

1 Environmental palaeogenomic reconstruction of an Ice Age algal
2 population

3 Youri Lammers¹, Peter D. Heintzman^{1,*}, Inger Greve Alsos^{1,*}

4

5 ¹The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø,
6 Norway

7 *Contributed equally to this work

8

9 Abstract

10 Palaeogenomics has greatly increased our knowledge of past evolutionary and ecological
11 change, but has been restricted to the study of species that preserve as fossils. Here we show
12 the potential of shotgun metagenomics to reveal population genomic information for a taxon
13 that does not preserve in the body fossil record, the algae *Nannochloropsis*. We shotgun
14 sequenced two lake sediment samples dated to the Last Glacial Maximum and identified *N.*
15 *limnetica* as the dominant taxon. We then reconstructed full chloroplast and mitochondrial
16 genomes to explore within-lake population genomic variation. This revealed at least two
17 major haplogroups for each organellar genome, which could be assigned to known varieties
18 of *N. limnetica*. The approach presented here demonstrates the utility of lake sedimentary
19 ancient DNA (sedaDNA) for population genomic analysis, thereby opening the door to
20 environmental palaeogenomics, which will unlock the full potential of sedaDNA.

21 Keywords

22 Sedimentary ancient DNA, palaeogenomics, shotgun metagenomics, haplotype diversity, ice
23 age, *Nannochloropsis*

24

25 Introduction

26 Palaeogenomics, the genomic-scale application of ancient DNA, is revolutionizing our
27 understanding of past evolutionary and ecological processes, including population dynamics,
28 hybridization, extinction, and the effects of drivers of change ¹⁻⁴. Despite extensive
29 application to, and innovations using, body fossils ⁵⁻⁷, its use on another major source of

30 ancient DNA - the environment - has been almost entirely limited to inferring the presence or
31 absence of taxa through time^{8–14}. However, a nuanced understanding of ecological and
32 evolutionary dynamics requires population genomic information. The direct recovery of this
33 information from cave sediment has recently been shown¹², but - to our knowledge - has not
34 yet been demonstrated for lake sediments.

35 Lake sediments provide an ideal source of sedimentary ancient DNA (*sedaDNA*)
36 that originates from both the catchment and the lake itself, as well as providing a stable
37 environment required for optimal aDNA preservation^{15,16}. As a result, lake *sedaDNA* has
38 been used to infer the taxonomic composition of past communities^{16,17}, regardless of whether
39 those taxa preserve in the body fossil record. The most commonly applied method is DNA
40 metabarcoding, which allows for the targeting of particular groups of organisms^{18,19}.
41 However, the ability to confidently identify barcodes is constrained by the completeness of
42 appropriate reference databases, and the length and variability of the barcode targeted. Short
43 barcodes are necessarily targeted for fragmented aDNA²⁰, which can therefore impede
44 species-level identification. An alternative approach is shotgun metagenomics, which is non-
45 targeting and preserves aDNA damage patterns that, in contrast to metabarcoding, allows for
46 authentic aDNA to be distinguished from modern contamination^{16,21–23}. For palaeogenomic
47 reconstruction however, either deep shotgun sequencing or target enrichment of *sedaDNA* is
48 required, which allows for robust species-level identification^{12,14,24}, as well as the potential
49 exploration of population genomic variation.

50 Andøya, an island located off the coast of northwest Norway, was partially
51 unglaciated during the Last Glacial Maximum (LGM, Figure 1) and has therefore been a
52 focus of palaeoecological studies²⁵, especially for its potential as a cryptic northern refugium
53^{26–28}. Studies focussing on sediment cores from three lakes (Endletvatn, Nedre Åråsvatnet,
54 Øvre Åråsvatnet)^{26,29–35} have reported the presence of an Arctic community during the LGM,
55 which includes taxa such as grasses (Poaceae), crucifers (Brassicaceae), and poppy
56 (*Papaver*), along with bones of the Little Auk (*Alle alle*). Furthermore, recent geochemical
57 and DNA metabarcoding analyses indicate the presence, and an inferred high abundance, of
58 the algae *Nannochloropsis* in LGM sediments from Andøya³⁵.

59 *Nannochloropsis* is a genus of single-celled microalgae of the Eustigmatophyceae. All
60 species have high lipid contents and are therefore of interest as a potential source of biofuels
61^{36,37}. As a result of this economic interest, the organellar and nuclear genomes have been
62 sequenced for six of the eight described species (Supplementary Table S1)^{37–40}. All species
63 are known from marine environments, with the exception of *N. limnetica*, which is known

64 from freshwater and brackish habitats, and comprises five varieties ⁴¹⁻⁴³. The genus has a
65 cosmopolitan distribution, with the marine species being reported from most oceans ⁴⁴⁻⁴⁶,
66 whereas the freshwater/brackish *N. limnetica* is known from lakes in Europe ⁴¹, Asia ⁴², North
67 America ^{43,47}, and Antarctica ⁴⁸. Species-level identification of *Nannochloropsis* from water
68 is problematic, due to its small size (2 to 6 µm in diameter ^{43,46}) and, in contrast to diatoms ⁴⁹,
69 lack of diagnostic morphological structures ^{47,50}. Reliable species identification is however
70 possible with short genetic markers ^{43,47,51}. In sediments, *Nannochloropsis* has not been
71 reported from macrofossil and pollen/spore profiles, and may therefore only be identifiable
72 using sedaDNA ^{10,35,52}.

