

1 Morphology and Blood Metabolites Reflect Recent Spatial Differences Among Lake Winnipeg
2 Walleye, *Sander vitreus*

3 Matt J. Thorstensen^{*1}, Lilian M. Wiens¹, Jennifer D. Jeffrey¹, Geoffrey M. Klein², Ken M.
4 Jeffries¹, Jason R. Treberg¹

5 ¹Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB
6 R3T 2M5, Canada

7 ²Manitoba Conservation and Water Stewardship, Wildlife and Fisheries Branch, 200 Salteaux
8 Crescent, Winnipeg, MB R3J 3W3, Canada

9

10 **Abstract**

11 The invasive rainbow smelt (*Osmerus mordax*) was an abundant food source for Lake Winnipeg
12 walleye (*Sander vitreus*), especially in the north basin of the lake, until the smelt's collapse in
13 approximately 2013. We quantified changing length-at-age (\approx growth rates) and relative mass (\approx
14 body condition) in Lake Winnipeg walleye caught for a gillnet index data set. Here, walleye
15 showed smaller length-at-age, particularly in the north basin with young fish, over time. This
16 approach to assessing growth suggests a constraint in the north basin fish, possibly a nutritional
17 limitation between 2017 and 2018, that was not present in the south. We then analyzed a
18 separate group of walleye (≥ 452 mm in fork length) sampled in 2017 as part of a large-scale
19 tracking study, which had a similar slope in length-mass relationship to large walleye caught in
20 that year for the gillnet index data. A panel of metabolites associated with amino acid
21 metabolism and protein turnover was compared in whole blood. These metabolites revealed
22 elevated essential amino acids and suggest protein degradation may be elevated in north basin
23 walleye. Therefore, based on both growth estimates and metabolites associated with protein
24 balance, we suggest there were spatially distinct separations affecting Lake Winnipeg walleye
25 with decreased nutritional status of walleye in the north basin of Lake Winnipeg being of
26 particular concern.

27

28 **Key Words**

29 length-mass relationship, growth rate, endogenous protein breakdown, amino acids, freshwater
30 fishery

31

32 **Introduction**

33 Walleye (*Sander vitreus*) are the largest component of the Lake Winnipeg fishery in
34 Manitoba, the second-largest freshwater fishery in Canada (Fisheries and Oceans Canada, 2018).
35 Sustainable management of these walleye is, therefore, of enormous importance to commercial
36 fishing, recreational angling, and the Lake Winnipeg ecosystem. However, annual commercial
37 yield from the Lake Winnipeg walleye fishery has been above maximum sustainable yield since
38 2002, while commercial harvests have also declined between 2014 and 2018 (Manitoba
39 Sustainable Development, 2018). Relatively recent observations of dwarf walleye, primarily in
40 the south basin, suggest a selective pressure against large individuals—a selective force possibly
41 induced by fisheries (Moles et al., 2010; Sheppard et al., 2018). Taken together, these separate
42 pieces of evidence indicate that the important Lake Winnipeg walleye fishery is faced with
43 several issues that may affect its sustainability and suggest that this fishery may need
44 conservation attention.

45 To address conservation issues such as those that the Lake Winnipeg walleye may face,
46 resource managers require many pieces of information to forecast how actions affect the
47 probability of distinct alternative futures (Gattuso et al., 2015; Dudgeon et al., 2006).
48 Simultaneous exposure to multiple stressors, such as eutrophication and invasive species, may
49 lead to cumulative detrimental impacts on a fishery (Schindler et al., 2001). One key alteration to
50 the Lake Winnipeg ecosystem was the introduction and subsequent crash of non-native rainbow
51 smelt (*Osmerus mordax*). The rainbow smelt were first been observed in Lake Winnipeg in late
52 1990 (Franzin et al., 1994), and were later found in the stomachs of 82.9% of walleye caught in
53 the north basin, but only 9.3% of walleye caught in the south basin (in 2010 and 2011, see
54 Sheppard et al., 2015). At present however, rainbow smelt have almost disappeared from Lake
55 Winnipeg, and their disappearance coincides with walleye body condition (a measure of mass
56 relative to length, or ‘fatness’ of the fish) declines across the lake (Caskenette et al., submitted in
57 this issue; Enders et al., submitted in this issue; Manitoba Government, 2018). As walleye body
58 condition decreases over time, implicating a reduction in available nutritional resources such as
59 the rainbow smelt, while fishing effort remains constant or rises, the recent declines in Lake
60 Winnipeg walleye abundance may be exacerbated (Manitoba Sustainable Development, 2018).

61 Therefore, understanding how changing food availability may be affecting Lake Winnipeg
62 walleye is a fundamental issue in the system and a useful piece of information for resource
63 management.

64 However, beyond gross morphological measurements like body condition, there are few
65 available tools for evaluating the nutritional status of wild fishes outside of destructive sampling
66 and proximate composition analysis. The current study was undertaken, taking advantage of the
67 patterns of declining fish condition, to determine if there may be basin-level differences in the
68 nutritional status of walleye in Lake Winnipeg by examining body condition and growth rates
69 over time. Basin-level differences seemed most likely because the lake is characterized by two
70 large basins separated by a narrow channel (Figure 1). Our second goal was to identify potential
71 biomarkers from non-lethal sampling to test for differential nutritional status or energetic
72 demands in walleye from the different regions of the lake. With refinement and validation, such
73 biomarkers could provide managers with tools that may be able to rapidly inform on
74 physiologically relevant thresholds of nutritional constraints that would be useful in risk
75 assessments (Connon et al., 2018).

76

77 *Nutritional biomarker strategy*

78 We focused our study on protein metabolism because bulk protein growth is, with certain
79 caveats, analogous to individual fish growth (see Carter and Houlihan, 2001 for review). Protein
80 growth is a function of the balance between the rate of synthesis of new proteins from free amino
81 acids and the rate of protein degradation, which releases free amino acids (Figure 2). Therefore,
82 if an animal is synthesizing more protein than the rate of protein breakdown, there is net growth.
83 Protein synthesis and degradation are both tightly regulated physiological processes, and as such
84 the balance between both processes are intimately linked to growth and energy balance. We
85 sought a biomarker strategy that could differentiate between amino acid breakdown for oxidation
86 as an energy source (as opposed to re-using amino acids for protein synthesis), and the extent of
87 endogenous protein breakdown in walleye across Lake Winnipeg (Figure 1).

88 Generally, if fish are not taking in sufficient food, stored lipids and carbohydrates are
89 preferentially used to meet energetic demands, with whole-body protein being increasingly

90 mobilized as a fuel after lipid and carbohydrate reserves are depleted (Black and Love 1986;
91 Collins and Anderson 1995). Essential, or non-dispensable, amino acids may be useful for
92 insight into amino acid oxidation in wild fish because the animal must get them through its diet,
93 and cannot rely solely on its own metabolic processes for their supply. If dietary essential amino
94 acid intake is insufficient, the fish cannot grow or may even fail to maintain body mass. For this
95 reason, increased breakdown of essential amino acids would coincide with either excess intake
96 from the diet or a need to catabolize body protein to make up for an energetic deficiency. Amino
97 acid breakdown can be implicated by the presence of metabolites that result from their
98 breakdown, and essential amino acids (specifically methionine, tryptophan, and lysine in the
99 current study) are of particular use in this context because their presence represents only food
100 intake or protein breakdown. Assuming conserved pathways of amino acid breakdown across
101 animals, methionine breakdown results in the formation of dimethyl sulfone (Engelke et al.,
102 2005), tryptophan is linked to kynurenine production (Knox and Mehler, 1950), and lysine to α -
103 amino adipic acid (Borsook et al., 1948). As such, we argue that the elevation essential amino
104 acids and concomitant increase in levels of their amino acid-specific breakdown products may
105 indicate a physiological need for fish to increase the oxidation of these specific amino acids for
106 energy, over preferential recycling of essential amino acids back into protein.

107 To assess possible biomarkers of protein degradation, our strategy focused on ‘post-
108 translational’ protein modifications, which are physical changes to amino acids following their
109 incorporation into a protein molecule. These post-translational modifications are in some cases
110 retained by the amino acid following degradation of the protein back to free amino acids (Figure
111 2). Thus the presence of these modified amino acids in blood may act as potential markers of
112 protein breakdown. Here, we focus on three modified amino acids: hydroxyproline, a major
113 constituent of collagen (Stetten, 1949; Prockop and Sjoerdsma, 1961), dimethylarginines, which
114 are enzymatic modifications of arginine (Vallance and Leiper, 2004), and methionine sulfoxide,
115 which is a non-enzymatic modification of methionine that can occur in 4-8% of all methionine
116 found within proteins (Stadtman et al., 2005). The proteinaceous origin of these post-
117 translationally modified metabolites may thus elucidate the relative rate of protein degradation in
118 walleye from different areas of Lake Winnipeg (see Figure 2).

119

120 *Linking metabolites and spatial patterns*

121 In the present study, we examined both temporal and spatial changes in Lake Winnipeg
122 walleye morphological measurements using gillnet index data collected by the Province of
123 Manitoba. First, length-at-age was used to assess longer-term trends in growth prior to 2017.
124 Differences in walleye length-at-age may be an effective metric to study the historical rainbow
125 smelt collapse (approximately 2013), since length-at-age is a summary of prior growth while
126 nutritional deprivation has little effect on length (Caruso et al., 2011; Einen and Thomassen,
127 1998; Sumpter et al., 1991). On the other hand, body condition or length-mass relationships can
128 vary with a single spawning or feeding event, each of which change a fish's mass. Spatial
129 patterns in length-at-age (\approx growth rate) and length-mass relationships (\approx body condition) are
130 thus assessed concurrently. We then linked length-mass relationships to a survey of walleye in
131 Lake Winnipeg in 2017, where blood was sampled non-lethally for metabolites included in our
132 nutritional biomarker development strategy (see above; Figure 2). Spatial differences in the
133 presence of chosen metabolites were then tested with estimated marginal means (Lenth, 2019;
134 Searle et al., 1980) and linear models incorporating length and site collected. We hypothesized
135 that because the rainbow smelt collapse was most pronounced in the north basin of Lake
136 Winnipeg (Manitoba Government, 2018), north basin walleye would exhibit the greatest decline
137 in relative mass over time and length-at-age. We also hypothesized that metabolites would
138 implicate higher rates of endogenous protein breakdown (i.e., elevated hydroxyproline,
139 dimethylarginine, and methionine sulfoxide) and amino acid oxidation (i.e., elevated dimethyl
140 sulfone, kynurenone, and α -amino adipic acid) in the north basin than in the south basin. This
141 work thus 1) explored the effect of the rainbow smelt collapse on Lake Winnipeg walleye
142 morphology and 2) examined the potential for a suite of 9 metabolites to reflect walleye
143 nutritional status and be developed into a non-lethal sampling approach for assessing the
144 nutritional state of wild-caught fish.

145

146 **Methods**

147 *Lake Winnipeg Gillnet Index Data*

148 We used the Lake Winnipeg gillnet index data collected by the Government of Manitoba
149 between 2009 and 2018 (data accessed September 2019):
150 https://www.gov.mb.ca/sd/fish_and_wildlife/fish/commercial_fishing/netting_data.html). This
151 gillnet index has been run annually by the province since 1979 to provide an alternative to
152 commercial fisheries data to better track trends in size and abundance for walleye and sauger
153 (*Sander canadensis*) in Lake Winnipeg. We focused on the data collected between 2009 and
154 2018 because there was consistent monitoring of the same six sites during that period and these
155 data included age estimates for each fish. To examine walleye length-mass and length-at-age
156 relationships over time, sauger and dwarf walleye (which possibly inhabit a different ecological
157 niche and are responding to selective pressures; see Moles et al., 2010) were filtered out. The
158 remaining data set included year, site, basin collected, gillnet mesh size, fork length, mass, and
159 sex for adult and sub-adult walleye. Fork length and mass were transformed on a \log_{10} scale.
160 Gillnet mesh size was included as an independent variable where possible to account for bias in
161 walleye length and mass caught in gillnets with different mesh sizes. For all linear models, we
162 chose variables based on their biological significance, as opposed to taking a stepwise model
163 selection approach. Statistical modeling was performed in R (R Core Team, 2019) using the
164 packages emmeans (Searle et al., 1980), sjstats (Lüdecke, 2019), and tidyverse (Wickham et al.,
165 2019). Scripts used for all statistical analyses in this study are available at:
166 https://github.com/BioMatt/walleye_condition_metabolites.

167
168 *Lake Winnipeg Walleye Length-at-Age Over Time*
169 Changes in growth rate over time were assessed for walleye from seven sites across Lake
170 Winnipeg using length-at-age data from the gillnet index, with a special focus on growth rates
171 before and after the rainbow smelt collapse (in approximately 2013). Length is a useful measure
172 because a fish facing nutritional deprivation decreases in mass, but decreases in length either
173 negligibly or not at all (Caruso et al., 2011; Einen and Thomassen, 1998; Sumpter et al., 1991).
174 Length-at-age therefore represents more long-term trends in growth than year-specific values for
175 body condition or length-mass relationships. A separate linear model was used for each site
176 sampled for the gillnet index data, with Dauphin River and Grand Rapids representing the north
177 basin, Matheson Island and Frog Bay representing the channel, and Riverton and Grand Beach

178 representing the south basin of Lake Winnipeg (Figure 1). These linear models used fork length
179 as the dependent variable, and the independent variables were age interacting with year, sex, and
180 gillnet mesh size. Results were therefore averaged over gillnet mesh sizes to account for
181 sampling bias. Only walleye ages two through six years old as estimated by counting annuli in
182 otoliths were included in the models, because not all sites had sufficient sample sizes available
183 for walleye of older and younger ages ($n \geq 10$ individuals age class $^{-1}$ year $^{-1}$ site $^{-1}$, except the
184 Dauphin River age two fish in 2012 and 2014 were included, $n=5$ and 2, respectively). A total of
185 $n=2164$ individuals were used in the models for Dauphin River, $n=2745$ for Grand Rapids,
186 $n=844$ for Matheson Island, $n=959$ for Frog Bay, $n=1732$ for Riverton, and $n=1729$ for Grand
187 Beach collection sites.

