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Abstract 
Drug combinations targeting multiple targets/pathways are believed to be able to reduce drug resistance. 
Computational models are essential for novel drug combination discovery. In this study, we proposed a new simplified 
deep learning model, DeepSignalingSynergy, for drug combination prediction. Compared with existing models that 
use a large number of chemical-structure and genomics features in densely connected layers, we built the model on a 
small set of cancer signaling pathways, which can mimic the integration of multi-omics data and drug 
target/mechanism in a more biological meaningful and explainable manner. The evaluation results of the model using 
the NCI ALMANAC drug combination screening data indicated the feasibility of drug combination prediction using 
a small set of signaling pathways. Interestingly, the model analysis suggested the importance of heterogeneity of the 
46 signaling pathways, which indicates that some new signaling pathways should be targeted to discover novel 
synergistic drug combinations.  
 

1. Introduction 

Acquired and innate drug resistance is one major challenge in cancer therapy, due to the complex signaling pathways 
of cancer. Drug combinations targeting multiple targets or multiple signaling pathways are believed to be one 
possibility to reduce drug resistance. Many studies have identified to identify potentially effective and synergistic drug 
combinations for cancer treatment in experimental laboratories. For example, RAS and ERK inhibitors were recently 
reported to be synergistic with autophagy inhibitors in RAS-driven cancers1,2. The mechanism of synergy is that the 
inhibition of RAS signaling causes the activation of autophagy signaling, which prevents cancer cell death1,2. In BRAF 
inhibitor resistant Melanoma, vemurafenib (BRAF inhibitor) + tretinoin (retinoic acid receptor agonist) were found to 
be effective and synergistic in cell assays and mouse models. However, there are a few effective drug combinations 
for clinical use in cancer therapy. Novel and effective drug combinations are needed for personalized treatment to 
reduce the drug resistance. 

Many cancer cell lines and mouse models are available to experimentally screen drugs and drug combinations. 
However, the experimental screening approaches are limited, considering the numerous possible combinations of 
thousands of FDA approved drugs and thousands of investigational agents. For example, there are currently about 4 
available datasets of experimental screening drug combinations: 1) NCI-ALMANAC Drug Combination Data Set3 
(~5,232 combinations from ~100 drugs on NCI60 cell-lines); 2) the Astraeneca-Sanger Drug Combination Prediction 
DREAM Challenge Data Set4 (900 combinations from 118 compounds on 85 cancer cell lines); 3) the Yale-Stern 
Melanoma DataSet5 (~7000 combinations from 145 drugs/compounds on 19 melanoma cancer cell lines); and 4) the 
Merck-2016 DataSet6 (583 combinations from 38 drugs/compounds on 39 cancer cell lines). These datasets provide 
valuable basis to build machine-learning and deep learning-based models.  

Computational models that integrate diverse pharmacogenomics datasets with multi-omics data of cancer patients 
to prioritize drug combinations are essential for novel drug combination discovery. The combination of computational 
and experimental models can facilitate drug combination discovery in a fast manner. Though a set of prediction models 
have been reported for drug combination prediction, it remains an open problem. For example, the network-based and 
connectivity map7,8 based drug combination models9,10 developed in synergy based on the gene-gene interaction 
network have been proposed. In addition, a semi-supervised learning model integrating diverse pharmacogenomics 
datasets was proposed to predict drug combination11. Network message propagation-based models developed using 
drug-target interactions and multi-omics data were also proposed to predict combinations12,13. Deep learning models 
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have also been proposed for drug combination prediction. For example, A deep belief network (DBN) model, 
DeepSynergy, that integrates a large number of chemical structure and genomics features on the Merck-2016 DataSet6 
was recently proposed14 as a prediction drug combination method. The other deep learning model, AuDNNsynergy15 
(Deep Neural Network Synergy model with Autoencoders), integrates the multi-omics data of over 10,000 cancer 
genome atlas (TCGA) cancer samples. One limitation of the existing deep learning models of drug combination 
prediction is the use of a large number of chemical and omics features (>10 thousand features) and fully connected 
dense layers (a huge number of parameters in the model to be trained) relative to the small number (30~100 drugs on 
30~60 cancer cell lines) of drug combination synergy scores experimentally obtained. Though the model with a large 
number of parameters can fit/predict the data, the model parameters cannot be well trained, and cannot not be explained.  