73 In this study, we shotgun sequenced two broadly contemporaneous LGM lake
74 sediment layers from Andøya that a previous metabarcoding study had shown to contain
75 *Nannochloropsis* ³⁵. The depth of our shotgun metagenomic data, together with the
76 availability of a reference genome panel, allowed us to demonstrate that *N. limnetica*
77 dominates the identifiable taxonomic profile. Through reconstruction of complete chloroplast
78 and mitochondrial genomes, we show that at least two variants of *N. limnetica* are
79 represented. We thus demonstrate, and to the best of our knowledge for the first time, that it
80 is possible to estimate past population genomic diversity both from total sedaDNA and from
81 a taxon not preserved in the body fossil record.

82

83 Results

84 Metagenomic analysis and species-level determination of *Nannochloropsis*

85 We shotgun sequenced two LGM samples, dated to 17,700 (range: 20,200-16,500) and
86 19,500 (20,040-19,000) calibrated years before present (cal yr BP), to generate 133-224
87 million paired-end reads, of which we retained 53-127 million sequences after filtering
88 (Supplementary Table S2). We first sought to identify the broad metagenomic profiles of the
89 samples and the species-level identification of *Nannochloropsis* from Lake Øvre Åråsvatnet.

90 First, for each sample, we compared two non-overlapping one-million sequence
91 subsets of the filtered data to the NCBI nucleotide database. The taxonomic overlap between
92 the two one million read subsets was 88-93% within each sample, demonstrating that our
93 subsets are internally consistent. We then merged the two subsets from each sample, which
94 resulted in the identification of 29,500-32,700 sequences (Table 1). The majority of the
95 identified sequences were bacterial, with 21-26% identified as *Mycobacterium*, although the

96 majority of these sequences could not be identified to a specific strain. Within the eukaryotes,
97 *Nannochloropsis* constituted ~20% of the assigned sequences in both samples, with ~33% of
98 these identified as *N. limnetica* (Table 1; Supplementary Figure S1; Supplementary Table
99 S3).

100 To further investigate the metagenomic profile of the samples, we aligned all filtered
101 sequences to each nuclear genome within a reference panel derived from four *Mycobacterium*
102 strains and 38 eukaryotes, with the latter either exotic (implausible) or non-exotic (plausible)
103 to LGM Andøya (Supplementary Table S4). We mapped 310,000-680,000 sequences to the
104 *N. limnetica* genome, which translates to 9.3-20.3 thousand sequences per megabase
105 (kseq/Mb), and a nuclear genomic coverage of 0.48-1.13x. We observed a far lower relative
106 mapping frequency to all other *Nannochloropsis* nuclear genomes (up to 2.5-4.8 kseq/Mb). If
107 we consider sequences that are only mappable to a single genome, then the relative mapping
108 frequency falls to 7.4-17 kseq/Mb for *N. limnetica* and up to 0.6-1.3 kseq/Mb for all other
109 *Nannochloropsis* genomes. The most abundant non-*Nannochloropsis* eukaryotic taxon in the
110 sequence data was human, with 2-11 thousand sequences mapped (0.7-3.4 seq/Mb). As
111 expected from the metagenomic analyses, the next most abundant group is *Mycobacterium*.
112 As the relative mapping frequency was consistent across all four strains, based on both all
113 sequences aligned (up to 1.1-1.7 kseq/Mb) and only retaining sequences unique to a strain (up
114 to 0.6-0.9 kseq/Mb), we infer that the *Mycobacterium* strain or strains present in LGM
115 Andøya are not closely related to any that have been sequenced to date (Figure 1;
116 Supplementary Table S4). The relative frequencies of sequences mapping to plausible and
117 implausible eukaryotic genomes are comparable for non-*Nannochloropsis* taxa. Based on
118 both raw counts and those corrected for genome size, these analyses therefore indicated that
119 *N. limnetica* is the best represented taxon in the panel (Figure 1; Supplementary Table S4).

120 We sought to confirm whether sequences identified from the three best represented
121 taxonomic groups (*Nannochloropsis*, *Mycobacterium*, human) were likely to be of ancient
122 origin or to have derived from modern contamination. The sequences aligned to the human
123 genome did not exhibit typical patterns of ancient DNA damage, which include cytosine
124 deamination and depurination-induced strand breaks and are therefore considered to be of
125 modern contaminant origin (Supplementary Figure S2). In contrast, we find that sequences
126 aligned to two *Nannochloropsis limnetica* and the *Mycobacterium avium* genomes exhibit
127 authentic ancient DNA damage (Supplementary Figures S3 and S4), with patterns that are
128 near identical for both taxonomic groups, consistent with their preservation in the same
129 environment of broadly contemporaneous age.

130 We next aligned our sequence data against two organellar reference panels consisting
131 of either 2742 chloroplast or 8486 mitochondrial genomes (Supplementary Table S5). Both
132 analyses also recovered *N. limnetica* as the best represented taxon, with 23,600-37,900 and
133 8,600-14,100 sequences aligning to the chloroplast and mitochondrial genome of this taxon,
134 respectively. After mapping the filtered sequence data to the *Nannochloropsis* chloroplast
135 genomes individually, the number of sequences uniquely aligned to *N. limnetica* fell to 7,700-
136 11,300 (Supplementary Table S4). The most abundant non-*Nannochloropsis* taxon was the
137 algae *Choricystis parasitica* with 255-1,784 and 38-276 of sequences mapped to its
138 chloroplast and mitochondrial genome.