188 Differences in walleye growth rates (i.e., length-at-age) among sampling sites were also
189 examined for the years surrounding 2017 (i.e., 2015–2018), to support connections with the
190 available metabolite data (i.e., from year 2017) and thus potential food availability during this
191 time. Age two and three walleye sampled in 2018 were of particular interest for this analysis
192 because length-at-age for young walleye in the growth phase of their life cycle in 2018 should
193 reflect food availability from 2017 through to their capture in 2018. Four similar linear models
194 (i.e., one for each year) were used for length-at-age comparisons among sites. In each model,
195 fork length was the dependent variable, while independent variables were the interaction of site
196 and age, sex, and gillnet mesh size. As above, only walleye ages two through six years old were
197 included in the models. For these analyses, $n=1844$ individuals were available for the year 2015,
198 $n=1392$ for 2016, $n=805$ for 2017, and $n=624$ for 2018. Estimated marginal means and estimated
199 marginal trends were used to investigate pairwise mean and slope differences between sites for
200 each model (Lenth, 2019; Searle et al., 1979). Briefly, the analysis of estimated marginal means
201 obtains predictions from a linear model using Tukey's post hoc test and finds meaningful
202 averages to summarize primary factor effects while estimated marginal trends follows the same
203 process but for the interaction between two predictors in a model (see Lenth, 2019).

204

205 *Lake Winnipeg Walleye Relative Mass Over Time*

206 Relative mass over time was examined for walleye across Lake Winnipeg. These relative
207 mass measures were used as metrics analogous to body condition, which is an imperfect

208 approach to our data because walleye mass may change in a single feeding or spawning event,
209 thus changing a fish's body condition and length-mass relationship. However, an examination of
210 relative mass remains useful because it represents a link between inter-annual growth rate trends
211 and metabolite presence, which can vary on much faster timescales. Only walleye ≥ 375 mm in
212 fork length from the gillnet index data, $n=5,838$ individuals (mean 583.80 walleye ± 220.17 s.d.
213 year $^{-1}$), were included in the model because this value represents the smallest estimate of fork
214 length for mature individuals among Manitoba lakes (Craig et al., 1995), and is a conservative
215 threshold for modeling the fish that were sampled for metabolites (minimum fork length 452
216 mm). After filtering, a total of $n=5,838$ individuals (mean 583.80 walleye ± 220.17 s.d. year $^{-1}$)
217 remained.

218 To study how relative mass has changed over time, a linear model was used with mass as
219 the dependent variable, and independent variables were fork length and its interactions with site,
220 year and sex. Eta squared is reported for the independent variables in this model, where analysis
221 of variance applied to the model outputs returns the percentage of variance in the final model
222 accounted for by an independent variable (Levine and Hullett, 2002).

223

224 *Spatial Differences Among Walleye in 2017*

225 In addition to exploring length-mass relationships over time, we modeled spatial
226 relationships among Lake Winnipeg walleye using the gillnet index data set in 2017 to establish
227 possible connections between length-mass relationships and metabolite presence in that year.
228 Here, $n=286$, 127, and 227 individuals remained from the Dauphin River, Matheson Island, and
229 Riverton sites, respectively. These three sites were chosen because they are most similar to the
230 three sites sampled for metabolites (i.e. Dauphin River, Matheson Island, and the Red River).
231 This model used mass as the dependent variable, with the independent variables as the
232 interaction of mass with fork length, site collected, sex, age, and gillnet mesh size.

233 Another linear model was used to assess the length-mass relationship of walleye caught
234 as part of the blood metabolite study in 2017. The smallest walleye in this data set was 452 mm
235 in fork length. Mass was the dependent variable, with the independent variables fork length
236 interacting with site collected, sex, and the interaction of fork length and sex. Note that gillnet

237 mesh size and age were not included in the model since fish were caught by electrofishing and
238 age was not known for these fish.

239 To examine how similar the length-mass relationships were of walleye were between
240 those collected for metabolite analysis and those for the gill net index data, we used a linear
241 model with an independent variable describing which study an individual was collected for.
242 Here, mass was the dependent variable, which was related to fork length, basin collected, sex,
243 study (metabolite or gillnet index), the interaction of fork length and basin, the interaction of fork
244 length and sex, and the interaction between fork length and study. In this model, only gillnet
245 index samples from the Dauphin River, Matheson Island, and Riverton were included. Riverton
246 from the gillnet index data and the Red River from the metabolite data were used to jointly
247 represent the south basin of Lake Winnipeg.

248

249 *Metabolite Data Collection*

250 In 2017, 39 walleye were collected from three sampling locations: the Red River,
251 Matheson Island and Dauphin River representing the south basin, channel, and north basin of
252 Lake Winnipeg, respectively (Figure 1). Each sampling location was at a known spawning site
253 during spawning season (May 2nd in the Red River, May 17th and 18th at Matheson Island, and
254 May 29th through 31st at the Dauphin River). Measured metabolites may thus have been affected
255 by the approximately one-month range in sampling. In addition, we could not verify that sampled
256 individuals had spawned at their collection site, or if they had spawned elsewhere and moved to
257 the collection site. Both males and females were collected, with $n=17$ from the Red River (2
258 males, 15 females), $n=5$ from Matheson island (2 males, 3 females), and $n=17$ from the Dauphin
259 River (5 males, 12 females), and had a minimum mass of 1 kilogram (mean $2.32 \text{ kg} \pm 0.97 \text{ s.d.}$).
260 Individuals were collected by boat electrofishing, held in a live well for no longer than one hour,
261 and anaesthetized using a Portable Electroanesthesia System (PESTM, Smith Root, Vancouver,
262 Washington, USA) in accordance with approved animal use protocols of Fisheries and Oceans
263 Canada (FWI-ACC-2017-001, FWI-ACC-2018-001), the University of Manitoba (F2018-019)
264 and the University of Nebraska-Lincoln (Project ID: 1208).

265 One milliliter of whole blood was collected for metabolite analysis from anaesthetized
266 walleye by caudal puncture using a heparinized needle and 3 ml syringe, flash frozen in liquid
267 nitrogen immediately after sampling, and stored at -80°C. Of note, logistics prevented separation
268 of plasma or serum and therefore all metabolite data are for whole blood. This effort was part of
269 a larger study assessing the physiological health, movement, and genetic structure of walleye in
270 Lake Winnipeg. Other tissues collected at the time of blood sampling include a fin clip, gill
271 filaments, the first dorsal spine, scales, and a muscle biopsy. All fish were sampled non-lethally
272 and a VEMCO acoustic tag (VEMCO, Bedford, Nova Scotia, Canada) was surgically implanted
273 prior to release back into the water near the collection site.

274

275 *Blood Sample Analyses*

276 Walleye blood samples collected in 2017 (see above) were analyzed using nuclear
277 magnetic resonance (NMR) spectroscopy and a combination of direct injection mass
278 spectrometry with a reverse-phase liquid chromatography with mass spectrometry (DI/LC-
279 MS/MS) assay at the University of Alberta Metabolomics Centre TMIC (Edmonton, AB,
280 Canada) as part of a large scale targeted metabolic study. Here we examine a small subset of
281 analytes to identify potential biomarkers of protein degradation and amino acid breakdown as
282 described in Figure 2. Both NMR and DI/LC-MS/MS detected methionine and lysine, so
283 measurements for each metabolite were averaged over the two detection methods. Tryptophan
284 and dimethyl sulfone were only measured by NMR. Kynurenone, hydroxyproline, dimethyl
285 sulfone, and α -amino adipic acid were detected with DI/LC-MS/MS.

286 For NMR spectroscopy, deproteinization, involving ultra-filtration, was performed to
287 remove proteins. Filtration, and centrifugation steps were subsequently done to further purify the
288 sample (Psychogios et al., 2011). 250 μ L of the blood sample was transferred to a 3 mm
289 SampleJet NMR tube for subsequent spectral analysis following a protocol based on Saude et al.
290 (2004). NMR spectra was collected on a 700 MHz Avance III (Bruker) spectrometer and the
291 spectra acquired at 25°C. NMR spectra were processed and analyzed using the Chenomx NMR
292 Suite Professional software package version 8.1 (Chenomx Inc., Edmonton, AB). DI/LC-
293 MS/MS was done on an API4000 Qtrap® tandem mass spectrometry instrument (Applied
294 Biosystems/MDS Analytical Technologies, Foster City, CA) equipped with an Agilent 1260

295 series HPLC system (Agilent Technologies, Palo Alto, CA). The samples were delivered to the
296 mass spectrometer by a LC method followed by a direct injection (DI) method. Data analysis
297 was done using Analyst 1.6.2.

298

299 *Modeling Metabolites Differences*

300 Differences in nine metabolites across sampling sites were assessed using separate linear
301 models. Dimethyl sulfone, kynurenine, α -amino adipic acid, methionine, tryptophan, lysine,
302 hydroxyproline, dimethylarginine, and methionine sulfoxide were used as dependent variables in
303 their respective linear models. For each model, the independent variables were log fork length
304 and site collected. Estimated marginal means of metabolite presence were calculated to establish
305 pairwise significance between sites. Significance for each fork length and site collected were
306 calculated, along with eta squared (Levine and Hullett, 2002) to report effect size for each
307 independent variable.

308

309 **Results**

310 *Lake Winnipeg Walleye Length-at-Age Over Time*

311 Each of the Dauphin River, Grand Rapids, Matheson Island, Frog Bay, Riverton, and
312 Grand Beach sites exhibited a decline in length-at-age for age six walleye between the years
313 2012 and 2018 (Figure 3). However, for the age two and three walleye, while the Dauphin River
314 (north basin) site also showed a shorter length-at-age in 2018 compared to 2012, the south basin
315 sites (Riverton and Grand Beach) showed similar length-at-age in later years (i.e. 2017 and 2018)
316 relative to earlier years (i.e. 2012 and 2013). The Grand Rapids (in the north basin) showed the
317 most consistent decline in length-at-age for all ages over time except for the age two fish
318 sampled in 2017 and 2018 (Figure 3).

319 Length-at-age decreased for Dauphin River walleye at ages two and three between the
320 years 2017 and 2018 (Figure 3, Figure 4). For length-at-age in 2018 specifically, pairwise
321 estimated marginal means using Tukey's post-hoc test on the linear model ($F = 66.81, p < 2.2 \times$
322 10^{-16} , adjusted $R^2 = 0.80$) showed significant differences in estimated marginal mean of length-

323 at-age between the Dauphin River (north basin) and Riverton (south basin), Grand Beach (south
324 basin), and Matheson Island (channel) sites in age two walleye (Table 1). Slopes in length-at-age
325 relationships, as described using estimated marginal trends, were also significantly more steep
326 between the Dauphin River and the Matheson Island, Riverton, and Grand Beach sites,
327 respectively (Table 1, Figure 4). Based on these results, we suggest that young Dauphin River
328 walleye grew more slowly in 2017 than young walleye at the Matheson Island (channel) and the
329 south basin sites.

330

331 *Lake Winnipeg Walleye Relative Mass Over Time*

332 From the years 2009 through 2018, year, sex, and the interaction between fork length and
333 year had a significant relationship with Lake Winnipeg walleye length-mass relationships ($F =$
334 2899 , $p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.95$, Table 2). While fork length had the greatest effect size
335 as indicated by eta squared, year had a greater effect size than site collected during the time
336 period studied. Confidence intervals determined using estimated marginal means indicated
337 significant differences among the effect of years on mass, with a drop in predicted mass most
338 noticeable between the years 2014 and 2015 (Figure 5A).

339

340 *Spatial Differences Among Walleye in 2017*

341 In a linear model using gillnet index data for fish captured in 2017 that were ≥ 375 mm in
342 fork length and including only the Dauphin River, Matheson Island, and Riverton sites, ($F = 222$,
343 $p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.97$), estimated marginal mean length-mass relationships were the
344 same for three sites, but estimated marginal trends were lower in the Dauphin River compared to
345 Matheson Island (Table 3; Figure 5B). This suggests a different length-mass relationship for the
346 north basin fish compared to walleye caught in the channel.

347 Similar to the larger fish sampled as part of the gill net index in 2017, for length-mass
348 relationships among walleye collected for metabolites ($F = 86$, $p < 2.2 \times 10^{-16}$, adjusted $R^2 =$
349 0.94), estimated marginal trends were also lower in the Dauphin River compared to Matheson
350 Island (Table 3; Figure 5C). However, unlike the linear model used with the gillnet index data,

351 the Red River (south basin) showed a higher estimated marginal mean mass than the Matheson
352 Island (channel) site (Table 3; Figure 5C).

353 When comparing length-mass relationship of larger walleye collected in 2017 as part of
354 the gill net index and metabolite studies, no significant effect of study and of study interacting
355 fork length was found ($F = 889, p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.97$, Table 4). However, estimated
356 marginal means of mass based on fork length were higher in the walleye from the metabolite
357 data ($p = 0.00070$) while estimated marginal trends for fork length-mass relationships between
358 studies were not different ($p = 0.90$). A plot of fork length and mass with these data reveals that
359 the metabolite-measured walleye lie at the upper end of the distribution in length-mass for
360 walleye collected for the gillnet index data, while following a similar slope (Figure 5D).

