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Abstract 

Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients 

is rather challenging. This stems from the heterogenous response of individuals to disease 

which is also reflected in the inter-individual variability of gene expression responses. This in 

turn obscures differential gene expression analysis (DGE). In the midst of the COVID-19 

pandemic, we wondered whether an alternative to DGE approaches could be applied to dissect 

the molecular nature of a host-response to infection exemplified here by an analysis of H1N1 

influenza, community/hospital acquired pneumonia (CAP) and sepsis. To this end, we turned 

to the analysis of ensemble gene noise. Ensemble gene noise, as we defined it here, represents 

a variance within an individual for a collection of genes encoding for either members of known 

biological pathways or subunits of annotated protein complexes. From the law of total variance, 

ensemble gene noise depends on the stoichiometry of the ensemble genes’ expression and on 

their average noise (variance). Thus, rather than focusing on specific genes, ensemble gene 

noise allows for the holistic identification and interpretation of gene expression disbalance on 

the level of gene networks and systems. Comparing H1N1, CAP and sepsis patients we spotted 

common disturbances in a number of pathways/protein complexes relevant to the sepsis 

pathology which lead to an increase in the ensemble gene noise. Among others, these include 

mitochondrial respiratory chain complex I and peroxisomes which could be readily targeted 

for adjuvant treatment by methylene blue and 4-phenylbutyrate respectively. Finally, we 

showed that ensemble gene noise could be successfully applied for the prediction of clinical 

outcome, namely mortality, of CAP and sepsis patients. Thus, we conclude that ensemble gene 

noise represents a promising approach for the investigation of molecular mechanisms of a 

pathology through a prism of alterations in coherent expression of gene circuits. 

 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.10.035717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.035717
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Introduction 

Both viral and bacterial pneumonia may lead to a life-threatening condition, namely sepsis. 

Most notable cases, in the public perception, include pandemic viral infections, such as the 

2009 swine flu pandemic caused by H1N1 [1] and more recently, the 2019 coronavirus disease 

(COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2]. 

Like with any other annual severe acute respiratory infections (SARI), these pandemics 

resulted in a significant raise in patients with sepsis at intensive care units[3, 4]. Sepsis is a 

complex reaction of the host (human) to a systemic infection (viral or bacterial) often resulting 

in septic shock or death [5-7]. A problem of sepsis treatment, the prediction of patients’ clinical 

outcomes and the risks of mortality relates to the highly heterogenous nature of sepsis [8]. 

Thus, despite recent progress in identification of molecular biomarkers for sepsis [8-15], 

treatment remains mainly non-curative and clinical outcomes are mostly inferred from clinical 

signs [5]. 

A canonical approach for the identification of disease biomarkers and their potential 

therapeutic targets relies on differential gene expression (DGE) analysis either on RNA or 

protein levels. This stems from a classical gene regulation Jacob-Monod model, which implies 

a specific gene expression response (up- or down-regulation) to a specific signal (see recent 

perspective on historical origins of the model in [16]. However, gene expression is a stochastic 

process and cellular responses to signals often trigger a cascade of changes in gene expression, 

making it difficult to discover specific targets and biomarkers for a disease. 

The stochastic nature of gene expression implies a natural variation in RNA and protein copy 

numbers [17]. According to the fluctuation-response relationship [18, 19], an amount of gene 

expression response to a signal (fluctuation) is proportional to its variance (or squared 

biological coefficient of variation – bcv2) for log-scaled values of RNA copy number [20]. 

Consequently, statistical inference of differentially expressed genes will be biased towards 

genes with high variance (bcv2) (Figure S1). This leads to a set of intrinsic problems with DGE 

analysis. 1) genes with increased variability in expression will strongly respond to any cellular 

signal aimed at them. However, these genes may not necessarily be causative for a diseased 

state. Even under normal circumstances they exhibit large fluctuations and, thus, are loose-

regulated. 2) In contrast, genes with a low variability will respond only modestly, but these 

genes are tight-regulated and any fluctuations in their expression might be causative for a 

diseased state. 
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Upon calling significantly changed genes, to make biological sense, these genes are mapped to 

known biological pathways, such as GO or KEGG [21, 22], or to subunits of protein complexes 

annotated by CORUM or other interaction databases [23]. Thus, a second statistical test is 

required, namely gene set enrichment analysis (GSEA). However, this is not without its own 

caveats. The major one is that GSEA depends on the statistical inference of DGE and DGE 

cut-offs [24, 25]. As a result, biological interpretations from DGE might be drastically affected 

by pitfalls arising from the fluctuation-response relationship, DGE thresholding and the choice 

of statistical approach for GSEA. 

To circumvent this, we reasoned that 1) genes do not function in isolation, but rather act as 

ensembles representing biological pathways and/or subunits of protein complexes. 2) The 

normal function of a biological pathway or protein complex requires a regulated (balanced) 

expression of the whole gene ensemble. 3) Any alterations in the expression of a gene ensemble 

might be causative for a disease or predictive for clinical outcome. To infer the alterations in 

gene ensembles expression we turned to the estimation of their variances (ensemble gene noise) 

from whole blood gene expression profiles of individuals under normal and pathological 

conditions. From the total law of variance, ensemble gene noise (Varሾ𝐺ሿ) sums from the 

variance of ensemble genes’ means and (VarൣEሾ𝐺|𝑔ሿ൧), and the expectation of ensemble genes 

variances (EൣVarሾ𝐺|𝑔ሿ൧) (Figure S2). Thus, the ensemble gene noise estimates both: 1) changes 

in stoichiometries of genes encoding either a biological pathway or protein complex subunits 

and 2) changes in mean gene expression variability for genes in ensemble. 

From the whole blood expression profiles of patients under intensive care treatment we 

estimated how ensemble gene noise corresponds to a pathological state, such as sepsis, 

community/hospital acquired pneumonia (CAP) or viral H1N1 pneumonia (H1N1). From this 

analysis we identified a number of pathways for which ensemble gene noise associated 

positively with an individual health/disease state treated as an ordinal variable (healthy < early 

H1N1 phase < late H1N1 phase and healthy < sepsis/CAP survived < sepsis/CAP deceased 

patients). Finally, we identified pathways and complexes where deregulation is associated with 

a poor prognosis and predicted the clinical outcome (survival/mortality) for CAP/sepsis 

patients based on ensemble gene noise with high accuracy. We concluded that the ensemble 

gene noise provides a powerful tool for the discovery of systemic disease biomarkers, 

pharmaceutically targetable pathways and the prediction of a disease clinical outcome. 
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Results 

Mean and variance gene expression response to infection and sepsis 

Sepsis is thought to trigger a plethora of heterogenous host responses to a systemic infection 

[5, 8]. We reasoned that this heterogeneity might be reflected in the inter-individual gene 

expression variability (standard deviation -  or variance - 2). Considering that a) RNA copy 

number is a mixed Poisson (e.g. negative binomial) random variable [26] and that b) log-

transformed microarray hybridization signal intensities correlate with log-transformed RNA-

seq copy numbers [27]. It is easy to show that the variance of log gene expression approximates 

the biological coefficient of variation (bcv2) [20]. From the first-order Taylor expansion for 

variance: σ௒
ଶ ൎ ஢೉

మ

௑തమ
ൌ 𝑐𝑣௑

ଶ, where 𝑌 ൌ 𝑙𝑜𝑔ሺ𝑋ሻ is the log gene expression. The mixed Poisson 

random variable, 𝑐𝑣௑
ଶ ൌ ଵ

ఓ೉
൅ 𝑏𝑐𝑣ଶ, where bcv2, also known as the overdispersion parameter, 

is independent of mean gene expression (𝜇௑). Thus, for 𝜇௑ ≫ 1 (for genes with a large mean 

RNA copy number), σ௒
ଶ ൎ 𝑏𝑐𝑣ଶ. In other words, by estimating the inter-individual log gene 

expression variabilities from either microarray signal intensities or RNA-seq counts we can 

infer approximately the biological coefficients of variations for genes’ RNA copy numbers. 

We estimated the dispersions for whole blood log gene expressions in CAP and sepsis patients 

(8826 genes), and H1N1 infected patients (7240 genes) from the two data sets GSE65682 and 

GSE21802 respectively (for a detailed description of cohorts see original studies and Methods) 

[8, 11, 28]. For CAP and sepsis patients we also accounted for age, including it as a random 

variable in the Generalized Additive Model for Location, Scale and Shape (GAMLSS) [29], 

see Methods. On average, the dispersions in log gene expressions in CAP, sepsis and H1N1 

patients were significantly higher as compared to healthy individuals (Figure 1A). To that, for 

CAP patents’ dispersions in log gene expressions were significantly higher for deceased 

patients as compared to those survived. Likewise, for H1N1 patients, dispersions in log gene 

expressions further increased in the late phase of infection (Figure 1A). For sepsis patients, on 

average dispersions in log gene expressions were comparable between survived and deceased 

patients for all analysed genes (Figure 1A). However, for genes for which dispersions changed 

significantly between healthy individuals and sepsis patients (Bonferroni adjusted p ≤ 0.05), 

their dispersions on average were higher in the deceased patients as compared to the survived 

(p < 0.001). Together, these suggest that host response to infection increases the biological 
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coefficients of variations in genes’ RNA copy numbers (as σଶ ൎ 𝑏𝑐𝑣ଶ) and substantiates 

heterogeneity in the pathogenesis of sepsis [8] from the gene expression perspective. 

Because of the fluctuation-response relationship [18], absolute changes in the mean log gene 

expressions (||) in response to infection (CAP, H1N1) and sepsis correlated significantly 

with the variances of the log gene expressions (Figure 1B). Interestingly, we also noted 

significant correlations between the absolute changes in inter-individual gene expression 

variabilities (|2|) and the variances of log genes expressions (Figure 1C). Consequently, || 

and |2| were also correlated (Figure 1D). Thus, we conclude that H1N1, CAP and sepsis 

result in coordinated changes in both the mean and heterogeneity of the expression of genes 

and that magnitudes of these changes depend on genes’ biological coefficients of variation. 