139

140 **Reconstruction of *Nannochloropsis* organellar palaeogenomes and their phylogenetic 141 placement**

142 We reconstructed complete composite organellar palaeogenomes for *Nannochloropsis*
143 present in LGM Andøya, using *N. limnetica* as a seed sequence. The resulting complete
144 chloroplast sequence was 117.7 kilobases (kb) in length and had a coverage depth of 64.3x.
145 The mitochondrial genome was 38.5 kb in length with a coverage of 62.4x (Figure 2;
146 Supplementary Figure S5; Supplementary Table S6). We observed two major structural
147 changes in our reconstructed chloroplast as compared to the *N. limnetica* seed sequence, in
148 which the reconstructed chloroplast was inferred to share the ancestral structural state with
149 the remaining *Nannochloropsis* taxa. This included a 233 bp region in a non-coding region
150 between the *thiG* and *rpl27* genes, which is absent in the *N. limnetica* seed sequence and of
151 varying length among all other *Nannochloropsis* taxa (Supplementary Figure S6). A 323 bp
152 insertion in a non-coding region between the genes *rbcS* and *psbA*, is present in the *N.*
153 *limnetica* seed sequence, but lacking from our reconstructed chloroplast and all other
154 *Nannochloropsis* taxa (Supplementary Figure S6). We noted that the combined coverage was
155 reduced across these two regions, with 21x and 32x chloroplast genome coverage (the latter
156 calculated from 100 bp upstream and downstream of the deletion), which may be suggestive
157 of within-sample variation. Both the reconstructed composite organellar genomes displayed
158 authentic ancient DNA damage patterns (Supplementary Figures S7 and S8).

159 To account for within-sample variants in our reconstructed organellar palaeogenomes,
160 we created two consensus sequences that included either high or low frequency variants at
161 multiallelic sites. We performed phylogenetic analyses to confirm the placement of the high
162 and low frequency variant consensus genomes relative to other *Nannochloropsis* taxa. For
163 this, we used full organellar genomes and three short loci with high taxonomic representation

164 in NCBI Genbank (18S, ITS, *rbcL*; Table S7). Altogether, these analyses from three different
165 markers (chloroplast, mitochondrial, nuclear) were congruent and resolved the high
166 frequency variant consensus sequences as likely deriving from *N. limnetica* var. *globosa* and
167 the low frequency variant consensus sequences as *N. limnetica* var. *limnetica* (Table 2; Figure
168 3; Supplementary Figures S9).

169 We attempted to reconstruct composite chloroplast genomes using alternative
170 *Nannochloropsis* taxa as seed sequences, but these analyses failed to resolve a complete
171 composite sequence (Supplementary Table S8). A phylogenetic analysis of these alternative
172 composite chloroplast genomes displays a topology consistent with the biases associated with
173 mapping to increasingly diverged reference genomes (Supplementary Figure S10). These
174 alternative composite chloroplast genomes were therefore not used further, but provide
175 supporting evidence that *N. limnetica* is the most closely related extant taxon.

176

177 ***Nannochloropsis limnetica* allelic variation and haplotype estimation**

178 In the absence of a catalog of chloroplast and mitochondrial genomes from the *N. limnetica*
179 variants, we sought to explore the frequencies and proportions of allelic variants present in
180 our data set. We combined all sequences aligned to the high and low frequency variant
181 consensus genomes into a single data set for each sample. We restricted our analyses to
182 transversion variants only in order to exclude artifacts derived from ancient DNA damage,
183 and defined the reference allele as that present in the reconstructed composite organellar
184 genomes. We detected 299-376 and 81-112 variants within the *N. limnetica* chloroplast and
185 mitochondrial genomes, respectively (Supplementary Table S9). For each sample and across
186 the entire organellar genome, the average proportion of the transversion-only alternative
187 allele is 0.39-0.42 for chloroplast variants and 0.39-0.43 for mitochondrial variants (Figure
188 4).

189 After pooling data from both samples, we used the phasing of adjacent alleles, which
190 were linked by the same read, to infer the minimum number of haplotypes in each
191 reconstructed composite organellar genome. We identify 70 and 21 transversion-only phased
192 positions in the chloroplast and mitochondrial genomes, respectively. Within each sample,
193 the average number of haplotypes observed, based on the linked alleles in the chloroplast
194 genome, is 1.93-2.09. The equivalent average for the mitochondrial genome is 2.05-2.29
195 (Figure 4; Supplementary Table S10).

196

197 Discussion

198 All of our analyses identified *Nannochloropsis* as the most abundant eukaryotic taxon in the
199 LGM lake sediments from Andøya, consistent with a previous study based on plant DNA
200 metabarcoding³⁵. We observed ancient DNA deamination patterns for all reference sequence
201 combinations, which supports the authenticity of our data. The phylogenetic placement of our
202 organellar palaeogenomes, as well as other short loci, indicate that the *Nannochloropsis* taxon
203 detected in Andøya is *N. limnetica*, with at least two varieties present: *N. limnetica* var.
204 *globosa* and *N. limnetica* var. *limnetica*.

205 The low overall proportion of sequences identified by the NCBI-based metagenomic
206 analysis is broadly consistent with other shotgun metagenomic studies from *sedaDNA*^{10,13,14}
207 and suggests that the vast majority of taxonomic diversity in the sediment record is currently
208 unidentifiable. We recovered comparable and low relative mapping frequencies for all non-
209 *Nannochloropsis* eukaryotic taxa in our genome panel, regardless of their plausibility of
210 occurring at LGM Andøya. We therefore suggest that these mappings are artifacts resulting
211 from the spurious mapping of short and damaged ancient DNA molecules coupled with the
212 vast diversity of sequences present in *sedaDNA*^{53,54}. However, we identified a component of
213 *Mycobacterium* sequences, which display ancient DNA damage patterns, although, unlike
214 *Nannochloropsis*, no dominant strain could be identified. This indicates that our samples
215 contain one or multiple unsequenced strains, some or all of which may be extinct.

