific mechanisms through which sex
33 systems evolve and their commonalities among plant species remain poorly
34 understood. With both XY and ZW sex systems, the family Salicaceae provides a
35  system to uncover the evolutionary forces driving sex chromosome turnovers. In this
36 study, we performed a genome-wide association study to characterize sex
37  determination in two Populus species, P. euphratica and P. alba. Our results reveal an
38 XY system of sex determination on chromosome 14 of P. euphratica, and a ZW
39  system on chromosome 19 of P. alba. We further assembled the corresponding sex
40  determination regions, and found that their sex chromosome turnovers may be driven
41 by the repeated translocations of a Helitron-like transposon. During the translocation,
42  this factor may have captured partial or intact sequences that are orthologous to a
43 type-A cytokinin response regulator gene. Based on results from this and other
44  recently published studies, we hypothesize that this gene may act as a master regulator
45  of sex determination for the entire family. We propose a general model to explain how
46  the XY and ZW sex systems in this family can be determined by the same RR gene.
47  Our study provides new insights into the diversification of incipient sex chromosome
48 in flowering plants by showing how transposition and rearrangement of a single gene
49  can control sex in both XY and ZW systems.

50

51  Keywords: Dioecy, Sex determination, Sex chromosome turnover, Genome, Populus
52


https://doi.org/10.1101/2020.04.11.037556
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.0375586; this version posted April 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

53  Introduction

54  The origin and evolution of dioecy (separate sexes) has long been one of the most
55  fascinating topics for biologists (Henry et al., 2018; Feng et al., 2020). The presence
56  of dioecy ensures outcrossing and optimal allocation of reproductive resources for
57 male and female sexual function, thereby providing them with certain advantages in
58  fertility, survival and evolution (Bawa, 1980). In flowering plants, dioecy occurs in
59 only ~6% of all species and has independently evolved thousands of times from
60  hermaphroditic ancestors (Renner and Ricklefs, 1995; Renner, 2014). Many of these
61  species have sex determined by a pair of heteromorphic sex chromosomes that differ
62 in morphology and/or sequence, in the form of male heterogamety (XY system) or
63  female heterogamety (ZW system) (Ming et al., 2011; Charlesworth, 2016). Theory
64  predicts that sex chromosomes evolve from ancestral autosomes via successive
65 mutations in two linked genes with complementary dominance (Charlesworth and
66  Charlesworth, 1978; Charlesworth, 1991). Subsequently, the suppression of
67  recombination between these two sex determination genes progressively spreads
68 along Y or W chromosomes, and permits the accumulation of repetitive elements and
69  duplication or translocation of genomic fragments, which in turn leads to the
70  formation of a sex-specific region and finally degeneration of the sex chromosome
71 (Bergero and Charlesworth, 2009; Charlesworth, 2012; Bachtrog, 2013).
72 Characterizing the genomic architecture of sex in dioecious species is critical for
73 understanding the origin of sex chromosomes, especially in their early stage of
74 evolution.

75 Over the past decade, impressive progress has been made in unraveling the
76  genetic basis of sex determination in several dioecious plants and the evolutionary
77  history of their sex chromosomes, including papaya (Wang et al., 2012), persimmon
78  (Akagi et al., 2014), asparagus (Harkess et al., 2017), strawberry (Tennessen et al.,
79  2018), date palm (Torres et al., 2018) and kiwifruit (Akagi et al., 2018, 2019).
80  Consistent with the independent origins of sex chromosomes, the sex determination
81 genes identified in these species differ from each another, although most of them

82  function in similar hormone response pathways (Feng et al., 2020). In addition, a
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83  recent study found that the sex chromosome turnover in strawberries is driven by
84  repeated translocation of a female-specific sequence (Tennessen et al., 2018). The
85 combined evidence from these studies demonstrates the high variation of plant sex
86  determination mechanisms, and so understanding the factors that drive the convergent
87  evolution of sex chromosomes in plants remains elusive (Zhang et al., 2014).

88 The family Salicaceae provides an excellent system to study the drivers of sex
89  chromosome evolution. This family includes two sister genera, Populus and Salix,
90  which are composed exclusively of dioecious species (Peto, 1938; Zhang et al., 2018;
91 Li et al. 2019). Previous studies in multiple Salix species have consistently mapped
92  the sex determination regions (SDRs) to chromosome 15, and proposed a ZW system
93 in which females are the heterogametic sex (Pucholt et al., 2015, 2017; Hou et al.,
94  2015; Chen et al., 2016; Zhou et al., 2018, 2020). However, an XY system was
95 recently identified on chromosome 7 in S nigra (Sanderson et al., 2020). In
96 comparison, the SDR has been mapped to multiple locations in different Populus
97  species, indicating a dynamic evolutionary history of the sex chromosomes. The SDR
98  has been mapped to the proximal telomeric end of chromosome 19 in P. trichocarpa
99 and P. nigra (sections Tacamahaca and Aigeiros) (Gaudet et al., 2007; Yin et al., 2008;
100  Geraldes et al., 2015), and to a pericentromeric region of chromosome 19 in P.
101 tremula, P. tremuloides and P. alba (section Populus) (Pakull et al., 2009, 2014;
102 Paolucci et al., 2010; Kersten et al., 2014). Most Populus species display an XY sex
103  determination system, but there is some evidence that P. alba has a ZW system
104  (Paolucci et al., 2010). Thus far, the only SDR that has been assembled in Populus is
105 that of P. trichocarpa and P. deltoides, and it appears to be much smaller than those
106  observed in Salix (Geraldes et al., 2015; Xue et al., 2020). Our recent study on the W
107 chromosome of S. purpurea showed intriguing palindromic structures, in which four
108  copies of the gene encoding a type A cytokinin response regulator (RR) were
109 identified (Zhou et al., 2020). Interestingly, the ortholog of this gene has also been
110  reported to be associated with sex in Populus from section Tacamahaca (Geraldes et
111 al., 2015; Brautigam et al., 2017; Melnikova et al., 2019), which increases the