To reduce the complicity of the deep learning model and make the models more explainable, in this study, we 
propose a novel simplified deep learning model, DeepSignalingSynergy, for drug combination prediction. Compared 
with existing models that make use of a large number chemical and genomics features, we built the model on a small 
set of cancer signaling pathways, with the aim of investigating the importance of individual signaling pathways. 
Moreover, the model can mimic the integration of multi-omics data and drug target/mechanism in a relatively more 
biological meaningful and understandable manner. The results from evaluating the model on the NCI ALMANAC 
drug combination screening data indicated the feasibility of using a small set of signaling pathways and showed the 
importance of signaling pathways that affect the drug combination response. 

 

2. Materials and Methodology 

2.1 Drug combination screening data in NCI ALMANAC dataset 

The drug pair data was obtained from the NCI ALMANAC database, which is a resource created in 2017. The NCI 
Almanac dataset includes a score assigned to each of the drug pairs was assigned a score, termed the NCI 
“ComboScore”1 to indicate the synergy scores of drug combinations. In summary, the synergistic effects of 
combinations of 104 FDA approved drugs in terms of cancer cell growth inhibition were evaluated on NCI 60 cancer 
cell lines. The average comboScore of two drugs with different doses on a given cancer cell lines was used to indicate 
the synergy score of two drugs on the cancer cell line, with a 4-element tuple: <DA, DB, CC, SABC>. 

2. 2 RNA-seq gene expression and copy number data of NCI-60 Cancer Cell Lines from Cancer cell line 
encyclopedia (CCLE) 

Cancer cell line encyclopedia (CCLE) database16 provides the multi-omics data of more than 1000 cancer cell lines, 
e.g., RNA-seq (gene expression), copy number variation, metabolomics, miRNA, RPPA. The large panel of cancer 
cell lines with comprehensive genetic characterization provide a data source to investigate the associations between 
molecular features and cancer phenotypes, including drug responses. For this study, the RNA-sequencing gene 
expression values, using TPM (transcripts per million), and copy number values of genes of 1019 cancer cell lines 
were downloaded from the cancer cell line encyclopedia (CCLE) website: https://portals.broadinstitute.org/ccle. The 
CCLE dataset 45 of NCI-60 cancer cell lines were included, as shown in Table I.  

 

Table I: NCI-60 cancer cell lines included in CCLE with RNAseq data. Orange text indicates the cancer cell lines 
that are not included in CCLE. 

786-0 HCC-2998 KM12_LARGE_INT
ESTINE NCIH23_LUNG 

RPMI8226_HAEMA
TOPOIETIC_AND_L
YMPHOID_TISSUE 

A498_KIDNEY HCT116_LARGE_IN
TESTINE LOXIMVI_SKIN NCIH322_LUNG RXF 393 

A549_LUNG HCT15_LARGE_INT
ESTINE M14 NCIH460_LUNG SF268_CENTRAL_N

ERVOUS_SYSTEM 

ACHN_KIDNEY 
HL60_HAEMATOPO
IETIC_AND_LYMP
HOID_TISSUE 

MALME3M_SKIN NCIH522_LUNG SF295_CENTRAL_N
ERVOUS_SYSTEM 

BT549_BREAST HOP62_LUNG MCF7_BREAST NCI/ADR-RES SF539_CENTRAL_N
ERVOUS_SYSTEM 
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CAKI1_KIDNEY HOP92_LUNG MDAMB231_BREAS
T 

NIHOVCAR3_OVAR
Y UO31_KIDNEY 

CCRF-CEM HS578T_BREAST MDAMB435S_SKIN OVCAR4_OVARY SK-MEL-2 

COLO 205 HT29_LARGE_INTE
STINE 

MDAMB468_BREAS
T OVCAR-5 SKMEL28_SKIN 

DU145_PROSTATE IGROV1_OVARY MOLT-4 OVCAR8_OVARY SKMEL5_SKIN 

EKVX_LUNG 
K562_HAEMATOPO
IETIC_AND_LYMP
HOID_TISSUE 

NCIH226_LUNG PC3_PROSTATE SKOV3_OVARY 

SN12C SNB-75 SW620_LARGE_INT
ESTINE TK-10 UACC257_SKIN 

SNB-19 SR-almanac T47D_BREAST 
U251MG_CENTRAL
_NERVOUS_SYSTE
M 

UACC62_SKIN 

 

Table II: The 46 signaling pathways used in the proposed model. 