216 We explored whether Andøya *Nannochloropsis* could potentially comprise more than
217 one species. The detection of a low number of uniquely mapped sequences to non-*N.*
218 *limnetica* *Nannochloropsis* genomes indicates that we cannot exclude the possibility of other
219 rare *Nannochloropsis* taxa being present in the sequence data. However, we suggest that *N.*
220 *limnetica* is the sole taxon present and that evolutionary divergence and potential technical
221 artifacts can explain the conflicting results. Our phylogenetic analyses suggest that the
222 Andøya *N. limnetica* variants are not evolutionarily close to any available organellar
223 reference genomes. We therefore might expect some regions of our *N. limnetica* organellar
224 genomes to be evolutionarily closer to non-*N. limnetica* than to *N. limnetica*. This is
225 supported by the trend of decreasing quality of, and increased impact of reference bias upon,
226 the chloroplast genome sequences reconstructed using alternative seed genomes. This could
227 have been compounded by the aforementioned artifacts associated with ancient DNA^{53,54}.

228 We detected within-sample allelic variation in both the *N. limnetica* chloroplast and
229 mitochondrial genome reconstructions, which we split into two consensus sequences

230 containing either the high or the low frequency variants. In both organellar genomes, the high
231 frequency variants for both samples, assigned as *N. limnetica* var. *globosa*, clustered
232 separately from the low frequency variants, which we identified as *N. limnetica* var.
233 *limnetica*. This demonstrates that the results from each of our broadly contemporaneous
234 samples are replicable, which is further confirmed by comparable results obtained by the
235 estimation of the minimum number of haplotypes. For both samples, our analyses recover at
236 least two haplotypes, with a small proportion of phased positions containing three. We note
237 that our method is conservative, given the strict filtering criteria and limited window size, and
238 almost certainly underestimates true haplotype diversity. To accurately estimate the diversity
239 and proportions of haplotypes, it is likely that an extensive reference database of *N. limnetica*
240 haplotypes will be required. However, this may be particularly problematic for taxa that lack
241 body fossils, which are currently required to reconstruct extinct haplotypes. Future
242 methodological and statistical advances will therefore be required to estimate and quantify
243 haplotype variation for taxa from within a *sedaDNA* population sample.

244 The sheer abundance of *N. limnetica* sequences in our identified *sedaDNA* shotgun
245 sequence data suggests a high biomass of this algae in Lake Øvre Åråsvatnet during the
246 LGM. *Nannochloropsis* is known to undergo blooming events that can reach up to 10^{10} cells
247 per litre of water⁵⁵, which have been reported for *N. gaditana* in the Comacchio Lagoons,
248 Italy⁵⁶ and *N. granulata* in the Yellow Sea, China⁵⁵. *N. limnetica* itself was first described
249 from spring blooms in Germany, reaching concentrations up to 5.7×10^9 cells per litre⁴¹. Such
250 blooms could explain the observed high sequence abundance in our data. Independent proxies
251 from the same LGM sediments, including high loss-on-ignition (LOI) values³² and organic
252 elemental (C/N) proportions³⁵, are consistent with a blooming scenario resulting from high
253 nutrient input. Stable isotope data suggest that the C/N is of a high trophic origin, most likely
254 bird guano from an adjacent bird cliff³⁵, which corresponds with the detection of bird bones
255 (little auk, *Alle alle*) in the LGM sediments^{30,33,35}. The high inflow of nutrients into the lake
256 could have resulted in eutrophication of the lake ecosystem and thus initiated blooms of *N.*
257 *limnetica*.

258 *Nannochloropsis* has not previously been reported from contemporary northern
259 Norway, based on available Global Biodiversity Information Facility (GBIF) records and the
260 published literature, which could be due to the general difficulty of observing and identifying
261 this algae^{47,50}. We note, however, that our reanalysis of modern DNA metabarcoding data
262 from 11 north Norwegian localities⁵⁷ shows the presence of *Nannochloropsis* at five sites
263 (Supplementary Table S11), with dominant abundances detected for two sites. In addition to

264 LGM Andøya³⁵, *Nannochloropsis* has either been previously reported, or unreported but
265 present based on our re-analysis, in eight *sedadNA*-based palaeoecological records from
266 Greenland⁵⁸, St. Paul Island, Alaska, USA^{9,11}, Alberta, Canada¹⁰, Latvia⁵⁹, Qinghai, China
267⁶⁰ and Svalbard^{52,61}(Supplementary Figure S11). We failed to detect *Nannochloropsis* in the
268 Hässeldala Port, Sweden¹³ record. We note that *Nannochloropsis* is particularly well
269 represented in late Pleistocene and early Holocene sediments from these records, at a time
270 when the climate was cooler than present⁶². Assuming these records reflect *N. limnetica*, or
271 an ecological analogue, then these occurrences are consistent with its known climatic
272 tolerances, such as thriving in cold water⁴³. Therefore, climate would have been adequate for
273 *N. limnetica* at Andøya during the LGM, whereas the high nutrient input could have
274 stimulated the unusually high concentrations.

275 As *Nannochloropsis* taxa differ in their salinity tolerances, the ability to detect and
276 identify them to the species-level could potentially be used as a palaeoecological proxy to
277 estimate the salinity of coastal marine-lacustrine sedimentary records. The detection of the
278 fresh or brackish water *N. limnetica* in Lake Øvre Åråsvatnet is consistent with earlier
279 studies that indicated a lacustrine LGM sediment record^{25,32,34}. However, caution should be
280 applied when assuming ecological preferences of a taxon that is evolutionarily divergent from
281 reference sequences, as is the case here.