 

Ensemble gene noise response to infection and sepsis 

Both the mean and variance relate to population (inter-individual) statistics reflecting distinct 

aspects of gene regulation. Changes in means fit the classical DGE view on gene response to a 

pathology and other biological processes, while changes in variances yield a view on 

heterogeneity of gene response. However, as we noted before (Figure 1 and S1), statistical 

inference of these changes is biased towards higher a significance for genes with a high 

biological coefficient of variation. Although changes in RNA copy number can serve in 

practical applications for diagnostics of a disease and clinical outcomes, inter-individual 

variability cannot be used for diagnosis. At the same time, stochastic fluctuations in gene 

expression remain attractive for the dissection of novel molecular mechanisms of a pathology. 

Therefore, we expect that estimation of ensemble gene noise may provide additional benefits 

for diagnostics by quantifying fluctuations, while being informative for personalized treatment. 

We define ensemble gene noise as the variance of log-transformed, normalized expression 

levels for a collection of genes 𝐺 ൌ ሺ𝑔ଵ, … ,𝑔௜ሻ encoding for either proteins of a pathway or 

subunits of a protein complex. To this end, we mapped genes to the KEGG-annotated pathways 

and the CORUM-annotated protein complexes [22, 23]. From the law of total variance: 

Varሾ𝐺ሿ ൌ EൣVarሾ𝐺|𝑔ሿ൧ ൅ VarൣEሾ𝐺|𝑔ሿ൧, ensemble gene noise depends on the variability in 

expression of genes in ensemble (EൣVarሾ𝐺|𝑔ሿ൧) and on their stoichiometry (VarൣEሾ𝐺|𝑔ሿ൧) 

(Figure S1). Thus, the simple estimation of the variances (Varሾ𝐺ሿ) of gene ensembles for each 
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individual might reflect alterations in function of biological pathways and protein complexes 

on the level of stoichiometry and gene noise. 

We, then, correlated Varሾ𝐺ሿ for ensembles with H1N1, CAP and sepsis disease states. For 

H1N1 viral infection, disease state can be clearly ranked: non-infected (healthy) < early phase 

< late phase of infection, thus it represents an ordinal variable [28]. For CAP and sepsis 

patients, we assumed that a condition of the deceased patients was worse than that of the 

survived. We considered that healthy < survived < deceased can also be represented as ordinal 

disease state variable. Circumstantially, this is supported by distinct blood gene expression 

endotypes [8] and an increased gene expression heterogeneity (Figure 1A). Kendall rank 

correlation identified a number of pathways and protein complexes for which ensemble gene 

noise was positively and significantly associated with the disease state in H1N1 (FDR ≤ 0.05), 

and CAP and sepsis patients (Bonferroni-adjusted p ≤ 0.05) (Figure 2A). None of the pathways 

or gene complexes were negatively associated with the disease state at the specified 

significance thresholds. We used different p value adjustment procedures (FDR – less 

conservative, and Bonferroni – more conservative) for H1N1, CAP and sepsis patents due to 

the large differences in sample sizes (number of patients) between these data sets. 

Out of all gene ensembles, 13 of them proved to be consistent and correlated to the increased 

disease state in ensemble gene noise in all three disease conditions (Figure 2A, B, Table S1A). 

Most of these gene ensembles (pathways) are known to be involved in the pathology of sepsis 

through multiple experimental evidences (Table 1), thus substantiating a power of ensemble 

gene noise analysis. However, ensemble gene noise yields novel insights into the molecular 

mechanisms of sepsis (H1N1, CAP or other-causes of sepsis) by suggesting a holistic mis-

regulation in stoichiometry and gene noise for these gene ensembles. 

We also identified 5 gene ensembles for which ensemble gene noise was positively and 

significantly correlated with the disease state in H1N1 and CAP patients (Figure 2A, Table 

S1B). However, ensemble gene noise for these pathways was also significantly increased in 

sepsis patients (t-test, Bonferroni adjusted p < 0.01) despite insignificant rank correlation. To 

that, some of these pathways can be implicated in the pathology of sepsis (Table 1). Two of 

these ensembles were represented by genes encoding mitochondrial respiratory chain complex 

I (Complex I) (Figure 2C). From the point of view of ensemble gene noise this suggests an 

altered stoichiometry and gene noise in the expression of the subunits of the Complex I which, 

as a result, might lead to its improper assembly and function in H1N1, CAP and sepsis patients. 
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Indeed, it has been established that the activity of the Complex I is decreased and correlates 

with the severity of sepsis [30]. Complex I is the first set of enzymes of the respiratory chain 

and it is the entry point for most electrons into the electron transport chain [31]. Interestingly, 

however, in case of the Complex I inhibition or deregulation, methylene blue (MB) can bypass 

it by acting as alternative redox mediator in the electron transport chain, thus, restoring 

mitochondrial respiration [32, 33] (Figure 2D). MB is also considered to be a promising 

therapeutic in treatment of septic shock [34, 35]. Thus, ensemble gene noise might provide a 

simple yet powerful explanatory shortcut, from the expression of thousands of genes to the 

function of gene ensembles and possible pharmaceutical targets. 

 

Predicting clinical outcome for CAP and sepsis patients from the ensemble gene noise 

Treatment of sepsis is challenging and mortality rates among sepsis patients are high. Yet, 

prediction of clinical outcome is also challenging due to heterogeneity in the pathology [8] and 

gene expression (Figure 1A). Recently, Molecular Diagnosis and Risk Stratification of Sepsis 

(MARS) consortium identified the Mars1 gene expression endotype which was significantly 

associated with acute (28-day) mortality, however, for other endotypes Mars2-4 poorly 

discriminated between the survival and mortality of patients [8]. Thus, we wondered whether 

the clinical outcome (mortality) could be predicted from the ensemble gene noise. 

To this end, we trained binary logistic gradient boosted regression tree models using survival 

and acute mortality as a binary response variable for clinical outcome and patients’ age and 

blood ensemble gene noise as models’ features. The models were trained with XGBoost [36]. 

The CAP and sepsis patients were split into discovery (263 patients: 105 CAP and 158 sepsis 

patients) and validation (216 patients: 78 CAP and 138 sepsis patients) cohorts following 

GSE65682 annotation [8]. Within the cohorts the mortality rates were 26.2% for CAP and 

sepsis patients (23.8% for CAP and 27.8% for sepsis patients) in the discovery cohort, and 

20.8% for CAP and sepsis patients (19.2% for CAP and 21.7% for sepsis patients) in the 

validation cohort. 

Overall, class-imbalance, noise due to the inter-individual heterogeneity and high-

dimensionality of model features are among the major problems of machine learning [37]. In 

part, ensemble gene noise leads to a reduction in inter-individual variability (Figure S3) and in 

dimensionality as model features are represented not by individual genes, but by collections of 

genes. Nonetheless, we further reduced the number of ensemble gene noise features in models 
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by t-test feature selection. For this, we compared gene ensembles noise between survived and 

deceased patients in the discovery cohorts. The p-value cut-offs for the model features were 

selected based on maximization of models’ training accuracy (see Methods). XGBoost hyper-

tuning parameters: learning rate, complexity, depth, etc. were optimized based on the cross-

validation. To avoid overfitting, we used early epoch stopping, which was estimated from the 

test fold of the discovery cohort (see Methods). Because of the class-imbalance, AUC (area 

under the receiver operating characteristic (ROC) curves) was used to evaluate the model 

performance. The validation cohorts were hidden from the feature selection and training. 

Figures 3A and 3B show model scores and ROC curves for the model, predicting 

mortality/survival for the CAP and sepsis patients in the discovery and validation cohorts. 

AUCs for the discovery and validation cohorts were 0.871 and 0.707 respectively, suggesting 

a reasonable accuracy of the model. However, from the model scores, and evaluation of the 

model specificity/sensitivity it appears that the model is biased towards the prediction of major 

class (survived) (Figure 3A, Table 2 and Table S2A). Thus, class prediction balanced 

accuracies (bACC = Specificity/2 + Sensitivity/2) were 0.799 and 0.701 for the discovery and 

validation cohorts respectively. Nonetheless, the survival probability for patients predicted to 

have a high risk of mortality was significantly lower than the survival probability of patients 

predicted to have low risk of mortality in both discovery and validation cohorts. To that, our 

model better predicts the risks of mortality as compared to the Mars1 endotype inferred from 

the log gene expression unsupervised learning (Figure 3C) [8]. Potentially, this could be due 

to a lower inter-individual variability of gene ensembles noise as compared to log gene 

expression (Figure S3). 

In an attempt to increase the prediction accuracy, we trained to separated gradient boosted tree 

models for CAP (Figure 4) and sepsis (Figure 5) patients. Indeed, in both cases the accuracy 

of the prediction of the minor class (deceased patients) increased (Table 2 and S2) in both 

discovery and validation cohorts. Likewise, AUCs for the validation cohorts were also higher 

as compared to the model predicting mortality for both (CAP and sepsis) type of patients 

(compare Figure 4B and 5B with Figure 3B). To that, differences in AUCs between discovery 

and validation cohorts were lower for the models predicting mortality separately for CAP and 

sepsis patients as for the model trained on both type of patients. This was especially evident 

for the model predicting mortality for the CAP patients (Figure 4B). Thus, knowing the cause 

of sepsis improves the prediction accuracy of the models. 
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Finally, it has to be noted that both the feature selection and gradient boosted regression trees 

allow for the ranking of the model features’ importance (Figures 3D, 4D, 5D and Table S3). 

First, it turned out that a patients’ age does not noticeably contribute to the prediction of 

mortality in CAP patients and it ranks low in the prediction of mortality of sepsis patients. 

Second, high ranking gene ensembles (pathways) could be immediately associated with host 

response to infection and, thus, pathology of the sepsis. These include legionellosis (a pathway 

responsible for atypical pneumonia caused by Legionella bacteria), epithelial cell signalling in 

Helicobacter pylori infection and leishmaniasis, and imbalances in these pathways either 

caused by corresponding infections or immune activation could lead to the sepsis [38-40]. To 

that, ensemble gene noise in immune pathways, such as rheumatoid arthritis and primary 

immunodeficiency, contribute to the prediction of clinical outcome in sepsis patients (Figure 

3D, 5D and Table S3). Thus, we conclude that the ensemble gene noise uncovers novel 

approaches and insights to the discovery of biomarkers, prediction of clinical outcome and to 

the molecular mechanisms of a pathology from the point of view of imbalances in 

stoichiometry and gene noise of expression in gene ensembles. 

