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Abstract

Finding novel biomarkers for human pathologies and predicting clinical outcomes for patients
is rather challenging. This stems from the heterogenous response of individuals to disease
which is also reflected in the inter-individual variability of gene expression responses. This in
turn obscures differential gene expression analysis (DGE). In the midst of the COVID-19
pandemic, we wondered whether an alternative to DGE approaches could be applied to dissect
the molecular nature of a host-response to infection exemplified here by an analysis of HIN1
influenza, community/hospital acquired pneumonia (CAP) and sepsis. To this end, we turned
to the analysis of ensemble gene noise. Ensemble gene noise, as we defined it here, represents
a variance within an individual for a collection of genes encoding for either members of known
biological pathways or subunits of annotated protein complexes. From the law of total variance,
ensemble gene noise depends on the stoichiometry of the ensemble genes’ expression and on
their average noise (variance). Thus, rather than focusing on specific genes, ensemble gene
noise allows for the holistic identification and interpretation of gene expression disbalance on
the level of gene networks and systems. Comparing HIN1, CAP and sepsis patients we spotted
common disturbances in a number of pathways/protein complexes relevant to the sepsis
pathology which lead to an increase in the ensemble gene noise. Among others, these include
mitochondrial respiratory chain complex I and peroxisomes which could be readily targeted
for adjuvant treatment by methylene blue and 4-phenylbutyrate respectively. Finally, we
showed that ensemble gene noise could be successfully applied for the prediction of clinical
outcome, namely mortality, of CAP and sepsis patients. Thus, we conclude that ensemble gene
noise represents a promising approach for the investigation of molecular mechanisms of a

pathology through a prism of alterations in coherent expression of gene circuits.
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Introduction

Both viral and bacterial pneumonia may lead to a life-threatening condition, namely sepsis.
Most notable cases, in the public perception, include pandemic viral infections, such as the
2009 swine flu pandemic caused by HIN1 [1] and more recently, the 2019 coronavirus disease
(COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2].
Like with any other annual severe acute respiratory infections (SARI), these pandemics
resulted in a significant raise in patients with sepsis at intensive care units[3, 4]. Sepsis is a
complex reaction of the host (human) to a systemic infection (viral or bacterial) often resulting
in septic shock or death [5-7]. A problem of sepsis treatment, the prediction of patients’ clinical
outcomes and the risks of mortality relates to the highly heterogenous nature of sepsis [8].
Thus, despite recent progress in identification of molecular biomarkers for sepsis [8-15],
treatment remains mainly non-curative and clinical outcomes are mostly inferred from clinical

signs [5].

A canonical approach for the identification of disease biomarkers and their potential
therapeutic targets relies on differential gene expression (DGE) analysis either on RNA or
protein levels. This stems from a classical gene regulation Jacob-Monod model, which implies
a specific gene expression response (up- or down-regulation) to a specific signal (see recent
perspective on historical origins of the model in [16]. However, gene expression is a stochastic
process and cellular responses to signals often trigger a cascade of changes in gene expression,

making it difficult to discover specific targets and biomarkers for a disease.

The stochastic nature of gene expression implies a natural variation in RNA and protein copy
numbers [17]. According to the fluctuation-response relationship [18, 19], an amount of gene
expression response to a signal (fluctuation) is proportional to its variance (or squared
biological coefficient of variation — bcv?) for log-scaled values of RNA copy number [20].
Consequently, statistical inference of differentially expressed genes will be biased towards
genes with high variance (bcv?) (Figure S1). This leads to a set of intrinsic problems with DGE
analysis. 1) genes with increased variability in expression will strongly respond to any cellular
signal aimed at them. However, these genes may not necessarily be causative for a diseased
state. Even under normal circumstances they exhibit large fluctuations and, thus, are loose-
regulated. 2) In contrast, genes with a low variability will respond only modestly, but these
genes are tight-regulated and any fluctuations in their expression might be causative for a

diseased state.
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Upon calling significantly changed genes, to make biological sense, these genes are mapped to
known biological pathways, such as GO or KEGG [21, 22], or to subunits of protein complexes
annotated by CORUM or other interaction databases [23]. Thus, a second statistical test is
required, namely gene set enrichment analysis (GSEA). However, this is not without its own
caveats. The major one is that GSEA depends on the statistical inference of DGE and DGE
cut-offs [24, 25]. As a result, biological interpretations from DGE might be drastically affected
by pitfalls arising from the fluctuation-response relationship, DGE thresholding and the choice
of statistical approach for GSEA.

To circumvent this, we reasoned that 1) genes do not function in isolation, but rather act as
ensembles representing biological pathways and/or subunits of protein complexes. 2) The
normal function of a biological pathway or protein complex requires a regulated (balanced)
expression of the whole gene ensemble. 3) Any alterations in the expression of a gene ensemble
might be causative for a disease or predictive for clinical outcome. To infer the alterations in
gene ensembles expression we turned to the estimation of their variances (ensemble gene noise)
from whole blood gene expression profiles of individuals under normal and pathological
conditions. From the total law of variance, ensemble gene noise (Var[G]) sums from the
variance of ensemble genes’ means and (Var[E[G | g]]), and the expectation of ensemble genes
variances (E[Var[G | g]]) (Figure S2). Thus, the ensemble gene noise estimates both: 1) changes

in stoichiometries of genes encoding either a biological pathway or protein complex subunits

and 2) changes in mean gene expression variability for genes in ensemble.

From the whole blood expression profiles of patients under intensive care treatment we
estimated how ensemble gene noise corresponds to a pathological state, such as sepsis,
community/hospital acquired pneumonia (CAP) or viral HIN1 pneumonia (HIN1). From this
analysis we identified a number of pathways for which ensemble gene noise associated
positively with an individual health/disease state treated as an ordinal variable (healthy < early
HINI phase < late HIN1 phase and healthy < sepsis/CAP survived < sepsis/CAP deceased
patients). Finally, we identified pathways and complexes where deregulation is associated with
a poor prognosis and predicted the clinical outcome (survival/mortality) for CAP/sepsis
patients based on ensemble gene noise with high accuracy. We concluded that the ensemble
gene noise provides a powerful tool for the discovery of systemic disease biomarkers,

pharmaceutically targetable pathways and the prediction of a disease clinical outcome.
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Results
Mean and variance gene expression response to infection and sepsis

Sepsis is thought to trigger a plethora of heterogenous host responses to a systemic infection
[5, 8]. We reasoned that this heterogeneity might be reflected in the inter-individual gene
expression variability (standard deviation - & or variance - 6°). Considering that a) RNA copy
number is a mixed Poisson (e.g. negative binomial) random variable [26] and that b) log-
transformed microarray hybridization signal intensities correlate with log-transformed RNA-
seq copy numbers [27]. It is easy to show that the variance of log gene expression approximates

the biological coefficient of variation (bcv?) [20]. From the first-order Taylor expansion for

2
. o . . . .
variance: 0% =~ X—’Z‘ = cv, where Y = log(X) is the log gene expression. The mixed Poisson

. 1 . .
random variable, cvz = P + bcv?, where bcv?, also known as the overdispersion parameter,
X

is independent of mean gene expression (iy). Thus, for uy > 1 (for genes with a large mean
RNA copy number), 6% ~ bcv?. In other words, by estimating the inter-individual log gene
expression variabilities from either microarray signal intensities or RNA-seq counts we can

infer approximately the biological coefficients of variations for genes’ RNA copy numbers.

We estimated the dispersions for whole blood log gene expressions in CAP and sepsis patients
(8826 genes), and HIN1 infected patients (7240 genes) from the two data sets GSE65682 and
GSE21802 respectively (for a detailed description of cohorts see original studies and Methods)
[8, 11, 28]. For CAP and sepsis patients we also accounted for age, including it as a random
variable in the Generalized Additive Model for Location, Scale and Shape (GAMLSS) [29],
see Methods. On average, the dispersions in log gene expressions in CAP, sepsis and HIN1
patients were significantly higher as compared to healthy individuals (Figure 1A). To that, for
CAP patents’ dispersions in log gene expressions were significantly higher for deceased
patients as compared to those survived. Likewise, for HIN1 patients, dispersions in log gene
expressions further increased in the late phase of infection (Figure 1A). For sepsis patients, on
average dispersions in log gene expressions were comparable between survived and deceased
patients for all analysed genes (Figure 1A). However, for genes for which dispersions changed
significantly between healthy individuals and sepsis patients (Bonferroni adjusted p < 0.05),
their dispersions on average were higher in the deceased patients as compared to the survived

(p < 0.001). Together, these suggest that host response to infection increases the biological
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coefficients of variations in genes’ RNA copy numbers (as 0% ~ bcv?) and substantiates

heterogeneity in the pathogenesis of sepsis [8] from the gene expression perspective.

Because of the fluctuation-response relationship [18], absolute changes in the mean log gene
expressions (|Ap|) in response to infection (CAP, HIN1) and sepsis correlated significantly
with the variances of the log gene expressions (Figure 1B). Interestingly, we also noted
significant correlations between the absolute changes in inter-individual gene expression
variabilities (|Ac?|) and the variances of log genes expressions (Figure 1C). Consequently, |Ap|
and |Ac?| were also correlated (Figure 1D). Thus, we conclude that HIN1, CAP and sepsis
result in coordinated changes in both the mean and heterogeneity of the expression of genes

and that magnitudes of these changes depend on genes’ biological coefficients of variation.