361

362 *Modeling Metabolites Differences*

363 Metabolite presence of the three essential amino acids varied significantly across
364 sampling sites for Lake Winnipeg walleye sampled in 2017. The models predicting the presence
365 of each of the three free essential amino acids were each significant ($F = 4.3, 4.7$, and $3.7, p =$
366 $0.011, 0.0071$, and 0.020 , adjusted $R^2 = 0.21, 0.23$, and 0.18 for methionine, tryptophan, and
367 lysine respectively, Table 5). In addition, site was a significant independent variable within the
368 overall models for the three essential amino acids while fork length was not, with eta squared
369 higher for site than for fork length in each case (Table 5). Estimated marginal means for each of
370 the three essential amino acids revealed significant differences in predicted essential amino acid
371 presence based on site, with higher values in the Dauphin River (north basin) than in the Red
372 River (south basin) (Figure 6A, B, and C).

373 Overall, there was no effect of sampling location or fish size (i.e., fork length) on
374 essential amino acid breakdown biomarkers. Linear models for α -amino adipic acid, kynurenine,
375 and dimethyl sulfone were not significant ($F = 0.32, 2.6$, and $3.3, p = 0.81, 0.070$, and 0.031 ,
376 adjusted $R^2 = 0.057, 0.11$, and 0.15 , respectively, Table 5), indicating a failure to fit fork length
377 and site to essential amino acid breakdown metabolite presence. The model for dimethyl sulfone
378 was significant ($p = 0.031$), but neither site nor fork length were significant independent
379 variables ($p = 0.36$ and 0.088 , respectively). Predicted metabolite presence from estimated

380 marginal means showed no significant differences in amino acid breakdown metabolites among
381 sites, as well (Figure 6D, E, and F).

382 Endogenous protein breakdown metabolite presence varied significantly with collection
383 site in Lake Winnipeg walleye sampled in 2017. Linear models run with hydroxyproline,
384 dimethylarginine, and methionine sulfoxide, potential endogenous protein breakdown
385 biomarkers, were each significant ($F = 24.12$, 6.2, and 6.3, $p = 1.2 \times 10^{-8}$, 0.0017, and 0.0016,
386 adjusted $R^2 = 0.65$, 0.29, and 0.29, respectively, Table 5). Moreover, site collected was both a
387 significant independent variable and had a higher effect size than fork length in each model
388 (Table 5). Predicted presence for each candidate metabolite associated with protein breakdown
389 was higher in the northern Dauphin River than the southern Red River (Figure 6G, H, and I).
390 Hydroxyproline and dimethylarginine were also higher in fish from the Dauphin River than at
391 Matheson Island in the channel.

392 **Discussion**

393 *Morphological Observations*

394 In the current study, we aimed to understand how changing food availability may be
395 affecting walleye and could potentially contribute to large-scale changes in the size and
396 abundance of walleye that have been observed in Lake Winnipeg in recent years. We used the
397 Lake Winnipeg gillnet index data set to examine length-at-age and relative mass to assess trends
398 in the growth of walleye from 2009 to 2018. The decreases in walleye mass appeared to coincide
399 with the near complete collapse of the rainbow smelt population in 2013 as there was a
400 significant drop in relative mass (analogous to body condition) at all sites in the gillnet index
401 between 2014 and 2015. The pattern of overall decrease in mass remained in fish collected in the
402 index until 2018, the last year of data available at the time of analyses. We attempted to control
403 for as many possible confounding variables in the analyses, however the overall trend showed a
404 decrease in relative mass regardless of sex or gillnet mesh size, a pattern that is consistent with
405 previous analyses (Manitoba Government, 2018). Contrary to our predictions, the general trend
406 of decreasing relative mass was not more severe in the north basin (see Figure 5A) where
407 rainbow smelt contributed to a larger portion of the diet of walleye (Sheppard et al., 2015).
408 Given that the decrease in relative mass occurred at all sites sampled, these data suggest

409 ecosystem-wide changes in Lake Winnipeg have contributed to decreases in walleye size over
410 the past decade.

411 Length-at-age estimates were used as a more stable measurement of changes in growth
412 patterns between 2009 and 2018 because it is less variable than measures of mass that can
413 fluctuate more rapidly (e.g., pre- and post-spawning, post-overwintering). Interestingly, there
414 was a pattern of decreased length in two-year old fish over time, which was most dramatic for
415 fish caught at the Dauphin River site between 2017 and 2018. Reduced food availability or an
416 increase in energetic costs in 2016 and 2017 for young fish at the Dauphin River may have led to
417 this decreased length-at-age. At all sites in the gillnet index, there was also an overall decrease in
418 the length of 6-year old fish from 2016 to 2018. The pattern of decreased length in fish was most
419 prominent in fish collected at the most northern site sampled, Grand Rapids. We believe that this
420 decrease in fish growth in later years (i.e., 2016–2018) of the six-year-old fish may represent a
421 delayed effect from an earlier large-scale change in the ecosystem (e.g., collapse of the rainbow
422 smelt population in 2013). The decrease in the length at age in older fish may have further
423 impacts on walleye abundance in Lake Winnipeg as the length of fish and fecundity is highly
424 correlated (Craig et al., 1995; Wolfert, 1969). Therefore, the population-level impacts of the
425 decrease in the size of walleye in Lake Winnipeg may become a bigger issue in the future.

426 While the present study is focused on the collapse of the rainbow smelt, additional
427 differences between basins may underlie observed spatial patterns. Some of these basin-level
428 differences include higher temperatures, precipitation, river discharge, suspended solids,
429 sulphate, phosphorous, and nitrogen in the south relative to the north basin (Environment
430 Canada, 2011). Phosphorous loading and summer surface temperatures may contribute to algal
431 blooms, which were more prevalent in the south basin (Binding et al., 2018; Environment
432 Canada, 2011). Meanwhile, sodium and chloride are twice as high in the north than in the south,
433 likely because of inflow from the Dauphin River (Environment Canada, 2011). Prey fish
434 populations other than the rainbow smelt also differ spatially, with emerald shiner (*Notropis*
435 *atherinoides*) and cisco (*Coregonus artedi*) more abundant in the south basin (between 2002–
436 2008) as well as in the diets of south basin walleye (in 2010 and 2011) (Lumb et al., 2012;
437 Sheppard et al., 2015). When these differences between basins are considered in conjunction
438 with data showing that rainbow smelt did not historically make up the entirety of walleye diets

439 (Sheppard et al., 2015), it becomes clear that the rainbow smelt collapse is one of many potential
440 factors that have affected walleye growth. Nevertheless, the disparity in growth rate (length-at-
441 age) between basins, the higher abundance of rainbow smelt in the north basin, and its
442 prevalence in north basin walleye diets in 2010 and 2011 (Sheppard et al., 2015) despite high
443 walleye connectivity between basins (Backhouse-James and Docker, 2011; Thorstensen et al.,
444 2020) suggests the rainbow smelt collapse had a large effect on the Lake Winnipeg walleye
445 fishery.

446

447 *Metabolites*

448 We observed from a preliminary analysis of a large-scale targeted metabolomics study
449 (with 163 unique metabolites) that essential amino acids varied in whole blood from walleye
450 caught from different regions of Lake Winnipeg (Wiens, Jeffrey, Treberg unpublished data),
451 which provided the impetus to pursue the nutritional biomarkers strategy that we employed in the
452 current study. We focused on three essential amino acids (methionine, tryptophan and lysine),
453 that were each elevated in the Dauphin River fish relative to the more southern Red River fish
454 (Figure 6). Whole blood was necessary because it was not possible to separate plasma or serum
455 in the field, and we therefore cannot distinguish between differences at the cellular level (mainly
456 red blood cells), or extracellular component of blood. Despite this limitation, because blood acts
457 as a connection between all organs and tissues, we are nevertheless confident that the more north
458 basin walleye had elevated essential amino acids in circulation.

459 Interpretation of changes in circulating levels of amino acids is complicated by the
460 dynamic nature of amino acid levels in the blood. Most fish nutritional studies focus on the
461 plasma (extracellular component) of blood, and show that essential amino acids may be high due
462 to two mutually exclusive reasons. During periods of high feeding success, the removal of
463 circulating amino acids may not be sufficient to prevent the amino acid levels from elevating in
464 the circulation. In other words, high amino acid levels can reflect high food intake. Alternatively,
465 if the animal must rely on increased protein breakdown due to insufficient feeding, then
466 circulating levels of essential amino acids may also increase (Blasco et al., 1991; Schuhmacher et
467 al., 1995; Costas et al., 2011).

468 That north basin fish in 2017 displayed lower length-at-age, or less growth, indicates the
469 northern fish may have had lower feeding success in that year compared to the faster growing
470 south basin walleye (Figure 4). Even though the growth estimates support the idea that higher
471 amino acid levels do not reflect greater feeding success for 2017, more information is needed to
472 provide sufficient context for interpreting plasma amino acid levels. Our metabolite screening
473 yielded results for metabolites specific to the degradation pathways each of the three essential
474 amino acids we found to be elevated in the blood of Northern basin fish (Figure 6D, E, and F).
475 Animals use each specific amino acid for energy metabolism by committing each amino acid to
476 its specific degradation pathway. Elevated levels in the metabolites of amino acid degradation
477 therefore imply increased oxidation of each amino acid. Thus, we use these degradation
478 metabolites (dimethyl sulfone, kynurenone, α -amino adipic acid) as three independent tests of
479 whether or not essential amino acids are being directed towards energy metabolism. In all cases,
480 there was no difference in the metabolites of amino acid oxidation across sampling site. Since
481 most amino acid oxidation takes place outside of the blood (Jürss and Bastrop, 1995; Ballantyne,
482 2001), one caveat is that blood levels of these metabolites may not sufficiently reflect true whole
483 animal amino acid oxidation. For that reason, the possibility that elevated amino acids reflect a
484 greater reliance on amino acids as energy sources in the Dauphin River fish cannot be outright
485 rejected. However, taken together with the lower growth in the north basin walleye in 2017, we
486 can conclude that it is unlikely the northern walleye have less reliance on protein oxidation than
487 south basin walleye.

488 Because we focused on amino acids in the blood, and protein turnover is a major source
489 of those circulating amino acids, we needed a means to investigate spatial patterns of protein
490 degradation. To distinguish between amino acids in general and those amino acids that have
491 already been incorporated into proteins, we focused on amino acids that have been modified after
492 they were incorporated into proteins. Three unique protein modifications that arise from three
493 separate routes are focused on: two that come from enzymatic processes (hydroxyproline and
494 dimethylarginine), and one that occurs spontaneously as exposed methionines are oxidized by
495 reactive molecules such as hydrogen peroxide (methionine sulfoxide). While methionine
496 sulfoxide can be formed from free methionine, most methionine from tissues is bound in
497 proteins, so we assume that the bulk of circulating methionine sulfoxide is of proteinaceous
498 origin. Because the means of forming these three post-translational modifications from amino

499 acids represent independent pathways, we had no *a priori* expectation that the levels of all three
500 post-translational modifications would be observed to vary in a consistent fashion across Lake
501 Winnipeg. Nevertheless, all three modifications were higher in fish from the north than the south
502 basin (Figure 6G, H, and I). The signal of protein degradation, based on the consistent presence
503 of post-translationally modified amino acids, could therefore suggest a higher rate of protein
504 turnover in walleye from the north basin of Lake Winnipeg than the south.

505 If an increased reliance on protein oxidation for energy is *not* driving the elevated amino
506 acids in north basin fish, then the question remains of why there was an increase in protein
507 turnover in those northern fish. While protein metabolism is controlled by many factors, both
508 protein synthesis and degradation rates in fish are known to increase with the level of swimming
509 activity (Houlihan and Laurent, 1987). If the north basin walleye must spend more time
510 swimming to find sufficient nutritional resources, then elevated levels of post-translationally
511 modified amino acids could reflect a greater level of activity for the fish in the north. Relevant to
512 these results, and contrary to what may be intuitive for carnivorous fishes, careful estimations of
513 fuel usage in relation to swimming speed indicates that protein is likely not a major fuel source
514 to supply the increased energy demand of increased swimming in rainbow trout and Nile Tilapia
515 during short-term swimming (Alsop and Wood, 1997; Alsop et al., 1999); although, using the
516 same strategies in Nile Tilapia indicated that prolonged swimming (at ~ 2.7 body lengths/second)
517 over the course of over 48 hours did increase the relative reliance on protein to fuel swimming in
518 unfed fish (Alsop et al., 1999). Since walleye in the wild appear to spend most of their time
519 swimming at speeds below 1.0 body lengths/second (Kelso, 1978), it seems that the extended
520 swimming response in tilapia is not likely applicable to the walleye sampled from the wild in the
521 present study. We therefore suggest that elevated signals of protein turnover in wild walleye may
522 be due to increased swimming activity, which may be undertaken to compensate for decreased
523 food availability.

524

525 *Linking Data Sets*

526 The metabolite and gillnet index datasets were consistent in patterns of possible
527 decreased food availability in the north basin in 2017 (when metabolites were measured), based
528 on analyses of spatially varying growth rates in the 2017 gillnet index data and slopes of length-

529 mass relationships in both datasets. Moreover, data set origin (gillnet index or metabolite-
530 measured walleye captured via electrofishing) was not a significant predictor of overall length-
531 mass relationship in a combined linear model, providing additional evidence for no systematic
532 bias in length-mass relationship in one data set or another, even if the walleye used for
533 metabolites were large. Altogether, we argue that the walleye used for assessing metabolite
534 levels are likely representative of large walleye captured in the gillnet index data, and that spatial
535 differences in the slopes of length-mass relationships (\approx body condition) and length-at-age (\approx
536 growth rate) are consistent with spatially varying metabolite presence.