112 possibility that this gene is an excellent candidate for a common sex determination
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113 mechanism in the Salicaceae. However, it is still unclear whether this candidate gene
114 is present in all of these SDRs. Most importantly, how the same gene functions in
115 both the XY and ZW systems remains elusive. Here, we identify the sex
116  determination systems of two additional Populus species, P. euphratica and P. alba,
117 which are from sects. Turanga and Populus respectively (Wang et al., 2020). We
118  report their complete SDR assemblies and propose a general model to illustrate the
119  potentially shared mechanism of sex determination in this family.

120

121 Results

122 Genome assembly

123 We have previously reported the assembly of the genomes of a male P. euphratica
124  (Zhang et al., 2020) and a male P. alba var. pyramidalis (a variety of P. alba) (Ma et
125  al., 2019). Here we further sequenced and de novo assembled female genomes for
126  both species using Oxford Nanopore reads. The assembly for the female P. euphratica
127  consists of 1,229 contigs with an N50 of 1.7 Mb and a total size of ~529.0 Mb, while
128  the female P. alba var. pyramidalis assembly has 357 contigs with an N50 of 3.08 Mb,
129  covering a total of ~358.5 Mb (Table S1). Both assemblies showed extensive synteny
130  with their respective male reference genomes, and therefore, based on their syntenic
131 relationships, the assembled contigs were anchored onto 19 pseudochromosomes
132 (Figs. S1 and S2). The chromosome identities were then assigned by comparison to P.
133 trichocarpa (Tuskan et al., 2006).

134

135 XY sex determination on chromosome 14 in P. euphratica

136 In order to characterize the sex determination system of P. euphratica, we
137  resequenced the genomes of 30 male and 30 female individuals (Table S2) and
138  performed a genome-wide association study (GWAS). Using the male assembly as the
139  reference genome, a total of 24,651,023 high-quality single nucleotide polymorphisms
140  (SNPs) were identified. After Bonferroni correction, we recovered 310 SNPs
141  significantly associated with sex (¢<0.05; Figs. 1A, S3A and Table S3). In-depth

142 analysis found that almost all genotypes (99.99%) of these sex-associated loci are
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143 homozygous in females, while 93.57% of the genotypes are heterozygous in males
144  (Fig. 1B). A similar pattern was observed when the sex association analysis was
145  performed by using the female assembly as the reference genome (Figs. S3B and 4,
146 and Tables 4 and S5). These results consistently indicate that an XY system is
147  involved in sex determination of P. euphratica.

148 In addition, we found that the vast majority of the significantly sex-associated
149 SNPs were located at the proximal end of chromosome 14 (the un-anchored scaffold
150  ‘001598F in male genome was located onto chromosome 14 based on its syntenic
151 relationship with P. trichocarpa genome), while a few other SNPs were present at
152 chromosomes 7, 9, 12 and 19 (Figs. 1A, 1B and $4, and Table S5). We then
153  attempted to use ultra-long nanopore reads generated from a male individual (Table
154  SB6) to further reconstruct a new assembly with X and Y haplotypes as separate contigs.
155  This led to the identification of a contig that was highly similar to the sex-associated
156  regions and specifically contained Y-linked alleles (Fig. S5). The Y-linked region was
157  further determined by examining the relative depth of coverage when aligning male
158  versus female resequencing reads against the reference (Fig. S6). Based on the
159  syntenic relationship, the SDR of P. euphratica can be mapped to the proximal end of
160  chromosome 14 and the Y-linked region is about 658 kb in length, corresponding to
161  ~84 kb on the X chromosome (Fig. 1C). We found that two segments spanning 440
162 kb and 135 kb respectively, are specific to the Y-linked region (Fig. 1C), suggesting
163  the occurrence of significant chromosome divergence between the X and Y
164  haplotypes, which can be maintained by suppressed recombination.

165 We predicted a total of 37 protein-coding genes in the Y-linked region, many of
166  which have high similarity with genes on other autosomes and are considered as
167  translocated genes (Table S7). Among these, we found that 9 of the Y-specific genes
168  were annotated as members of the LONELY GUY (LOG) family, which encodes
169  cytokinin-activating enzymes that play a dominant role in the maintenance of the
170  shoot apical meristem and in the establishment of determinate floral meristems
171 (Kuroha et al., 2009; Tokunaga et al., 2012; Han and Jiao, 2015). Ten genes were

172 identified in both X and Y haplotypes. A phylogenetic analysis of these genes showed
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173  that the X and Y alleles began to diverge after their split with P. trichocarpa and P.
174 alba (Figs. 1D and S7), suggesting that the SDR of P. euphratica appears to be
175  established relatively recently.