Ensemble gene noise response to infection and sepsis

Both the mean and variance relate to population (inter-individual) statistics reflecting distinct
aspects of gene regulation. Changes in means fit the classical DGE view on gene response to a
pathology and other biological processes, while changes in variances yield a view on
heterogeneity of gene response. However, as we noted before (Figure 1 and S1), statistical
inference of these changes is biased towards higher a significance for genes with a high
biological coefficient of variation. Although changes in RNA copy number can serve in
practical applications for diagnostics of a disease and clinical outcomes, inter-individual
variability cannot be used for diagnosis. At the same time, stochastic fluctuations in gene
expression remain attractive for the dissection of novel molecular mechanisms of a pathology.
Therefore, we expect that estimation of ensemble gene noise may provide additional benefits

for diagnostics by quantifying fluctuations, while being informative for personalized treatment.

We define ensemble gene noise as the variance of log-transformed, normalized expression
levels for a collection of genes G = (g4, ..., g;) encoding for either proteins of a pathway or
subunits of a protein complex. To this end, we mapped genes to the KEGG-annotated pathways
and the CORUM-annotated protein complexes [22, 23]. From the law of total variance:
Var[G] = E[Var[G| g]] + Var[E[G| g]], ensemble gene noise depends on the variability in
expression of genes in ensemble (E[Var[G| g]]) and on their stoichiometry (Var[E[G| g]])

(Figure S1). Thus, the simple estimation of the variances (Var[G]) of gene ensembles for each
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individual might reflect alterations in function of biological pathways and protein complexes

on the level of stoichiometry and gene noise.

We, then, correlated Var[G] for ensembles with HIN1, CAP and sepsis disease states. For
HI1NI viral infection, disease state can be clearly ranked: non-infected (healthy) < early phase
< late phase of infection, thus it represents an ordinal variable [28]. For CAP and sepsis
patients, we assumed that a condition of the deceased patients was worse than that of the
survived. We considered that healthy < survived < deceased can also be represented as ordinal
disease state variable. Circumstantially, this is supported by distinct blood gene expression
endotypes [8] and an increased gene expression heterogeneity (Figure 1A). Kendall rank
correlation identified a number of pathways and protein complexes for which ensemble gene
noise was positively and significantly associated with the disease state in HIN1 (FDR < 0.05),
and CAP and sepsis patients (Bonferroni-adjusted p < 0.05) (Figure 2A). None of the pathways
or gene complexes were negatively associated with the disease state at the specified
significance thresholds. We used different p value adjustment procedures (FDR — less
conservative, and Bonferroni — more conservative) for HIN1, CAP and sepsis patents due to

the large differences in sample sizes (number of patients) between these data sets.

Out of all gene ensembles, 13 of them proved to be consistent and correlated to the increased
disease state in ensemble gene noise in all three disease conditions (Figure 2A, B, Table S1A).
Most of these gene ensembles (pathways) are known to be involved in the pathology of sepsis
through multiple experimental evidences (Table 1), thus substantiating a power of ensemble
gene noise analysis. However, ensemble gene noise yields novel insights into the molecular
mechanisms of sepsis (HIN1, CAP or other-causes of sepsis) by suggesting a holistic mis-

regulation in stoichiometry and gene noise for these gene ensembles.

We also identified 5 gene ensembles for which ensemble gene noise was positively and
significantly correlated with the disease state in HIN1 and CAP patients (Figure 2A, Table
S1B). However, ensemble gene noise for these pathways was also significantly increased in
sepsis patients (t-test, Bonferroni adjusted p < 0.01) despite insignificant rank correlation. To
that, some of these pathways can be implicated in the pathology of sepsis (Table 1). Two of
these ensembles were represented by genes encoding mitochondrial respiratory chain complex
I (Complex I) (Figure 2C). From the point of view of ensemble gene noise this suggests an
altered stoichiometry and gene noise in the expression of the subunits of the Complex I which,

as a result, might lead to its improper assembly and function in HIN1, CAP and sepsis patients.
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Indeed, it has been established that the activity of the Complex I is decreased and correlates
with the severity of sepsis [30]. Complex I is the first set of enzymes of the respiratory chain
and it is the entry point for most electrons into the electron transport chain [31]. Interestingly,
however, in case of the Complex I inhibition or deregulation, methylene blue (MB) can bypass
it by acting as alternative redox mediator in the electron transport chain, thus, restoring
mitochondrial respiration [32, 33] (Figure 2D). MB is also considered to be a promising
therapeutic in treatment of septic shock [34, 35]. Thus, ensemble gene noise might provide a
simple yet powerful explanatory shortcut, from the expression of thousands of genes to the

function of gene ensembles and possible pharmaceutical targets.

Predicting clinical outcome for CAP and sepsis patients from the ensemble gene noise

Treatment of sepsis is challenging and mortality rates among sepsis patients are high. Yet,
prediction of clinical outcome is also challenging due to heterogeneity in the pathology [8] and
gene expression (Figure 1A). Recently, Molecular Diagnosis and Risk Stratification of Sepsis
(MARS) consortium identified the Mars1 gene expression endotype which was significantly
associated with acute (28-day) mortality, however, for other endotypes Mars2-4 poorly
discriminated between the survival and mortality of patients [8]. Thus, we wondered whether

the clinical outcome (mortality) could be predicted from the ensemble gene noise.

To this end, we trained binary logistic gradient boosted regression tree models using survival
and acute mortality as a binary response variable for clinical outcome and patients’ age and
blood ensemble gene noise as models’ features. The models were trained with XGBoost [36].
The CAP and sepsis patients were split into discovery (263 patients: 105 CAP and 158 sepsis
patients) and validation (216 patients: 78 CAP and 138 sepsis patients) cohorts following
GSE65682 annotation [8]. Within the cohorts the mortality rates were 26.2% for CAP and
sepsis patients (23.8% for CAP and 27.8% for sepsis patients) in the discovery cohort, and
20.8% for CAP and sepsis patients (19.2% for CAP and 21.7% for sepsis patients) in the

validation cohort.

Overall, class-imbalance, noise due to the inter-individual heterogeneity and high-
dimensionality of model features are among the major problems of machine learning [37]. In
part, ensemble gene noise leads to a reduction in inter-individual variability (Figure S3) and in
dimensionality as model features are represented not by individual genes, but by collections of

genes. Nonetheless, we further reduced the number of ensemble gene noise features in models
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by t-test feature selection. For this, we compared gene ensembles noise between survived and
deceased patients in the discovery cohorts. The p-value cut-offs for the model features were
selected based on maximization of models’ training accuracy (see Methods). XGBoost hyper-
tuning parameters: learning rate, complexity, depth, etc. were optimized based on the cross-
validation. To avoid overfitting, we used early epoch stopping, which was estimated from the
test fold of the discovery cohort (see Methods). Because of the class-imbalance, AUC (area
under the receiver operating characteristic (ROC) curves) was used to evaluate the model

performance. The validation cohorts were hidden from the feature selection and training.

Figures 3A and 3B show model scores and ROC curves for the model, predicting
mortality/survival for the CAP and sepsis patients in the discovery and validation cohorts.
AUC:s for the discovery and validation cohorts were 0.871 and 0.707 respectively, suggesting
a reasonable accuracy of the model. However, from the model scores, and evaluation of the
model specificity/sensitivity it appears that the model is biased towards the prediction of major
class (survived) (Figure 3A, Table 2 and Table S2A). Thus, class prediction balanced
accuracies (bACC = Specificity/2 + Sensitivity/2) were 0.799 and 0.701 for the discovery and
validation cohorts respectively. Nonetheless, the survival probability for patients predicted to
have a high risk of mortality was significantly lower than the survival probability of patients
predicted to have low risk of mortality in both discovery and validation cohorts. To that, our
model better predicts the risks of mortality as compared to the Mars1 endotype inferred from
the log gene expression unsupervised learning (Figure 3C) [8]. Potentially, this could be due
to a lower inter-individual variability of gene ensembles noise as compared to log gene

expression (Figure S3).

In an attempt to increase the prediction accuracy, we trained to separated gradient boosted tree
models for CAP (Figure 4) and sepsis (Figure 5) patients. Indeed, in both cases the accuracy
of the prediction of the minor class (deceased patients) increased (Table 2 and S2) in both
discovery and validation cohorts. Likewise, AUCs for the validation cohorts were also higher
as compared to the model predicting mortality for both (CAP and sepsis) type of patients
(compare Figure 4B and 5B with Figure 3B). To that, differences in AUCs between discovery
and validation cohorts were lower for the models predicting mortality separately for CAP and
sepsis patients as for the model trained on both type of patients. This was especially evident
for the model predicting mortality for the CAP patients (Figure 4B). Thus, knowing the cause

of sepsis improves the prediction accuracy of the models.
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Finally, it has to be noted that both the feature selection and gradient boosted regression trees
allow for the ranking of the model features’ importance (Figures 3D, 4D, 5D and Table S3).
First, it turned out that a patients’ age does not noticeably contribute to the prediction of
mortality in CAP patients and it ranks low in the prediction of mortality of sepsis patients.
Second, high ranking gene ensembles (pathways) could be immediately associated with host
response to infection and, thus, pathology of the sepsis. These include legionellosis (a pathway
responsible for atypical pneumonia caused by Legionella bacteria), epithelial cell signalling in
Helicobacter pylori infection and leishmaniasis, and imbalances in these pathways either
caused by corresponding infections or immune activation could lead to the sepsis [38-40]. To
that, ensemble gene noise in immune pathways, such as rheumatoid arthritis and primary
immunodeficiency, contribute to the prediction of clinical outcome in sepsis patients (Figure
3D, 5D and Table S3). Thus, we conclude that the ensemble gene noise uncovers novel
approaches and insights to the discovery of biomarkers, prediction of clinical outcome and to
the molecular mechanisms of a pathology from the point of view of imbalances in

stoichiometry and gene noise of expression in gene ensembles.

