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Abstract

Drug combinations targeting multiple targets/pathways are believed to be able to reduce drug resistance.
Computational models are essential for novel drug combination discovery. In this study, we proposed a new simplified
deep learning model, DeepSignalingSynergy, for drug combination prediction. Compared with existing models that
use a large number of chemical-structure and genomics features in densely connected layers, we built the model on a
small set of cancer signaling pathways, which can mimic the integration of multi-omics data and drug
target/mechanism in a more biological meaningful and explainable manner. The evaluation results of the model using
the NCI ALMANAC drug combination screening data indicated the feasibility of drug combination prediction using
a small set of signaling pathways. Interestingly, the model analysis suggested the importance of heterogeneity of the
46 signaling pathways, which indicates that some new signaling pathways should be targeted to discover novel
synergistic drug combinations.

1. Introduction

Acquired and innate drug resistance is one major challenge in cancer therapy, due to the complex signaling pathways
of cancer. Drug combinations targeting multiple targets or multiple signaling pathways are believed to be one
possibility to reduce drug resistance. Many studies have identified to identify potentially effective and synergistic drug
combinations for cancer treatment in experimental laboratories. For example, RAS and ERK inhibitors were recently
reported to be synergistic with autophagy inhibitors in RAS-driven cancers!?. The mechanism of synergy is that the
inhibition of RAS signaling causes the activation of autophagy signaling, which prevents cancer cell death!2. In BRAF
inhibitor resistant Melanoma, vemurafenib (BRAF inhibitor) + tretinoin (retinoic acid receptor agonist) were found to
be effective and synergistic in cell assays and mouse models. However, there are a few effective drug combinations
for clinical use in cancer therapy. Novel and effective drug combinations are needed for personalized treatment to
reduce the drug resistance.

Many cancer cell lines and mouse models are available to experimentally screen drugs and drug combinations.
However, the experimental screening approaches are limited, considering the numerous possible combinations of
thousands of FDA approved drugs and thousands of investigational agents. For example, there are currently about 4
available datasets of experimental screening drug combinations: 1) NCI-ALMANAC Drug Combination Data Set?
(~5,232 combinations from ~100 drugs on NCI60 cell-lines); 2) the Astraeneca-Sanger Drug Combination Prediction
DREAM Challenge Data Set* (900 combinations from 118 compounds on 85 cancer cell lines); 3) the Yale-Stern
Melanoma DataSet’ (~7000 combinations from 145 drugs/compounds on 19 melanoma cancer cell lines); and 4) the
Merck-2016 DataSet® (583 combinations from 38 drugs/compounds on 39 cancer cell lines). These datasets provide
valuable basis to build machine-learning and deep learning-based models.

Computational models that integrate diverse pharmacogenomics datasets with multi-omics data of cancer patients
to prioritize drug combinations are essential for novel drug combination discovery. The combination of computational
and experimental models can facilitate drug combination discovery in a fast manner. Though a set of prediction models
have been reported for drug combination prediction, it remains an open problem. For example, the network-based and
connectivity map’® based drug combination models®!® developed in synergy based on the gene-gene interaction
network have been proposed. In addition, a semi-supervised learning model integrating diverse pharmacogenomics
datasets was proposed to predict drug combination!!. Network message propagation-based models developed using
drug-target interactions and multi-omics data were also proposed to predict combinations!?!*. Deep learning models
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have also been proposed for drug combination prediction. For example, A deep belief network (DBN) model,
DeepSynergy, that integrates a large number of chemical structure and genomics features on the Merck-2016 DataSet®
was recently proposed'* as a prediction drug combination method. The other deep learning model, AuDNNsynergy'>
(Deep Neural Network Synergy model with Autoencoders), integrates the multi-omics data of over 10,000 cancer
genome atlas (TCGA) cancer samples. One limitation of the existing deep learning models of drug combination
prediction is the use of a large number of chemical and omics features (>10 thousand features) and fully connected
dense layers (a huge number of parameters in the model to be trained) relative to the small number (30~100 drugs on
30~60 cancer cell lines) of drug combination synergy scores experimentally obtained. Though the model with a large
number of parameters can fit/predict the data, the model parameters cannot be well trained, and cannot not be explained.

To reduce the complicity of the deep learning model and make the models more explainable, in this study, we
propose a novel simplified deep learning model, DeepSignalingSynergy, for drug combination prediction. Compared
with existing models that make use of a large number chemical and genomics features, we built the model on a small
set of cancer signaling pathways, with the aim of investigating the importance of individual signaling pathways.
Moreover, the model can mimic the integration of multi-omics data and drug target/mechanism in a relatively more
biological meaningful and understandable manner. The results from evaluating the model on the NCI ALMANAC
drug combination screening data indicated the feasibility of using a small set of signaling pathways and showed the
importance of signaling pathways that affect the drug combination response.