176

177  ZW sex determination on chromosome 19 in P. alba

178  We used a similar GWAS strategy for 30 male and 30 female resequenced individuals
179  to characterize the sex determination system of P. alba (Table S8). When the male
180  and female assembly was used as a reference genome, respectively, 173 and 55 SNPs
181  that were significantly associated with sex were identified (Figs. 2A, 2B, S8 and S9,
182 and Tables S9-S11). Most of the sex-associated SNPs are heterozygous in females
183 and homozygous in males (Fig. 2B and Table S10), confirming the ZW sex
184  determination system in P. alba, which was also suggested based on genetic mapping
185  ina previous study (Paolucci et al., 2010).

186 We found that these sex-associated SNPs are mainly located on a non-terminal
187  region of chromosome 19 (Figs. 2A, 2B and S8, and Table S10). Next, we examined
188  the female-specific depth profile, combined with the support of ultra-long nanopore
189  reads (Table S6), to delineate the W haplotype of P. alba to a region of about 140 kb
190  on chromosome 19, with a corresponding Z haplotype that is only 33 kb in length
191  (Figs. 2C, S10 and S11). Compared to the Z haplotype and corresponding autosomal
192  regions of the other Salicaceae species, a specific insertion of 69 kb was observed in
193  the W haplotype, indicating a recent origin of the SDR in P. alba.

194 Sequence annotation predicted 18 protein-coding genes in the W haplotype, six of
195  which were also found in the Z haplotype (Table S12). The high identity of these
196  alleles between the W and Z haplotype suggests that recombination suppression
197 occurred very recently (Fig. 2D). We further found that the gene encoding
198  NAC-domain protein, SOMBRERO (SMB), which has a similar function to the
199  VND/NST transcription factors that regulate secondary cell wall thickening in woody
200 tissues and maturing anthers of Arabidopsis (Mitsuda et al., 2005; Bennett et al.,
201 2010), was expanded from one member in the Z haplotype to three copies in the W

202  haplotype (‘HP2’ in Fig. 2D). There are 12 genes specific to the W haplotype (Table
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203  S12), including DM2H (DANGEROUS MIX2H), which encodes a nucleotide-binding
204  domain and leucine-rich repeat immune receptor protein (Chae et al., 2014); CCR2
205  (Cinnamoyl CoA reductase), which is involved in lignin biosynthesis and plant
206 development (Thevenin et al.,, 2011); and STRSL (STRESS RESPONSE
207 SUPPRESSOR1), a gene encoding a DEAD-box RNA helicase, which is involved in
208  epigenetic gene silencing related to stress responses (Khan et al., 2014). More
209  interesting, we also identified three copies of the gene encoding a type A cytokinin
210  response regulator (RR) in the W-specific region (Fig. 3A), the ortholog of which has
211 also been identified to be associated with sex determination in poplar and willow
212 (Geraldes et al., 2015; Brautigam et al., 2017; Melnikova et al., 2019; Zhou €t al.,
213 2020). Very little sequence differences were found among these three copies, and
214  combined with the fact that the ortholog of the RR gene is located at the distal end of
215  chromosome 19 in P. trichocarpa and P. euphratica (Fig. 3), we conclude that the RR
216 gene was translocated from the end of chromosome 19 to the W haplotype of P. alba
217  and then underwent at least two rounds of recent duplication.

218

219  Evidencefor SDR turnover in Salicaceae

220 We have shown that P. euphratica and P. alba have different sex determination
221 systems, and that the SDRs are different from those reported in P. trichocarpa and S.
222 purpurea, indicating extraordinarily high diversity of sex determination in the
223 Salicaceae. In order to examine whether the sex determination regions originated
224 independently in each lineage, or evolved into the current SDRs separately after a
225 common ancient origin, we performed syntenic analysis on these SDRs in P.
226  euphratica and P. alba, and the corresponding autosomal regions in P. trichocarpa
227 and S purpurea. We found that although the pseudo-autosomal regions of these sex
228  chromosomes are highly collinear with their corresponding autosomal regions in other
229  species, the sequences in the sex-specific regions are not alignable (Figs. 1C and 2C).
230 In contrast, although there was little collinearity among these SDRs, a homologous
231 sequence with multiple duplicates was identified between the Y haplotype of P.

232 euphratica and the W haplotype of P. alba (Fig. 3A). Interestingly, the locations of
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233 the duplicates overlapped with the three predicted RR genes in P. alba. In the
234  corresponding regions of the Y haplotype of P. euphratica, we identified 10 partial
235 duplicates of the RR gene including four covering the first three exons (large
236 duplicate) and six covering only the first exon (small duplicate) of the RR gene (Fig.
237 3). Phylogenetic analysis of these duplicates showed that the three RR genes in P.
238  alba clustered together and are closely related to the intact orthologs of P. euphratica
239  and P. trichocarpa, while the partial duplicates from P. euphratica divided into two
240  main clades, one with only large duplicates and a second clade with only small
241 duplicates (Fig. 3B).