Discussion

Here we attempted a dissection of molecular mechanisms of human pathology, exemplified by
HINI infection, CAP and sepsis, through a prism of ensemble gene noise. Unlike classical
DGE, ensemble gene noise allows for the identification of imbalances in the expression of
entire gene circuits, rather than individual genes on the level of stoichiometry and gene noise.
This approach offers an alternative, but non-mutually exclusive to the DGE interpretation of a

molecular basis of disease and both have their own strengths and weaknesses.

We noted in the introduction that due to a fluctuation-response a statistical inference of DGE
might be biased towards genes with a high inter-individual variability, i.e. “noisy” genes
(Figure S1) [18, 19]. However, the same applies to ensemble gene noise (Figure S4). This
imposes a certain problem to the interpretation of both DGE and ensemble gene noise. On one
hand, it can be suggested that large deviations in expression of genes and ensembles, which are
naturally prone to high fluctuations, might not be causative for a disease, as an organism is
already adapted to such variations. On the other hand, these genes/ensembles themselves might
play an important adaptive role [41] and their over-response could lead to a disease. At the

moment it seems difficult to come to a resolution between these two possibilities, but they
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should be considered, specifically in identification of pharmaceutical targets: genes or gene

ensembles (pathways, protein complexes).

As compared to DGE, ensemble gene noise provides a holistic interpretation to mis-regulation
in gene expression under pathologic or other conditions. As it operates on the level of gene
ensembles it does not require gene set enrichment analysis (GSEA), thus it circumvents
potential pitfalls of GSEA associated with the cut-off problem of DGE [24, 25]. As any gene
expression analysis ensemble gene noise relies on the quality and completeness of pathways
and the protein complexes’ annotation. Finally, we noted that inter-individual variability of
ensemble gene noise is significantly less than that of individual gene expression (Figure S3).
This, in turn, might improve the accuracy of diagnostic and clinical outcome models. Though
it might come at the expense of less features being available for the selection and training of
models. At the same time, in future studies, both DGE and ensemble gene noise could be

combined.

In this study we applied the concept of ensemble gene noise to the analysis of critically ill
HINI1, CAP and sepsis patients [8, 28]. We noted a large-scale gene response in two
dimensions: on the level of mean gene expression and on the level of variance (inter-individual
variability). Interestingly, both responses were correlated (Figure 1D) and both were dependent
on gene variance suggesting that the fluctuation-response might drive changes in these two
parameters of gene expression co-ordinately [18]. In all three cases (HIN1, CAP and sepsis),
inter-individual variability was increased for a bulk of the genes. Consequently, we only
identified pathways or gene complexes for which ensemble gene noise was significantly
increased for HIN1, CAP and sepsis patients as compared to healthy individuals. This suggests
that inter-individual gene expression variability is a prominent driver of ensemble gene noise

in these patients.

Because viral/bacterial infections and sepsis result in overwhelming gene expression response,
it is difficult to identify a reasonably small set of either genes or gene ensembles for biological
interpretation. Thus, we only focused on the pathways (protein complexes) for which ensemble
gene noise increased in all three cases and correlated these with a disease state (Figure 2A).
From this intersection we inferred 13 pathways most of which have been previously implicated
in sepsis (Table 1). To that, 5 pathways (protein complexes) showed significant association of
ensemble gene noise with HIN1 infection phase and CAP disease state and for which ensemble

gene noise also increased significantly in sepsis patients (Figure 2A). Potentially, these
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pathways could be targeted for adjuvant treatment of sepsis. Especially, we consider
mitochondrial respiratory chain complex I (Complex I) (Figure 2D) and peroxisome promising
for pharmaceutical targeting. Increased ensemble gene noise for the Complex I would imply
either altered stoichiometry, or increased gene expression noise for genes encoding subunits of
the Complex I or both. As a result, this might lead to improper assembly of the Complex I and
affecting its function. The impaired Complex I function can be bypassed by an alternative redox
mediator, such as methylene blue [32, 33]. To that, methylene blue is a selective inhibitor of
the nitric oxide—cyclic guanosine monophosphate (NO—cGMP) pathway [35] and increased
NO levels is a hallmark of sepsis [42]. Some clinical studies have already indicated a beneficial
role of methylene blue in the treatment of sepsis [34, 35]. Similar to mitochondrial respiration,
peroxisomes also play an important role in the pathology of sepsis as the dysfunction of
peroxisomes results in oxidative stress [43]. Again, an increased ensemble gene noise for
peroxisome pathway indicates a potential mechanism for such dysfunction in HIN1, CAP and
sepsis patients. Potentially peroxisome biogenesis could be restored by 4-phenylbutyrate and
there several studies indicating its positive role in treatment of sepsis [44, 45]. Considering
future directions, it could be proposed that search for epigenetic modulators of ensemble gene

noise might represent a novel pharmaceutical avenue for adjuvant treatments of sepsis.

Finally, we explored the possibility to use ensemble gene noise in the prediction of clinical
outcomes. Previously some promising biomarkers and gene expression endotypes associated
with septic shock and mortality have been identified based on DGE analysis [8, 9]. However,
as already mentioned, ensemble gene noise looks at gene expression from a different, yet
complementary, angle, thus enabling the identification of novel pathways and biomarkers for
sepsis and other diseases. To that, models predicting pathology based on ensemble gene noise
could potentially be more robust, as inter-individual variability for ensemble gene noise is
lower than that for log gene expression (Figure S3). Furthermore, Gradient boosted regression
tree models trained on CAP and sepsis patients to predict their mortality had a good accuracy
on validation cohort (Figure 3, Table 2). These outperformed predictions based on the Mars1
gene expression endotype, which was shown to associate with a poor prognosis [8], both on
the discovery and validation cohorts (Figure 3C). Interestingly, some ensemble gene noise
features selected statistically for the models predicting mortality in both CAP/sepsis-, CAP-
and sepsis- patients couldimmediately be related to the host’s response to infection. For

example, increases in ensemble gene noise in legionellosis, epithelial cell signalling in
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Helicobacter pylori infection and leishmaniasis pathways could potentially serve as biomarkers

of sepsis and its outcome.

In conclusion, here we showed a potential of ensemble gene noise in the biological
interpretation of a disease, the identification of pharmaceutically targetable pathways, novel
biomarkers, and the prediction of clinical outcome. Together, we believe that ensemble gene
noise analysis could be broadly applied alongside with DGE to dissect molecular mechanisms
of the pathology in two complementary dimensions: in Jacob-Monod dimension of specific

gene regulation and in a novel dimension of holistic gene circuit regulation.
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Methods

Data resources and processing

GSE65682 Affymetrix Human Genome U219 Array whole blood gene expression profiles
were used for the analysis of community/hospital acquired pneumonia (CAP) and sepsis
patients [8, 11]. In brief, the cohort consisted of 42 healthy individuals (24 males, 18 females),
183 CAP patients (111 males, 72 females) and 296 sepsis patients (161 males, 135 females).
The mean age of CAP (61.5+1.2) and sepsis (60.6+0.8) patients did not differ significantly
(1(350.37) = 0.59, p = 0.56), however healthy individuals were significantly younger as
compared to CAP (#54.0) =4.7, p <0.001) and sepsis (#(47.2) = 4.6, p < 0.001) patients. Out
of 183 CAP patients, 40 died within 28 days and out of 296 sepsis patients, 74 died within 28
days. Thus, we divided CAP and sepsis patients into survived and deceased groups, considering

these two states as an ordered factor (ordinal) variable (survived < deceased).

GSE21802 Ilumina human-6 v2.0 expression bead-chip whole blood gene expression profiles
were used for the analysis of HIN1 infected patients [28]. The cohort consisted of 4 healthy
individuals and 19 HIN1 patients (8 in early and 11 in late phase of the disease). The early
phase was defined as early, from the onset of symptoms - day 0 to day 8 , and late — from day
9 and above. The statistics of the cohorts is given in Table 1 of [28], however neither sex nor

age assignments were available for the patients from the GSE21802 series annotation.

GSE65682 microarrays signal intensities were pre-processed (background corrected and
RMA-normalized) with the Bioconductor oligo package [46]. Lowly-expressed and outlier
genes were identified in high dimensions using the spatial signs (sign2) algorithm of mvouliter
R package with a critical value for outlier detection at 0.9.The robust principal components
explained a variance of 0.95 [47]. GSE21802 signal intensities significantly above the
background were quantile normalized [48]. Genes were annotated with Bioconductor
hgu219.db and illuminaHumanv2.db database packages for GSE65682 (8826 genes) and
GSE21802 (7240 genes) respectively.

Statistical analysis of gene expression variability and ensemble gene noise
Statistical analysis was done using R and R/Bioconductor packages [49].

To estimate the inter-individual gene expression variability for healthy, CAP and sepsis
patients we accounted for age as a random effect. To this end, we used Generalized Additive

Model for Location, Scale and Shape (GAMLSS) [20, 29]. In brief, for normally distributed
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log-transformed microarray intensities (Y = log(X), Y ~N (uy, ay)), GAMLSS allows for the

modelling of both parameters of gene expression (mean and dispersion):
ﬂy""Dﬁ# + Zuu,

log (O-Y)"’Dﬂa + Zuao

T T . .
where py = (,uyl, e ,uyn) and gy = (ayl, s ayn) are the vectors of means and dispersions

forY = (Y, ..., Y,). D - n X p fixed effect design matrix for the disease state (healthy, survived,

deceased). B, = (18;1 P ,BM)T and S, = (,801, s ,BUr)T — estimated fixed effect coefficients

for mean and dispersion. Z- n X k random effect design matrix for age (age was binned into

. T T .
10 deciles). u, = (uu1' ...,uuk) and u, = (ual, ...,uak) — estimated random effect
coefficients for mean and dispersion, where u~N(0,5). With GAMLSS it is also
straightforward to test for the significance of a factor effect on either the mean, the variance,

or both with likelihood ratio test [20].