MAPK  FoxO  TGF-beta  T cell receptor  Adipocytokine  

ErbB  Sphingolipid  VEGF  B cell receptor  Oxytocin  

Ras Phospholipase D  Apelin  Fc epsilon RI  Glucagon  

Rap1  p53  Hippo  TNF  Relaxin  

Calcium  mTOR  Toll-like receptor  Neurotrophin  AGE-RAGE  

cGMP-PKG  PI3K-Akt NOD-like receptor  Insulin  Cell cycle 

cAMP  AMPK  RIG-I-like receptor  GnRH   

Chemokine  Wnt C-type lectin receptor  Estrogen   

NF-kappa B  Notch JAK-STAT Prolactin   

HIF-1 Hedgehog IL-17 Thyroid hormone  

 

Table III: The 21 drugs used in the proposed model. 
Celecoxib Gefitinib Quinacrine hydrochloride Tretinoin 

Cladribine Imatinib mesylate Romidepsin Vinblastine sulfate (hydrate) 

Dasatinib Lenalidomide Sirolimus Vorinostat 

Docetaxel Mitotane Sorafenib tosylate Thalidomide 

Everolimus Nilotinib Tamoxifen citrate Paclitaxel 

Fulvestrant    

 

2.3 KEGG signaling pathways and cellular process 

KEGG (Kyoto Encyclopedia of Genes and Genomes)17 is a database for the systematic understanding of gene 
functions. The KEGG signaling pathways provide the knowledge of signaling transduction and cellular processes. 
There are 303 pathways in KEGG database, and 45 of them are annotated as “signaling pathways”. Many of the 
signaling pathways are important oncogenic signaling pathways18, e.g., EGFR, WNT, Hippo, Notch, PI3K-Akt, RAS, 
TGFβ, p53. The ‘cell cycle’ cellular process is also included. For simplification, the ‘cell cycle’ is also viewed as one 
‘signaling’ pathway. In total, 46 signaling pathways (45 signaling pathways + cell cycle) are selected (see Table II). 
Among these 46 signaling pathways, there are 1648 genes with both gene expression and copy number variation data. 
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In summary, there are gene expression (TPM) and copy number variation data of 1648 genes in 46 signaling pathways 
of 45 cancer cell lines, which was used as the input of the deep learning model.     

2.3 Drug-Target interactions from DrugBank database 

DrugBank19 is a widely used database to retrieve the information of drugs, such as drug name, chemo-structure, drug 
mechanism as well as comprehensive drug target information. There are more than 13,000 drug entries in the latest 
release of DrugBank (version 5.1.5, released 2020-01-03). Among these entries, 2,630 are FDA approved small 
molecule drugs, and about 6,355 are investigational agents (not approved yet). In total, there are 15263 drug-target 
interactions between 5435 drugs/investigational agents and 2775 targets. Among the drugs in NCI ALMANAC, 67 
drugs are included in DrugBank with targets; and 21 (see Table III) drugs with targets on the 1648 signaling pathways 
were kept as the input of the model.    

2.4 Architecture of DeepSignalingSynergy 

Fig. 1 shows the schematic architecture of the proposed DeepSignalingSynergy model. In the ‘input layer’, there are 
4 input features, i.e., gene expression (RNA-seq TPM values), copy number, is_target_of_DA (0: this gene is not a 
target of Drug_A; 1: this gene is a target of Drug_A), and is_target_of_DB, for each of 1648 genes on cancer cell line 
CC. For the connections between the ‘gene’ and ‘pathway’ layers, the 1648 genes are connected the 46 signaling 
pathways, only if a gene is included in a signaling pathway (not dense connections). The output of the ‘46 signaling 
pathway’ is used as the input of the deep belief network (DBN) (densely connected). The ‘output’ layer is the synergy 
score of a drug combination < DA, DB> on cancer cell line CC. The mean square error (MSE) is used as the loss function. 
For the DBN, there are 3 hidden layers: first hidden layer has 256 nodes with the relu activation function; the second 
hidden layer has 128 nodes with the relu activation function; the third hidden layer has 32 nodes with the relu activation 
function. The linear activation function is used in the output layer.  