 

Discussion 

Here we attempted a dissection of molecular mechanisms of human pathology, exemplified by 

H1N1 infection, CAP and sepsis, through a prism of ensemble gene noise. Unlike classical 

DGE, ensemble gene noise allows for the identification of imbalances in the expression of 

entire gene circuits, rather than individual genes on the level of stoichiometry and gene noise. 

This approach offers an alternative, but non-mutually exclusive to the DGE interpretation of a 

molecular basis of disease and both have their own strengths and weaknesses. 

We noted in the introduction that due to a fluctuation-response a statistical inference of DGE 

might be biased towards genes with a high inter-individual variability, i.e. “noisy” genes 

(Figure S1) [18, 19]. However, the same applies to ensemble gene noise (Figure S4). This 

imposes a certain problem to the interpretation of both DGE and ensemble gene noise. On one 

hand, it can be suggested that large deviations in expression of genes and ensembles, which are 

naturally prone to high fluctuations, might not be causative for a disease, as an organism is 

already adapted to such variations. On the other hand, these genes/ensembles themselves might 

play an important adaptive role [41] and their over-response could lead to a disease. At the 

moment it seems difficult to come to a resolution between these two possibilities, but they 
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should be considered, specifically in identification of pharmaceutical targets: genes or gene 

ensembles (pathways, protein complexes). 

As compared to DGE, ensemble gene noise provides a holistic interpretation to mis-regulation 

in gene expression under pathologic or other conditions. As it operates on the level of gene 

ensembles it does not require gene set enrichment analysis (GSEA), thus it circumvents 

potential pitfalls of GSEA associated with the cut-off problem of DGE [24, 25]. As any gene 

expression analysis ensemble gene noise relies on the quality and completeness of pathways 

and the protein complexes’ annotation. Finally, we noted that inter-individual variability of 

ensemble gene noise is significantly less than that of individual gene expression (Figure S3). 

This, in turn, might improve the accuracy of diagnostic and clinical outcome models. Though 

it might come at the expense of less features being available for the selection and training of 

models. At the same time, in future studies, both DGE and ensemble gene noise could be 

combined. 

In this study we applied the concept of ensemble gene noise to the analysis of critically ill 

H1N1, CAP and sepsis patients [8, 28]. We noted a large-scale gene response in two 

dimensions: on the level of mean gene expression and on the level of variance (inter-individual 

variability). Interestingly, both responses were correlated (Figure 1D) and both were dependent 

on gene variance suggesting that the fluctuation-response might drive changes in these two 

parameters of gene expression co-ordinately [18]. In all three cases (H1N1, CAP and sepsis), 

inter-individual variability was increased for a bulk of the genes. Consequently, we only 

identified pathways or gene complexes for which ensemble gene noise was significantly 

increased for H1N1, CAP and sepsis patients as compared to healthy individuals. This suggests 

that inter-individual gene expression variability is a prominent driver of ensemble gene noise 

in these patients. 

Because viral/bacterial infections and sepsis result in overwhelming gene expression response, 

it is difficult to identify a reasonably small set of either genes or gene ensembles for biological 

interpretation. Thus, we only focused on the pathways (protein complexes) for which ensemble 

gene noise increased in all three cases and correlated these with a disease state (Figure 2A). 

From this intersection we inferred 13 pathways most of which have been previously implicated 

in sepsis (Table 1). To that, 5 pathways (protein complexes) showed significant association of 

ensemble gene noise with H1N1 infection phase and CAP disease state and for which ensemble 

gene noise also increased significantly in sepsis patients (Figure 2A). Potentially, these 
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pathways could be targeted for adjuvant treatment of sepsis. Especially, we consider 

mitochondrial respiratory chain complex I (Complex I) (Figure 2D) and peroxisome promising 

for pharmaceutical targeting. Increased ensemble gene noise for the Complex I would imply 

either altered stoichiometry, or increased gene expression noise for genes encoding subunits of 

the Complex I or both. As a result, this might lead to improper assembly of the Complex I and 

affecting its function. The impaired Complex I function can be bypassed by an alternative redox 

mediator, such as methylene blue [32, 33]. To that, methylene blue is a selective inhibitor of 

the nitric oxide–cyclic guanosine monophosphate (NO–cGMP) pathway [35] and increased 

NO levels is a hallmark of sepsis [42]. Some clinical studies have already indicated a beneficial 

role of methylene blue in the treatment of sepsis [34, 35]. Similar to mitochondrial respiration, 

peroxisomes also play an important role in the pathology of sepsis as the dysfunction of 

peroxisomes results in oxidative stress [43]. Again, an increased ensemble gene noise for 

peroxisome pathway indicates a potential mechanism for such dysfunction in H1N1, CAP and 

sepsis patients. Potentially peroxisome biogenesis could be restored by 4-phenylbutyrate and 

there several studies indicating its positive role in treatment of sepsis [44, 45]. Considering 

future directions, it could be proposed that search for epigenetic modulators of ensemble gene 

noise might represent a novel pharmaceutical avenue for adjuvant treatments of sepsis. 

Finally, we explored the possibility to use ensemble gene noise in the prediction of clinical 

outcomes. Previously some promising biomarkers and gene expression endotypes associated 

with septic shock and mortality have been identified based on DGE analysis [8, 9]. However, 

as already mentioned, ensemble gene noise looks at gene expression from a different, yet 

complementary, angle, thus enabling the identification of novel pathways and biomarkers for 

sepsis and other diseases. To that, models predicting pathology based on ensemble gene noise 

could potentially be more robust, as inter-individual variability for ensemble gene noise is 

lower than that for log gene expression (Figure S3). Furthermore, Gradient boosted regression 

tree models trained on CAP and sepsis patients to predict their mortality had a good accuracy 

on validation cohort (Figure 3, Table 2). These outperformed predictions based on the Mars1 

gene expression endotype, which was shown to associate with a poor prognosis [8], both on 

the discovery and validation cohorts (Figure 3C). Interestingly, some ensemble gene noise 

features selected statistically for the models predicting mortality in both CAP/sepsis-, CAP- 

and sepsis- patients couldimmediately be related to the host’s response to infection. For 

example, increases in ensemble gene noise in legionellosis, epithelial cell signalling in 
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Helicobacter pylori infection and leishmaniasis pathways could potentially serve as biomarkers 

of sepsis and its outcome. 

In conclusion, here we showed a potential of ensemble gene noise in the biological 

interpretation of a disease, the identification of pharmaceutically targetable pathways, novel 

biomarkers, and the prediction of clinical outcome. Together, we believe that ensemble gene 

noise analysis could be broadly applied alongside with DGE to dissect molecular mechanisms 

of the pathology in two complementary dimensions: in Jacob-Monod dimension of specific 

gene regulation and in a novel dimension of holistic gene circuit regulation. 
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Methods 

Data resources and processing 

GSE65682 Affymetrix Human Genome U219 Array whole blood gene expression profiles 

were used for the analysis of community/hospital acquired pneumonia (CAP) and sepsis 

patients [8, 11]. In brief, the cohort consisted of 42 healthy individuals (24 males, 18 females), 

183 CAP patients (111 males, 72 females) and 296 sepsis patients (161 males, 135 females). 

The mean age of CAP (61.5±1.2) and sepsis (60.6±0.8) patients did not differ significantly 

(t(350.37) = 0.59, p = 0.56), however healthy individuals were significantly younger as 

compared to CAP (t(54.0) = 4.7, p < 0.001) and sepsis (t(47.2) = 4.6, p < 0.001) patients. Out 

of 183 CAP patients, 40 died within 28 days and out of 296 sepsis patients, 74 died within 28 

days. Thus, we divided CAP and sepsis patients into survived and deceased groups, considering 

these two states as an ordered factor (ordinal) variable (survived < deceased). 

GSE21802 Illumina human-6 v2.0 expression bead-chip whole blood gene expression profiles 

were used for the analysis of H1N1 infected patients [28]. The cohort consisted of 4 healthy 

individuals and 19 H1N1 patients (8 in early and 11 in late phase of the disease). The early 

phase was defined as early, from the onset of symptoms - day 0 to day 8 , and late – from day 

9 and above. The statistics of the cohorts is given in Table 1 of [28], however neither sex nor 

age assignments were available for the patients from the GSE21802 series annotation. 

GSE65682 microarrays signal intensities were pre-processed (background corrected and 

RMA-normalized) with the Bioconductor oligo package [46]. Lowly-expressed and outlier 

genes were identified in high dimensions using the spatial signs (sign2) algorithm of mvouliter 

R package with a critical value for outlier detection at 0.9.The robust principal components 

explained a variance of 0.95 [47]. GSE21802 signal intensities significantly above the 

background were quantile normalized [48]. Genes were annotated with Bioconductor 

hgu219.db and illuminaHumanv2.db database packages for GSE65682 (8826 genes) and 

GSE21802 (7240 genes) respectively. 

Statistical analysis of gene expression variability and ensemble gene noise 

Statistical analysis was done using R and R/Bioconductor packages [49]. 

To estimate the inter-individual gene expression variability for healthy, CAP and sepsis 

patients we accounted for age as a random effect. To this end, we used Generalized Additive 

Model for Location, Scale and Shape (GAMLSS) [20, 29]. In brief, for normally distributed 
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log-transformed microarray intensities (𝑌 ൌ 𝑙𝑜𝑔ሺ𝑋ሻ, 𝑌 ~𝑁ሺ𝜇௒,𝜎௒ሻ), GAMLSS allows for the 

modelling of both parameters of gene expression (mean and dispersion): 

𝜇௒~𝐷𝛽ఓ ൅ 𝑍𝑢ఓ, 

𝑙𝑜𝑔ሺ𝜎௒ሻ~𝐷𝛽ఙ ൅ 𝑍𝑢ఙ, 

where 𝜇௒ ൌ ൫𝜇௒భ , … , 𝜇௒೙൯
்
 and 𝜎௒ ൌ ൫𝜎௒భ , … ,𝜎௒೙൯

்
 are the vectors of means and dispersions 

for 𝑌 ൌ ሺ𝑌ଵ, … ,𝑌௡ሻ. 𝐷 - 𝑛 ൈ 𝑝 fixed effect design matrix for the disease state (healthy, survived, 

deceased). 𝛽ఓ ൌ ൫𝛽ఓభ , … ,𝛽ఓೝ൯
்
 and 𝛽ఙ ൌ ൫𝛽ఙభ , … ,𝛽ఙೝ൯

்
 – estimated fixed effect coefficients 

for mean and dispersion. 𝑍- 𝑛 ൈ 𝑘 random effect design matrix for age (age was binned into 

10 deciles). 𝑢ఓ ൌ ൫𝑢ఓభ , … ,𝑢ఓೖ൯
்
 and 𝑢ఙ ൌ ൫𝑢ఙభ , … ,𝑢ఙೖ൯

்
 – estimated random effect 

coefficients for mean and dispersion, where 𝑢~𝑁ሺ0, 𝛿ሻ. With GAMLSS it is also 

straightforward to test for the significance of a factor effect on either the mean, the variance, 

or both with likelihood ratio test [20]. 