282 Our complete *N. limnetica* chloroplast palaeogenome reconstructions represent the
283 first derived from *sedadNA*, although a near-complete chloroplast sequence has recently
284 been reported for a vascular plant¹⁴. Although mitochondrial palaeogenomes have previously
285 been reconstructed from cave sediments¹², and archaeological middens and latrines^{24,63}, ours
286 are the first derived from lake sediments. The high depth of coverage for our sample-
287 combined palaeogenomes (62-64x) allowed us to explore allelic proportions and haplotype
288 diversity using *sedadNA*, which resulted in us identifying at least two distinct variants.
289 Together with recently published and ongoing studies, our work demonstrates the feasibility
290 of the *sedadNA* field moving into a new phase of environmental palaeogenomics. This will
291 enable a broad range of ecological and evolutionary questions to be addressed using
292 population genomic approaches, including for communities of taxa that may or may not be
293 preserved in the body fossil record. With further innovations, this approach could also be
294 extended to a suite of broad groups, including plants, invertebrates, and vertebrates, from lake
295 catchments, cave sediments, and archaeological settings, therefore unlocking the full
296 potential of *sedadNA*.

297

298 Material and methods

299

300 **Site description, chronology, and sampling**

301 A detailed description of the site, coring methods, age-depth model reconstruction, and
302 sampling strategy can be found in ³⁵. Briefly, Lake Øvre Åråsvatnet is located on Andøya,
303 Northern Norway (69.25579°N, 16.03517°E) (Figure 1). In 2013, two cores were collected
304 from the deepest sediments, AND10 and AND11. Macrofossil remains were dated, with
305 those from AND10 all dating to within the LGM. For the longer core AND11, a Bayesian
306 age-depth model was required to estimate the age of each layer ³⁵. In this study, we selected
307 one sample of LGM sediments from each of the two cores. According to the Bayesian age-
308 depth model, sample Andøya_LGM_B, from 1102 cm depth in AND11, was dated to a
309 median age of 17,700 (range: 20,200-16,500) cal yr BP. The age of Andøya_LGM_A, from
310 938 cm depth in AND10, was estimated at 19,500 cal yr BP, based on the interpolated
311 median date between two adjacent macrofossils (20 cm above: 19,940-18,980 cal yr BP, 30
312 cm below: 20,040-19,000 cal yr BP). As Andøya_LGM_A falls within the age range of
313 Andøya_LGM_B, we consider the samples to be broadly contemporaneous.

314

315 **Sampling, DNA extraction, library preparation, and sequencing**

316 The two cores were subsampled at the selected layers under clean conditions, in a dedicated
317 ancient DNA laboratory at The Arctic University Museum of Norway in Tromsø. We
318 extracted DNA from 15 g of sediment following the Taberlet phosphate extraction protocol ¹⁸
319 in the same laboratory. We shipped a 210 µL aliquot of each DNA extract to the ancient
320 DNA dedicated laboratories at the Centre for GeoGenetics (University of Copenhagen,
321 Denmark) for double-stranded DNA library construction. After concentrating the DNA
322 extracts to 80 µL, half of each extract (40 µL, totalling between 31.7-36.0 ng of DNA) was
323 converted into Illumina-compatible libraries using established protocols ¹⁰. The number of
324 indexing PCR cycles was determined using qPCR and each sample was dual indexed. The
325 libraries were then purified using the AmpureBead protocol (Beckman Coulter, Indianapolis,
326 IN, USA), adjusting the volume ratio to 1:1.8 library:AmpureBeads, and quantified using a
327 BioAnalyzer (Agilent, Santa Clara, CA, USA). The indexed libraries were pooled
328 equimolarly and sequenced on a lane of the Illumina HiSeq 2500 platform using 2x 80 cycle
329 paired-end chemistry.

330

331 **Raw read filtering**

332 For each sample, we merged and adapter-trimmed the paired-end reads with *SeqPrep*
333 (<https://github.com/jstjohn/SeqPrep/releases>, v1.2) using default parameters. We only
334 retained the resulting merged sequences, which were then filtered with the preprocess
335 function of the *SGA toolkit* v0.10.15⁶⁴ by the removal of those shorter than 35 bp or with a
336 DUST complexity score >1.

337

338 **Metagenomic analysis of the sequence data**

339 We first sought to obtain an overview of the taxonomic composition of the samples and
340 therefore carried out a BLAST-based metagenomic analysis on the two filtered sequence
341 datasets. To make the datasets more computationally manageable, we subsampled the first
342 and last one million sequences from the filtered dataset of each sample and analysed each
343 separately. The data subsets were each identified against the NCBI nucleotide database
344 (release 223) using the blastn function from the *NCBI-BLAST+* suite v2.2.18+⁶⁵ under
345 default settings. For each sample, the results from the two subsets were checked for internal
346 consistency, merged into one dataset, and loaded into *MEGAN* v6.12.3⁶⁶. Analysis and
347 visualization of the Last Common Ancestor (LCA) was carried out for the taxonomic profile
348 using the following settings: min score=35, max expected=1.0E-5, min percent identity=95%,
349 top percent=10%, min support percentage=0.01, LCA=naive, min percent sequence to
350 cover=95%. We define sequences as the reads with BLAST hits assigned to taxa post-
351 filtering, thus ignoring “unassigned” and “no hit” categories.