2. Materials and Methodology
2.1 Drug combination screening data in NCI ALMANAC dataset

The drug pair data was obtained from the NCI ALMANAC database, which is a resource created in 2017. The NCI
Almanac dataset includes a score assigned to each of the drug pairs was assigned a score, termed the NCI
“ComboScore” to indicate the synergy scores of drug combinations. In summary, the synergistic effects of
combinations of 104 FDA approved drugs in terms of cancer cell growth inhibition were evaluated on NCI 60 cancer
cell lines. The average comboScore of two drugs with different doses on a given cancer cell lines was used to indicate
the synergy score of two drugs on the cancer cell line, with a 4-element tuple: <D, Ds, Cc, Susc>.

2. 2 RNA-seq gene expression and copy number data of NCI-60 Cancer Cell Lines from Cancer cell line
encyclopedia (CCLE)

Cancer cell line encyclopedia (CCLE) database!® provides the multi-omics data of more than 1000 cancer cell lines,
e.g., RNA-seq (gene expression), copy number variation, metabolomics, miRNA, RPPA. The large panel of cancer
cell lines with comprehensive genetic characterization provide a data source to investigate the associations between
molecular features and cancer phenotypes, including drug responses. For this study, the RNA-sequencing gene
expression values, using TPM (transcripts per million), and copy number values of genes of 1019 cancer cell lines
were downloaded from the cancer cell line encyclopedia (CCLE) website: https://portals.broadinstitute.org/ccle. The
CCLE dataset 45 of NCI-60 cancer cell lines were included, as shown in Table 1.

Table I: NCI-60 cancer cell lines included in CCLE with RNAseq data. Orange text indicates the cancer cell lines
that are not included in CCLE.
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Table II: The 46 signaling pathways used in the proposed model.
MAPK FoxO TGF-beta T cell receptor Adipocytokine
ErbB Sphingolipid VEGF B cell receptor Oxytocin
Ras Phospholipase D Apelin Fc epsilon RI Glucagon
Rapl p53 Hippo TNF Relaxin
Calcium mTOR Toll-like receptor Neurotrophin AGE-RAGE
c¢GMP-PKG PI3K-Akt NOD-like receptor Insulin Cell cycle
cAMP AMPK RIG-I-like receptor GnRH
Chemokine Wnt C-type lectin receptor | Estrogen
NF-kappa B Notch JAK-STAT Prolactin
HIF-1 Hedgehog IL-17 Thyroid hormone
Table III: The 21 drugs used in the proposed model.
Celecoxib Gefitinib Quinacrine hydrochloride Tretinoin
Cladribine Imatinib mesylate Romidepsin Vinblastine sulfate (hydrate)
Dasatinib Lenalidomide Sirolimus Vorinostat
Docetaxel Mitotane Sorafenib tosylate Thalidomide
Everolimus Nilotinib Tamoxifen citrate Paclitaxel
Fulvestrant

2.3 KEGG signaling pathways and cellular process

KEGG (Kyoto Encyclopedia of Genes and Genomes)!” is a database for the systematic understanding of gene
functions. The KEGG signaling pathways provide the knowledge of signaling transduction and cellular processes.
There are 303 pathways in KEGG database, and 45 of them are annotated as “signaling pathways”. Many of the
signaling pathways are important oncogenic signaling pathways'?, e.g., EGFR, WNT, Hippo, Notch, PI3K-Akt, RAS,
TGEFB, p53. The ‘cell cycle’ cellular process is also included. For simplification, the ‘cell cycle’ is also viewed as one
‘signaling’ pathway. In total, 46 signaling pathways (45 signaling pathways + cell cycle) are selected (see Table II).
Among these 46 signaling pathways, there are 1648 genes with both gene expression and copy number variation data.
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In summary, there are gene expression (TPM) and copy number variation data of 1648 genes in 46 signaling pathways
of 45 cancer cell lines, which was used as the input of the deep learning model.

2.3 Drug-Target interactions from DrugBank database

DrugBank' is a widely used database to retrieve the information of drugs, such as drug name, chemo-structure, drug
mechanism as well as comprehensive drug target information. There are more than 13,000 drug entries in the latest
release of DrugBank (version 5.1.5, released 2020-01-03). Among these entries, 2,630 are FDA approved small
molecule drugs, and about 6,355 are investigational agents (not approved yet). In total, there are 15263 drug-target
interactions between 5435 drugs/investigational agents and 2775 targets. Among the drugs in NCI ALMANAC, 67
drugs are included in DrugBank with targets; and 21 (see Table IIT) drugs with targets on the 1648 signaling pathways
were kept as the input of the model.