242 Since the RR duplicates were found in the SDRs of all of the current and
243 previously studied species, we believe that they may play important roles in sex
244  determination of the Salicaceae species. These results also lead to the hypothesis that
245  these species shared an ancient origin of sex chromosomes, followed by frequent
246  turnover events due to translocation of the RR duplicates. This is further supported by
247  the distant relationship between the partial and intact RR duplicates (Fig. 3B), which
248  indicate that the partial duplicates originated before the divergence of these poplar
249  species and were repeatedly inserted into the SDRs of P. euphratica. We did not
250  detect any structurally intact long terminal repeat retrotransposons (LTR-RTSs) around
251 these RR duplicates, which made it impossible to estimate their insertion time.
252 However, around the RR duplicates in P. euphratica, we identified a Helitron-like
253  transposable element upstream of each small duplicate except the second one
254  (*PeuY:S2’), and a Copia-like LTR fragment in the downstream region of each large
255  duplicate (Fig. 3B). These two repetitive elements were also identified in all three RR
256  duplicates of P. alba, and are located upstream and in the third intron of the RR gene,
257  respectively, similar to that in P. euphratica. The phylogenetic trees of the two
258 elements and the RR duplicates exhibited a similar topological relationship,
259  suggesting that they may be transposed together as a unit (Figs. 3C and 3D). The
260  extremely high similarity of these sequences indicates that they were recently
261  transposed into the SDRs of P. euphratica and P. alba, respectively, consistent with

262  the observation that their sex chromosomes have not been severely degenerated. In
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263 addition, we found that the Hdlitron-like element was not present in the upstream
264  region of the intact RR genes at chromosome 19 of P. euphratica and P. trichocarpa
265  (Fig. 3B), which led us to speculate that this element may be the main driving force
266  for gene replication during the evolution of SDRs in P. euphratica and P. alba.
267  However, we failed to detect the same pattern in S. purpurea, in which multiple Copia
268  LTR-RTs were predicted instead of the Helitron elements (Zhou et al., 2020). This
269  implies that poplar and willow may have different SDR turnover mechanisms, which
270  requires further evidence from more species to confirm.

271

272 Discussion

273 It is notoriously difficult to assemble the complete sequence of SDRs or sex
274  chromosomes, which usually have a high repeat density and many translocated
275  segments from autosomes (Charlesworth, 2012; Bachtrog, 2013). In our study, the
276  sex-associated loci were initially mapped onto multiple different chromosomes (Figs.
277 1 and 2), although they consistently revealed an XY sex determination system in P.
278  euphratica and a ZW system in P. alba. These results may be caused by the lack
279  and/or mis-assembly of SDRs in the reference genome, especially when the genome
280 from a homozygous (XX or ZZ) individual was used as reference, the reads from Y-
281  or W-specific regions of hemizygous (XY or ZW) individuals may be misaligned to
282 homologous sequences on autosomes and led to false associations. Similar
283  phenomena were also observed in the sex association analysis of P. trichocarpa, P.
284  balsamifera and S purpurea, which may lead to an inaccurate localization of SDRs in
285 assemblies (Geraldes et al., 2015; Zhou et al., 2020). The high sequence similarity
286  between these sex-associated regions and the SDRs we finally established strongly
287  supports this possibility (Figs. S5 and S10). Therefore, our research emphasizes the
288 importance and necessity for precise assembly of SDRs using multiple
289  complementary methods, including the ultra-long read sequencing, haplotype phased
290  assembly and the sex-specific depth of read mapping.

291 Our results further indicate that the SDRs of poplar species are generally shorter

292 in length and contain relatively fewer genes than that recently reported in S purpurea
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293 (Zhou ¢ al., 2020), though the size of this SDR may be inflated due to overlap with
294  the centromere (Zhou et al., 2018). Although some specific insertions were observed
295 on the Y and W chromosomes, we found no obvious degeneration of sex
296  chromosomes at least in P. euphratica and P. alba. These results suggest that the
297  SDRs of these two species were established relatively recently, which is a common
298  feature of the sex chromosomes of the Salicaceae species studied so far (Geraldes et
299  al., 2015; Pucholt et al., 2017; Zhou et al., 2018, 2020). Along with this, our results
300 also suggest that the Y and W chromosomes have expanded in content, a pattern that
301 is common in young sex chromosomes of plants (Hobza et al., 2015, 2017). Moreover,
302 our results simultaneously showed that the Salicaceae exhibit an extremely fast rate of
303  sex-chromosome turnover. In previous studies, SDRs have been reported only on
304 chromosome 15 with female heterogamety (ZW) in willow except S. nigra (Pucholt et
305 al., 2015, 2017; Hou €t al., 2015; Chen et al., 2016; Zhou et al., 2018, 2020;
306  Sanderson et al., 2020), and on chromosome 19 of poplar with most species showing
307 male heterogamety (XY) (Gaudet et al., 2007; Yin et al., 2008; Pakull et al., 2014;
308  Geraldes et al., 2015). However, our study identified an XY system with the SDR on
309  chromosome 14 of P. euphratica for the first time, and confirmed a ZW system with
310 SDR on chromosome 19 of P. alba. These results highlight the complexity and
311 diversity of sex determination in this family. Comparative analysis showed that
312  translocation of genes from autosomes to the SDR and gene replication frequently
313 occurred both on the Y chromosomes of P. euphratica and on the W chromosomes of
314 P alba, indicating that these two events are likely to be important contributors during
315 SDR turnover. The regulatory mechanisms and functions of these genes in sex
316  determination and sexual dimorphism in these two species need further investigation.