Gene ensemble lists were generated by the mapping of genes to the KEGG-annotated biological 

pathways or CORUM-annotated subunits of mammalian protein complexes [22, 23]. Their 

gene noise was estimated for each individual by calculating the variances of log-transformed 

expressions of genes for each ensemble (Figure 1S). Estimates of gene ensembles noise were 

correlated with the disease states (healthy < early phase < late phase for H1N1 and healthy < 

survived < deceased for CAP and sepsis) by Kendall rank correlation, treating the disease state 

as an ordinal variable. Linear trends between disease states and ensembles gene noise were 

estimated by rank-based regression [50]. 

 

Gradient boosted regression tree models 

To predict the mortality of CAP and sepsis patients we trained gradient boosted regression tree 

models with a scalable tree boosting system XGBoost [36] using mortality within 28 days as a 

binary response variable, and ensemble gene noise and age as independent model features. To 

this end, we split individuals into discovery and validation cohorts following exactly the same 

partitioning as annotated in GSE65682 [8]. Then, we trained 3 models: 1) a model predicting 

mortality for CAP and sepsis patients, 2) a model predicting mortality for CAP patients, and 3) 

a model predicting mortality for sepsis patients. Models features were preselected using 

discovery cohorts by t test comparing ensembles gene noise for survived and deceased patients 
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to maximize the accuracy of XGBoost training on the discovery data sets. For CAP and sepsis 

(1), and sepsis (3) models, the cut-off for the model features was set at p ≤ 0.01, and for the 

CAP model (2) – at p ≤ 0.05.  The XGBoost hyper tuning parameters (learning rate (), 

complexity (), depth, etc.) were optimized by cross validation. To avoid overfitting, we found 

early epoch stopping parameters by randomly splitting of the discovery cohort into two equal 

folds: training and test. Then, the validation cohorts, which were hidden from feature selection 

and model training, were used to verify the accuracy of the final models. 
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Figures and figure legends 

 

 

 

Figure 1. H1N1, CAP and sepsis coordinately affect mean gene expression and inter-

individual gene expression variability. 

A) Inter-individual variability in whole blood gene expression () increases in CAP (top), 

sepsis (mid) and H1N1 (bottom) patients as compared to healthy individuals. p(1-0) – p-values 

of t tests comparing differences in inter-individual gene expression variability of healthy 

individuals (control) with survived (CAP, sepsis) and early H1N1 infected patients. p(2-1) – p-

values of t tests comparing differences of survived (CAP, sepsis) and early H1N1 infected 

patients with deceased (CAP, sepsis) and late H1N1 infected patients. Circles and whiskers 

indicate means and standard deviations respectively. 
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B) Correlations between variances in whole blood gene expression (2) and absolute changes 

in mean gene expression (||) for healthy individuals (ctl.) and patients (CAP, sepsis, H1N1). 

Due to the fluctuation-response relationship a magnitude of mean gene expression response 

depends on its variance. We estimated common variances for genes in healthy and CAP 

patients (top), healthy and sepsis patients (mid) and healthy and H1N1 patients (bottom). 

C) Correlations between variances in whole blood gene expression (2) and absolute changes 

in inter-individual gene expression variability (|2|) for control individuals (ctl.) and patients 

(CAP, sepsis, H1N1). 

D) Correlations between absolute changes in mean gene expression (||) and in inter-

individual gene expression variability (|2|). 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.10.035717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.035717
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

 

 

Figure 2. Association of ensemble gene noise with H1N1, CAP and sepsis disease states. 

A) Venn diagram of KEGG- and CORUM-annotated biological pathways/protein complexes 

for which ensemble gene noise associates positively (increases) and significantly with disease 

state. 

B) Plots of ensemble gene noise for genes involved in HIF-1 signalling, peroxisome, 

necroptosis, NOD-like receptor and Fc epsilon RI signalling pathways. Pathways were 

annotated by KEGG. Kendall tau, and FDR- (H1N1 patients) and Bonferroni- (CAP and sepsis 
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patients) adjusted p-values are indicated. Rank-based regression trend lines and 95% 

confidence bands of ensemble gene noise association with the state of disease are shown. Black 

circles and whiskers indicate means and standard deviations. 

C) Plots of ensemble gene noise for genes encoding CORUM-annotated subunits of 

mitochondrial respiratory chain complex I (subcomplex I alpha – top panel and nuclear 

encoded subunits – bottom panel). Rank-based regression trend lines and 95% confidence 

bands of ensemble gene noise association with the state of disease are shown. 

D) Methylene Blue (MB) acts as an alternative electron donor to the electron transport chain 

(red arrows) by shuttling between redox states (MB – MBH2) and, thus, bypassing respiratory 

chain complex I. Respiratory chain complex I-IV and their substrates are indicated, Q – 

coenzyme Q10, CytC – cytochrome C. Electrons are indicated as yellow circles. 
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Figure 3. Model predicting mortality/survival of CAP and sepsis patients. 

A) Boxplots of the model scores predicting mortality/survivorship in the discovery (left) and 

validation (right) cohorts. The model was trained on the same as published  discovery cohort 

by the gradient boosted regression tree and validated on independent cohort[8]. Dashed lines 

indicate threshold levels of classification. The threshold was calculated by maximizing a 

product of the specificity and sensitivity of the model prediction in the discovery cohort. 

Further details of model accuracy are given in Tables 2 and S2. 

B) Receiver operating characteristic curves (ROC) for the model predicting mortality (end 

point – survival or death within 28 days after treatment) in CAP and sepsis patients (blue line 

– discovery cohort, red line – validation cohort). Features were selected by the t-test comparing 

ensemble gene noise between the survived and deceased patients in the discovery cohort to 

achieve maximum prediction accuracy for the discovery cohort. Values for the area under the 

ROC curve (AUC) are indicated. 
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C) Survival probability for the patients predicted to have low (blue line) and high (green line) 

risk of mortality for the discovery (left panel) and validation (right panel) cohorts. p-values 

indicate significant differences in hazards for the predicted classes (survival/mortality) 

according to the Cox proportional-hazards model. Black lines - survival probability of patients 

with Mars1 endotype [8] was compared with the predicted deceased class for the discovery and 

validation cohorts. 

D) Variable importance of the model ranks ensemble gene noise features according to their 

relative contribution (gain). 
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Figure 4. Model predicting mortality/survival of CAP patients. A) Boxplots of the model 

scores predicting mortality/survivorship in the discovery (left) and validation (right) cohorts. 

B) ROC curves for the model predicting mortality in CAP patients in the discovery (blue line) 

and validation (red line) cohorts. Cohorts were partitioned as in [8]. C) Survival probability for 

the patients predicted to have low (blue line) and high (green line) risk of mortality for the 

discovery (left panel) and validation (right panel) cohorts. D) Relative contribution of ensemble 

gene noise features to the model. 
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Figure 5. Model predicting mortality/survival of sepsis patients. A) Boxplots of the model 

scores. B) ROC curves for the model predicting mortality in sepsis patients. C) Survival 

probability for the patients predicted to have low (blue line) and high (green line) risk of 

mortality. D) Relative contribution of ensemble gene noise features to the model. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.10.035717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.035717
http://creativecommons.org/licenses/by-nc/4.0/


25 
 

Table 1. Role in sepsis of the pathways for which ensemble gene noise associates positively 

(increases) with the disease states (healthy < early/survived < late/deceased) 

Pathways/Complexes Role in sepsis pathology Reference 

KEGG: HIF-1 signalling pathway 
Metabolic reprogramming of innate immune cells 
during the hyperinflammatory and immunotolerant 
phases of sepsis. 

[51, 52] 

KEGG: Peroxisome 
Defective peroxisome recycling alters cellular redox 
homeostasis and leads to exaggerated oxidative stress 
response to endotoxin (infection) and sepsis. 

[43] 

KEGG: Necroptosis 
Necroptosis is implicated in pulmonary diseases and 
sepsis-associated organ injury. 

[53, 54] 

KEGG: NOD-like receptor 
signalling pathway 

Activation of Toll-like and NOD-like receptor 
signalling protects mice from polymicrobial sepsis-
associated lethality. 

[55] 

KEGG: Fc epsilon RI signalling 
pathway 

Fc receptors bind to antibodies attached to invading 
pathogens and their up-regulation can serve a potential 
biomarker for sepsis. Mice deficient for FCER1G gene 
encoding the γ-subunit of Fc epsilon RI show increased 
resistance to sepsis. 

[56, 57] 

KEGG: Autophagy - other 

Autophagy is an adaptive protective process that 
eliminates damaged proteins, organelles and pathogens. 
It is thought to be a promising target in treatment of 
sepsis.  

[58] 

KEGG: Biosynthesis of amino 
acids 

Sepsis results in significant disorders in amino acids 
metabolism. 

[59] 

KEGG: Glucagon signalling 
pathway 

Glucagon levels negatively associate with clinical 
outcome in sepsis patients 

[60] 

KEGG: Propanoate (propionate) 
metabolism 

Propionic acidaemia caused by altered propionate 
metabolism often results in sepsis and death. 

[61] 

KEGG: Circadian rhythm 
There is accumulating evidence for association 
between circadian misalignment and severity of 
inflammatory responses in sepsis. 