 
Figure 1: Schematic architecture of the proposed DeepSignalingSynergy model.  

 

3. Results 

3.1 Evaluation of drug combination prediction of DeepSignalingSynergy 

There are about 5658 synergy scores of 21 drugs on 45 cancer cell lines, i.e., <DA, DB, CC, SABC>. To evaluate the 
performance of the DeepSignalingSynergy model, we randomly divided the dataset into a training dataset (80%) and 
a test dataset (20%) 3 times. The model is trained with 30 epochs. The Pearson correlation was used as the metric for 
the model performance evaluation. Fig. 2 shows the evaluation results on 3 randomly selected training and test datasets. 
The proposed model has the average Pearson correlation coefficients, 0.79 and 0.67 on the 3 training datasets and test 
datasets respectively (see Table IV). This result indicated that the performance of the proposed model, using a small 
set of signaling pathways, is relatively low but potentially comparable with other existing deep learning models using 
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a large number of chemical-structure and genomics features reported15, like AuDNNsynergy15 and DeepSynergy14 
(which have the Pearson correlation coefficients of 0.74 and 0.73 respectively). 

 

Table IV: MSEs and Pearson correlation coefficients on the 3 randomly selected training and test datasets. 

 
Figure 2: Scatter plot of the predicted and experimental synergy scores at 40 epoches of 3 randomly selected 
training (80%) and test (20%) datasets respectively.  

Data set Epoch number MSE Pearson Correlation 
Training-1 30 35.6 0.769 

Test-1 30 41.3 0.673 
Training-2 30 32.3 0.801 

Test-2 30 42.8 0.674 
Training-3 30 32.0 0.804 

Test-3 30 41.9 0.666 
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3.2 Importance of signaling pathways analysis for understanding potential mechanism of synergy 

To investigate the potential mechanism of synergy in terms of the contributions of individual signaling pathways to 
the prediction of synergy of drug combination, we employed the Layer-Wise Relevance Propagation (LRP) approach 
implemented in the “iNNvestigate” package20, which can be used to visualize the importance of individual inputs at 
different layers. Fig. 3 and Fig. 4 show the density distribution maps of importance scores of 46 signaling pathways 
over the 3 randomly selected test datasets. The results indicated that the importance of the individual signaling 
pathways are relatively stable in the 3 randomly selected test datasets. Though the importance scores are positive or 
negative in different test datasets, the rough range and values of absolute importance scores are consistent. First,  
interestingly, some of the 46 signaling pathways, e.g., the MAPK, TGF-b, cell cycle, AMPK, RAS, Jak-Stat, HIF-1a 
signaling pathways have much more importance than other oncogenic signaling pathways. Second, the Apelin, 
Adipocytokine, Fc epsilon RI, Neurotrophin, and IL-17 signaling pathways surprisingly contribute to the drug 
combination response prediction. Third, some signaling pathways showed the similar interesting distributions, e.g., 
the MAPK and RAS signaling pathways, the FoxO and cAMP signaling pathways, as well as Apelin and Neurotrophin 
signaling pathways. Fourth, other oncogenic signaling pathways, like the mTOR, ER, Hippo, Rap1 signaling pathways, 
can only contribute to the drug combination synergy prediction moderately. Though results are interesting, further 
investigations are needed to understand and explain the roles of individual signaling pathways and their associations 
with drug combination response.  

 
Figure 3: Distribution of importance of 46 signaling pathways on the first test dataset.  
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Figure 4: Distributions of importance of 46 signaling pathways on the second (top-panel) and third (bottom-panel) 
test datasets respectively. The results indicated that the importance of the individual signaling pathways are relatively 
stable in the 3 randomly selected test datasets. Though the importance scores are positive or negative in different test 
datasets, the rough range and values of absolute importance scores are consistent. 