317 Among all genes on SDRs, the cytokinin response regulator is the most likely
318 candidate for controlling sex determination in the Salicaceae, not only because the
319  orthologs of this gene have been found to be sex-associated in most of the reported
320  species in the family, but also because it is the only homologous sequence found in
321 the sex chromosomes of P. euphratica, P. alba, P. trichocarpa, P. deltoides and S.

322 purpurea (Fig. 3), the only Salicaceae species with SDR precisely assembled (Zhou et
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323 al., 2020; Xue et al., 2020). Recent progress has revealed that the genes involved in
324  cytokinin signaling play important roles in the regulation of unisexual flower
325 development in plants (Wybouw et al., 2019; Kieber et al., 2018; Feng et al., 2020).
326  Specifically, a Y-specific type-C cytokinin response regulator (Shy Girl, SyGl) was
327  recently identified as a suppressor of carpel development and therefore is a strong
328 candidate of sex determination in Kiwifruit (Akagi et al., 2018). Similar to the pattern
329 of the RR genes found in the Salicaceae species, in kiwifruit SyGl was duplicated
330 from an autosome and subsequently gained a new function on its Y chromosome.
331  However, the type-A RR genes we identified here are not orthologous to the SyGl
332 gene, so we speculate that they may have different functions in the cytokinin signaling
333 pathway. Based on our results, it is reasonable to suspect that the RR genes are more
334 likely to function as a dominate promoter of female function (Fig. 4), as they exist on
335  the W chromosomes of both P. alba and S. purpurea in intact duplicates. In contrast,
336 the RR gene fragments on the Y chromosome of P. euphratica exist as two partial
337  duplicates with different sizes. This may serve as a female suppressor by encoding an
338  siRNA that targets the intact RR gene at the distal end of chromosome 19, possibly
339  through RNA-directed DNA methylation (Brautigam et al., 2017; Xue et al., 2020). It
340 should be noted that, although the intact RR gene has been reported to be associated
341  with sex in P. trichocarpa, there is still no evidence to support the gene’s localization
342 on its Y chromosome. In the previous GWAS study (Geraldes et al., 2015), most of
343  the sex-associated loci of P trichocarpa were located on the proximal end of
344  chromosome 19. The associated signals scattered around the intact RR gene, which is
345 located at the distal end of chromosome 19, were most likely due to assembly errors
346  arising from the fact that this reference genome is derived from a female (XX)
347 individual (the major factor in misleading SDR localization as mentioned above).
348  Therefore, our findings consistently showed that Salicaceae species potentially share a
349  common mechanism of sex determination, in which the specific duplication of the RR
350 orthologs on SDRs may have played an important role in the acquisition of separate
351  sexes in these species.

352 More interestingly, we identified Helitron-like repetitive elements upstream of the
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353  RRduplicate in both SDRs of P. euphratica and P. alba, regardless of whether the RR
354  duplicate is intact or partial (Fig. 3). As a major class of DNA transposons, Helitrons
355  were hypothesized to transpose by a rolling circle replication mechanism, and have
356  been found to frequently capture genes or gene fragments and move them around the
357 genome, which is believed to be important in the evolution of host genomes
358  (Morgante et al., 2005; Kapitonov and Jurka, 2007). Our results suggest that the RR
359  fragments and intact gene sequences appear to have been captured by Helitrons in P.
360 euphratica and P. alba, and subsequently replicated in their SDRs (Figs. 3 and 4).
361  Furthermore, our phylogenetic analysis indicated that the intact RR gene was captured
362  veryrecently in P. alba, at least after its split with P. trichocarpa (Fig. 3B). In contrast,
363  although we found high similarity among the RR partial duplicates of P. euphratica,
364 these sequences are quite different from the intact RR genes of other poplar species
365 (Fig. 3B). These results indicate that the partial duplicates were present before the
366 diversification of poplar species, but only recently replicated on the Y chromosome of
367 P euphratica. We found that the partial duplicate of the RR gene is lacking in P. alba,
368  which may be another key event in addition to the duplication of the intact RR gene,
369 in the transition of the sex determination system from XY to ZW (Fig. 4). In addition,
370 the high nucleotide identity among intact RR genes of S purpurea reflects another
371 possible SDR turnover event in willow, which might be driven by the replication of a
372 Copia LTR (Zhou et al., 2020), rather than by a Helitron as we found in poplar.
373 Moreover, we also identified an inverted repeat of the first exon of the RR gene and an
374  intact copy on the chromosomes 15Z and 19 of S. purpurea, respectively (Fig. 3).
375  This suggests a model whereby the inverted repeat is suppressing the RR gene of
376  chromosome 19 in males, but the SDR on the W chromosome may be dominant to
377  this effect in females, possibly due to increased dosage or another mechanism (Fig. 4).
378  These observations further indicate that the sex determination system of S. purpurea
379 may have been changed from XY to ZW relatively recently, since the suppressing
380  mechanism from the RR partial duplication is still retained. This turnover was also
381 supported by the XY sex determination system of the basal Salix species, S nigra

382  (Sanderson et al., 2020). Therefore, our results suggest that the high activity of these
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383  repetitive elements is the most likely cause of the recently established SDRs in these
384  species, and further indicate that at least three turnover events have occurred in the
385  evolution of sex chromosomes of the Salicaceae species (Fig. 4).