537 The time scale in response variables should be considered when relating ecology to length-at-
538 age, length-mass relationships, and metabolite levels across data sets. Length-at-age estimates
539 are summaries of one or more prior years of growth for a cohort of walleye, while mass may
540 change from a single feeding or spawning event, thus changing length-mass relationships. In
541 addition, while we do not have information for the response time of amino acids or their
542 metabolites, other metabolites such as blood glucose and lactate increased with handling on a
543 timescale of minutes, indicating that amino acid metabolite presence may also reflect the past
544 several minutes of a fish's life as opposed to ecological patterns (Chopin et al., 1996; Grutter and
545 Pankhurst, 2000; Meka and McCormick, 2005; Lawrence et al., 2018). However, the consistency
546 in patterns across timescales—stronger signals of protein breakdown, more shallow length-mass
547 relationships, and slower growth in the north basin in 2017—supports the validity of this
548 approach for integrating data from different levels of biological organization. The breadth in
549 timescales analyzed may also be a benefit for integrating information across data sets because
550 each piece of information provides context for other results.

551

552 *Conclusions*

553 The data presented show declining growth rates and condition in Lake Winnipeg walleye
554 in recent years, especially those in the north basin. These morphological differences are
555 consistent with both the collapse of the rainbow smelt population and blood metabolites,
556 suggesting increased endogenous protein breakdown in the north basin. With validation and
557 refinement, the metabolites identified in the present study thus have potential for further
558 development into molecular markers possibly useful as indicators of nutritional status for the

559 walleye fishery. Molecular indicators of nutritional status would be valuable tools for resource
560 managers for describing physiological thresholds in nutritional status that are predictive of
561 detrimental effects on the walleye fishery (Connon et al., 2018). In other words, a molecular
562 panel describing nutritional status may support the sustainable management of the Lake
563 Winnipeg fishery.

564

565 **Acknowledgments**

566 We thank E. Enders, D. Watkinson, C. Charles, C. Kovachik, D. Leroux, N. Turner, M.
567 Gaudry, S. Glowa, and E. Barker for their role in sampling the walleye used for metabolites. C.
568 Charles and E. de Greef assisted with a map of Lake Winnipeg, and E. de Greef also provided
569 immense support in the process of writing the manuscript. This work was supported by a
570 Fisheries and Oceans Canada Ocean and Freshwater Science Contribution Program Partnership
571 Fund grant awarded to J.R.T., K.M.J. and Darren Gillis, and Natural Sciences and Engineering
572 Research Council of Canada Discovery Grants awarded to K.M.J. (#05479) and J.R.T. (#06052).
573 Work by J.R.T. is also supported by the Canada Research Chairs program (#223744) and the
574 Faculty of Science, University of Manitoba (#319254).

575

576 **References**

577 Alsop, D.H., Kieffer, J.D., Wood, C.M., 1999. The effects of temperature and swimming speed
578 on instantaneous fuel use and nitrogenous waste excretion of the Nile tilapia. *Physiological
579 and Biochemical Zoology* 72, 474–483. <https://doi.org/10.1086/316686>

580 Alsop, D.H., Wood, C.M., 1997. The interactive effects of feeding and exercise on oxygen
581 consumption, swimming performance and protein usage in juvenile rainbow trout
582 (*Oncorhynchus mykiss*). *Journal of Experimental Biology* 200, 2337–2346.

583 Backhouse-James, S.M., Docker, M.F., 2012. Microsatellite and mitochondrial DNA markers
584 show no evidence of population structure in walleye (*Sander vitreus*) in Lake Winnipeg.
585 *Journal of Great Lakes Research* 38, 47–57. <https://doi.org/10.1016/j.jglr.2011.05.005>

586 Ballantyne, J.S., 2001. Amino acid metabolism. pp. 77–107. [5098\(01\)20004-1](https://doi.org/10.1016/S1546-
587 5098(01)20004-1)

588 Binding, C.E., Greenberg, T.A., McCullough, G., Watson, S.B., Page, E., 2018. An analysis of
589 satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. *Journal of Great
590 Lakes Research* 44, 436–446. <https://doi.org/10.1016/j.jglr.2018.04.001>

591 Black, D., Love, R.M., 1986. The sequential mobilisation and restoration of energy reserves in
592 tissues of Atlantic cod during starvation and refeeding. *Journal of Comparative Physiology
593 B* 156, 469–479. <https://doi.org/10.1007/BF00691032>

594 Blasco, J., Fernández, J., Gutiérrez, J., 1991. The effects of starvation and refeeding on plasma
595 amino acid levels in carp, *Cyprinus carpio L.*, 1758. *Journal of Fish Biology* 38, 587–598.
596 <https://doi.org/10.1111/j.1095-8649.1991.tb03145.x>

597 Borsook, H., Deasy, C.L., Haagen-Smit, A.J., Keighley, G., Lowy, P.H., 1948. The degradation
598 of l-lysine in guinea pig liver homogenate; formation of alpha-amino adipic acid. *The
599 Journal of biological chemistry* 176, 1383–93.

600 Carter, C.G., Houlihan, D.F., 2001. Protein synthesis. pp. 31–75. [https://doi.org/10.1016/S1546-5098\(01\)20003-X](https://doi.org/10.1016/S1546-5098(01)20003-X)

602 Caruso, G., Denaro, M.G., Caruso, R., Mancari, F., Genovese, L., Maricchiolo, G., 2011.
603 Response to short term starvation of growth, haematological, biochemical and non-specific
604 immune parameters in European sea bass (*Dicentrarchus labrax*) and blackspot sea bream
605 (*Pagellus bogaraveo*). *Marine Environmental Research* 72, 46–52.
606 <https://doi.org/10.1016/j.marenvres.2011.04.005>

607 Caskanette, A., Watkinson, D., Enders, E.C., 2020. The rise and fall of Rainbow Smelt. *Journal
608 of Great Lakes Research* in this issue.

609 Chopin, F.S., Arimoto, T., Inoue, Y., 1996. A comparison of the stress response and mortality of
610 sea bream *Pagrus major* captured by hook and line and trammel net. *Fisheries Research* 28,
611 277–289. [https://doi.org/10.1016/0165-7836\(96\)00512-7](https://doi.org/10.1016/0165-7836(96)00512-7)

612 Collins, A.L., Anderson, T.A., 1995. The regulation of endogenous energy stores during
613 starvation and refeeding in the somatic tissues of the golden perch. *Journal of Fish Biology*
614 47, 1004–1015. <https://doi.org/10.1111/j.1095-8649.1995.tb06024.x>

615 Connell, R.E., Jeffries, K.M., Komoroske, L.M., Todgham, A.E., Fangue, N.A., 2018. The utility
616 of transcriptomics in fish conservation. *Journal of Experimental Biology* 221.
617 <https://doi.org/10.1242/jeb.148833>

618 Costas, B., Aragão, C., Ruiz-Jarabo, I., Vargas-Chacoff, L., Arjona, F.J., Dinis, M.T., Mancera,
619 J.M., Conceição, L.E.C., 2011. Feed deprivation in Senegalese sole (*Solea senegalensis*
620 Kaup, 1858) juveniles: Effects on blood plasma metabolites and free amino acid levels. *Fish
621 Physiology and Biochemistry* 37, 495–504. <https://doi.org/10.1007/s10695-010-9451-2>

622 Craig, J.F., Babaluk, J.A., Stevenson, S.G., Williams, P.C., 1995. Variation in growth and
623 reproduction of walleye (*Stizostedion vitreum*) in three Manitoba lakes. Canadian Journal of
624 Zoology 73, 367–372. <https://doi.org/10.1139/z95-040>

625 Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C.,
626 Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L.J., Sullivan, C.A., 2006.
627 Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological
628 Reviews of the Cambridge Philosophical Society 81, 163–182.
629 <https://doi.org/10.1017/S1464793105006950>

630 Einen, O., Thomassen, M.S., 1998. Starvation prior to slaughter in Atlantic salmon (*Salmo*
631 *salar*). II. White muscle composition and evaluation of freshness, texture and colour
632 characteristics in raw and cooked fillets. Aquaculture 169, 37–53.
633 [https://doi.org/10.1016/S0044-8486\(98\)00332-9](https://doi.org/10.1016/S0044-8486(98)00332-9)

634 Engelke, U.F.H., Tangerman, A., Willemse, M.A.A.P., Moskau, D., Loss, S., Mudd, S.H.,
635 Wevers, R.A., 2005. Dimethyl sulfone in human cerebrospinal fluid and blood plasma
636 confirmed by one-dimensional ¹H and two-dimensional ¹H-¹³C NMR. NMR in
637 Biomedicine 18, 331–336. <https://doi.org/10.1002/nbm.966>

638 Enders, E.C., Lumb, C., Charles, C., Watkinson, D., 2020. Temporal and spatial variations in the
639 pelagic fish community of Lake Winnipeg. Journal of Great Lakes Research in this issue.

640 Environment Canada, 2011. State of Lake Winnipeg: 1999 to 2007.

641 Fisheries and Oceans Canada, 2018. Freshwater Landings [WWW Document]. URL
642 [https://www.dfo-mpo.gc.ca/stats/commercial/land-debarq/freshwater-eaudouce/2017-
643 eng.htm](https://www.dfo-mpo.gc.ca/stats/commercial/land-debarq/freshwater-eaudouce/2017-eng.htm) (accessed 12.20.19).

644 Franzin, W.G., Barton, B.A., Remnant, R.A., Wain, D.B., Pagel, S.J., 1994. Range Extension,
645 Present and Potential Distribution, and Possible Effects of Rainbow Smelt in Hudson Bay
646 Drainage Waters of Northwestern Ontario, Manitoba, and Minnesota. North American
647 Journal of Fisheries Management 14, 65–76. [https://doi.org/10.1577/1548-
648 8675\(1994\)014<0065:repapd>2.3.co;2](https://doi.org/10.1577/1548-8675(1994)014<0065:repapd>2.3.co;2)

649 Gattuso, J.P., Magnan, A., Billé, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D.,
650 Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Pörtner, H.O.,
651 Rogers, A.D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila,
652 U.R., Treyer, S., Turley, C., 2015. Contrasting futures for ocean and society from different
653 anthropogenic CO₂ emissions scenarios. Science 349.
654 <https://doi.org/10.1126/science.aac4722>

655 Grutter, A.S., Pankhurst, N.W., 2000. The effects of capture, handling, confinement and
656 ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish
657 *Hemigymnus melapterus*. Journal of Fish Biology 57, 391–401.
658 <https://doi.org/10.1111/j.1095-8649.2000.tb02179.x>

659 Houlihan, D.F., Laurent, P., 1987. Effects of Exercise Training on the Performance, Growth, and
660 Protein Turnover of Rainbow Trout (*Salmo gairdneri*). Canadian Journal of Fisheries and
661 Aquatic Sciences 44, 1614–1621. <https://doi.org/10.1139/f87-195>

662 Jürss, K., Bastrop, R., 1995. Chapter 7 Amino acid metabolism in fish. pp. 159–189.
663 [https://doi.org/10.1016/S1873-0140\(06\)80010-X](https://doi.org/10.1016/S1873-0140(06)80010-X)

664 Kelso, J.R.M., 1978. Diel rhythm in activity of walleye, *Stizostedion vitreum vitreum*. Journal of
665 Fish Biology 12, 593–599. <https://doi.org/10.1111/j.1095-8649.1978.tb04206.x>

666 Knox, W.E., Mehler, A.H., 1950. The conversion of tryptophan to kynurenine in liver. I. The
667 coupled tryptophan peroxidase-oxidase system forming formylkynurenine. The Journal of
668 biological chemistry 187, 419–30.