352

353 **Alignment to reference genome panels**

354 We mapped our filtered data against three different reference panels to help improve
355 taxonomic identifications and provide insight into the sequence abundance of the identified
356 taxa (Supplementary Tables S4 and S5). The first reference panel consisted of 42 nuclear
357 genomes that included taxa expected from Northern Norway, exotic/implausible taxa, human,
358 six *Nannochloropsis* species, and four strains of *Mycobacterium*. The inclusion of exotic taxa
359 was to give an indication of the background spurious mapping rate, which can result from
360 mappings to conserved parts of the genome and/or short and damaged ancient DNA
361 molecules^{53,54}. We included *Nannochloropsis*, *Mycobacterium*, and human genomes, due to
362 their overrepresentation in the BLAST-based metagenomic analysis. The other two reference
363 panels were based on either all mitochondrial or chloroplast genomes on NCBI GenBank (as
364 of January 2018). The chloroplast data set was augmented with 247 partial or complete

365 chloroplast genomes generated by the PhyloNorway project⁶⁷. The filtered data were mapped
366 against each reference genome or organellar genome set individually using *bowtie2* v2.3.4.1
367⁶⁸ under default settings. The resulting bam files were processed with *SAMtools* v0.1.19⁶⁹.
368 We removed unmapped sequences with *SAMtools view* and collapsed PCR duplicate
369 sequences with *SAMtools rmdup*.

370 For the nuclear reference panel, we reduced potential spurious or nonspecific
371 sequence mappings by comparing the mapped sequences to both the aligned reference
372 genome and the NCBI nucleotide database using *NCBI-BLAST+*, following the method used
373 by Graham *et al.*⁹, as modified by Wang *et al.*¹¹. The sequences were aligned using the
374 following *NCBI-BLAST+* settings: num_alignments=100 and perc_identity=90. Sequences
375 were retained if they had better alignments, based on bit score, to reference genomes as
376 compared to the NCBI nucleotide database. If a sequence had a better or equal match against
377 the NCBI nucleotide database, it was removed, unless the LCA of the highest NCBI
378 nucleotide bit score was from the same genus as the reference genome (based on the NCBI
379 taxonID). To standardize the relative mapping frequencies to genomes of different size, we
380 calculated the number of retained mapped sequences per Mb of genome sequence.

381 The sequences mapped against the chloroplast and mitochondrial reference panels
382 were filtered and reported in a different manner than the nuclear genomes. First, to exclude
383 any non-eukaryotic sequences, we used *NCBI-BLAST+* to search sequence taxonomies and
384 retained sequences if the LCA was, or was within, Eukaryota. Second, for the sequences that
385 were retained, the LCA was calculated and reported in order to summarize the mapping
386 results across the organelle datasets. LCAs were chosen as the reference sets are composed of
387 multiple genera.

388 Within the *Nannochloropsis* nuclear reference alignments, the relative mapping
389 frequency was highest for *N. limnetica*. In addition, the relative mapping frequency for other
390 *Nannochloropsis* taxa was higher than those observed for the exotic taxa. This could
391 represent the mapping of sequences that are conserved between *Nannochloropsis* genomes or
392 suggest the presence of multiple *Nannochloropsis* taxa in a community sample. We therefore
393 cross-compared mapped sequences to determine the number of uniquely mapped sequences
394 per reference genome. First, we individually remapped the filtered data to six available
395 *Nannochloropsis* nuclear genomes, the accession codes of which are provided in
396 Supplementary Table S4. For each sample, we then calculated the number of sequences that
397 uniquely mapped to, or overlapped, between each *Nannochloropsis* genome. We repeated the

398 above analysis with six available chloroplast sequences (Supplementary Table S4), to get a
399 comparable overlap estimation for the chloroplast genome.

400

401 **Reconstruction of the Andøya *Nannochloropsis* community organellar palaeogenomes**

402 To place the Andøya *Nannochloropsis* community taxon into a phylogenetic context, and
403 provide suitable reference sequences for variant calling, we reconstructed environmental
404 palaeogenomes for the *Nannochloropsis* mitochondria and chloroplast. First, the raw read
405 data from both samples were combined into a single dataset and re-filtered with the *SGA*
406 *toolkit* to remove sequences shorter than 35 bp, but retain low complexity sequences to assist
407 in the reconstruction of low complexity regions in the organellar genomes. This re-filtered
408 sequence data set was used throughout the various steps for environmental palaeogenome
409 reconstruction.

410 The re-filtered sequence data were mapped onto the *N. limnetica* reference chloroplast
411 genome (NCBI GenBank accession: NC_022262.1) with *bowtie2* using default settings.
412 *SAMtools* was used to remove unmapped sequences and PCR duplicates, as above. We
413 generated an initial consensus genome from the resulting bam file with *BCFtools* v1.9⁶⁹,
414 using the *mpileup*, *call*, *filter*, and *consensus* functions. For variable sites, we produced a
415 majority-rule consensus using the --variants-only and --multiallelic-caller options, and for
416 uncovered sites the reference genome base was called. The above steps were repeated until
417 the consensus could no longer be improved. The re-filtered sequence data was then re-
418 mapped onto the initial consensus genome sequence with *bowtie2*, using the above settings.
419 The *genomecov* function from *BEDtools* v2.17.0⁷⁰ was used to identify gaps and low
420 coverage regions in the resulting alignment.