[62] 

KEGG: Dopaminergic synapse 
Dopamine mediates neuroimmune communications 
and dopaminergic is implicated in inflammation and 
sepsis. 

[63, 64] 

KEGG: Amyotrophic lateral 
sclerosis (ALS) 

ALS patients often develop pulmonary insufficiency 
and have increased risk of sepsis. 

[65] 

CORUM: Respiratory chain 
complex I, mitochondrial 

Mitochondrial disfunction resulting in reduced 
respiratory chain complex I activity and low ATP 
levels is a whole mark for sepsis. 

[30] 

KEGG: Osteoclast differentiation 
Mean expression of osteoclast differentiation genes is 
up-regulated in human septic shock. 

[66] 

KEGG: Tight junction 
Sepsis disrupts intestinal barrier which leads to a 
multiple organ dysfunction syndrome and alters the 
expression of tight junction proteins. 

[67] 
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Table 2. Prediction accuracy of the models 

Metric 
CAP/sepsis patients CAP patients Sepsis patients 

discovery validation discovery validation discovery validation 

bACC 0.799 0.701 0.802 0.798 0.779 0.761 

Sensitivity 0.754 0.6 0.88 0.867 0.75 0.8 

Specificity 0.845 0.801 0.725 0.73 0.807 0.722 
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Supplementary material 

 

 

 

Figure S1. Fluctuation-response relation biases statistical inference of DGE. A) The 

difference of means of log-transformed bell-shaped gene expression values (𝑌 ൌ 𝑙𝑜𝑔ሺ𝑋ሻ) are 

proportional to the variance or the squared coefficient of variation (cv2) of untransformed 

variable (𝑋): |𝑌തଵ െ 𝑌ത଴| ∼ σ௒
ଶ ൎ ஢೉

మ

௑തమ
ൌ 𝑐𝑣௑

ଶ. Considering RNA copy number (𝑋) to be mixed-
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Poisson (negative-binomial as a specific case) random variable, for large 𝑋, 𝑐𝑣௑
ଶ approximates 

overdispersion parameter or biological coefficient of variation (bcv2) [20]. A scatterplot on the 

left panel illustrates fluctuation-response relation (a correlation between absolute differences 

and variances of log-transformed expression values) for whole-blood gene expression profiles 

of healthy (ctl.) individuals and CAP pneumonia/sepsis patients. The data has been taken from 

[8]. This relation is monotonic, but non-linear, suggesting a deviation from linear coupling 

between fluctuation (pneumonia/sepsis) and gene expression response. There is no correlation 

between differences and means of log-transformed expression values (right panel). B-C) In the 

presence of fluctuation-response relation statistical inference will be biased. For example, 

Student’s t-test often used to assess DGE will relate positively to a variance of log-transformed 

gene expression as: 𝑡~
|௒തభି௒തబ|

஢ೊ
~ ஢ೊ

మ

஢ೊ
ൌ σ௒. A scatterplot on the left panel shows correlation 

between Student’s t statistic and variance (B) and Bonferroni-adjusted p values and variance 

(C). There is no correlation of t and p values with means of log-transformed expression values 

(right panel). 
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Figure S2. Ensemble gene noise. A) Let 𝐺 be a collection of genes ሺ𝑔ଵ, … ,𝑔௡ሻ belonging to 

either a biological pathway or encoding subunits of a protein complex. Then, from the law of 

total variance Varሾ𝐺ሿ ൌ EൣVarሾ𝐺|𝑔ሿ൧ ൅ VarൣEሾ𝐺|𝑔ሿ൧, i.e. ensemble gene noise (Varሾ𝐺ሿ) sums 

from the expected value of genes’ variances (EൣVarሾ𝐺|𝑔ሿ൧) and the variance in genes’ mean 

expression (VarൣEሾ𝐺|𝑔ሿ൧). The top panel illustrates hypothetical distributions of expressions of 

genes in ensemble (𝑔௜), the bottom panel is derived distribution of gene ensemble (𝐺 ൌ

ሺ𝑔ଵ, … ,𝑔௡ሻ). B, C) Top panel, changes in variances (B) and/or expectations (C) of genes 

expression will eventually change ensemble gene noise (bottom panel). 
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Figure S3. Comparison of inter-individual variability for log gene expression and 

ensemble gene noise for CAP and sepsis patients. Boxplots illustrating population variances 

for log gene expression, ensemble gene noise and log gene expression normalized to the 

GAPDH. Inter-individual variability is significantly less for ensemble gene noise as compared 

to the log gene expression (according to t-test) and it is higher for GAPDH normalized log gene 

expressions. The latter follows from the fact that Varሾ𝑙𝑜𝑔ሺ𝑋ሻ െ 𝑙𝑜𝑔ሺGAPDHሻሿ ൎ

Varሾ𝑙𝑜𝑔ሺ𝑋ሻሿ ൅ Varሾ𝑙𝑜𝑔ሺGAPDHሻሿ. Thus, estimating DGE by PCR, which usually requires 

normalization to some housekeeping gene, results in increased inter-individual variability. 

Ensemble gene noise can be estimated from PCR without normalization to a reference gene. 
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Figure S4. Fluctuation-response relation for ensemble gene noise. Differences of means of 

ensembles gene noise are proportional to the inter-individual variability in ensembles gene 

noise. A scatterplot on the left panel illustrates fluctuation-response relation (a correlation 

between absolute differences and variances of ensembles gene noise) for whole-blood gene 

expression profiles of healthy (ctl.) individuals and CAP pneumonia/sepsis patients. There is 

also a modest correlation between absolute changes in ensembles gene noise and the means 

(right panel). 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.10.035717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.035717
http://creativecommons.org/licenses/by-nc/4.0/


32 
 

Table S1. Kendall correlation of ensemble gene noise with H1N1, CAP and sepsis disease states. 

A) H1N1 (p ≤ 0.05) ∩ CAP (p ≤ 0.05) ∩ sepsis (p ≤ 0.05) 

Gene ensemble (KEGG/CORUM) H1N1 (, p) CAP (, p) Sepsis (, p) genes 

KEGG: HIF-1 signalling pathway  = 0.373 
p = 0.0357 

 = 0.429 
p = 0 

 = 0.283 
p = 0 

AKT1; AKT2; ALDOA; ARNT; CAMK2D; CAMK2G; CDKN1A; CDKN1B; 
CREBBP; CUL2; CYBB; EDN1; EGF; EGLN1; EGLN2; EIF4E2; EIF4EBP1; ELOB; 
ELOC; ENO1; ENO2; EP300; GAPDH; HIF1A; HK1; HK2; HK3; HMOX1; IFNG; 
IFNGR1; IFNGR2; IGF1R; IL6R; INSR; LDHA; LTBR; MAP2K1; MAP2K2; 
MAPK3; MKNK1; MKNK2; NFKB1; NPPA; PDHA1; PDHB; PDK1; PFKFB3; 
PFKL; PGK1; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLCG2; PRKCB; RBX1; RPS6; 
RPS6KB1; RPS6KB2; SLC2A1; STAT3; TFRC; TIMP1; TLR4; VHL 

KEGG: Peroxisome  = 0.412 
p = 0.0219 

 = 0.323 
p = 0 

 = 0.235 
p = 0 

ABCD1; ABCD3; ACAA1; ACOT8; ACOX1; ACOX2; ACOX3; ACSL1; ACSL3; 
ACSL4; ACSL5; ACSL6; AGPS; AMACR; CAT; CRAT; DHRS4; DHRS4L1; ECI2; 
FAR1; FAR2; GNPAT; GSTK1; HACL1; HMGCL; HSD17B4; IDH1; IDH2; MPV17; 
MVK; NUDT19; NUDT7; PECR; PEX11B; PEX11G; PEX16; PEX5; PEX6; PEX7; 
PRDX1; PRDX5; PXMP2; PXMP4; SLC27A2; SOD1; SOD2 

KEGG: Necroptosis  = 0.373 
p = 0.0357 

 = 0.309 
p = 0 

 = 0.229 
p = 0 

AIFM1; BAX; BID; BIRC2; BIRC3; CAMK2D; CAMK2G; CAPN1; CAPN2; CASP1; 
CASP8; CFLAR; CHMP1A; CHMP1B; CHMP2A; CHMP2B; CHMP3; CHMP4A; 
CHMP4B; CHMP5; CHMP6; CHMP7; CYBB; CYLD; DNM1L; EIF2AK2; FADD; 
FAF1; FAS; FASLG; FTH1; FTL; GLUD1; GLUD2; GLUL; H2AFX; H2AFY; 
H2AFZ; HIST1H2AA; HIST1H2AC; HIST1H2AD; HIST1H2AE; HIST2H2AA3; 
HIST2H2AA4; HIST2H2AC; HIST3H2A; HMGB1; HSP90AA1; HSP90AB1; 
IFNAR1; IFNAR2; IFNG; IFNGR1; IFNGR2; IL1A; IL1B; IRF9; JAK1; JAK2; JAK3; 
JMJD7-PLA2G4B; MLKL; NLRP3; PARP4; PLA2G4A; PLA2G4F; PPID; PYCARD; 
PYGB; PYGL; RBCK1; RIPK1; RIPK3; RNF31; SHARPIN; SLC25A5; SLC25A6; 
SMPD1; SPATA2L; SQSTM1; STAT1; STAT2; STAT3; STAT4; STAT5A; STAT5B; 
STAT6; TICAM1; TLR4; TNF; TNFAIP3; TNFRSF10A; TNFRSF10B; TNFRSF1A; 
TNFSF10; TRADD; TRAF5; TRPM7; TYK2; USP21; VDAC1; VDAC2; VDAC3; 
VPS4A; VPS4B; XIAP; ZBP1 