 

 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.10.036491doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.036491
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.3 Importance of individual genes 

We conducted the similar analysis to 
investigate the importance of individual 
genes. Fig. 5 shows the top 50 genes with 
the largest absolute importance scores of 
1648 genes on the 3 randomly selected test 
datasets respectively. The selected top 50 
genes (out of 1648 genes, which is much 
more than 46 signaling pathways) are not 
so consistent. The common genes selected 
in all the 3 test datasets are: 'PRKCG', 
'KIT', 'RRM2B', 'FLT3', 'PDGFRA', 
'PDPK1', 'JUN', 'NTRK1', 'BCL2'', which 
indicate the potential synergy among these 
targets. It can be possible to understand the 
mechanism of synergy further by 
investigating the importance scores of 
individual genes and pathways for a 
specific synergy drug combination on a 
specific cancer cell line. However, it is still 
challenging to associate the importance 
scores to specific synergy mechanism of 
drug combinations.  

 

4. Discussion and conclusion 

Synergistic drug combinations are 
important factors in reducing drug 
resistance in cancer therapy. 
Computational models that can integrate 
multi-omics data of cancer patients with pharmacogenomics data of drugs and investigational agents are needed to 
predict potential synergistic drug combinations (to narrow down the search space of drug combination). The 
combination of computational and experimental models can facilitate the discovery of synergistic drug combinations 
in a fast manner.  

Deep learning models have been widely used and outperform the traditional machine learning models in image 
analysis, natural language processing, healthcare data analysis, and drug combination prediction. However, it is a 
challenging to make the model explainable, especially the models with a large number of features and parameters. In 
the existing deep learning models of drug combination prediction, a large number of chemical-structure and genomics 
features are used via the densely connected layers, which requires the training of a large number of parameters. 
However, only small sets of drug combination experimental validation results that can be used as training labels are 
available. Thus, it is hard to train the large number of parameters well, and it is also hard to explain the model to 
investigate the potential mechanism of drug combination synergy.  

In this study, we propose to reduce the number of parameters in deep learning models by using a simplified deep 
learning model built based on a set of biological meaningful signaling pathways. In the model, we can integrate multi-
omics data of individual genes and drug-target information, and link the genes to 46 pathways in a sparse manner with 
a much fewer number of parameters (compared to densely connected layers). The evaluation results showed that the 
proposed simplified model can achieve good prediction results in terms of Pearson correlation coefficient between the 
predicted and experimental synergy scores. Moreover, the explainable analysis of the deep learning model identified 
some interesting results in terms of the importance of individual signaling pathways that contribute to the drug 
combination synergy. Further analyses are needed to investigate the unclear mechanisms of synergy using these 
signaling pathways.   

This is our first expletory study to investigate and prediction drug combination synergy with a simplified deep 
learning model with increased possibility of model explanation. There are some limitations of the proposed model that 

 

 

 
Figure 5: Importance of individual genes.  
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need to be further addressed. First, STITCH21 database can provide much more drug-target interactions, in addition to 
drug-target interactions obtained from DrugBank. With more drug-target interactions, more drugs can be included to 
the model, and the prediction accuracy could be better. Second, in addition to the 46 signaling pathways, other KEGG 
pathways, like metabolism pathways, will be further evaluated. Third, Gene oncology22 (GO) terms provide alternative 
biological meaningful biological processes (BP) (gene sets), which can cover many more genes (drug targets) and can 
be used for drug combination prediction. Third, other omics data, like protein, methylation, genetic mutation can be 
integrated conveniently to the model in addition to the copy number, gene expression data. We will investigate these 
possible directions in the future work. Moreover, we will develop novel approaches to uncover the explainable 
mechanisms of synergy of drug combinations, e.g., the synergy mechanism of RAS/ERK inhibitors and Autophagy 
inhibitors recently reported1,2, which can provide clues to discover novel synergistic drug combinations to reduce drug 
resistance in cancer therapy. 
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