421 We attempted to fill the identified gaps, which likely consisted of diverged or
422 difficult-to-assemble regions. For this, we assembled the re-filtered sequence dataset into *de*
423 *novo* contigs with the MEGAHIT pipeline v1.1.4⁷¹, using a minimum *k*-mer length of 21, a
424 maximum *k*-mer length of 63, and *k*-mer length increments of six. The MEGAHIT contigs
425 were then mapped onto the initial consensus genome sequence with the *blastn* tool from the
426 NCBI-BLAST+ toolkit. Contigs that covered the gaps identified by *BEDtools* were
427 incorporated into the initial consensus genome sequence, unless a *blast* comparison against
428 the NCBI nucleotide database suggested a closer match to non-*Nannochloropsis* taxa. We
429 repeated the *bowtie2* gap-filling steps iteratively, using the previous consensus sequence as
430 reference, until a gap-free consensus was obtained. The re-filtered sequence data were again
431 mapped, the resulting final assembly was visually inspected, and the consensus was corrected

432 where necessary. This was to ensure the fidelity of the consensus sequence, which
433 incorporated *de novo*-assembled contigs that could potentially be problematic, due to the
434 fragmented nature and deaminated sites of ancient DNA impeding accurate assembly⁷².

435 Annotation of the chloroplast genome was carried out with *GeSeq*⁷³, using the
436 available annotated *Nannochloropsis* chloroplast genomes (accession codes provided in
437 Supplementary Table S12). The resulting annotated chloroplast was visualised with
438 *OGDRAW*⁷⁴.

439 The same assembly and annotation methods outlined above were used to reconstruct
440 the mitochondrial palaeogenome sequence, where the initial mapping assembly was based on
441 the *N. limnetica* mitochondrial sequence (NCBI GenBank accession: NC_022256.1). The
442 final annotation was carried out by comparison against all available annotated
443 *Nannochloropsis* mitochondrial genomes (accession codes provided in Supplementary Table
444 S12).

445 If the *Nannochloropsis* sequences derived from more than one taxon, then alignment
446 to the *N. limnetica* chloroplast genome could introduce reference bias, which would
447 underestimate the diversity of the *Nannochloropsis* sequences present. We therefore
448 reconstructed *Nannochloropsis* chloroplast genomes, but using the six available
449 *Nannochloropsis* chloroplast genome sequences, including *N. limnetica*, as seed genomes
450 (accession codes for the reference genomes are provided in Supplementary Table S8). The
451 assembly of the consensus sequences followed the same method outlined above, but with two
452 modifications to account for the mapping rate being too low for complete genome
453 reconstruction based on alignment to the non-*N. limnetica* reference sequences. First,
454 consensus sequences were called with *SAMtools*, which does not incorporate reference bases
455 into the consensus at uncovered sites. Second, neither additional gap filling, nor manual
456 curation was implemented.

457

458 **Assembly of high and low frequency variant consensus sequences**

459 The within-sample variants in each reconstructed organellar palaeogenome was explored by
460 creating two consensus sequences, which included either high or low frequency variants at
461 multiallelic sites. For each sample, the initial filtered sequence data were mapped onto the
462 reconstructed *Nannochloropsis* chloroplast palaeogenome sequence with *bowtie2* using
463 default settings. Unmapped and duplicate sequences were removed with *SAMtools*, as above.
464 We used the *BCFtools mpileup*, *call*, and *normalize* functions to identify the variant sites in
465 the mapped dataset, using the --skip-indels, --variants-only, and --multiallelic-caller options.

466 The resulting alleles were divided into two sets, based on either high or low frequency
467 variants. High frequency variants were defined as those present in the reconstructed reference
468 genome sequence. Both sets were further filtered to only include sites with a quality score of
469 30 or higher and a coverage of at least half the average coverage of the mapping assembly
470 (minimum coverage: Andøya_LGM_A=22x, Andøya_LGM_B=14x). We then generated the
471 high and low frequency variant consensus sequences using the consensus function in
472 *BCFTools*. The above method was repeated for the reconstructed *Nannochloropsis*
473 mitochondrial genome sequence in order to generate comparable consensus sequences of
474 high and low frequency variants (minimum coverage: Andøya_LGM_A=16x,
475 Andøya_LGM_B=10x).

476

477 **Analysis of ancient DNA damage patterns**

478 We checked for the presence of characteristic ancient DNA damage patterns for sequences
479 aligned to four nuclear genomes: human, *Nannochloropsis limnetica* and *Mycobacterium*
480 *avium*. We further analysed damage patterns for sequences aligned to both the reconstructed
481 *N. limnetica* composite organellar genomes. Damage analysis was conducted with
482 *mapDamage* v2.0.8⁷⁵ using the following settings: --merge-reference-sequences and --
483 length=160.

484

485 **Phylogenetic analysis of the reconstructed organellar palaeogenomes**

486 We determined the phylogenetic placement of our high and low frequency variant organellar
487 palaeogenomes within *Nannochloropsis*, using either full mitochondrial and chloroplast
488 genome sequences or three short loci (18S, ITS, *rbcL*). We reconstructed the 18S and ITS1-
489 5.8S-ITS2 complex using DQ977726.1 (full length) and EU165325.1 (positions 147:1006,
490 corresponding to the ITS complex) as seed sequences following the same approach that was
491 used for the organellar palaeogenome reconstructions, except that the first and last 10 bp
492 were trimmed to account for the lower coverage due to sequence tiling. We then called high
493 and low variant consensus sequences as described above.

494 We created six alignments using available sequence data from NCBI Genbank
495 (Supplementary Tables S7) with the addition of: (1+2) the high and low frequency variant
496 chloroplast or mitochondrial genome consensus sequences, (3) a ~1100 bp subset of the
497 chloroplast genome for the *rbcL* alignment, (4+5) ~1800 bp and ~860 bp subsets of the
498 nuclear multicopy complex for the 18S and ITS alignments, respectively, and (6) the
499 reconstructed chloroplast genome consensus sequences derived from the alternative

500 *Nannochloropsis* genome starting points. Full details on the coordinates of the subsets are
501 provided in Supplementary Table S7. We generated alignments using *MAFFT* v7.427⁷⁶ with
502 the maxiterate=1000 setting, which was used for the construction of a maximum likelihood
503 tree in *RAXML* v8.1.12⁷⁷ using the GTRGAMMA model and without outgroup specified. We
504 assessed branch support using 1000 replicates of rapid bootstrapping.