669 Lawrence, M.J., Jain-Schlaepfer, S., Zolderdo, A.J., Algera, D.A., Gilmour, K.M., Gallagher,
670 A.J., Cooke, S.J., 2018. Are 3 minutes good enough for obtaining baseline physiological
671 samples from teleost fish? Canadian Journal of Zoology 96, 774–786.
672 <https://doi.org/10.1139/cjz-2017-0093>

673 Lenth, R., 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package
674 version 1.4.3.01.

675 Levine, T.R., Hullett, C.R., 2002. Eta Squared, Partial Eta Squared, and Misreporting of Effect
676 Size in Communication Research. Human Communication Research 28, 612–625.
677 <https://doi.org/10.1093/hcr/28.4.612>

678 Lüdecke, D., 2019. sjstats: Statistical Functions for Regression Models (Version 0.17.7).
679 <https://doi.org/10.5281/zenodo.1284472>

680 Lumb, C.E., Franzin, W.G., Watkinson, D.A., 2012. Temporal and spatial patterns in pelagic
681 trawl fish catches in Lake Winnipeg. Journal of Great Lakes Research 38, 14–25.
682 <https://doi.org/10.1016/j.jglr.2011.07.008>

683 Manitoba Government, 2018. Fish Populations, Lake Winnipeg Basin Indicator Series. URL
684 https://www.gov.mb.ca/sd/pubs/fish_wildlife/fish/indicators_fishpop.pdf

685 Manitoba Sustainable Development, 2018. Manitoba Sustainable Development Annual Report
686 2017-2018. Winnipeg. URL https://www.gov.mb.ca/sd/pubs/annual-reports/annual_report_2017_18.pdf

688 Meka, J.M., McCormick, S.D., 2005. Physiological response of wild rainbow trout to angling:
689 impact of angling duration, fish size, body condition, and temperature. Fisheries Research
690 72, 311–322. <https://doi.org/10.1016/j.fishres.2004.10.006>

691 Moles, M.D., Robinson, B.W., Johnston, T.A., Cunjak, R.A., Jardine, T.D., Casselman, J.M.,
692 Leggett, W.C., 2010. Morphological and trophic differentiation of growth morphotypes of

693 walleye (*Sander vitreus*) from Lake Winnipeg, Canada. Canadian Journal of Zoology 88,
694 950–960. <https://doi.org/10.1139/Z10-062>

695 Prockop, D.J., Sioerdsma, A., 1961. Significance of Urinary Hydroxyproline in Man. Journal of
696 Clinical Investigation 40, 843–849. <https://doi.org/10.1172/JCI104318>

697 Psychogios, N., Hau, D.D., Peng, J., Guo, A.C., Mandal, R., Bouatra, S., Sinelnikov, I.,
698 Krishnamurthy, R., Eisner, R., Gautam, B., Young, N., Xia, J., Knox, C., Dong, E., Huang,
699 P., Hollander, Z., Pedersen, T.L., Smith, S.R., Bamforth, F., Greiner, R., McManus, B.,
700 Newman, J.W., Goodfriend, T., Wishart, D.S., 2011. The Human Serum Metabolome. PLoS
701 ONE 6, e16957. <https://doi.org/10.1371/journal.pone.0016957>

702 Saude, E.J., Slupsky, C.M., Sykes, B.D., 2006. Optimization of NMR analysis of biological
703 fluids for quantitative accuracy. Metabolomics 2, 113–123. <https://doi.org/10.1007/s11306-006-0023-5>

705 Schindler, D.W., 2001. The cumulative effect of climate change and multiple stressors. Canadian
706 Journal of Fisheries and Aquatic Sciences 2958, 18–29. <https://doi.org/10.1139/f00-179>

707 Schuhmacher, A., Schön, J., Goldberg, M., Gropp, J.M., 1995. Plasma amino acid levels in
708 rainbow trout (*Oncorhynchus mykiss*). Journal of Applied Ichthyology 11, 309–316.
709 <https://doi.org/10.1111/j.1439-0426.1995.tb00032.x>

710 Searle, S.R., Speed, F.M., Milliken, G.A., 1980. Population Marginal Means in the Linear
711 Model: An Alternative to Least Squares Means. The American Statistician 34, 216–221.
712 <https://doi.org/10.1080/00031305.1980.10483031>

713 Sheppard, K.T., Davoren, G.K., Hann, B.J., 2015. Diet of walleye and sauger and morphological
714 characteristics of their prey in Lake Winnipeg. Journal of Great Lakes Research 41, 907–
715 915. <https://doi.org/10.1016/j.jglr.2015.05.006>

716 Sheppard, K.T., Hann, B.J., Davoren, G.K., 2018. Growth rate and condition of walleye (*Sander
717 vitreus*), sauger (*Sander canadensis*), and dwarf walleye in a large Canadian lake. Canadian
718 Journal of Zoology 96, 739–747. <https://doi.org/10.1139/cjz-2017-0276>

719 Stadtman, E.R., Van Remmen, H., Richardson, A., Wehr, N.B., Levine, R.L., 2005. Methionine
720 oxidation and aging. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1703,
721 135–140. <https://doi.org/10.1016/j.bbapap.2004.08.010>

722 Stetten, M.R., 1949. Some aspects of the metabolism of hydroxyproline, studied with the aid of
723 isotopic nitrogen. The Journal of Biological Chemistry 181, 31–7.

724 Sumpter, J.P., Le Bail, P.Y., Pickering, A.D., Pottinger, T.G., Carragher, J.F., 1991. The effect of
725 starvation on growth and plasma growth hormone concentrations of rainbow trout,
726 *Oncorhynchus mykiss*. General and Comparative Endocrinology 83, 94–102.
727 [https://doi.org/10.1016/0016-6480\(91\)90109-J](https://doi.org/10.1016/0016-6480(91)90109-J)

728 Thorstensen, M.J., Jeffrey, J.D., Treberg, J.R., Watkinson, D.A., Enders, E.C., Jeffries, K.M.,
729 2020. Genomic signals found using RNA sequencing support conservation of walleye
730 (*Sander vitreus*) in a large freshwater ecosystem. bioRxiv.
731 <https://doi.org/10.1101/2020.02.07.937961>

732 Vallance, P., Leiper, J., 2004. Cardiovascular Biology of the Asymmetric
733 Dimethylarginine:Dimethylarginine Dimethylaminohydrolase Pathway. Arteriosclerosis,
734 Thrombosis, and Vascular Biology 24, 1023–1030.
735 <https://doi.org/10.1161/01.ATV.0000128897.54893.26>

736 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G.,
737 Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K.,
738 Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo,
739 K., Yutani, H., 2019. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686.
740 <https://doi.org/10.21105/joss.01686>

741 Wolfert, D.R., 1969. Maturity and Fecundity of Walleyes from the Eastern and Western Basins
742 of Lake Erie. Journal of the Fisheries Research Board of Canada 26, 1877–1888.
743 <https://doi.org/10.1139/f69-171>

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

770 **Tables**

771

772 Table 1. *P*-values of pairwise estimated marginal means and trends calculated using Tukey's post
773 hoc test, pulled from a linear model relating \log_{10} fork length to age in interaction with site, sex,
774 and mesh size in the year 2018 ($F = 66.81$, $p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.80$). Means,
775 representing differences in intercepts are above the diagonal and trends, representing differences
776 in slopes are below the diagonal. Estimated marginal means are specific to age two walleye
777 (*Sander vitreus*), while estimated marginal trends are calculated across all ages between two and
778 six. Data included in this model are from the gillnet index collected by the Government of
779 Manitoba.

780

781

	Grand Rapids	Dauphin River	Matheson Island	Frog Bay	Riverton	Grand Beach
Grand Rapids	-	0.67	< 0.05	0.24	< 0.05	< 0.05
Dauphin River	0.0015	-	0.0003	0.70	< 0.05	0.0003
Matheson Island	0.96	0.0035	-	0.61	0.85	1.0
Frog Bay	0.69	0.96	0.40	-	0.94	0.61
Riverton	1.0	0.0002	0.94	0.67	-	0.85
Grand Beach	0.92	0.0005	1.0	0.30	0.86	-

782 Table 2. Results from a linear model describing relative mass over time, relating \log_{10} mass to
783 \log_{10} fork length and its interaction with year, site, and sex, with mesh size controlled for ($F =$
784 $2899, p < 2.2 \times 10^{-16}, R^2 = 0.95$). The gillnet index data between the years 2009 and 2018
785 collected by the Government of Manitoba were used for this length-mass model. Only walleye
786 (*Sander vitreus*) ≥ 375 millimeters in fork length are included.
787

	<i>p</i> -value	eta squared
Log ₁₀ Fork Length	< 0.05	0.25
Year	< 0.05	0.0080
Site	0.11	0.0010
Sex	0.040	0.0
Mesh Size	< 0.05	0.020
Log ₁₀ Fork Length * Year	< 0.05	0.0070
Log ₁₀ Fork Length * Site	0.16	0.0010
Log ₁₀ Fork Length * Sex	0.053	0.0

788

789

790 Table 3. *P*-values of pairwise estimated marginal means and trends between either basins or sites
791 for two different linear models. One linear model uses walleye (*Sander vitreus*) ≥ 375 mm in fork
792 length from the gillnet index and relates \log_{10} mass to \log_{10} fork length and site collected, sex,
793 gillnet mesh size, and age ($F = 222, p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.97$). Data included in this
794 model are from the gillnet index collected by the Government of Manitoba. The other linear
795 model uses data from walleye sampled for metabolites (≥ 452 mm in fork length), and relates
796 \log_{10} mass to the interaction of \log_{10} fork length and site collected, sex, and the interaction of
797 \log_{10} fork length and sex ($F = 86, p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.94$). *P*-values for means,
798 representing differences in intercepts are above the diagonal and *p*-values for trends, representing
799 differences in slopes are below the diagonal.

		Gill Net Index			Metabolite		
		Dauphin River	Matheson Island	Riverton	Dauphin River	Matheson Island	Red River
Dauphin River	-	0.60	0.082	-	0.65	0.081	
Matheson Island	0.024	-	0.60	0.037	-	0.040	
Riverton/Red River	0.16	0.41	-	0.060	0.35	-	

800

801

802 Table 4. Results from a linear model relating \log_{10} mass to the \log_{10} fork length, basin collected,
803 study of data origin (gillnet index or metabolite), sex, the interaction of \log_{10} fork length and
804 basin, and the interaction of \log_{10} fork length and study ($F = 889, p < 2.2 \times 10^{-16}, R^2 = 0.97$). This
805 model represents the length-mass relationship for walleye (*Sander vitreus*) collected for the
806 gillnet index data by the Government of Manitoba and for metabolite information by the authors.
807 These walleye were collected in 2017, and only fish ≥ 375 millimeters in fork length are included
808 in this model. From the gillnet index data, only walleye from the Dauphin River, Matheson
809 Island, and Riverton sites are included.
810

	p-value	eta squared
Log ₁₀ Fork Length	< 0.05	0.74
Basin	0.0010	0.020
Study	0.98	0.0
Sex	0.65	0.0
Log ₁₀ Fork Length * Sex	0.62	0.0
Log ₁₀ Fork Length * Basin	< 0.05	0.019
Log ₁₀ Fork Length * Study	0.90	0.0

811

812

813 Table 5. Results from linear models relating metabolite presence to \log_{10} fork length and site
814 collected, with a separate model for each metabolite. Category represents the conceptual
815 framework used to classify the nine metabolites studied (see Figure 2 for details). Overall model
816 *p*-values are provided under their respective metabolites. *P*-values and eta squared are reported
817 for \log_{10} fork length and site collected as independent variables within models. Briefly,
818 methionine, tryptophan, and lysine represent essential amino acids. Dimethyl sulfone,
819 kynurenone, and α -amino adipic acid represent essential amino acid breakdown. Last,
820 hydroxyproline, dimethylarginine, and methionine sulfoxide represent endogenous protein
821 breakdown. The walleye (*Sander vitreus*) from which metabolites were measured for these linear
822 models were *n*=39 individuals (≥ 452 mm in fork length) collected by boat electrofishing in 2017
823 from the Dauphin River, Matheson Island, and Red River representing the north basin, channel,
824 and south basin of Lake Winnipeg, respectively. Metabolites were measured from whole blood.
825
826

Category	Amino acid	Independent variable	<i>p</i> -value	eta squared
Essential Amino Acids	Methionine <i>p</i> = 0.011	\log_{10} fork length	0.74	0.0020
	Tryptophan <i>p</i> = 0.0071	Site collected	0.0070	0.25
	Lysine <i>p</i> = 0.020	\log_{10} fork length	0.36	0.019
		Site collected	0.032	0.17
	Dimethyl Sulfone <i>p</i> = 0.031	\log_{10} fork length	0.52	0.010
	Kynurenone <i>p</i> = 0.070	Site collected	0.046	0.16
	α -Amino adipic Acid <i>p</i> = 0.81	\log_{10} fork length	0.088	0.070
	Hydroxyproline <i>p</i> = 1.3 x 10 ⁻¹⁸	Site collected	0.36	0.048
	Dimethylarginine <i>p</i> = 0.0017	\log_{10} fork length	0.80	0.002
	Methionine Sulfoxide <i>p</i> = 0.0016	Site collected	0.092	0.13
Amino Acid Breakdown Markers	α -Amino adipic Acid <i>p</i> = 0.94	\log_{10} fork length	0.13	0.0
	Hydroxyproline <i>p</i> = 0.69	Site collected	0.94	0.0
	Dimethylarginine <i>p</i> = 0.66	\log_{10} fork length	0.66	0.023
	Methionine Sulfoxide <i>p</i> = 0.69	Site collected	< 2.2 x 10 ⁻¹⁶	0.002
Protein Degradation Metabolites	Hydroxyproline <i>p</i> = 0.69	\log_{10} fork length	0.97	0.60
	Dimethylarginine <i>p</i> = 0.97	Site collected	0.0020	0.0
	Methionine Sulfoxide <i>p</i> = 0.47	\log_{10} fork length	0.0020	0.30
		Site collected	0.0080	0.011

827

828

829

830

831

832

833 **Figure Captions**

834 Figure 1. Map of Lake Winnipeg and the sites included in the present study. The Grand Rapids
835 and Dauphin River represent the north basin, Matheson Island and Frog Bay the channel, and
836 Riverton and Grand Beach the south basin, in the gillnet index data collected between 2009 and
837 2018 by the Government of Manitoba. For the blood metabolite data consisting of large walleye
838 (*Sander vitreus*) caught by electrofishing in 2017, the Dauphin River represents the north basin,
839 Matheson Island the channel, and the Red River the south basin.