386 In conclusion, here we present an XY system of sex determination with the SDR
387  on the proximal end of chromosome 14 in P. euphratica, and a ZW system with the
388  SDR on a non-terminal region of chromosome 19 in P. alba. Both SDRs appear to
389  have evolved relatively recently and are characterized by frequent translocations from
390 autosomes and gene replication events. Our comparative analysis also demonstrated
391  an extremely fast rate of sex chromosome turnover among Salicaceae species, which
392 may be driven by Helitron transposons in poplar and by Copia LTRs in willow. Most
393 importantly, we propose a model showing that poplar and willow have a common
394  underlying mechanism of sex determination, which controls the XY and ZW systems
395  simultaneously through a type-A RR gene. In the future, it will be necessary to
396  conduct transgenic function experiments and comparative analysis from more species
397 in this family to further support our model.

398

399 Methods

400 Genome sequencing

401  We have previously reported the reference genome of a male P. euphratica (Zhang et
402  al., 2020) and a male P. alba (Ma et al., 2019). In this study, we further collected the
403  fresh leaves of a female P. euphratica and a female P. alba for genome sequencing
404 and assembly. Genomic DNA was extracted using the QIAGEN Genomic DNA
405  extraction kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. To
406  generate Oxford Nanopore long reads, approximately 15 pg of genomic DNA was
407  size-selected using the BluePippin system (Sage Science, USA), and processed
408 according to the protocol of Ligation Sequencing Kit (SQK-LSK109). The final
409 library was sequenced on a PromethlON sequencer (Oxford Nanopore Technologies,
410  UK) with a running time of 48 hours. The Oxford Nanopore proprietary base-caller,
411 Albacore v2.1.3, was used to perform base calling of the raw signal data and convert

412 the FASTS5 files into FASTQ files.
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413 In addition, paired-end libraries with insert size of ~300 bp were also constructed
414 using NEB Next® Ultra DNA Library Prep Kit (NEB, USA), with the standard
415  protocol provided by Illumina (San Diego, CA, USA). The library was sequenced on
416 an lllumina HiSeq X Ten platform (lllumina, San Diego, CA, USA). These
417  sequencing data were used for correction of errors inherent to long read data for
418  genome assembly.

419

420 Genome Assembly

421  For genome assembly, we first removed the Nanopore long reads shorter than 1 kb
422  and the low-quality reads with a mean quality < 7. The long reads underwent
423 self-correction using the module ‘NextCorrect’ and then assembled into contigs using
424  ‘NextGraph’ implemented in Nextdenovo v2.2.0
425  (https://github.com/Nextomics/NextDenovo) with default parameters. Subsequently,
426  the filtered Nanopore reads were mapped to the initial assembly using the program
427  Minimap2 v2.17-r941 (Li, 2018) and NextPolish v1.0
428  (https://github.com/Nextomics/NextPolish) was used with three iterations to polish
429  the genome. In addition, we further aligned the Illumina reads to the genome using
430 BWA-MEM v0.7.15 (Li and Durbin 2009) and corrected base-calling by an additional
431 three rounds of NextPolish runs with default parameters. Finally, the corrected
432 genome was aligned to their respective male reference genome using the LAST
433 program (Kielbasa et al., 2011) and the syntenic relationships were used to anchor the

434  assembled contigs onto 19 chromosomes.
435
436 Population sample collection, resequencing and mapping

437  Silica gel dried leaves of P. euphratica and P. alba were collected from wild
438  populations in western China. For each species, the sex of 30 male and 30 female
439  individuals was identified from flowering catkins. Genomic DNA of each sample was
440  extracted using the Qiagen DNeasy Plant Minikit (Qiagen, Hilden, Germany).
441  Paired-end libraries were prepared using the NEBNext Ultra DNA Library Prep Kit
442  (NEB, USA) and sequenced on an Illumina HiSeq X Ten platform, according to the
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443  manufacturer’s instructions.
444 The generated raw reads were first subjected to quality control and low-quality

445  reads were removed if they met either of the following criteria (Ma et al., 2018): i)
446  >10% unidentified nucleotides (N); ii) a phred quality <7 for > 65% of read length;

447  iii) reads overlapping more than 10 bp with the adapter sequence, allowing < 2 bp
448  mismatch. Reads shorter than 45 bp after trimming were also discarded. The obtained
449  high-quality cleaned reads were subsequently mapped to the male and female
450 reference genomes of each species, respectively, using BWA-MEM v0.7.15 with
451  default parameters (Li and Durbin 2009). Then the alignment results and marked
452  duplicate reads were sorted using SAMtools v0.1.19 (Li et al., 2009). Finally,
453  Genome Analysis Toolkit (GATK) (DePristo et al., 2011) was performed to process
454  base quality recalibrations to enhance alignments in regions around putative indels
455  with two steps: i) ‘RealignerTargetCreator’ was applied to identify regions where
456  realignment was needed; ii) ‘IndelRealigner’ was used to realign these regions.