Gene ensemble lists were generated by the mapping of genes to the KEGG-annotated biological
pathways or CORUM-annotated subunits of mammalian protein complexes [22, 23]. Their
gene noise was estimated for each individual by calculating the variances of log-transformed
expressions of genes for each ensemble (Figure 1S). Estimates of gene ensembles noise were
correlated with the disease states (healthy < early phase < late phase for HIN1 and healthy <
survived < deceased for CAP and sepsis) by Kendall rank correlation, treating the disease state
as an ordinal variable. Linear trends between disease states and ensembles gene noise were

estimated by rank-based regression [50].

Gradient boosted regression tree models

To predict the mortality of CAP and sepsis patients we trained gradient boosted regression tree
models with a scalable tree boosting system XGBoost [36] using mortality within 28 days as a
binary response variable, and ensemble gene noise and age as independent model features. To
this end, we split individuals into discovery and validation cohorts following exactly the same
partitioning as annotated in GSE65682 [8]. Then, we trained 3 models: 1) a model predicting
mortality for CAP and sepsis patients, 2) a model predicting mortality for CAP patients, and 3)
a model predicting mortality for sepsis patients. Models features were preselected using

discovery cohorts by ¢ test comparing ensembles gene noise for survived and deceased patients
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to maximize the accuracy of XGBoost training on the discovery data sets. For CAP and sepsis
(1), and sepsis (3) models, the cut-off for the model features was set at p < 0.01, and for the
CAP model (2) — at p < 0.05. The XGBoost hyper tuning parameters (learning rate (1),
complexity (y), depth, efc.) were optimized by cross validation. To avoid overfitting, we found
early epoch stopping parameters by randomly splitting of the discovery cohort into two equal
folds: training and test. Then, the validation cohorts, which were hidden from feature selection

and model training, were used to verify the accuracy of the final models.
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Figures and figure legends
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Figure 1. HIN1, CAP and sepsis coordinately affect mean gene expression and inter-

individual gene expression variability.

A) Inter-individual variability in whole blood gene expression (o) increases in CAP (top),

sepsis (mid) and HINT (bottom) patients as compared to healthy individuals. p(i-0) — p-values

of ¢ tests comparing differences in inter-individual gene expression variability of healthy

individuals (control) with survived (CAP, sepsis) and early HIN1 infected patients. pe-1) — p-

values of ¢ tests comparing differences of survived (CAP, sepsis) and early HIN1 infected

patients with deceased (CAP, sepsis) and late HIN1 infected patients. Circles and whiskers

indicate means and standard deviations respectively.
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B) Correlations between variances in whole blood gene expression (6?) and absolute changes
in mean gene expression (JAp|) for healthy individuals (ctl.) and patients (CAP, sepsis, HIN1).
Due to the fluctuation-response relationship a magnitude of mean gene expression response
depends on its variance. We estimated common variances for genes in healthy and CAP

patients (top), healthy and sepsis patients (mid) and healthy and HIN1 patients (bottom).

C) Correlations between variances in whole blood gene expression (%) and absolute changes

in inter-individual gene expression variability (|Ac?|) for control individuals (ctl.) and patients

(CAP, sepsis, HINI).

D) Correlations between absolute changes in mean gene expression (JAu|) and in inter-

individual gene expression variability (|Ac?|).
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Figure 2. Association of ensemble gene noise with HIN1, CAP and sepsis disease states.

A) Venn diagram of KEGG- and CORUM-annotated biological pathways/protein complexes
for which ensemble gene noise associates positively (increases) and significantly with disease

state.

B) Plots of ensemble gene noise for genes involved in HIF-1 signalling, peroxisome,
necroptosis, NOD-like receptor and Fc epsilon RI signalling pathways. Pathways were
annotated by KEGG. Kendall tau, and FDR- (HIN1 patients) and Bonferroni- (CAP and sepsis
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patients) adjusted p-values are indicated. Rank-based regression trend lines and 95%
confidence bands of ensemble gene noise association with the state of disease are shown. Black

circles and whiskers indicate means and standard deviations.

C) Plots of ensemble gene noise for genes encoding CORUM-annotated subunits of
mitochondrial respiratory chain complex I (subcomplex I alpha — top panel and nuclear
encoded subunits — bottom panel). Rank-based regression trend lines and 95% confidence

bands of ensemble gene noise association with the state of disease are shown.

D) Methylene Blue (MB) acts as an alternative electron donor to the electron transport chain
(red arrows) by shuttling between redox states (MB — MBH2) and, thus, bypassing respiratory
chain complex I. Respiratory chain complex I-IV and their substrates are indicated, Q —

coenzyme Q10, CytC — cytochrome C. Electrons are indicated as yellow circles.
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Figure 3. Model predicting mortality/survival of CAP and sepsis patients.

A) Boxplots of the model scores predicting mortality/survivorship in the discovery (left) and
validation (right) cohorts. The model was trained on the same as published discovery cohort
by the gradient boosted regression tree and validated on independent cohort[8]. Dashed lines
indicate threshold levels of classification. The threshold was calculated by maximizing a
product of the specificity and sensitivity of the model prediction in the discovery cohort.

Further details of model accuracy are given in Tables 2 and S2.

B) Receiver operating characteristic curves (ROC) for the model predicting mortality (end
point — survival or death within 28 days after treatment) in CAP and sepsis patients (blue line
— discovery cohort, red line — validation cohort). Features were selected by the t-test comparing
ensemble gene noise between the survived and deceased patients in the discovery cohort to
achieve maximum prediction accuracy for the discovery cohort. Values for the area under the

ROC curve (AUC) are indicated.
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C) Survival probability for the patients predicted to have low (blue line) and high (green line)
risk of mortality for the discovery (left panel) and validation (right panel) cohorts. p-values
indicate significant differences in hazards for the predicted classes (survival/mortality)
according to the Cox proportional-hazards model. Black lines - survival probability of patients
with Mars1 endotype [8] was compared with the predicted deceased class for the discovery and

validation cohorts.

D) Variable importance of the model ranks ensemble gene noise features according to their

relative contribution (gain).
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Figure 4. Model predicting mortality/survival of CAP patients. A) Boxplots of the model
scores predicting mortality/survivorship in the discovery (left) and validation (right) cohorts.
B) ROC curves for the model predicting mortality in CAP patients in the discovery (blue line)
and validation (red line) cohorts. Cohorts were partitioned as in [8]. C) Survival probability for
the patients predicted to have low (blue line) and high (green line) risk of mortality for the
discovery (left panel) and validation (right panel) cohorts. D) Relative contribution of ensemble

gene noise features to the model.
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Figure 5. Model predicting mortality/survival of sepsis patients. A) Boxplots of the model
scores. B) ROC curves for the model predicting mortality in sepsis patients. C) Survival
probability for the patients predicted to have low (blue line) and high (green line) risk of

mortality. D) Relative contribution of ensemble gene noise features to the model.
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Table 1. Role in sepsis of the pathways for which ensemble gene noise associates positively

(increases) with the disease states (healthy < early/survived < late/deceased)

Pathways/Complexes Role in sepsis pathology Reference
Metabolic reprogramming of innate immune cells

KEGG: HIF-1 signalling pathway | during the hyperinflammatory and immunotolerant [51,52]
phases of sepsis.
Defective peroxisome recycling alters cellular redox

KEGG: Peroxisome homeostasis and leads to exaggerated oxidative stress [43]
response to endotoxin (infection) and sepsis.

KEGG: Necroptosis Necr.optosis .is implicateq .in pulmonary diseases and [53, 54]
sepsis-associated organ injury.

KEGG: NOD-like receptor A.ctivaFion of Toll—lik@ and NOD—lik.e recc?ptor .

signalling pathway mgnaﬂmg protec.ts mice from polymicrobial sepsis- [55]
associated lethality.
Fc receptors bind to antibodies attached to invading

) . . . pathogens and their up-regulation can serve a potential

Kl;:}? G: Fe epsilon Rl signalling biomarker for sepsis. Mice deficient for FCER1G gene | [56, 57]

pathway encoding the y-subunit of Fc epsilon RI show increased
resistance to sepsis.
Autophagy is an adaptive protective process that

. eliminates damaged proteins, organelles and pathogens.

KEGG: Autophagy - other It is thought to be a promising target in treatment of [58]
sepsis.

KEGG: Biosynthesis of amino Sepsis results in significant disorders in amino acids [59]

acids metabolism.

KEGG: Glucagon signalling Glucagon levels negatively associate with clinical [60]

pathway outcome in sepsis patients

KEGG: Propanoate (propionate) Propionic acidaemia caused by altered propionate [61]

metabolism metabolism often results in sepsis and death.
There is accumulating evidence for association

KEGG: Circadian rhythm between circadian misalignment and severity of [62]
inflammatory responses in sepsis.
Dopamine mediates neuroimmune communications

KEGG: Dopaminergic synapse and dopaminergic is implicated in inflammation and [63, 64]
sepsis.

KEGG: Amyotrophic lateral ALS patients often develop pulmonary insufficiency [65]

sclerosis (ALS) and have increased risk of sepsis.