840

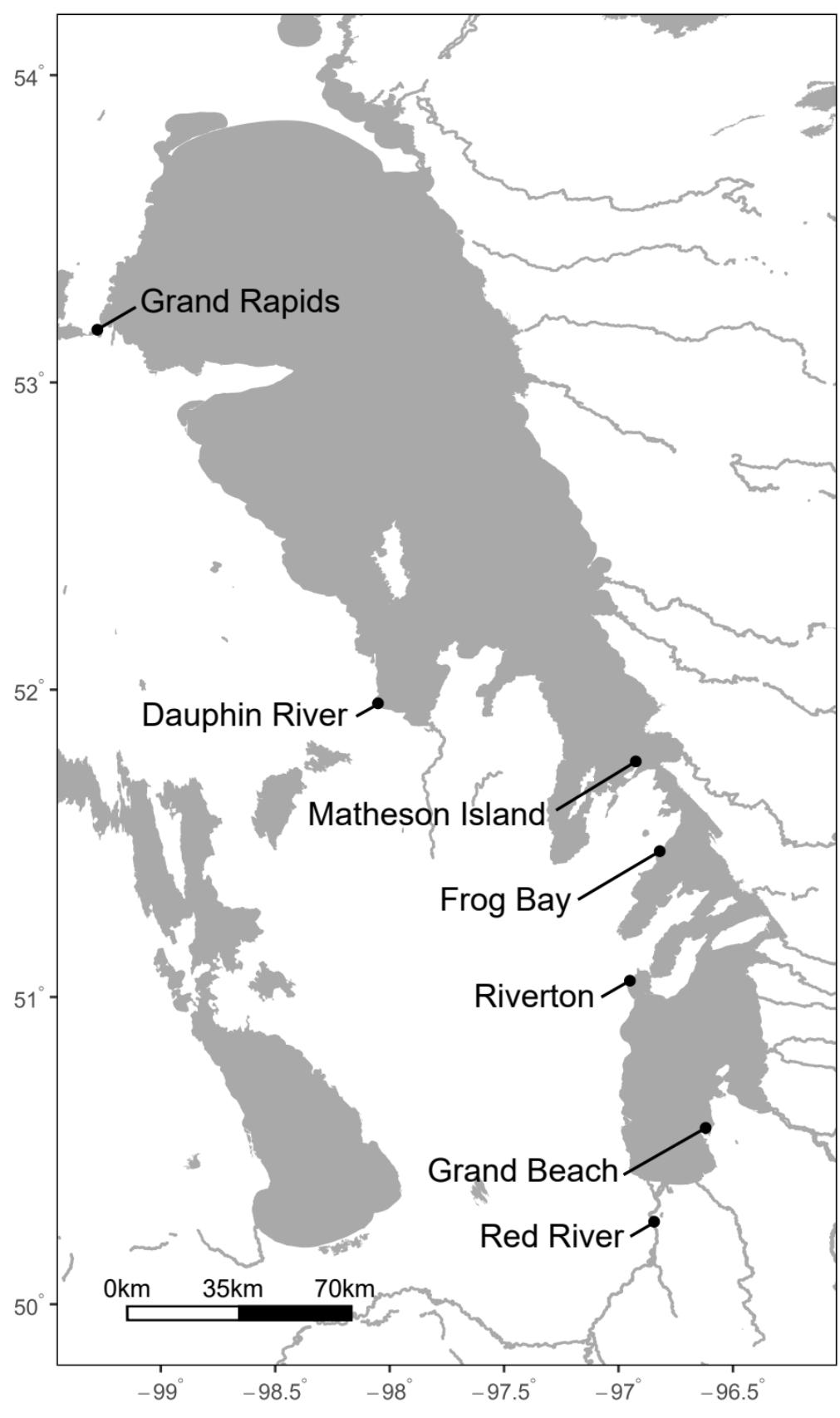
841 Figure 2. Conceptual diagram linking protein degradation and markers of amino acid breakdown
842 to walleye (*Sander vitreus*) growth, diet, and energy requirements. Throughout this manuscript,
843 amino acid breakdown refers to breaking down an amino acid to use it as an energy source.
844 Metabolites specific to the breakdown pathways of specific essential amino acids, indicated
845 below, were selected as markers of these processes. Meanwhile protein degradation refers to
846 proteins that are being separated back into their constituent amino acids. For the current study,
847 we used metabolites in the blood that would come specifically from post-translationally modified
848 amino acids because their release is the result of proteins that have been synthesized and
849 subsequently degraded.

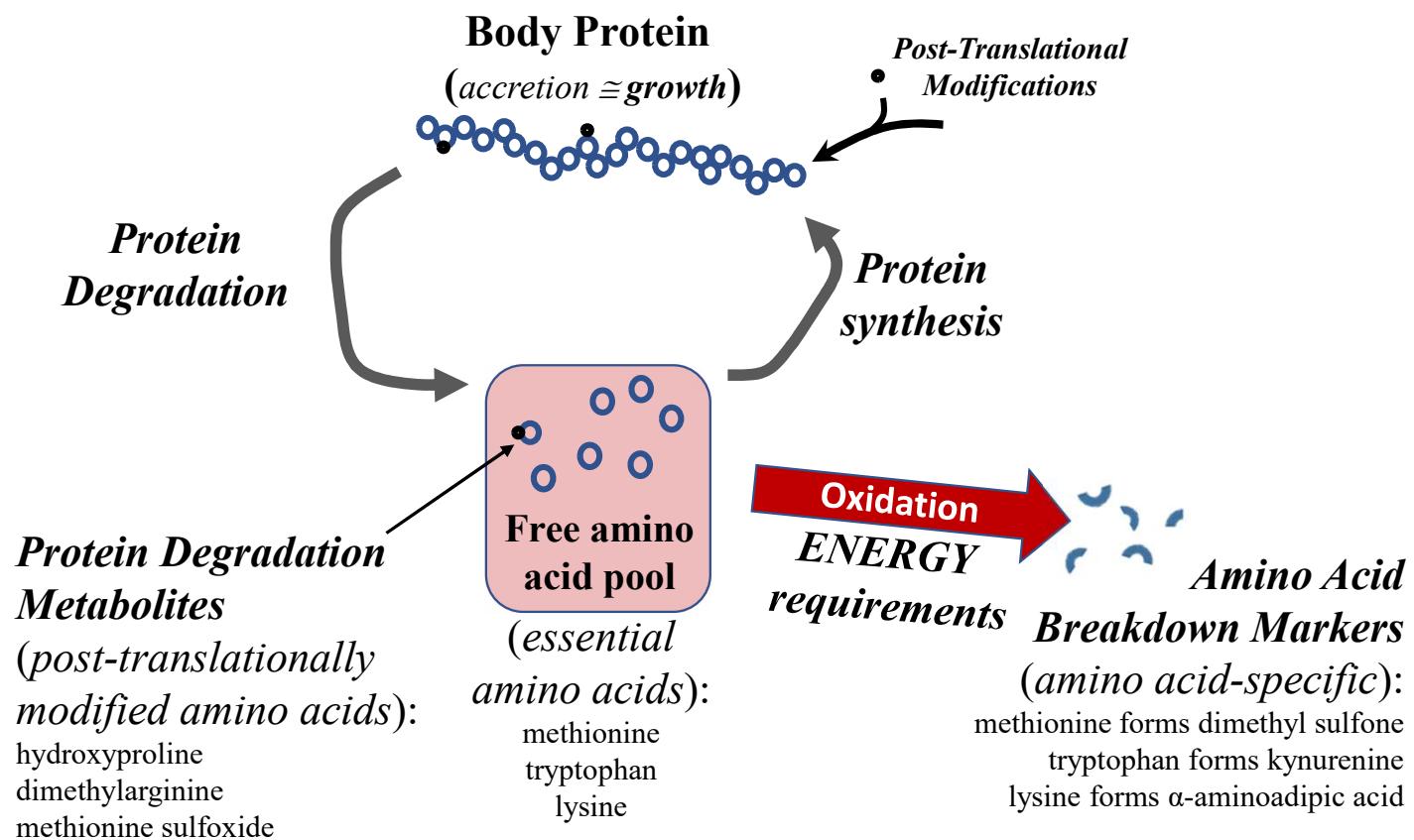
850

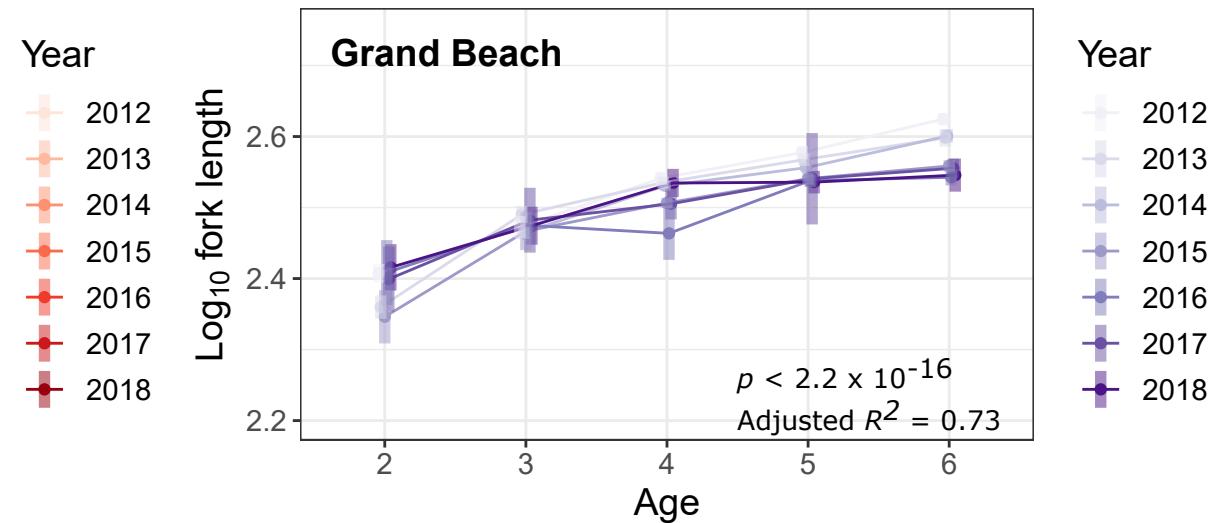
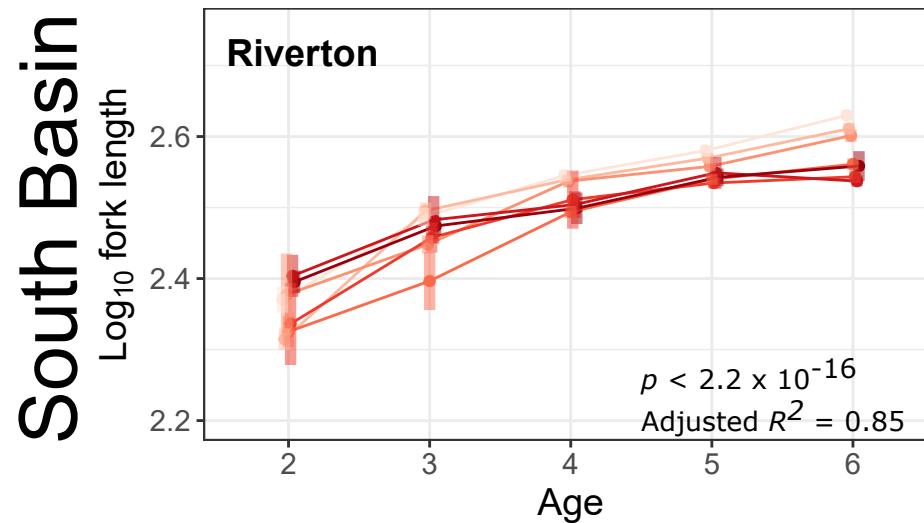
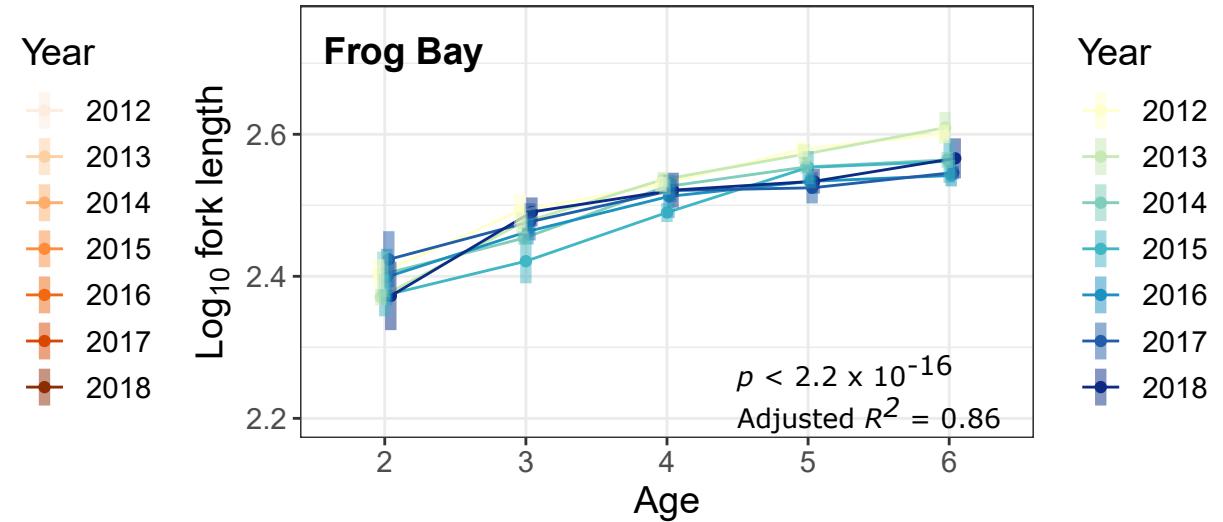
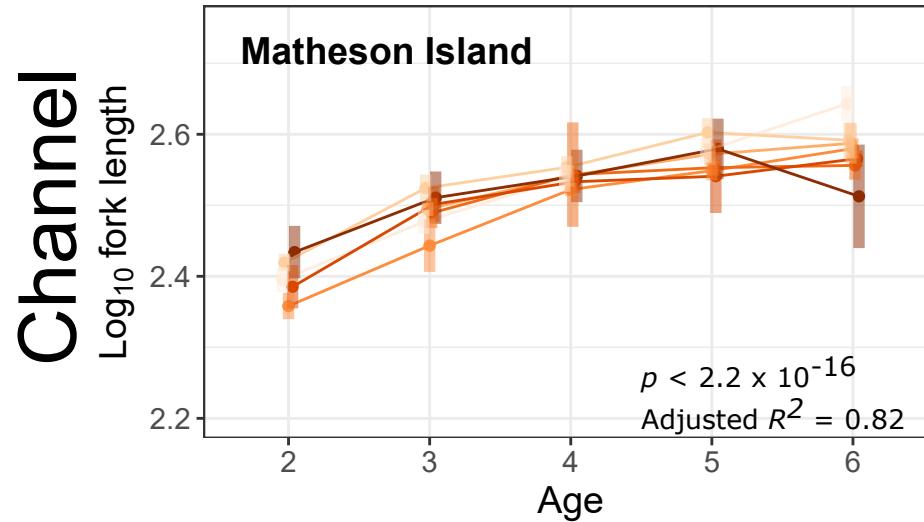
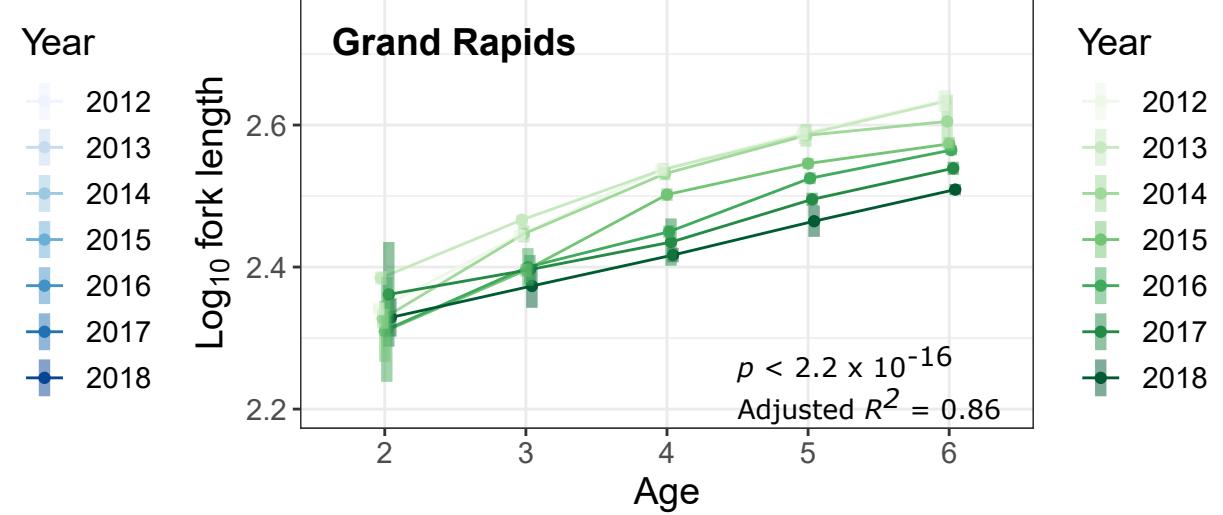
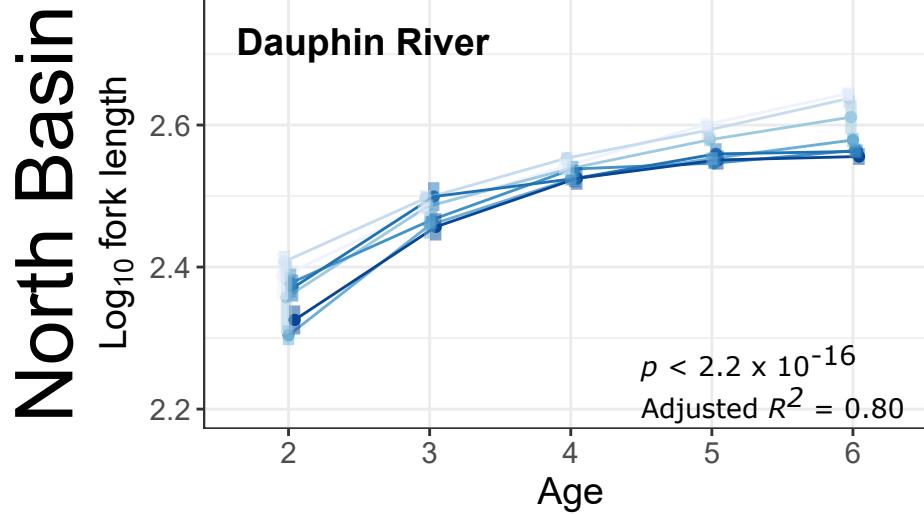
851 Figure 3. Estimated marginal means of \log_{10} fork length-at-age for walleye (*Sander vitreus*) from
852 2012 to 2018 across gillnet index collection sites in Lake Winnipeg. The data were collected by
853 the Government of Manitoba. These figures are derived from linear models relating \log_{10} fork
854 length to the interaction of age with year, sex, and gillnet mesh size. A separate model was used
855 for each collection site. 95% confidence intervals are provided as error bars at each age. Overall
856 model significance and adjusted R^2 is provided in each panel.