457

458  SNP calling, filtering and genome-wide association study (GWAS)

459  To prevent biases in SNP calling accuracy due to the difference of samples size
460  between groups, single-sample SNP and genotype calling were first implemented
461 using GATK (DePristo et al., 2011) with “‘HaplotypeCaller’, and then multi-sample
462  SNPs were identified after merging the results of each individual by
463  ‘GenotypeGVCFs’. A series of filtering steps were performed to reduce false
464  positives (Yang et al., 2018), including removal of (1) indels with a quality scores <
465 30, (2) SNPs with more than two alleles, (3) SNPs at or within 5 bp from any indels,
466 (4) SNPs with a genotyping quality scores (GQ) < 10, and (5) SNPs with extremely
467 low (< one-third average depth) or extremely high (> threefold average depth)
468  coverage. The identified SNPs were used for subsequent GWAS analysis. A standard
469  case/control model between allele frequencies and sex phenotype was performed
470  using Plink v1.9 (Purcell et al., 2007). For each species, associations at a < 0.05 after

471 Bonferroni correction for multiple testing were reported as the significantly
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472 sex-associated SNPs. These sex-associated SNPs that occurred within 10 kb on the
473  same chromosome were merged into the same interval.

474

475  Construction of P. euphratica Y contig and P. alba W contig

476  To construct the Y contig of P. euphratica and the W contig of P. alba, we further
477  generated ultra-long sequences from a male (XY) P. euphratica and a female (ZW) P.
478  alba, using an optimized DNA extraction followed by modified library preparation
479  based on the Nanopore PromethlON sequencer (Jain et al., 2018; Gong et al., 2019).
480  For P. euphratica, we did not find contigs that clearly contained Y-linked sequences
481 in its male genome, which may be due to assembly errors, so we used multiple
482  methods to determine its Y contig. At first, we attempted to find the male-specific
483  k-mers from the high-quality resequencing reads of both male and female samples.
484  Briefly, all 32 bp k-mers starting with the ‘AG’ dinucleotide were extracted from all
485  resequencing reads, and the number of occurrences of each specific subsequence in
486 female and male individuals was counted, respectively. The use of the ‘AG’
487  dinucleotide is to reduce the number of k-mer sequences and effectively speed up the
488  analysis. The k-mer counts were then compared between male and female, and the
489  male-specific k-mers (female count was 0) were obtained. Next, we extracted the
490 ultra-long nanopore reads containing at least one of the identified male-specific
491  k-mers, and assembled these ultra-long reads using the software Canu v1.7 (Koren et
492 al., 2017), resulting in a ‘male-specific contig’ that was 450 kb in length.
493  Simultaneously, we also de novo assembled all of the ultra-long nanopore reads into a
494  draft male genome using Nextdenovo v2.2.0. By comparing the ‘male-specific contig’
495  with the obtained male genome, we identified a candidate Y contig that contained a
496 large number of male-specific alleles and exhibited a widespread synteny and
497  continuity with the ‘male-specific contig’. To further refine the sex determination
498  region along this candidate Y contig, we re-mapped the resequencing data to the draft
499  genome by BWA-MEM v0.7.15 (Li and Durbin, 2009), and extracted the average
500 depth of coverage using a non-overlapping sliding window (1 kb in length) by

501 SAMtools v0.1.19 (Li et al., 2009). Finally, we compared the relative depth of
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502  coverage between male and female individuals, and found that the region between 0
503  and 658 kb of this contig showed male-specific depth and was therefore considered to
504  be the sex determination region on the Y chromosome of P. euphratica.

505 For P. alba, we first performed a whole genome alignment between its male and
506  female genome using the program LAST (Kielbasa et al., 2011). Fortunately, we
507 found that the sex-associated region in the female genome contained a large insert
508 compared to the corresponding region in the male genome. We used the same method
509  as above to count the relative depth of coverage between male and female individuals
510 of P. alba, and found that the region between 310 and 450 kb of this contig exhibited
511 female-specific depth. Therefore, this region was directly considered to be the sex
512  determination region on the W chromosome of P. alba, and the assembly accuracy of
513  this region was also confirmed by our ultra-long nanopore reads.

514  Annotation and comparison of the Y and W contigs

515  Transposable elements in our assembled Y and W contigs were identified and
516  classified using the software RepeatMasker (Tarailo-Graovac and Chen, 2009). Gene
517  annotation was conducted by combining the results of de novo prediction from the
518  program Augustus v.3.2.1 (Stanke et al., 2006), homology-based prediction using the
519  protein sequences of A. thaliana, P. trichocarpa and S. purpurea downloaded from
520 Phytozome 12 (https://phytozome.jgi.doe.gov/), as well as transcriptome data of P.
521 euphratica and P. alba generated from our previously studies (Ma et al., 2019; Hu et
522 al., 2020; Zhang et al., 2020). The predicted genes were searched against predicted
523  proteins from P. trichocarpa, S suchowensis and A. thaliana to find the closest
524  homologous annotation.