CORUM: Respiratory chain Mitqchondriil Flisfunction resu!tipg in relduced

complex I, mitochondrial {espqutory chain complex I act}v1ty and low ATP [30]
evels is a whole mark for sepsis.

KEGG: Osteoclast differentiation Mean expresgion of osteoclgst differentiation genes is [66]
up-regulated in human septic shock.
Sepsis disrupts intestinal barrier which leads to a

KEGG: Tight junction multiple organ dysfunction syndrome and alters the [67]
expression of tight junction proteins.
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Table 2. Prediction accuracy of the models

. CAP/sepsis patients CAP patients Sepsis patients
Metric discovery | validation | discovery | validation | discovery | validation
bACC 0.799 0.701 0.802 0.798 0.779 0.761

Sensitivity | 0.754 0.6 0.88 0.867 0.75 0.8
Specificity | 0.845 0.801 0.725 0.73 0.807 0.722
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Figure S1. Fluctuation-response relation biases statistical inference of DGE. A) The
difference of means of log-transformed bell-shaped gene expression values (Y = log(X)) are

proportional to the variance or the squared coefficient of variation (¢v’) of untransformed

— — 2
variable (X): |V, — Y| ~ 02 ~ 2X = cvZ. Considering RNA copy number (X) to be mixed-

X
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Poisson (negative-binomial as a specific case) random variable, for large X, cv3 approximates
overdispersion parameter or biological coefficient of variation (bcv?) [20]. A scatterplot on the
left panel illustrates fluctuation-response relation (a correlation between absolute differences
and variances of log-transformed expression values) for whole-blood gene expression profiles
of healthy (ctl.) individuals and CAP pneumonia/sepsis patients. The data has been taken from
[8]. This relation is monotonic, but non-linear, suggesting a deviation from linear coupling
between fluctuation (pneumonia/sepsis) and gene expression response. There is no correlation
between differences and means of log-transformed expression values (right panel). B-C) In the
presence of fluctuation-response relation statistical inference will be biased. For example,
Student’s ¢-test often used to assess DGE will relate positively to a variance of log-transformed

. ¥1-Y, Z .
gene expression as: t~|10—°|~? = oy. A scatterplot on the left panel shows correlation
Y Y

between Student’s ¢ statistic and variance (B) and Bonferroni-adjusted p values and variance
(C). There is no correlation of ¢ and p values with means of log-transformed expression values

(right panel).
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Figure S2. Ensemble gene noise. A) Let G be a collection of genes (g4, ..., g,,) belonging to
either a biological pathway or encoding subunits of a protein complex. Then, from the law of
total variance Var[G] = E[Var[G | g]] + Var[E[G | g]], i.e. ensemble gene noise (Var[G]) sums
from the expected value of genes’ variances (E[Var[G | g]]) and the variance in genes’ mean
expression (Var[E[G | g]]). The top panel illustrates hypothetical distributions of expressions of
genes in ensemble (g;), the bottom panel is derived distribution of gene ensemble (G =
(g1, -+, gn))- B, C) Top panel, changes in variances (B) and/or expectations (C) of genes

expression will eventually change ensemble gene noise (bottom panel).
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Figure S3. Comparison of inter-individual variability for log gene expression and
ensemble gene noise for CAP and sepsis patients. Boxplots illustrating population variances
for log gene expression, ensemble gene noise and log gene expression normalized to the
GAPDH. Inter-individual variability is significantly less for ensemble gene noise as compared
to the log gene expression (according to t-test) and it is higher for GAPDH normalized log gene
expressions. The latter follows from the fact that Var[log(X) — log(GAPDH)] =
Var[log(X)] + Var[log(GAPDH)]. Thus, estimating DGE by PCR, which usually requires
normalization to some housekeeping gene, results in increased inter-individual variability.

Ensemble gene noise can be estimated from PCR without normalization to a reference gene.
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10.04 r=0.58 r=0.22

|Ap| (CAP/sepsis - ctl.)

Figure S4. Fluctuation-response relation for ensemble gene noise. Differences of means of
ensembles gene noise are proportional to the inter-individual variability in ensembles gene
noise. A scatterplot on the left panel illustrates fluctuation-response relation (a correlation
between absolute differences and variances of ensembles gene noise) for whole-blood gene
expression profiles of healthy (ctl.) individuals and CAP pneumonia/sepsis patients. There is

also a modest correlation between absolute changes in ensembles gene noise and the means

(right panel).
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Table S1. Kendall correlation of ensemble gene noise with HIN1, CAP and sepsis disease states.

A) HIN1 (p £0.05) N CAP (p <0.05) N sepsis (p <0.05)

Gene ensemble (KEGG/CORUM)

HINI (7, p)

CAP (7, p)

Sepsis (7, p)

genes

KEGG: HIF-1 signalling pathway

t=0373
p = 0.0357

7=0.429
p=0

7=0.283
p=0

AKT1; AKT2; ALDOA; ARNT; CAMK2D; CAMK2G; CDKN1A; CDKNI1B;
CREBBP; CUL2; CYBB; EDN1; EGF; EGLN1; EGLN2; EIF4E2; EIF4EBP1; ELOB;
ELOC; ENO1; ENO2; EP300; GAPDH; HIF1A; HK1; HK2; HK3; HMOXI; IFNG;
IFNGRI; IFNGR2; IGF1R; IL6R; INSR; LDHA; LTBR; MAP2K1; MAP2K2;
MAPK3; MKNK1; MKNK2; NFKB1; NPPA; PDHA1; PDHB; PDK1; PFKFB3;
PFKL; PGK1; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLCG2; PRKCB; RBX1; RPS6;
RPS6KB1; RPS6KB2; SLC2A1; STAT3; TFRC; TIMPI; TLR4; VHL

KEGG: Peroxisome

T=0.412
p =0.0219

1=0.323
p=0

1=0.235
p=0

ABCDI1; ABCD3; ACAAIL; ACOT8; ACOX1; ACOX2; ACOX3; ACSL1; ACSL3;
ACSL4; ACSL5; ACSL6; AGPS; AMACR; CAT; CRAT; DHRS4; DHRS4L1; ECI2;
FARI1; FAR2; GNPAT; GSTK1; HACLI1; HMGCL; HSD17B4; IDH1; IDH2; MPV 17,
MVK; NUDT19; NUDT7; PECR; PEX11B; PEX11G; PEX16; PEX5; PEX6; PEX7;
PRDX1; PRDXS; PXMP2; PXMP4; SLC27A2; SODI; SOD2

KEGG: Necroptosis

t=0373
p = 0.0357

7=10.309
p=0

7=0.229
p=0

AIFMI; BAX; BID; BIRC2; BIRC3; CAMK2D; CAMK2G; CAPN1; CAPN2; CASP1;
CASP8; CFLAR; CHMP1A; CHMP1B; CHMP2A; CHMP2B; CHMP3; CHMP4A;
CHMP4B; CHMP5; CHMP6; CHMP7; CYBB; CYLD; DNMI1L; EIF2AK2; FADD;
FAF1; FAS; FASLG; FTHI; FTL; GLUD1; GLUD2; GLUL; H2AFX; H2AFY;
H2AFZ; HISTIH2AA; HISTIH2AC; HISTIH2AD; HISTIH2AE; HIST2ZH2AA3;
HIST2H2AA4; HIST2H2AC; HIST3H2A; HMGB1; HSP90AA1; HSP90ABI;
IFNARI; IFNAR2; IFNG; IFNGR1; IFNGR2; IL1A; IL1B; IRF9; JAK1; JAK2; JAK3;
IMJD7-PLA2G4B; MLKL; NLRP3; PARP4; PLA2G4A; PLA2G4F; PPID; PYCARD;
PYGB; PYGL; RBCKI; RIPK1; RIPK3; RNF31; SHARPIN; SLC25A5; SLC25A6;
SMPD1; SPATA2L; SQSTM1; STATI1; STAT2; STAT3; STAT4; STATSA; STATSB;
STAT6; TICAMI; TLR4; TNF; TNFAIP3; TNFRSF10A; TNFRSF10B; TNFRSFIA;
TNFSF10; TRADD; TRAFS; TRPM7; TYK2; USP21; VDACI1; VDAC2; VDACS3;
VPS4A; VPS4B; XIAP; ZBP1

KEGG: NOD-like receptor
signalling pathway

©=0.501
p = 0.0062

1=0.357
p=0

7=0.252
p=0

AIM2; ATG12; ATGS; BCL2L1; BIRC2; BIRC3; BRCC3; CAMP; CARDI16;
CARD17; CARD6; CARDS8; CARDY; CASP1; CASP4; CASPS5; CASP8; CCL2;
CCLS; CHUK; CTSB; CXCL1; CXCL8; CYBA; CYBB; DEFA1B; DEFA3; DEFA4;
DHX33; DNMI1L; ERBIN; FADD; GABARAP; GABARAPL1; GABARAPL2; GBPI;
GBP2; GBP3; GBP4; GBP5; GSDMD; HSP90AA1; HSP90ABI; IF116; IFNARI;
IFNAR2; IKBKB; IKBKE; IKBKG; IL18; IL1B; IRAK4; IRF3; IRF7; IRF9; JAK1;
JUN; MAP3K7; MAPK13; MAPK14; MAPK3; MAVS; MCU; MEFV; MFN1; MFN2;
MYDS8S8; NAIP; NAMPT; NEK7; NFKB1; NFKBIA; NLRC4; NLRP1; NLRP12;
NLRP3; NLRP7; NLRX1; NOD2; OAS1; OAS2; OAS3; P2RX7; PLCB1; PLCB2;
PRKCD; PSTPIP1; PYCARD; RBCK1; RHOA; RIPK1; RIPK2; RIPK3; RNASEL;
RNF31; SHARPIN; STAT1; STAT2; SUGTI1; TABI; TAB2; TAB3; TANK; TBKI;
TICAMI; TLR4; TMEM173; TNF; TNFAIP3; TRAF3; TRAFS; TRAF6; TRIP6;