KEGG: NOD-like receptor 
signalling pathway 

 = 0.501 
p = 0.0062 

 = 0.357 
p = 0 

 = 0.252 
p = 0 

AIM2; ATG12; ATG5; BCL2L1; BIRC2; BIRC3; BRCC3; CAMP; CARD16; 
CARD17; CARD6; CARD8; CARD9; CASP1; CASP4; CASP5; CASP8; CCL2; 
CCL5; CHUK; CTSB; CXCL1; CXCL8; CYBA; CYBB; DEFA1B; DEFA3; DEFA4; 
DHX33; DNM1L; ERBIN; FADD; GABARAP; GABARAPL1; GABARAPL2; GBP1; 
GBP2; GBP3; GBP4; GBP5; GSDMD; HSP90AA1; HSP90AB1; IFI16; IFNAR1; 
IFNAR2; IKBKB; IKBKE; IKBKG; IL18; IL1B; IRAK4; IRF3; IRF7; IRF9; JAK1; 
JUN; MAP3K7; MAPK13; MAPK14; MAPK3; MAVS; MCU; MEFV; MFN1; MFN2; 
MYD88; NAIP; NAMPT; NEK7; NFKB1; NFKBIA; NLRC4; NLRP1; NLRP12; 
NLRP3; NLRP7; NLRX1; NOD2; OAS1; OAS2; OAS3; P2RX7; PLCB1; PLCB2; 
PRKCD; PSTPIP1; PYCARD; RBCK1; RHOA; RIPK1; RIPK2; RIPK3; RNASEL; 
RNF31; SHARPIN; STAT1; STAT2; SUGT1; TAB1; TAB2; TAB3; TANK; TBK1; 
TICAM1; TLR4; TMEM173; TNF; TNFAIP3; TRAF3; TRAF5; TRAF6; TRIP6; 
TRPM2; TRPM7; TXN; TXN2; TXNIP; TYK2; VDAC1; VDAC2; VDAC3; XIAP 
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KEGG: Fc epsilon RI signalling 
pathway 

 = 0.353 
p = 0.0493 

 = 0.342 
p = 0 

 = 0.184 
p = 0.00007 

AKT1; AKT2; ALOX5; ALOX5AP; BTK; FCER1A; FCER1G; FYN; GAB2; GRB2; 
INPP5D; JMJD7-PLA2G4B; KRAS; LAT; LCP2; LYN; MAP2K1; MAP2K2; 
MAP2K3; MAP2K4; MAP2K6; MAP2K7; MAPK13; MAPK14; MAPK3; MS4A2; 
NRAS; PDPK1; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLA2G4A; PLA2G4F; 
PLCG2; RAC2; RAF1; SOS1; SOS2; SYK; TNF; VAV1 

KEGG: Autophagy - other  = 0.491 
p = 0.0067 

 = 0.199 
p = 0.0015 

 = 0.137 
p = 0.0302 

ATG101; ATG12; ATG13; ATG2A; ATG2B; ATG3; ATG4A; ATG4C; ATG5; 
ATG7; ATG9A; BECN1; GABARAP; GABARAPL1; GABARAPL2; IGBP1; 
MLST8; PIK3C3; PIK3R4; PPP2CA; PPP2CB; WIPI1; WIPI2 

KEGG: Biosynthesis of amino acids  = 0.363 
p = 0.0455 

 = 0.336 
p = 0 

 = 0.274 
p = 0 

ACO2; ALDH18A1; ALDOA; ALDOC; ARG1; ARG2; ASL; ASNS; BCAT1; 
BCAT2; CBS; CS; ENO1; ENO2; GAPDH; GLUL; GOT1; GOT2; IDH1; IDH2; 
IDH3B; IDH3G; MAT2A; MAT2B; MTR; PFKL; PFKM; PFKP; PGAM1; PGK1; 
PHGDH; PKM; PRPS1; PRPS2; PSPH; PYCR2; PYCR3; RPIA; SDSL; SHMT1; 
SHMT2; TALDO1; TKT; TKTL1; TPI1 

CORUM: TRAPP complex  = 0.412 
p = 0.0219 

 = 0.276 
p = 0 

 = 0.144 
p = 0.0136 

TRAPPC1; TRAPPC10; TRAPPC11; TRAPPC12; TRAPPC2; TRAPPC2L; 
TRAPPC3; TRAPPC4; TRAPPC5; TRAPPC6A; TRAPPC6B; TRAPPC8; TRAPPC9 

KEGG: Glucagon signalling 
pathway 

 = 0.403 
p = 0.0299 

 = 0.211 
p = 0.0004 

 = 0.145 
p = 0.0122 

ACACA; AKT1; AKT2; ATF4; CALM1; CALM2; CALML4; CAMK2D; CAMK2G; 
CPT1A; CPT1B; CREB1; CREB3; CREB3L1; CREB5; CREBBP; CRTC2; EP300; 
FBP1; GNAQ; GNAS; GYS1; LDHA; LDHB; PCK2; PDE3B; PDHA1; PDHB; PFKL; 
PGAM1; PHKA2; PHKB; PHKG2; PKM; PLCB1; PLCB2; PPP3CA; PPP3CB; 
PPP3CC; PPP3R1; PPP4C; PPP4R3A; PPP4R3B; PRKAA1; PRKAB1; PRKACB; 
PRKAG1; PRKAG2; PRMT1; PYGB; PYGL; SIK1; SIK2; SIRT1; SLC2A1 

KEGG: Propanoate (propionate) 
metabolism 

 = 0.393 
p = 0.03 

 = 0.182 
p = 0.0081 

 = 0.137 
p = 0.0298 

ABAT; ACACA; ACADM; ACAT1; ACAT2; ACSS1; ACSS2; ALDH6A1; 
BCKDHA; BCKDHB; DLD; ECHDC1; ECHS1; HADHA; HIBCH; LDHA; LDHB; 
PCCA; PCCB; SUCLA2; SUCLG1 

KEGG: Circadian rhythm  = 0.393 
p = 0.03 

 = 0.353 
p = 0 

 = 0.288 
p = 0 

ARNTL; BHLHE40; BTRC; CLOCK; CREB1; CRY1; CSNK1D; CUL1; FBXL3; 
FBXW11; NR1D1; PER1; PRKAA1; PRKAB1; PRKAG1; PRKAG2; RBX1; RORA; 
SKP1 

KEGG: Dopaminergic synapse  = 0.599; 
0.001005 

 = 0.355; 0  = 0.252; 0 

AKT1; AKT2; ARNTL; ARRB2; ATF4; ATF6B; CACNA1A; CALM1; CALM2; 
CALML4; CAMK2D; CAMK2G; CLOCK; CREB1; CREB3; CREB3L1; CREB5; 
FOS; GNAI2; GNAI3; GNAQ; GNAS; GNB1; GNB2; GNB4; GNB5; GNG10; 
GNG11; GNG2; GNG7; GNG8; GSK3A; GSK3B; KIF5B; MAOA; MAOB; MAPK13; 
MAPK14; PLCB1; PLCB2; PPP1CA; PPP1CB; PPP1CC; PPP2CA; PPP2CB; 
PPP2R2A; PPP2R2B; PPP2R2D; PPP2R3B; PPP2R3C; PPP2R5A; PPP2R5B; 
PPP2R5C; PPP2R5D; PPP2R5E; PPP3CA; PPP3CB; PPP3CC; PRKACB; PRKCB 

KEGG: Amyotrophic lateral 
sclerosis (ALS) 

 = 0.461 
p = 0.0102 

 = 0.292 
p = 0 

 = 0.189 
p = 0.00003 

ALS2; BAD; BAX; BCL2L1; BID; CASP1; CASP3; CASP9; CAT; CCS; DAXX; 
DERL1; GPX1; GRIN1; MAP2K3; MAP2K6; MAP3K5; MAPK13; MAPK14; 
PPP3CA; PPP3CB; PPP3CC; PPP3R1; RAB5A; SOD1; TNF; TNFRSF1A; 
TNFRSF1B; TOMM40; TOMM40L 
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B) H1N1 (p ≤ 0.05) ∩ CAP (p ≤ 0.05) ∩ sepsis (p > 0.05) 

Gene ensemble (KEGG/CORUM) H1N1 (, p) CAP (, p) Sepsis (, p) genes 
CORUM: Respiratory chain 
complex I (subcomplex I alpha), 
mitochondrial 

 = 0.432 
p = 0.0178 

 = 0.222 
p = 0.0001 

 = 0.127 
p = 0.0929 

NDUFA1; NDUFA10; NDUFA11; NDUFA12; NDUFA13; NDUFA2; NDUFA3; 
NDUFA5; NDUFA6; NDUFA7; NDUFA8; NDUFA9; NDUFAB1; NDUFB4; 
NDUFB7; NDUFS1; NDUFS2; NDUFS3; NDUFS6; NDUFS7; NDUFS8; NDUFV1; 
NDUFV2 

CORUM: Respiratory chain 
complex I (nuclear encoded 
subunits), mitochondrial 

 = 0.383 
p = 0.0323 

 = 0.169 
p = 0.0271 

 = 0.092 
p = 1 

NDUFA1; NDUFA10; NDUFA11; NDUFA12; NDUFA13; NDUFA2; NDUFA3; 
NDUFA4; NDUFA5; NDUFA6; NDUFA7; NDUFA8; NDUFA9; NDUFAB1; 
NDUFB1; NDUFB10; NDUFB11; NDUFB2; NDUFB3; NDUFB4; NDUFB5; 
NDUFB6; NDUFB7; NDUFB8; NDUFB9; NDUFC1; NDUFC2; NDUFS1; NDUFS2; 
NDUFS3; NDUFS4; NDUFS5; NDUFS6; NDUFS7; NDUFS8; NDUFV1; NDUFV2 

KEGG: Osteoclast differentiation  = 0.373  
p = 0.0357 

 = 0.279 
p = 0 

 = 0.13 
p = 0.066 

ACP5; AKT1; AKT2; BLNK; BTK; CHUK; CREB1; CSF1R; CTSK; CYBA; CYLD; 
FCGR1A; FCGR2A; FCGR2B; FCGR2C; FCGR3A; FCGR3B; FHL2; FOS; FOSL2; 
FYN; GAB2; GRB2; IFNAR1; IFNAR2; IFNG; IFNGR1; IFNGR2; IKBKB; IKBKG; 
IL1A; IL1B; IL1R1; IRF9; ITGB3; JAK1; JUN; JUNB; JUND; LCK; LCP2; LILRA1; 
LILRA2; LILRA4; LILRA5; LILRA6; LILRB1; LILRB2; LILRB3; LILRB4; 
MAP2K1; MAP2K6; MAP2K7; MAP3K14; MAP3K7; MAPK13; MAPK14; MAPK3; 
MITF; NCF1; NCF2; NCF4; NFATC1; NFKB1; NFKB2; NFKBIA; OSCAR; 
PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLCG2; PPARG; PPP3CA; PPP3CB; PPP3CC; 
PPP3R1; RELB; SIRPA; SIRPB1; SIRPG; SOCS1; SOCS3; SPI1; SQSTM1; STAT1; 
STAT2; SYK; TAB1; TAB2; TGFB1; TGFBR2; TNF; TNFRSF1A; TRAF6; TYK2; 
TYROBP 