2.4 Architecture of DeepSignalingSynergy

Fig. 1 shows the schematic architecture of the proposed DeepSignalingSynergy model. In the ‘input layer’, there are
4 input features, i.e., gene expression (RNA-seq TPM values), copy number, is_target of D4 (0: this gene is not a
target of Drug_A; 1: this gene is a target of Drug_A), and is_target of Dg, for each of 1648 genes on cancer cell line
Cc. For the connections between the ‘gene’ and ‘pathway’ layers, the 1648 genes are connected the 46 signaling
pathways, only if a gene is included in a signaling pathway (not dense connections). The output of the ‘46 signaling
pathway’ is used as the input of the deep belief network (DBN) (densely connected). The ‘output’ layer is the synergy
score of a drug combination < D, Ds> on cancer cell line Cc. The mean square error (MSE) is used as the loss function.
For the DBN, there are 3 hidden layers: first hidden layer has 256 nodes with the relu activation function; the second
hidden layer has 128 nodes with the relu activation function; the third hidden layer has 32 nodes with the relu activation
function. The linear activation function is used in the output layer.
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Figure 1: Schematic architecture of the proposed DeepSignalingSynergy model.

3. Results
3.1 Evaluation of drug combination prediction of DeepSignalingSynergy

There are about 5658 synergy scores of 21 drugs on 45 cancer cell lines, i.e., <D4, Ds, Cc, Sasc>. To evaluate the
performance of the DeepSignalingSynergy model, we randomly divided the dataset into a training dataset (80%) and
a test dataset (20%) 3 times. The model is trained with 30 epochs. The Pearson correlation was used as the metric for
the model performance evaluation. Fig. 2 shows the evaluation results on 3 randomly selected training and test datasets.
The proposed model has the average Pearson correlation coefficients, 0.79 and 0.67 on the 3 training datasets and test
datasets respectively (see Table IV). This result indicated that the performance of the proposed model, using a small
set of signaling pathways, is relatively low but potentially comparable with other existing deep learning models using
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a large number of chemical-structure and genomics features reported'®, like AuDNNsynergy'> and DeepSynergy'*
(which have the Pearson correlation coefficients of 0.74 and 0.73 respectively).

Table IV: MSEs and Pearson correlation coefficients on the 3 randomly selected training and test datasets.

Data set Epoch number MSE Pearson Correlation
Training-1 30 35.6 0.769
Test-1 30 41.3 0.673
Training-2 30 323 0.801
Test-2 30 42.8 0.674
Training-3 30 32.0 0.804
Test-3 30 41.9 0.666
Scatter Plot After 30 lterations In Training Dataset Scatter Plot After 30 lterations In Test Dataset

50

40 oo d

Pred Score
Pred Score

Pred Score
Pred Score

—a0{e ® °
-40
—40 -20 0 20 40 60 —40 =30 -20 -10 0 10 20 30 40
Score Score
60 Scatter Plot After 30 Iterations In Training Dataset Scatter Plot After 30 Iterations In Test Dataset
. .
. % °

o ® 40

Pred Score
Pred Score

Figure 2: Scatter plot of the predicted and experimental synergy scores at 40 epoches of 3 randomly selected
training (80%) and test (20%) datasets respectively.
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3.2 Importance of signaling pathways analysis for understanding potential mechanism of synergy

To investigate the potential mechanism of synergy in terms of the contributions of individual signaling pathways to
the prediction of synergy of drug combination, we employed the Layer-Wise Relevance Propagation (LRP) approach
implemented in the “iNNvestigate” package®, which can be used to visualize the importance of individual inputs at
different layers. Fig. 3 and Fig. 4 show the density distribution maps of importance scores of 46 signaling pathways
over the 3 randomly selected test datasets. The results indicated that the importance of the individual signaling
pathways are relatively stable in the 3 randomly selected test datasets. Though the importance scores are positive or
negative in different test datasets, the rough range and values of absolute importance scores are consistent. First,
interestingly, some of the 46 signaling pathways, e.g., the MAPK, TGF-p, cell cycle, AMPK, RAS, Jak-Stat, HIF-1a
signaling pathways have much more importance than other oncogenic signaling pathways. Second, the Apelin,
Adipocytokine, Fc epsilon RI, Neurotrophin, and IL-17 signaling pathways surprisingly contribute to the drug
combination response prediction. Third, some signaling pathways showed the similar interesting distributions, e.g.,
the MAPK and RAS signaling pathways, the FoxO and cAMP signaling pathways, as well as Apelin and Neurotrophin
signaling pathways. Fourth, other oncogenic signaling pathways, like the mTOR, ER, Hippo, Rap1 signaling pathways,
can only contribute to the drug combination synergy prediction moderately. Though results are interesting, further
investigations are needed to understand and explain the roles of individual signaling pathways and their associations
with drug combination response.