TRPM2; TRPM7; TXN; TXN2; TXNIP; TYK2; VDACI; VDAC2; VDAC3; XIAP
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AKT1; AKT2; ALOXS; ALOXSAP; BTK; FCER1A; FCERIG; FYN; GAB2; GRB2;

KEGG: F ilon RI sienallin = 0. =0. =0. INPP5D; IMID7-PLA2G4B; KRAS; LAT; LCP2; LYN; MAP2K 1; MAP2K2;
GG: Fe epsilo Signalling ©=0.353 1=0.342 ©=0.184 MAP2K3; MAP2K4; MAP2K6; MAP2K7; MAPK 13; MAPK 14; MAPK3; MS4A2;
pathway p=0.0493 |p=0 P = 0.00007 | NRraS; PDPKI; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLA2G4A; PLA2GA4F;
PLCG2; RAC2; RAFI; SOS1; SOS2; SYK; TNF; VAVI
— — — ATG101; ATG12; ATG13; ATG2A; ATG2B; ATG3; ATG4A; ATGAC; ATGS;
KEGG: Autophagy - other ©=0.491 ©=0.199 1=0.137 ATG7; ATG9A; BECN1; GABARAP; GABARAPL1; GABARAPL2; IGBPI;
phagy
p = 0.0067 p = 0.0015 p = 0.0302 MLSTS; PIK3C3; PIK3R4; PPP2CA; PPP2CB; WIPI1; WIPI2
ACO2; ALDHI8A1; ALDOA; ALDOC; ARG1; ARG2; ASL; ASNS; BCATI;
— — — BCAT2; CBS; CS; ENO1; ENO2; GAPDH; GLUL; GOT1; GOT2; IDH1; IDH2;
KEGG: Biosynthesis of amino acids ©=0.363 ©=0.336 1=0.274 IDH3B; IDH3G; MAT2A; MAT2B; MTR; PFKL; PFKM; PFKP; PGAM1; PGK1;
p=0.0455 |p=0 p=0 PHGDH; PKM; PRPS1; PRPS2; PSPH; PYCR2; PYCR3; RPIA; SDSL; SHMTI;
SHMT?2; TALDOI; TKT; TKTLI; TPII
CORUM: TRAPP complex T=0.412 1=0.276 7=0.144 TRAPPC1; TRAPPC10; TRAPPC11; TRAPPC12; TRAPPC2; TRAPPC2L;
. p= 0.0219 p= 0 p= 0.0136 TRAPPC3; TRAPPC4; TRAPPCS5; TRAPPC6A; TRAPPC6B; TRAPPCS8; TRAPPC9
ACACA; AKTI; AKT2; ATF4; CALM1; CALM2; CALML4; CAMK2D; CAMK2G;
. . CPTIA; CPT1B; CREBI; CREB3; CREB3L1; CREBS; CREBBP; CRTC2; EP300;
KEGG: Glucagon signalling 7=0.403 1=0.211 t=0.145 FBP1; GNAQ; GNAS; GYSI1; LDHA; LDHB; PCK2; PDE3B; PDHA1; PDHB; PFKL;
athwa = 0. - 0. = 0. PGAMI; PHKA2; PHKB; PHKG2; PKM; PLCB1; PLCB2; PPP3CA; PPP3CB;
pathway p=0.0299 | p=0.0004 | p=0.0122 PPP3CC; PPP3R1; PPPAC; PPP4R3A; PPP4R3B; PRKAAL; PRKABI; PRKACB;
PRKAG!; PRKAG2; PRMT1; PYGB; PYGL; SIK1; SIK2; SIRT1; SLC2A1
KEGG: Propanoate (propionat = 0. =0. =0. ABAT; ACACA; ACADM; ACAT1; ACAT2; ACSS1; ACSS2; ALDH6AL;
GG Fropanoate (propionate) ©=0.393 1=0.182 ©=0.137 BCKDHA; BCKDHB; DLD; ECHDC1; ECHS1; HADHA; HIBCH; LDHA; LDHB;
metabolism p=0.03 p=0.0081 | p=0.0298 | pcca;PCCB; SUCLA2; SUCLGI
— — — ARNTL; BHLHE40; BTRC; CLOCK; CREB1; CRY1; CSNK1D; CULI; FBXL3;
KEGG: Circadian rhythm ©=0.393 ©1=0.353 ©=0.288 FBXWI11; NR1DI; PER1; PRKAA1; PRKABI; PRKAGI1; PRKAG2; RBX1; RORA;
p=0.03 p=0 p=0 SKPI
AKTI; AKT2; ARNTL; ARRB2; ATF4; ATF6B; CACNAIA; CALMI; CALM2;
CALML4; CAMK2D; CAMK2G; CLOCK; CREB1; CREB3; CREB3L1; CREBS;
) ) = 0.599: FOS; GNAI2; GNAI3; GNAQ; GNAS; GNBI; GNB2; GNB4; GNBS5; GNG10;
KEGG: Dopamlnerglc synapse : 2 T= 0.355; 0 [t= 0.252; (0 | GNGI1; GNG2; GNG7; GNG8; GSK3A; GSK3B; KIF5B; MAOA; MAOB; MAPK13;
0.001005 MAPK 14; PLCB1; PLCB2; PPP1CA; PPP1CB; PPP1CC; PPP2CA; PPP2CB;
PPP2R2A; PPP2R2B; PPP2R2D; PPP2R3B; PPP2R3C; PPP2RSA; PPP2RSB;
PPP2R5C; PPP2R5D; PPP2RSE; PPP3CA; PPP3CB; PPP3CC; PRKACB; PRKCB
. ALS2; BAD; BAX; BCL2L1; BID; CASP1; CASP3; CASPY; CAT; CCS; DAXX;
KEGG: Amyotrophic lateral t=10.461 1=10.292 t=0.189 DERLI; GPX1; GRINI; MAP2K3; MAP2K6; MAP3KS; MAPK 13; MAPK 14;
sclerosis (ALS) p=0.0102 |p=0 p = 0.00003 | PPP3CA; PPP3CB: PPP3CC; PPP3R1; RABSA; SODI; TNF; TNFRSFIA;

TNFRSF1B; TOMM40; TOMM40L
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B) HIN1 (p < 0.05) N CAP (p < 0.05) N sepsis (p > 0.05)

Gene ensemble (KEGG/CORUM)

HINI (1, p)

CAP (1, p)

Sepsis (T, p)

genes

CORUM: Respiratory chain
complex I (subcomplex I alpha),
mitochondrial

1=0.432
p=0.0178

1=0.222
p = 0.0001

t=0.127
p = 0.0929

NDUFAL1; NDUFA10; NDUFA11; NDUFA12; NDUFA13; NDUFA2; NDUFA3;
NDUFAS5; NDUFA6; NDUFA7; NDUFAS; NDUFA9; NDUFAB1; NDUFB4;
NDUFB7; NDUFS1; NDUFS2; NDUFS3; NDUFS6; NDUFS7; NDUFS8; NDUFV1;
NDUFV2

CORUM: Respiratory chain
complex I (nuclear encoded
subunits), mitochondrial

1=0.383
p = 0.0323

1=0.169
p =0.0271

1=0.092
p=1

NDUFAL1; NDUFA10; NDUFA11; NDUFA12; NDUFA13; NDUFA2; NDUFA3;
NDUFA4; NDUFAS5; NDUFA6; NDUFA7; NDUFAS; NDUFA9; NDUFABI;
NDUFBI1; NDUFB10; NDUFB11; NDUFB2; NDUFB3; NDUFB4; NDUFBS;
NDUFB6; NDUFB7; NDUFB8; NDUFB9; NDUFC1; NDUFC2; NDUFS1; NDUFS2;
NDUFS3; NDUFS4; NDUFS5; NDUFS6; NDUFS7; NDUFS8; NDUFV1; NDUFV2

KEGG: Osteoclast differentiation

1=0.373
p = 0.0357

t=0.279
p=0

0.13
p = 0.066

a
Il

ACPS; AKT1; AKT2; BLNK; BTK; CHUK; CREB1; CSF1R; CTSK; CYBA; CYLD;
FCGRI1A; FCGR2A; FCGR2B; FCGR2C; FCGR3A; FCGR3B; FHL2; FOS; FOSL2;
FYN; GAB2; GRB2; IFNARI; IFNAR2; IFNG; IFNGR1; IFNGR2; IKBKB; IKBKG;
IL1A; IL1B; IL1R1; IRF9; ITGB3; JAK1; JUN; JUNB; JUND; LCK; LCP2; LILRAIL;
LILRA2; LILRA4; LILRAS; LILRA6; LILRB1; LILRB2; LILRB3; LILRB4;
MAP2K1; MAP2K6; MAP2K7; MAP3K14; MAP3K7; MAPK13; MAPK14; MAPK3,;
MITF; NCF1; NCF2; NCF4; NFATCI1; NFKB1; NFKB2; NFKBIA; OSCAR;
PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLCG2; PPARG; PPP3CA; PPP3CB; PPP3CC;
PPP3R1; RELB; SIRPA; SIRPB1; SIRPG; SOCS1; SOCS3; SPI1; SQSTM1; STATI;
STAT2; SYK; TAB1; TAB2; TGFB1; TGFBR2; TNF; TNFRSF1A; TRAF6; TYK2;
TYROBP