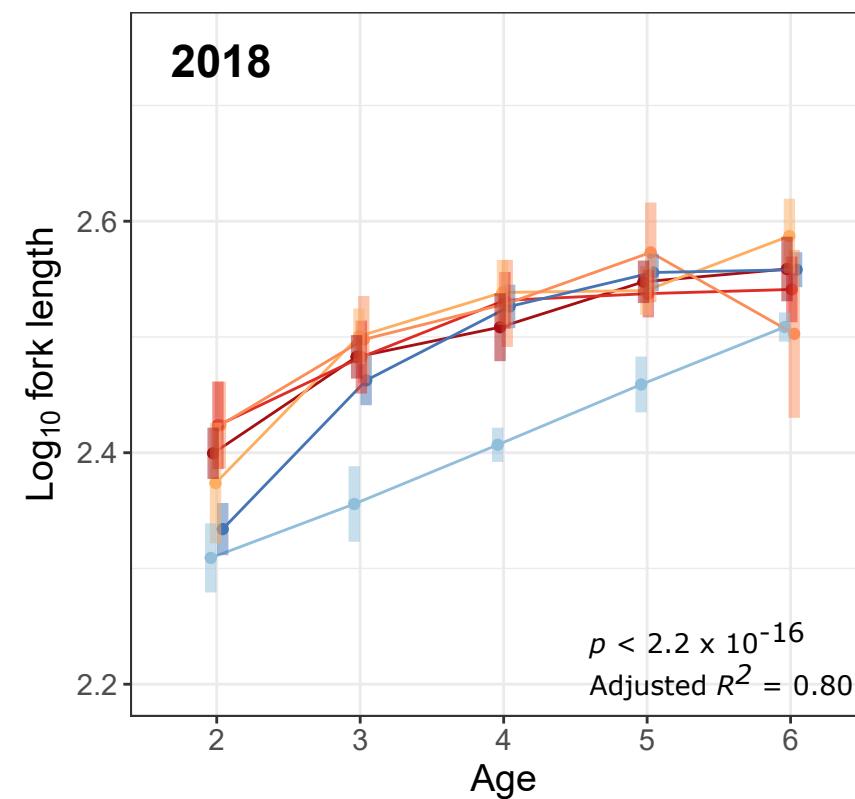
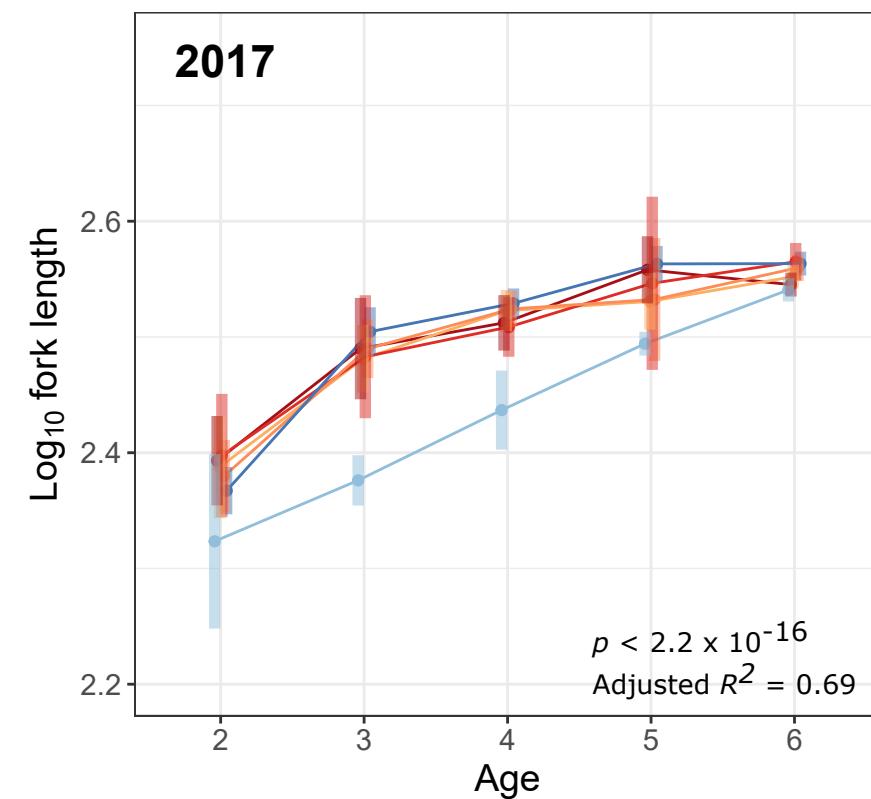
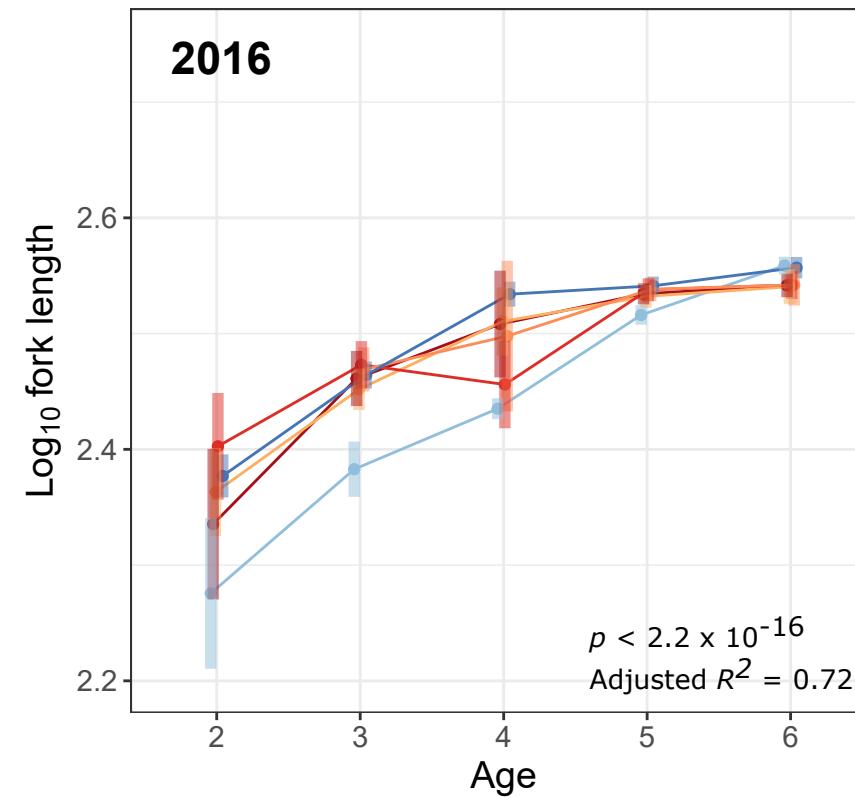
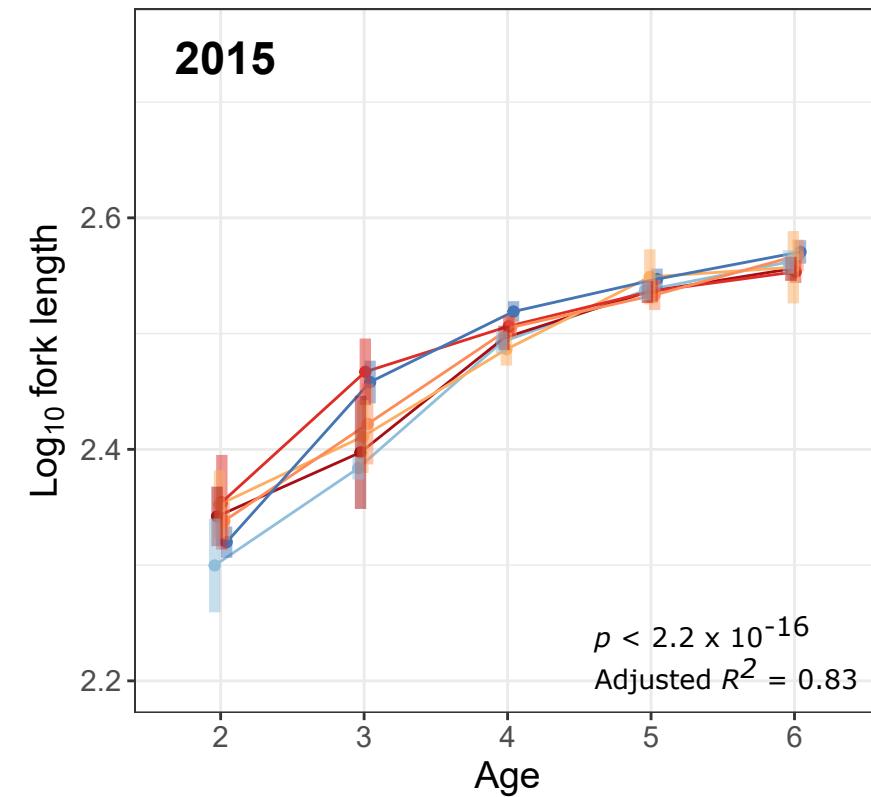
857

858 Figure 4. Estimated marginal means of log fork length-at-age between 2015 and 2018 across all
859 sites collected for the gillnet index data in Lake Winnipeg walleye (*Sander vitreus*). The data
860 were collected by the Government of Manitoba. These figures are derived from linear models
861 relating log fork length to age in interaction with site, sex, and mesh size. A separate linear
862 model was used for each of the years 2015, 2016, 2017, and 2018. 95% confidence intervals are
863 provided as error bars at each age. Overall model significance and adjusted R^2 is provided in
864 each panel.