MAPK signaling pathway ErbB signaling pathway Ras signaling pathway Rap1 signaling pathway Calcium signaling pathway
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Figure 3: Distribution of importance of 46 signaling pathways on the first test dataset.
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Figure 4: Distributions of importance of 46 signaling pathways on the second (top-panel) and third (bottom-panel)
test datasets respectively. The results indicated that the importance of the individual signaling pathways are relatively
stable in the 3 randomly selected test datasets. Though the importance scores are positive or negative in different test
datasets, the rough range and values of absolute importance scores are consistent.
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3.3 Importance of individual genes

Top 50 Genes With Largest Absolute Importance Scores of 1648 Genes On Test Dataset

We conducted the similar analysis to
investigate the importance of individual
genes. Fig. 5 shows the top 50 genes with
the largest absolute importance scores of
1648 genes on the 3 randomly selected test
datasets respectively. The selected top 50

genes (out of 1648 genes, which is much
more than 46 signaling pathways) are not |“IIIIIIIIIIIIIIIIIII“IIIII““““

so consistent. The common genes selected
in all the 3 test datasets are: 'PRKCG',
'KIT', 'RRM2B', 'FLT3', 'PDGFRA',
'PDPK1', 'JUN', 'NTRK1', 'BCL2", which
indicate the potential synergy among these
targets. It can be possible to understand the
mechanism of synergy further by

investigating the importance scores of
individual genes and pathways for a IIIIIIIIIII“III“II

specific synergy drug combination on a
specific cancer cell line. However, it is still
challenging to associate the importance
scores to specific synergy mechanism of
drug combinations.

4. Discussion and conclusion
Synergistic drug combinations  are IIIII“I“I“““““

. . ; LLTTTTTTTTTT T
important factors in reducing drug e
resistance in cancer therapy. | Figure 5: Importance of individual genes.
Computational models that can integrate
multi-omics data of cancer patients with pharmacogenomics data of drugs and investigational agents are needed to
predict potential synergistic drug combinations (to narrow down the search space of drug combination). The
combination of computational and experimental models can facilitate the discovery of synergistic drug combinations
in a fast manner.

Top 50 Genes With Largest Absolute Importance Scores of 1648 Genes On Test Dataset

Top 50 Genes With Largest Absolute Imp es of 1648 Genes On Test

Deep learning models have been widely used and outperform the traditional machine learning models in image
analysis, natural language processing, healthcare data analysis, and drug combination prediction. However, it is a
challenging to make the model explainable, especially the models with a large number of features and parameters. In
the existing deep learning models of drug combination prediction, a large number of chemical-structure and genomics
features are used via the densely connected layers, which requires the training of a large number of parameters.
However, only small sets of drug combination experimental validation results that can be used as training labels are
available. Thus, it is hard to train the large number of parameters well, and it is also hard to explain the model to
investigate the potential mechanism of drug combination synergy.

In this study, we propose to reduce the number of parameters in deep learning models by using a simplified deep
learning model built based on a set of biological meaningful signaling pathways. In the model, we can integrate multi-
omics data of individual genes and drug-target information, and link the genes to 46 pathways in a sparse manner with
a much fewer number of parameters (compared to densely connected layers). The evaluation results showed that the
proposed simplified model can achieve good prediction results in terms of Pearson correlation coefficient between the
predicted and experimental synergy scores. Moreover, the explainable analysis of the deep learning model identified
some interesting results in terms of the importance of individual signaling pathways that contribute to the drug
combination synergy. Further analyses are needed to investigate the unclear mechanisms of synergy using these
signaling pathways.

This is our first expletory study to investigate and prediction drug combination synergy with a simplified deep
learning model with increased possibility of model explanation. There are some limitations of the proposed model that
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need to be further addressed. First, STITCH?! database can provide much more drug-target interactions, in addition to
drug-target interactions obtained from DrugBank. With more drug-target interactions, more drugs can be included to
the model, and the prediction accuracy could be better. Second, in addition to the 46 signaling pathways, other KEGG
pathways, like metabolism pathways, will be further evaluated. Third, Gene oncology?? (GO) terms provide alternative
biological meaningful biological processes (BP) (gene sets), which can cover many more genes (drug targets) and can
be used for drug combination prediction. Third, other omics data, like protein, methylation, genetic mutation can be
integrated conveniently to the model in addition to the copy number, gene expression data. We will investigate these
possible directions in the future work. Moreover, we will develop novel approaches to uncover the explainable
mechanisms of synergy of drug combinations, e.g., the synergy mechanism of RAS/ERK inhibitors and Autophagy
inhibitors recently reported!?, which can provide clues to discover novel synergistic drug combinations to reduce drug
resistance in cancer therapy.
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