KEGG: Tight junction

©=0.412
p =0.0219

1=0.208
p = 0.0006

1=0.127
p=0.0933

ACTB; ACTG1; ACTNI; ACTN4; ACTR2; ACTR3; ARHGAP17; ARHGEF18;
ARHGEF?2; CD1C; CDC42; CDK4; CLDN15; CLDN5; CLDN9; DLG1; EPB41L4B;
EZR; F11R; HCLS1; HSPA4; ITGB1; JUN; LLGL2; MAP2K7; MAP3K1; MAP3KS5;
MICALL2; MSN; MYH9; MYL12A; MYL12B; MYL6; MYL6B; MYL9; NEDD4;
NEDDAL; OCLN; PARD3; PARD6A; PCNA; PPP2CA; PPP2CB; PPP2R2A;
PPP2R2B; PPP2R2D; PRKAA1; PRKAB1; PRKACB; PRKAG1; PRKAG2; PRKCE;
PRKCL PRKCZ; RAB13; RABSA; RABSB; RAP1A; RAP2C; RAPGEF2; RAPGEFG;
RHOA; ROCK1; ROCK2; RUNX1; SCRIB; SLC9A3R1; STK11; TIAMI; TJP2;
TUBAIA; TUBA1B; TUBALC; TUBA4A; TUBAS; VASP; WASL; WHAMM,;
YBX3

KEGG: Axon guidance

7 =0.461
p=10.0102

1=0.165
p = 0.0423

1=0.074

Il
[a—

ABLIM1; ARHGEF12; BMPR2; CAMK2D; CAMK2G; CDC42; CDKS5; CFL1;
CXCR4; EFNAL; EFNB3; EPHA4; EPHB1; EPHB4; FES; FYN; GNAI2; GNAI3;
GSK3B; ILK; ITGB1; KRAS; LIMK2; LRRC4; MAPK3; MYLI12A; MYLI12B;
MYL5; MYL9; NCK1; NCK2; NFATC3; NRAS; NTNG2; PAK1; PAK2; PAK3;
PAK4; PARD3; PARD6A; PDK1; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PLCG2;
PLXNAZ2; PLXNA3; PLXNB2; PLXNCI; PPP3CA; PPP3CB; PPP3CC; PPP3R1,;
PRKCZ; PTPN11; RAC2; RAFI; RASA1; RHOA; ROBO3; ROCKI1; ROCK2; RRAS;
RYK; SEMA4A; SEMA4B; SEMA4C; SRGAP2; SRGAP3; SSHI1; SSH2; SSH3
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Table S2. Confusion tables for the models predicting mortality/survivorship of

CAP/sepsis patients

A) CAP and sepsis patients

Actual Actual
discovery validation
survived | deceased survived | deceased
E 164 17 § 137 18
E E (84.5%) | (24.6%) g E (80.1%) | (40.0%)
k> s k> s
= =
£ 'ag 30 52 £ 3;; 34 27
S | (155%) | (75.4%) S | (19.9%) | (60.0%)
= =
B) CAP patients
Actual Actual
discovery validation
survived | deceased survived | deceased
E 58 3 'a§ 46 2
§ E (72.5%) | (12.0%) g E (73.0%) | (13.3%)
R e S e
= =
9] = 9] =
= % 22 22 B % 17 13
§ (27.5%) | (88.0%) § (27.0%) | (86.7%)
= =
C) Sepsis patients
Actual Actual
discovery validation
survived | deceased survived | deceased
E 92 11 'a§ 78 6
g E (80.7%) | (25.0%) g E (72.2%) | (20.0%)
2 s 2 s
= =
= g 2 33 = '«2 30 24
g (19.3%) | (75.0%) g (27.8%) | (80.0%)
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Table S3. Relative contribution (gain %, cover %, frequency %) of ensemble gene noise features to the models predicting

mortality/survivorship of CAP/sepsis patients

Gain; Cover; Frequency

"95Ud9I| [eUONRWIBIUI 0% DN-AZ-DDE Japun s|ge|iene apew

Gene ensemble (KEGG/CORUM) CAP/sepsis CAP Sepsis genes
14.537; 5.818; DHX15; PDCD7; PRPF8; RNPC3; SF3B1; SF3B2; SF3B3; SF3B4; SF3B5; SF3B6; SNRNP2S;
CORUM: 18S U11-U12 snRNP 10.6; 5.966; SNRNP35; SNRNP48; SNRPB; SNRPD1; SNRPD2; SNRPD3; SNRPE; SNRPF; SNRPG;
8.054 5.376 YBXI1; ZCRB1; ZMATS; ZRSR2
. 8.069; 1.444;
CORUM: LARC complex (LCR-associated 7116: 3.508: ACTB; ACTL6A; ARID1A; CHD4; DPF2; GATAD2B; HDAC1; MBD2; MBD3; RBBP4;
remodelling Complex) ° 2 * 2 SMARCA4, SMARCCZ, SMARCD2, SMARCEI1
6.04 6.061
5.845; 4.555; ADA; BLNK; BTK; CD19; CD3D; CD3E; CD40; CD79A; CD8A; CD8B; CIITA; DCLRELC;
KEGG: Primary immunodeficiency 6.663; 5.175; IKBKG; IL2RG; IL7R; JAK3; LCK; ORAIL; PTPRC; RFXS; RFXANK; TAP1; TAP2;
6.711 4301 | TNFRSFI3B
2.575; 9.579; ARF1; BCL2L13; BNIP3; C3; CASP1; CASP3; CASP7; CASP8; CASP9; CD14; CLKI1; CR1;
, onellosi 1944, 5,673, CXCLI1; CXCLS; EEF1G; HBS1L; HSF1; HSPA1A; HSPA1B; HSPAIL; HSPAG; HSPAS;
KEGG: Legionellosis G 073K HSPDI; IL18; ILIB; ITGAM; ITGB2; MYDS88; NAIP; NFKB1; NFKB2; NFKBIA; NLRC4;
2.013 3.03 PYCARD; RABIA; RABIB; SARIA; SAR1B; SEC22B; TLR2; TLR4; TLRS; TNF; VCP
2472 1263 ADAMI10; ADAM17; ATP6AP1; ATPGVOAZ; ATP6VOB; ATP6VOC; ATP6VOD1; ATPGVOEI;
Bl . o A472; .263; ATP6VOE2; ATP6V1A; ATP6VIB2; ATP6VIC1; ATP6VID; ATP6VIEL; ATP6VIE2;
KEGG' Epithelial .C‘?H Slgmlhng n 4.05; 3.426; ATP6VIF; ATP6V1G1; ATP6V1H; CASP3; CCLS; CDC42; CHUK; CSK; CXCLI1; CXCLS;
Helicobacter pylori infection 3.356 5.376 CXCR1; CXCR2; F11R; HBEGF; IKBKB; IKBKG; JUN; LYN; MAP2K4; MAP3K 14;
: : MAPK13; MAPK 14; NFKB1; NFKBIA; PAK1; PLCG2; PTPN11; TCIRG1
ADCY3; ADCY4; ADCY7; AKT1; AKT2; ARAF; BAD; BAX; BIK; BRAF; CARMI; CDK4;
2.208; CDKN1A; CDKN1B; CDKN2A; CDKN2C; E2F1; E2F3; FOS; GNAS; GPER1; GRB2; HBEGF;
KEGG: Endocrine resistance 2.692; IGFIR; JAG2; JUN; KRAS; MAP2K 1; MAP2K2; MAPK13; MAPK 14; MAPK3; MED1; MMPY;
4.027 NCOR1; NOTCH2; NRAS; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PRKACB; RAF1; RBI;
RPSG6KB1; RPS6KB2; SHCI; SOS1; SOS2; SP1
ACP5; ATP6AP1; ATP6VOA2; ATP6VOB; ATP6VOC; ATP6VOD1; ATP6VOEL; ATP6VOE2;
ATP6VI1A; ATP6V1B2; ATP6VICI; ATP6VID; ATP6VIEL; ATP6VIE2; ATP6VIF;
1.96; 8.817; ATP6V1G1; ATP6V1H; CCL2; CCL20; CCL3; CCL3L1; CCLS; CD86; CTSK; CTSL; CXCLI;
KEGG: Rheumatoid arthritis 2.399; 8.538; CXCLS5; CXCLS; FOS; HLA-DMA; HLA-DMB; HLA-DOB; HLA-DPA1; HLA-DPBI; HLA-
2.685 5.376 DQAL; HLA-DQBI; HLA-DRA; HLA-DRBI; HLA-DRB5; ICAMI; IFNG; IL15; IL18; IL1A;
IL1B; ITGAL; ITGB2; JUN; LTB; MMP1; TCIRG1; TGFB1; TLR2; TLR4; TNF; TNFSF13;
TNFSF13B
ADA; ADA2; ADCY3; ADCY4; ADCY7; ADPRM; ADSL; ADSS; AK1; AK2; AK3; AK4;
AMPD2; AMPD3; APRT; ATIC; CANT1; DCK; DGUOK; ENPP4; ENTPD1; ENTPD4;
1.404; ENTPDS5; ENTPD6; FHIT; GART; GMPR; GMPR2; GMPS; GUCY1A1l; GUCY1B1; GUCY2D;
o . ’ GUK1; HDDC3; HPRT1; IMPDH1; IMPDH2; ITPA; NME1; NME1-NME2; NME3; NME4;
KEGG: Purine metabolism 1.705; NMEG6; NT5C; NT5C2; NT5C3A; NTSM; NTPCR; NUDT16; NUDTS; NUDT9; PAICS;
2.685 PAPSS1; PAPSS2; PDEIB; PDE2A; PDE3B; PDE4A; PDE4B; PDE4D; PDEGD; PDE6G;