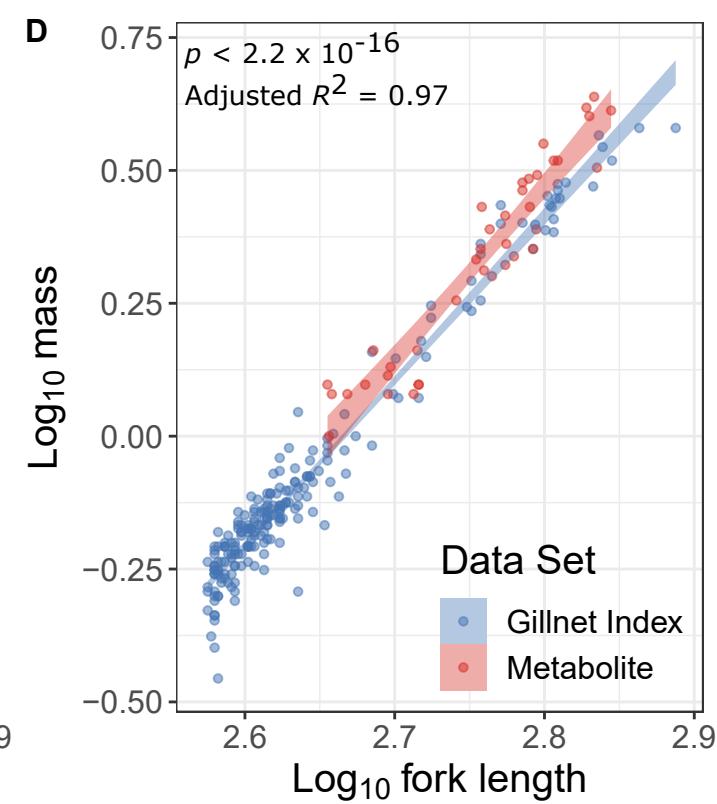
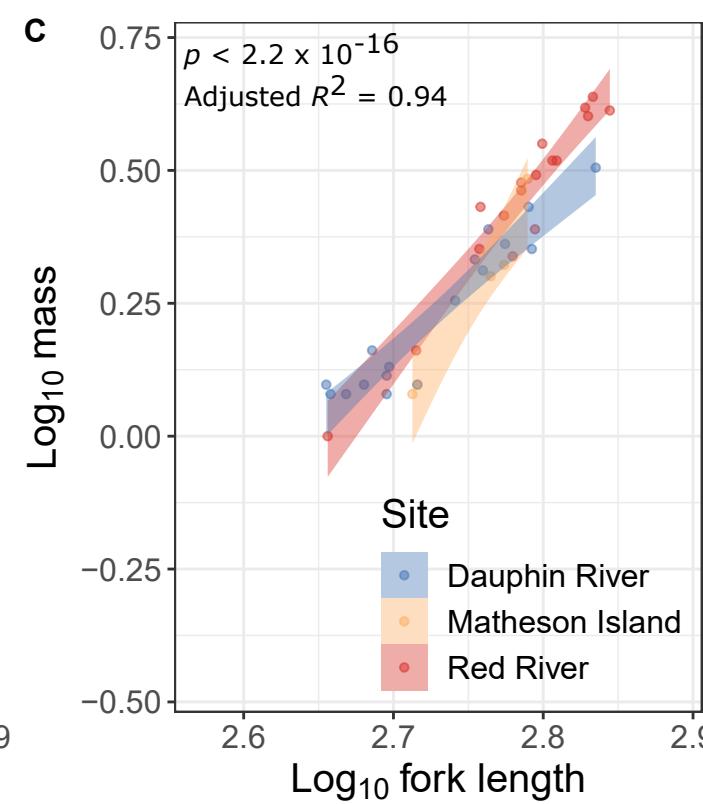
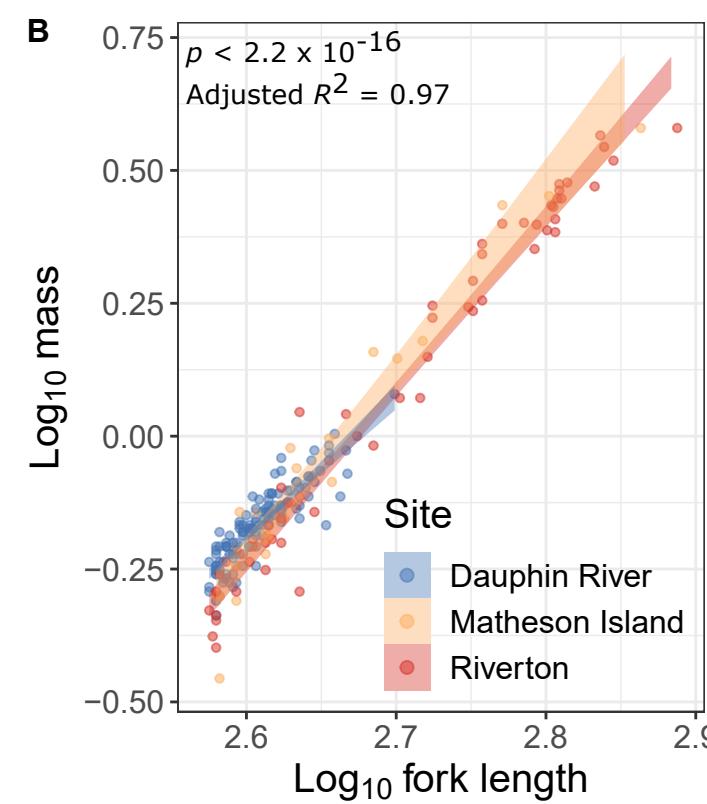

865

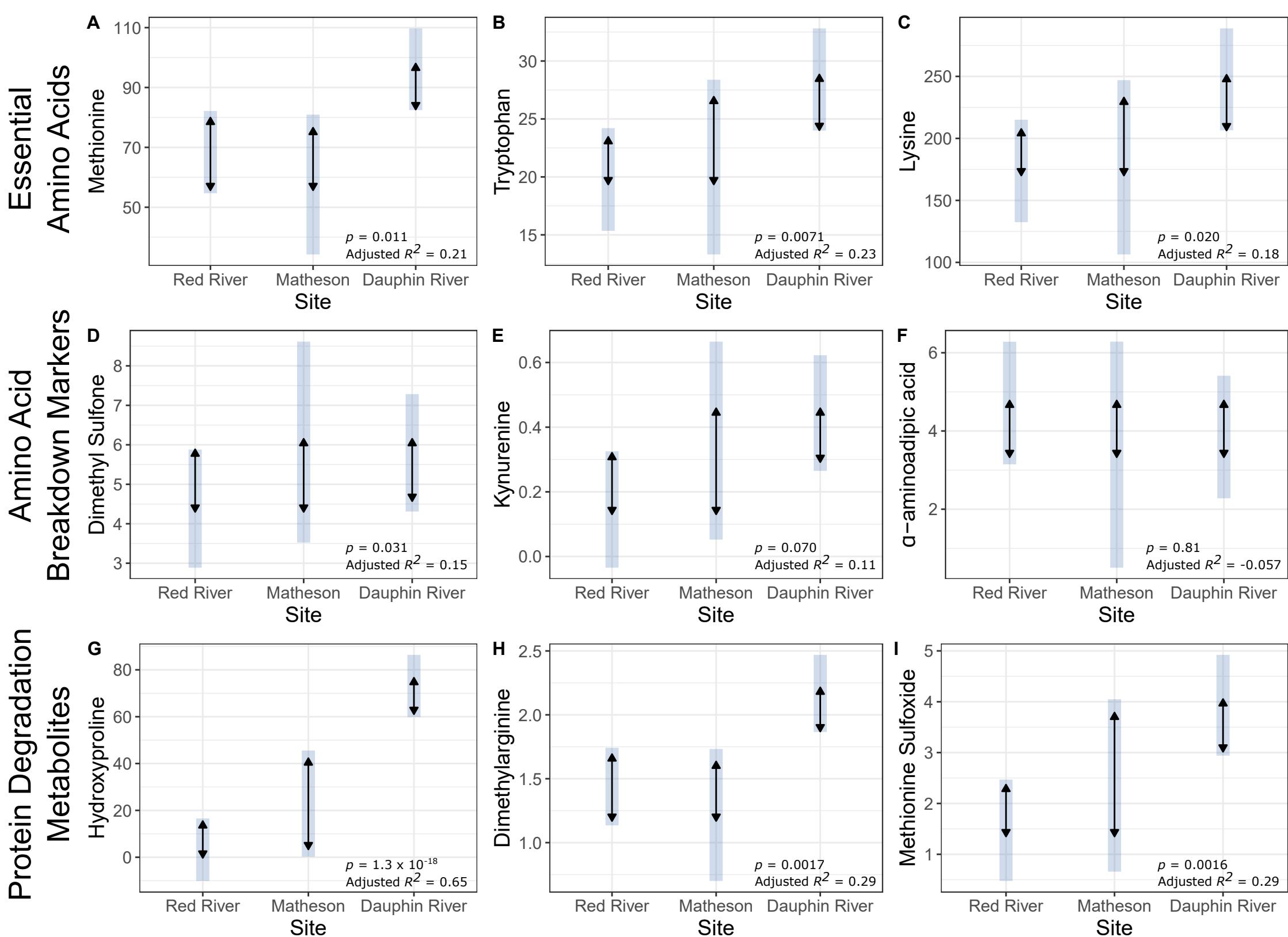

866 Figure 5. Relative mass over time and length-mass relationships among Lake Winnipeg walleye
867 (*Sander vitreus*) caught in 2017. Panel A represents estimated marginal means of \log_{10} mass







868 between 2009 and 2018 across all sites collected for the gill net index data in Lake Winnipeg
869 walleye (*Sander vitreus*). These data are pulled from a linear model relating \log_{10} mass as a
870 dependent variable to \log_{10} fork length, sex, site, and mesh size as independent variables ($F =$
871 $2686, p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.98$). 95% confidence intervals are provided as error bars at
872 each year. For panel B, the linear model related \log_{10} mass to the interaction of \log_{10} fork length
873 and basin collected, sex, mesh size, and age ($F = 222, p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.97$) using
874 the gillnet index data from the Dauphin River, Matheson Island, and Riverton sites. Panel C
875 represents a linear model on walleye used for fish from the metabolite measurements, and this
876 linear model related \log_{10} mass in kg to \log_{10} fork length interacting with site collected, sex, and
877 the interaction of \log_{10} fork length and sex ($F = 86, p < 2.2 \times 10^{-16}$, adjusted $R^2 = 0.94$). Panel D
878 shows a linear model comparing length-mass relationships in walleye between those used for
879 metabolites and from the gillnet index data. This model relates \log_{10} mass as the dependent
880 variable, with \log_{10} fork length, basin collected, sex, study (metabolite or gill net index), the
881 interaction of \log_{10} fork length and basin, the interaction of \log_{10} fork length and sex, and the
882 interaction between \log_{10} fork length and study as independent variables ($F = 889, p < 2.2 \times 10^{-16}$,
883 adjusted $R^2 = 0.97$). Standard error is shown with filled colors. Overall model significance and
884 adjusted R^2 is provided in each panel. The gillnet index data were collected by the Government
885 of Manitoba and only walleye ≥ 375 millimeters in fork length are included in this models, while
886 in the metabolite data are large fish (≥ 452 mm in fork length) caught by electrofishing, from
887 which whole blood metabolites were measured. \log_{10} mass was calculated in kilograms, and
888 \log_{10} fork length in millimeters.





889

890 Figure 6. Estimated metabolite concentration ($\mu\text{mol l}^{-1}$ in whole blood) for Lake Winnipeg
891 walleye (*Sander vitreus*) by site, predicted by linear models that incorporate metabolite as the
892 dependent variable, with \log_{10} fork length and site collected as the independent variables. The
893 three sites on the horizontal axis are the Red River (south basin), Matheson Island (channel), and
894 Dauphin River (north basin). Here, $n=39$ large fish (≥ 452 mm in fork length) were caught by
895 electrofishing in 2017. On the vertical axis are estimated marginal means for each metabolite.
896 The light blue bars represent 95% confidence intervals, while the black arrows represent
897 significance for pairwise comparisons between sites. Overall linear model significance and
898 adjusted R^2 is provided in each panel. Panels A, B, and C represent essential amino acids. Panels
899 D, E, and F represent respective amino acid breakdown metabolites that in conjunction with plots
900 A, B, and C, may describe amino acid oxidation. Panels G, H, and I represent metabolites
901 associated post-translational modification and therefore may reflect endogenous protein
902 degradation (see Figure 2 for additional details).

Site

- Grand Rapids
- Dauphin River
- Matheson Island
- Frog Bay
- Riverton
- Grand Beach