KEGG: Tight junction  = 0.412 
p = 0.0219 

 = 0.208 
p = 0.0006 

 = 0.127 
p = 0.0933 

ACTB; ACTG1; ACTN1; ACTN4; ACTR2; ACTR3; ARHGAP17; ARHGEF18; 
ARHGEF2; CD1C; CDC42; CDK4; CLDN15; CLDN5; CLDN9; DLG1; EPB41L4B; 
EZR; F11R; HCLS1; HSPA4; ITGB1; JUN; LLGL2; MAP2K7; MAP3K1; MAP3K5; 
MICALL2; MSN; MYH9; MYL12A; MYL12B; MYL6; MYL6B; MYL9; NEDD4; 
NEDD4L; OCLN; PARD3; PARD6A; PCNA; PPP2CA; PPP2CB; PPP2R2A; 
PPP2R2B; PPP2R2D; PRKAA1; PRKAB1; PRKACB; PRKAG1; PRKAG2; PRKCE; 
PRKCI; PRKCZ; RAB13; RAB8A; RAB8B; RAP1A; RAP2C; RAPGEF2; RAPGEF6; 
RHOA; ROCK1; ROCK2; RUNX1; SCRIB; SLC9A3R1; STK11; TIAM1; TJP2; 
TUBA1A; TUBA1B; TUBA1C; TUBA4A; TUBA8; VASP; WASL; WHAMM; 
YBX3 

KEGG: Axon guidance  = 0.461 
p = 0.0102 

 = 0.165 
p = 0.0423 

 = 0.074 
p = 1 

ABLIM1; ARHGEF12; BMPR2; CAMK2D; CAMK2G; CDC42; CDK5; CFL1; 
CXCR4; EFNA1; EFNB3; EPHA4; EPHB1; EPHB4; FES; FYN; GNAI2; GNAI3; 
GSK3B; ILK; ITGB1; KRAS; LIMK2; LRRC4; MAPK3; MYL12A; MYL12B; 
MYL5; MYL9; NCK1; NCK2; NFATC3; NRAS; NTNG2; PAK1; PAK2; PAK3; 
PAK4; PARD3; PARD6A; PDK1; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLCG2; 
PLXNA2; PLXNA3; PLXNB2; PLXNC1; PPP3CA; PPP3CB; PPP3CC; PPP3R1; 
PRKCZ; PTPN11; RAC2; RAF1; RASA1; RHOA; ROBO3; ROCK1; ROCK2; RRAS; 
RYK; SEMA4A; SEMA4B; SEMA4C; SRGAP2; SRGAP3; SSH1; SSH2; SSH3 
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Table S2. Confusion tables for the models predicting mortality/survivorship of 

CAP/sepsis patients 

A) CAP and sepsis patients 

discovery 
Actual  

validation 
Actual 

survived deceased  survived deceased 

p
re

d
ic

te
d

 

su
rv

iv
ed

 

164 

(84.5%) 

17 

(24.6%) 

 

p
re

d
ic

te
d 

su
rv

iv
ed

 

137 

(80.1%) 

18 

(40.0%) 

d
ec

ea
se

d 30 

(15.5%) 

52 

(75.4%) 

 

d
ec

ea
se

d 34 

(19.9%) 

27 

(60.0%) 

B) CAP patients 

discovery 
Actual  

validation 
Actual 

survived deceased  survived deceased 

p
re

d
ic

te
d 

su
rv

iv
ed

 

58 

(72.5%) 

3 

(12.0%) 

 

p
re

d
ic

te
d 

su
rv

iv
ed

 

46 

(73.0%) 

2 

(13.3%) 

d
ec

ea
se

d 22 

(27.5%) 

22 

(88.0%) 

 

d
ec

ea
se

d 17 

(27.0%) 

13 

(86.7%) 

C) Sepsis patients 

discovery 
Actual  

validation 
Actual 

survived deceased  survived deceased 

p
re

d
ic

te
d 

su
rv

iv
ed

 

92 

(80.7%) 

11 

(25.0%) 

 

p
re

d
ic

te
d 

su
rv

iv
ed

 

78 

(72.2%) 

6 

(20.0%) 

d
ec

ea
se

d 22 

(19.3%) 

33 

(75.0%) 

 

d
ec

ea
se

d 30 

(27.8%) 

24 

(80.0%) 
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Table S3. Relative contribution (gain %, cover %, frequency %) of ensemble gene noise features to the models predicting 

mortality/survivorship of CAP/sepsis patients 

Gene ensemble (KEGG/CORUM) 
Gain; Cover; Frequency 

genes 
CAP/sepsis CAP Sepsis 

CORUM: 18S U11-U12 snRNP 
14.537; 

10.6; 
8.054 

 
5.818; 
5.966; 
5.376 

DHX15; PDCD7; PRPF8; RNPC3; SF3B1; SF3B2; SF3B3; SF3B4; SF3B5; SF3B6; SNRNP25; 
SNRNP35; SNRNP48; SNRPB; SNRPD1; SNRPD2; SNRPD3; SNRPE; SNRPF; SNRPG; 
YBX1; ZCRB1; ZMAT5; ZRSR2 

CORUM: LARC complex (LCR-associated 
remodelling complex) 

8.069; 
7.116; 
6.04 

1.444; 
3.508; 
6.061 

 ACTB; ACTL6A; ARID1A; CHD4; DPF2; GATAD2B; HDAC1; MBD2; MBD3; RBBP4; 
SMARCA4; SMARCC2; SMARCD2; SMARCE1 

KEGG: Primary immunodeficiency 
5.845; 
6.663; 
6.711 

 
4.555; 
5.175; 
4.301 

ADA; BLNK; BTK; CD19; CD3D; CD3E; CD40; CD79A; CD8A; CD8B; CIITA; DCLRE1C; 
IKBKG; IL2RG; IL7R; JAK3; LCK; ORAI1; PTPRC; RFX5; RFXANK; TAP1; TAP2; 
TNFRSF13B 

KEGG: Legionellosis 
2.575; 
1.944; 
2.013 

9.579; 
5.673; 
3.03 

 
ARF1; BCL2L13; BNIP3; C3; CASP1; CASP3; CASP7; CASP8; CASP9; CD14; CLK1; CR1; 
CXCL1; CXCL8; EEF1G; HBS1L; HSF1; HSPA1A; HSPA1B; HSPA1L; HSPA6; HSPA8; 
HSPD1; IL18; IL1B; ITGAM; ITGB2; MYD88; NAIP; NFKB1; NFKB2; NFKBIA; NLRC4; 
PYCARD; RAB1A; RAB1B; SAR1A; SAR1B; SEC22B; TLR2; TLR4; TLR5; TNF; VCP 

KEGG: Epithelial cell signalling in 
Helicobacter pylori infection 

2.472; 
4.05; 
3.356 

 
4.263; 
3.426; 
5.376 

ADAM10; ADAM17; ATP6AP1; ATP6V0A2; ATP6V0B; ATP6V0C; ATP6V0D1; ATP6V0E1; 
ATP6V0E2; ATP6V1A; ATP6V1B2; ATP6V1C1; ATP6V1D; ATP6V1E1; ATP6V1E2; 
ATP6V1F; ATP6V1G1; ATP6V1H; CASP3; CCL5; CDC42; CHUK; CSK; CXCL1; CXCL8; 
CXCR1; CXCR2; F11R; HBEGF; IKBKB; IKBKG; JUN; LYN; MAP2K4; MAP3K14; 
MAPK13; MAPK14; NFKB1; NFKBIA; PAK1; PLCG2; PTPN11; TCIRG1 

KEGG: Endocrine resistance 
2.208; 
2.692; 
4.027 

  

ADCY3; ADCY4; ADCY7; AKT1; AKT2; ARAF; BAD; BAX; BIK; BRAF; CARM1; CDK4; 
CDKN1A; CDKN1B; CDKN2A; CDKN2C; E2F1; E2F3; FOS; GNAS; GPER1; GRB2; HBEGF; 
IGF1R; JAG2; JUN; KRAS; MAP2K1; MAP2K2; MAPK13; MAPK14; MAPK3; MED1; MMP9; 
NCOR1; NOTCH2; NRAS; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PRKACB; RAF1; RB1; 
RPS6KB1; RPS6KB2; SHC1; SOS1; SOS2; SP1 

KEGG: Rheumatoid arthritis 
1.96; 

2.399; 
2.685 

 
8.817; 
8.538; 
5.376 

ACP5; ATP6AP1; ATP6V0A2; ATP6V0B; ATP6V0C; ATP6V0D1; ATP6V0E1; ATP6V0E2; 
ATP6V1A; ATP6V1B2; ATP6V1C1; ATP6V1D; ATP6V1E1; ATP6V1E2; ATP6V1F; 
ATP6V1G1; ATP6V1H; CCL2; CCL20; CCL3; CCL3L1; CCL5; CD86; CTSK; CTSL; CXCL1; 
CXCL5; CXCL8; FOS; HLA-DMA; HLA-DMB; HLA-DOB; HLA-DPA1; HLA-DPB1; HLA-
DQA1; HLA-DQB1; HLA-DRA; HLA-DRB1; HLA-DRB5; ICAM1; IFNG; IL15; IL18; IL1A; 
IL1B; ITGAL; ITGB2; JUN; LTB; MMP1; TCIRG1; TGFB1; TLR2; TLR4; TNF; TNFSF13; 
TNFSF13B 

KEGG: Purine metabolism 
1.404; 
1.705; 
2.685 

  