PDE7A; PDE8A; PGM1; PGM2; PKM; PNP; PPAT; PRPS1; PRPS2; PRUNEL; RRM1; RRM2;
RRM2B
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0.979; 5.848; 0.548; ADCY3; ADCY4; ADCY7; ADRB2; AMY1A; AQP5; ATPIAL; ATPIB1; ATP1B3; ATP2B1;
et : . ’ ’ ATP2B4; BST1; CALM1; CALM2; CALML4; CAMP; CD38; CST2; CST3; CST4; GNAQ;
KEGG: Salivary secretion 1.44; 3.685; 1.377; GNAS; GUCY1A1; GUCY1BI; KCNMA1; KCNN4: LYZ; PLCBI; PLCB2; PRH1; PRKACB;
2.013 6.061 2.151 PRKCB; SLC9A1
ADCY3; ADCY4; ADCY7; AKT1; AKT2; ANAPCI; ANAPCI1; ANAPCI3; ANAPC4;
. 0.739: ANAPCS5; ARAF; AURKA; BRAF; BUB1; CCNA1; CCNA2; CCNB1; CCNB2; CDC16;
KEGG: Progesterone-mediated oocyte 0 3793 CDC25B; CDC26; CDC27; CDK1; CDK2; CPEB2; CPEB3; CPEB4; GNAI2; GNAI3;
maturation =S IET; HSP90AA1; HSP90ABI; IGFIR; KIF22; KRAS; MADIL1; MAD2L1; MAD2L2; MAP2K ;
0.671 MAPK13; MAPK 14; MAPK3; PDE3B; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PKMYTI;
PRKACB; RAF1; RPS6KA1; RPS6KA2; RPS6KA3; SPDYEL; STK10
U5 LB PDCD7; PRKRIP1; SNRNP25; SNRNP35; SNRNP48; SNRPB; SNRPD1; SNRPD2; SNRPD3;
CORUM: 128 U11 snRNP 1.354; 48185 | (ool N bR SNRPGE SRS YBXI
0.671 5.376
0.621; 7.675; ADAR; AIM2; CASP1; CCL4; CCLALI; CCLS; CGAS; CHUK; CXCL10; DDX58; IKBKB;
) ) : ’ ’ IKBKE; IKBKG; IL18; IL1B; IRF3; IRF7; MAVS; NFKB1; NFKBIA; POLR1C; POLRID;
KEGG: Cytosolic DNA-sensing pathway 0.525; 5.934; POLR2E; POLR2F; POLR2H; POLR2K; POLR2L; POLR3C; POLR3D; POLR3E; POLR3GL;
1.342 4.301 POLR3K; PYCARD; RIPK ; RIPK3; TBK1; TMEM173; TREX1; ZBP1
0.326; ANPEP; CHAC2; G6PD; GCLC; GCLM; GGT1; GPX1; GPX4; GPX7; GSR; GSS; GSTKI;
KEGG: Glutathione metabolism 0.323; GSTM3; GSTO1; GSTP1; HPGDS; IDH1; IDH2; LAP3; MGST1; MGST2; MGST3; NATSB;
0.671 ODC1; OPLAH; PGD; RRM1; RRM2; RRM2B; SMS; SRM; TXNDC12
A8 CYP2RI1; CYP51A1; DHCR24; DHCR7; EBP; FDFTI; LIPA; MSMO1; NSDHL; SOATI;
KEGG: Steroid biosynthesis 9.84; T ’ ’ T ’ ’ ’ ’ ’
SQLE; TM7SF2
9.091
6.459; POLRI1B; POLRIC; POLR1D; POLRIE; POLR2A; POLR2B; POLR2C; POLR2E; POLR2F;
KEGG: RNA polymerase 3.452; POLR2G; POLR2H; POLR2I; POLR2J; POLR2J3; POLR2K; POLR2L; POLR3C; POLR3D;
6.061 POLR3E; POLR3GL; POLR3K; ZNRDI
AKTI; AKT1S1; AKT2; ATPGVIA; ATP6V1B2; ATP6VICI; ATP6VID; ATP6VIEL;
ATP6V1E2; ATP6VIF; ATP6V1G1; ATP6V1H; BRAF; CAB39; CASTOR!; CHUK; CLIPI;
DDIT4; DVLI; EIF4B; EIF4E2; EIF4EBP1; FLCN; FNIP2; FZD1; FZD2; GRB10; GRB2;
5.646: GSK3B; IGFIR; IKBKB; INSR; KRAS; LAMTOR1; LAMTOR2; LAMTOR3; LAMTOR4;
KEGG: mTOR sienalli h 5 0383 MAP2K1; MAP2K2; MAPK3; MAPKAP1; MIOS; MLSTS; NPRL2; NPRL3; NRAS; PDPK1;
-m signalling pathway dIELE PIK3CA; PIK3CB; PIK3CD; PIK3R1; PRKAA1; PRKCB; PRR5; PTEN; RAF1; RHEB; RHOA;
3.03 RICTOR; RPS6; RPS6KA1; RPS6KA2; RPS6KA3; RPS6KB1; RPS6KB2; RRAGA; RRAGB;
RRAGC; RRAGD; SEC13; SESN2; SGK1; SLC38A9; SLC3A2; SOS1; SOS2; STK11;
STRADA; STRADB; TBC1D7; TELO2; TNF; TNFRSF1A; TSC2; TTI1; ULK1; WDR59;
WNT3
SHILKR DDX20; GEMIN4; GEMIN7; GEMINS; SNRPB; SNRPD1; SNRPD2; SNRPD3; SNRPE;
CORUM: SMN complex 2:.;03:;7; SNRPF: SNRPG: STRAP
BMS1; CSNK2A1; CSNK2A2; CSNK2B; DKCI; DROSHA; EIF6; EMG1; FBL; FCF1; GNL2;
1.874; GNL3; GNL3L; GTPBP4; HEATR1; IMP3; IMP4; LSG1; MPHOSPH10; NHP2; NOB1; NOP10;
KEGG: Ribosome biogenesis in eukaryotes 3.782; NOP56; NOP58; NXF1; NXT1; NXT2; POP4; POPS; POP7; PWP2; RAN; RCL1; REXOI;
3.03 REXO02; RPP25L; RPP38; RRP7A; SBDS; SNU13; TCOF1; UTP14A; UTP14C; UTP18; UTP4;

UTP6; WDR36; WDR75; XPO1; XRN1; XRN2
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0.571;
o . ’ BAX; CIQA; C1QB; C1QC; C5; CCL5; EGR1; ELK1; FYN; HSPA1A; HSPAS; IL1A; IL1B;
KEGG: Prion diseases 23333’ LAMCI; MAP2K1; MAP2K2; MAPK3; PRKACB; PRNP; SOD1; STIP1
o2ty CDC37; HSP90AA1; HSP90AB1; HSPA4; MAP2K5; MAP3K3; PDRG1; PFDN2; TRAF7;
CORUM: Kinase maturation complex 1 2.612; YWHAB: YWHAG: YWHAH: YWH AQ',YWH Az ’ ’ ’ ’
3.03
8.65; AKR1C3; ALOX12; ALOX5; CBR1; CYP4A22; CYP4F2; CYP4F3; GGTI1; GPX1; GPX7;
KEGG: Arachidonic acid metabolism 10.792; | HPGDS; IMID7-PLA2G4B; LTA4H; LTC4S; PLA2G12A; PLA2G4A; PLA2G4F; PLBI;
11.828 PRXL2B; PTGDS; PTGES; PTGES3; PTGS1; PTGS2; TBXAS1
5.466; ATP6VO0A2; ATP6VOC; ATP6VOD1; ATP6VOE]; ATP6VOE2; ATP6V1A; ATP6VIB2;
KEGG: Collecting duct acid secretion 7.8; ATP6VIC1; ATP6VID; ATP6VIEL; ATP6VIE2; ATP6VIF; ATP6VIGI1; CA2; SLC4Al;
8.602 TCIRG1
5.229;
KEGG: Reeulation of linolvsis in adipocvies 3744 ABHDS5; ADCY3; ADCY4; ADCY7; ADRB2; AKT1; AKT2; GNAI2; GNAI3; GNAS; INSR;
- Reg poly pocy 5.376, IRS2; MGLL; NPPA; PDE3B; PIK3CA; PIK3CB; PIK3CD; PIK3R1; PRKACB; PTGS1; PTGS2
C3; CR1; CYBA; CYBB; ELK1; FCGR1A; FCGR2A; FCGR2C; FCGR3A; FCGR3B; FOS;
4.508: HLA-DMA; HLA-DMB; HLA-DOB; HLA-DPA1; HLA-DPB1; HLA-DQA1; HLA-DQB1; HLA-
KEGG: Leish . 6 629: DRA; HLA-DRB1; HLA-DRBS; IFNG; IFNGR1; IFNGR2; IL10; IL1A; IL1B; IRAK1; IRAK4;
- Leishmaniasis 0275 | ITGA4; ITGAM; ITGBI; ITGB2; JAK1; JAK2; JUN; MAP3K7; MAPK 13; MAPK 14; MAPK3;
6.452 MARCKSL1; MYD88; NCF1; NCF2; NCF4; NFKB1; NFKBIA; PRKCB; PTGS2; PTPN6;

STATI1; TAB1; TAB2; TGFB1; TLR2; TLR4; TNF; TRAF6
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