525 To construct the phylogenetic relationships among the allelic genes on the X/Y or
526  Z/W contigs, we further identified their orthologous genes in P. pruinosa (Yang et al.,
527  2017), P. ilicifolia (Chen et al., 2020) and S. suchowensis (Dai et al., 2014) genomes
528 by combining reciprocal blast results and their syntenic relationships. The sequences
529  were aligned using ClustalW with default parameters provided in MEGAS5 (Tamura et
530 al., 2011) and the resulting alignments were adjusted manually. A maximum

531 likelihood tree was built using MEGADS with default parameters.
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790  FigureLegends

791

792  Fig. 1 XY sex determination on chromosome 14 in P. euphratica. (A) Manhattan
793 plot of P. euphratica based on the results of genome-wide association study (GWAS)
794  with the male genome as reference. The y-axis represents the strength of association
795  (-logio(P value)) for each SNP sorted by chromosomes and scaffolds (SC; x-axis).
796  The red line indicates the significance after Bonferroni multiple corrections (o < 0.05).
797  Note that the scaffold ‘001598F’ is located on chromosome 14 based on its syntenic
798  relationship with the proximal end of chromosome 14 of P. trichocarpa. (B) Summary
799  of male P. euphratica genome regions containing SNPs significantly associated with
800  sex. SNP*, significantly associated SNPs; Homo, Homozygous; Hete, Heterozygosis.
801  (C) Synteny relationships between our assembled Y-contig and X chromosome of P.
802  euphratica, as well as the corresponding region of chromosome 14 for P. alba, P.
803 trichocarpa and S. purpurea. The highlighted part represents the sex determination
804  region (SDR), yellow for Y-SDR and green for X-SDR. Schematic diagram showing
805 the corresponding position of the SDR on chromosome 14 of P. euphratica. (D)
806  Phylogenetic relationships of the homolog pairs (HP) shared between Y- and X-SDR
807 of P. euphratica and their orthologous genes in other Salicaceae species. Detailed
808 information about these genes is listed in Table S7 and additional phylogenetic trees
809 are shown in Fig. S7. Note that only the orthologous genes located on the

810  corresponding region of chromosome 14 were used for phylogenetic analysis.
811

812
813  Fig. 2 ZW sex determination on chromosome 19 in P. alba. (A) Manhattan plot of P.
814  albabased on the results of GWAS with female genome as reference respectively. The
815  y-axis represents the strength of association (—logio(P value)) for each SNP sorted by
816  chromosomes and scaffolds (SC; x-axis). The red line indicates the significance after
817  Bonferroni multiple corrections (a < 0.05). (B) Summary of female P. alba genome
818  regions containing SNPs significantly associated with sex. SNP*, significantly

819  associated SNPs; Homo, Homozygous; Hete, Heterozygosis. (C) Synteny
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820 relationships between our assembled W-contig and Z chromosome of P. alba, as well
821  as the corresponding region of chromosome 19 for P. euphratica, P. trichocarpa and S.
822  purpurea. The highlighted part represents SDR, red for W-SDR and blue for Z-SDR.
823  Schematic diagram showing the corresponding position of the SDR on chromosome
824 19 of P. alba. (D) Phylogenetic relationships of the homolog pairs (HP) shared
825 between W- and Z-SDR of P. alba and their orthologous genes in other Salicaceae
826  species. The detail information of these genes is listed in Table S12. Note that there
827 are 3 copies for ‘HP2’ on the W-SDR of P. alba, and only the orthologous genes
828 located on the corresponding region of chromosome 19 were used for phylogenetic
829  analysis.

830

831 Fig. 3 Evidence for SDR turnover in Salicaceae. (A) Synteny relationships among
832  the Y-SDR of P. euphratica (yellow) and the W-SDRs of P. alba (red) and S. purpurea
833  (blue), showing the copies of RR intact gene (‘C’) and partial duplicates (‘S’: small
834  duplicate; ‘L’: large duplicate) on their SDRs. For each species, corresponding
835  positions for other RR gene copies or partial duplicates on the autosome are also
836 shown. (B) Phylogenetic relationship of the RR sequences (including intact genes and
837  partial duplicates) identified in the four species. The tree was rooted by a paralogous
838 gene ‘RR16’. The gene structures and relative positions of Helitron and Copia-like
839 LTR are also shown. Phylogenetic relationships of the Helitron (C) and Copia-like
840 LTR (D) around the RR sequences. All the sequences were named according to Fig.
841  3A. Peu: P. euphratica; Pal: P. alba; Ptr: P. trichocarpa; Spur: S purpurea.

842

843 Fig. 4 Hypothetical model for sex system turnovers in Salicaceae. The W
844  chromosomes of P. alba and S purpurea both carry several intact RR genes and are
845 likely to serve as a dominate promoter of female function. On the Y chromosome of P.
846  euphratica, partial duplicates of the RR gene are like to serve as a female suppressor
847 by encoding an siRNA that targets the intact RR gene through RNA-directed DNA
848  methylation. Note that Y-SDR of P. trichocarpa has not yet been assembled, so

849  whether a similar pattern should be found in this species remains to be confirmed.
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