ADA; ADA2; ADCY3; ADCY4; ADCY7; ADPRM; ADSL; ADSS; AK1; AK2; AK3; AK4; 
AMPD2; AMPD3; APRT; ATIC; CANT1; DCK; DGUOK; ENPP4; ENTPD1; ENTPD4; 
ENTPD5; ENTPD6; FHIT; GART; GMPR; GMPR2; GMPS; GUCY1A1; GUCY1B1; GUCY2D; 
GUK1; HDDC3; HPRT1; IMPDH1; IMPDH2; ITPA; NME1; NME1-NME2; NME3; NME4; 
NME6; NT5C; NT5C2; NT5C3A; NT5M; NTPCR; NUDT16; NUDT5; NUDT9; PAICS; 
PAPSS1; PAPSS2; PDE1B; PDE2A; PDE3B; PDE4A; PDE4B; PDE4D; PDE6D; PDE6G; 
PDE7A; PDE8A; PGM1; PGM2; PKM; PNP; PPAT; PRPS1; PRPS2; PRUNE1; RRM1; RRM2; 
RRM2B 
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KEGG: Salivary secretion 
0.979; 
1.44; 
2.013 

5.848; 
3.685; 
6.061 

0.548; 
1.377; 
2.151 

ADCY3; ADCY4; ADCY7; ADRB2; AMY1A; AQP5; ATP1A1; ATP1B1; ATP1B3; ATP2B1; 
ATP2B4; BST1; CALM1; CALM2; CALML4; CAMP; CD38; CST2; CST3; CST4; GNAQ; 
GNAS; GUCY1A1; GUCY1B1; KCNMA1; KCNN4; LYZ; PLCB1; PLCB2; PRH1; PRKACB; 
PRKCB; SLC9A1 

KEGG: Progesterone-mediated oocyte 
maturation 

0.739; 
0.379; 
0.671 

  

ADCY3; ADCY4; ADCY7; AKT1; AKT2; ANAPC1; ANAPC11; ANAPC13; ANAPC4; 
ANAPC5; ARAF; AURKA; BRAF; BUB1; CCNA1; CCNA2; CCNB1; CCNB2; CDC16; 
CDC25B; CDC26; CDC27; CDK1; CDK2; CPEB2; CPEB3; CPEB4; GNAI2; GNAI3; 
HSP90AA1; HSP90AB1; IGF1R; KIF22; KRAS; MAD1L1; MAD2L1; MAD2L2; MAP2K1; 
MAPK13; MAPK14; MAPK3; PDE3B; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PKMYT1; 
PRKACB; RAF1; RPS6KA1; RPS6KA2; RPS6KA3; SPDYE1; STK10 

CORUM: 12S U11 snRNP 
0.68; 

1.354; 
0.671 

 
5.814; 
4.818; 
5.376 

PDCD7; PRKRIP1; SNRNP25; SNRNP35; SNRNP48; SNRPB; SNRPD1; SNRPD2; SNRPD3; 
SNRPE; SNRPF; SNRPG; SRSF7; YBX1 

KEGG: Cytosolic DNA-sensing pathway 
0.621; 
0.525; 
1.342 

 
7.675; 
5.934; 
4.301 

ADAR; AIM2; CASP1; CCL4; CCL4L1; CCL5; CGAS; CHUK; CXCL10; DDX58; IKBKB; 
IKBKE; IKBKG; IL18; IL1B; IRF3; IRF7; MAVS; NFKB1; NFKBIA; POLR1C; POLR1D; 
POLR2E; POLR2F; POLR2H; POLR2K; POLR2L; POLR3C; POLR3D; POLR3E; POLR3GL; 
POLR3K; PYCARD; RIPK1; RIPK3; TBK1; TMEM173; TREX1; ZBP1 

KEGG: Glutathione metabolism 
0.326; 
0.323; 
0.671 

  
ANPEP; CHAC2; G6PD; GCLC; GCLM; GGT1; GPX1; GPX4; GPX7; GSR; GSS; GSTK1; 
GSTM3; GSTO1; GSTP1; HPGDS; IDH1; IDH2; LAP3; MGST1; MGST2; MGST3; NAT8B; 
ODC1; OPLAH; PGD; RRM1; RRM2; RRM2B; SMS; SRM; TXNDC12 

KEGG: Steroid biosynthesis  
9.044; 
9.84; 
9.091 

 CYP2R1; CYP51A1; DHCR24; DHCR7; EBP; FDFT1; LIPA; MSMO1; NSDHL; SOAT1; 
SQLE; TM7SF2 

KEGG: RNA polymerase  
6.459; 
3.452; 
6.061 

 
POLR1B; POLR1C; POLR1D; POLR1E; POLR2A; POLR2B; POLR2C; POLR2E; POLR2F; 
POLR2G; POLR2H; POLR2I; POLR2J; POLR2J3; POLR2K; POLR2L; POLR3C; POLR3D; 
POLR3E; POLR3GL; POLR3K; ZNRD1 

KEGG: mTOR signalling pathway  
5.646; 
5.038; 
3.03 

 

AKT1; AKT1S1; AKT2; ATP6V1A; ATP6V1B2; ATP6V1C1; ATP6V1D; ATP6V1E1; 
ATP6V1E2; ATP6V1F; ATP6V1G1; ATP6V1H; BRAF; CAB39; CASTOR1; CHUK; CLIP1; 
DDIT4; DVL1; EIF4B; EIF4E2; EIF4EBP1; FLCN; FNIP2; FZD1; FZD2; GRB10; GRB2; 
GSK3B; IGF1R; IKBKB; INSR; KRAS; LAMTOR1; LAMTOR2; LAMTOR3; LAMTOR4; 
MAP2K1; MAP2K2; MAPK3; MAPKAP1; MIOS; MLST8; NPRL2; NPRL3; NRAS; PDPK1; 
PIK3CA; PIK3CB; PIK3CD; PIK3R1; PRKAA1; PRKCB; PRR5; PTEN; RAF1; RHEB; RHOA; 
RICTOR; RPS6; RPS6KA1; RPS6KA2; RPS6KA3; RPS6KB1; RPS6KB2; RRAGA; RRAGB; 
RRAGC; RRAGD; SEC13; SESN2; SGK1; SLC38A9; SLC3A2; SOS1; SOS2; STK11; 
STRADA; STRADB; TBC1D7; TELO2; TNF; TNFRSF1A; TSC2; TTI1; ULK1; WDR59; 
WNT3 

CORUM: SMN complex  
3.084; 
2.097; 
3.03 

 DDX20; GEMIN4; GEMIN7; GEMIN8; SNRPB; SNRPD1; SNRPD2; SNRPD3; SNRPE; 
SNRPF; SNRPG; STRAP 

KEGG: Ribosome biogenesis in eukaryotes  
1.874; 
3.782; 
3.03 

 

BMS1; CSNK2A1; CSNK2A2; CSNK2B; DKC1; DROSHA; EIF6; EMG1; FBL; FCF1; GNL2; 
GNL3; GNL3L; GTPBP4; HEATR1; IMP3; IMP4; LSG1; MPHOSPH10; NHP2; NOB1; NOP10; 
NOP56; NOP58; NXF1; NXT1; NXT2; POP4; POP5; POP7; PWP2; RAN; RCL1; REXO1; 
REXO2; RPP25L; RPP38; RRP7A; SBDS; SNU13; TCOF1; UTP14A; UTP14C; UTP18; UTP4; 
UTP6; WDR36; WDR75; XPO1; XRN1; XRN2 
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KEGG: Prion diseases  
0.571; 
2.383; 
3.03 

 BAX; C1QA; C1QB; C1QC; C5; CCL5; EGR1; ELK1; FYN; HSPA1A; HSPA5; IL1A; IL1B; 
LAMC1; MAP2K1; MAP2K2; MAPK3; PRKACB; PRNP; SOD1; STIP1 

CORUM: Kinase maturation complex 1  
0.228; 
2.612; 
3.03 

 CDC37; HSP90AA1; HSP90AB1; HSPA4; MAP2K5; MAP3K3; PDRG1; PFDN2; TRAF7; 
YWHAB; YWHAG; YWHAH; YWHAQ; YWHAZ 

KEGG: Arachidonic acid metabolism   
8.65; 

10.792; 
11.828 

AKR1C3; ALOX12; ALOX5; CBR1; CYP4A22; CYP4F2; CYP4F3; GGT1; GPX1; GPX7; 
HPGDS; JMJD7-PLA2G4B; LTA4H; LTC4S; PLA2G12A; PLA2G4A; PLA2G4F; PLB1; 
PRXL2B; PTGDS; PTGES; PTGES3; PTGS1; PTGS2; TBXAS1 

KEGG: Collecting duct acid secretion   
5.466; 
7.8; 

8.602 

ATP6V0A2; ATP6V0C; ATP6V0D1; ATP6V0E1; ATP6V0E2; ATP6V1A; ATP6V1B2; 
ATP6V1C1; ATP6V1D; ATP6V1E1; ATP6V1E2; ATP6V1F; ATP6V1G1; CA2; SLC4A1; 
TCIRG1 

KEGG: Regulation of lipolysis in adipocytes   
5.229; 
3.744; 
5.376 

ABHD5; ADCY3; ADCY4; ADCY7; ADRB2; AKT1; AKT2; GNAI2; GNAI3; GNAS; INSR; 
IRS2; MGLL; NPPA; PDE3B; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PRKACB; PTGS1; PTGS2 

KEGG: Leishmaniasis   
4.508; 
6.629; 
6.452 

C3; CR1; CYBA; CYBB; ELK1; FCGR1A; FCGR2A; FCGR2C; FCGR3A; FCGR3B; FOS; 
HLA-DMA; HLA-DMB; HLA-DOB; HLA-DPA1; HLA-DPB1; HLA-DQA1; HLA-DQB1; HLA-
DRA; HLA-DRB1; HLA-DRB5; IFNG; IFNGR1; IFNGR2; IL10; IL1A; IL1B; IRAK1; IRAK4; 
ITGA4; ITGAM; ITGB1; ITGB2; JAK1; JAK2; JUN; MAP3K7; MAPK13; MAPK14; MAPK3; 
MARCKSL1; MYD88; NCF1; NCF2; NCF4; NFKB1; NFKBIA; PRKCB; PTGS2; PTPN6; 
STAT1; TAB1; TAB2; TGFB1; TLR2; TLR4; TNF; TRAF6 
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