505

506 ***Nannochloropsis* variant proportions and haplogroup diversity estimation**

507 To estimate major haplogroup diversity, we calculated the proportions of high and low
508 variants in the sequences aligned to our reconstructed *Nannochloropsis* mitochondrial and
509 chloroplast genomes. For each sample, we first mapped the initial filtered sequence data onto
510 the high and low frequency variant consensus sequences with *bowtie2*. To avoid potential
511 reference biases, and for each organellar genome, the sequence data were mapped separately
512 against both frequency consensus sequences. The resulting bam files were then merged with
513 *SAMtools* merge. We removed exact sequence duplicates, which may have been mapped to
514 different coordinates, from the merged bam file by randomly retaining one copy. This step
515 was replicated five times to examine its impact on the estimated variant proportions. After
516 filtering, remaining duplicate sequences - those with identical mapping coordinates - were
517 removed with *SAMtools* rmdup. We then called variable sites from the duplicate-removed
518 bam files using *BCFTools* under the same settings as used in the assembly of the high and
519 low frequency variant consensus sequences. We restricted our analyses to transversion-only
520 variable positions, to remove the impact of ancient DNA deamination artifacts. For each
521 variable site, the proportion of reference and alternative alleles was calculated, based on
522 comparison to the composite *N. limnetica* reconstructed organellar palaeogenomes. We
523 removed rare alleles occurring at a proportion of <0.1, as these may have resulted from noise.

524 To infer the minimum number of haplogroups in each reconstructed organellar
525 genome sequence, we inspected the phasing of adjacent variable sites that were linked by the
526 same read in the duplicate-removed bam files, akin to the method used by Søe *et al.*⁶³. For
527 this, we first identified all positions, from both samples, where two or more transversion-only
528 variable sites occurred within 35 bp windows. We then examined the allelic state in mapped
529 sequences that fully covered each of these linked positions. We recorded the combination of
530 alleles to calculate the observed haplotype diversity at each of the linked positions. We
531 removed low frequency haplotypes, which were defined as those with <3 sequences or <15%
532 of all sequences that covered a linked position, and the remaining haplotypes were scored.

533

534 **Meta-analysis of *Nannochloropsis* in previous sedaDNA data sets**

535 We performed a meta-analysis of the global prevalence of *Nannochloropsis* since the last ice
536 age using published and available lake sedaDNA data sets. Three published shotgun datasets
537 from Lake Hill, Alaska, USA ^{9,11}, Charlie Lake, BC and Spring Lake, Alberta, Canada ¹⁰, and
538 Hässeldala Port, Sweden ¹³ were reanalysed for the presence of *N. limnetica* using the same
539 nuclear genome method as used in this study (Supplementary Table S13). Furthermore, a
540 metabarcode data set was reanalysed from Skartjørna, Svalbard ⁶¹, using the same methods
541 for analysis as the original study, but lowering the minimum barcode length to 10 bp, in order
542 to retain the *Nannochloropsis* barcode (tag-sample lookup is provided in Supplementary
543 Table S14). These data sets were supplemented with sedaDNA metabarcoding studies that
544 reported *Nannochloropsis*, including; Bliss Lake, Greenland ⁵⁸, Qinghai Lake, China ⁶⁰,
545 Lielais Svētiņu, Latvia ⁵⁹, Lake Øvre Åræsvatnet ³⁵, and Jodavannet, Svalbard ⁵².

546 We estimated the occurrence and abundance of *Nannochloropsis* in 5,000-year time
547 windows for the above data sets. Abundance was coarsely divided into four categories for the
548 metabarcode data: (1) dominant, scored when *Nannochloropsis* was the only taxon detected
549 or most abundant of the taxa identified in the sequence data; (2) common, assigned when it
550 was in the top 10 most abundant taxa identified; (3) rare, scored for any other detections, and
551 (4) absent, assigned if *Nannochloropsis* was not detected. The reanalysed shotgun data sets
552 were scored as: (1) dominant, when *Nannochloropsis* made up $\geq 0.1\%$ of the filtered read
553 data; (2) common, 0.09-0.01%; (3) rare, 0.009-0.001%, and (4) absent, with $< 0.001\%$.
554

555 **Data availability**

556 The raw Illumina shotgun sequence datasets are available from EMBL via *ACCESSION*
557 *CODES*. The reanalysed metabarcoding data from Alsos et al. ⁶¹ are available via
558 *ACCESSION CODE*. The reconstructed *Nannochloropsis limnetica* high and low frequency
559 organellar genome sequences are available from NCBI Genbank via *ACCESSION CODES*.
560 The scripts estimating the number of haplotypes across the linked windows are provided in
561 the following GitHub repository at *GITHUB LINK*.
562
563

564 References

- 565 1. Shapiro, B. & Hofreiter, M. A paleogenomic perspective on evolution and gene function:
566 new insights from ancient DNA. *Science* **343**, 1236573 (2014).
- 567 2. Palkopoulou, E. *et al.* Complete Genomes Reveal Signatures of Demographic and
568 Genetic Declines in the Woolly Mammoth. *Curr. Biol.* **25**, 1395–1400 (2015).
- 569 3. Slon, V. *et al.* The genome of the offspring of a Neanderthal mother and a Denisovan
570 father. *Nature* **561**, 113–116 (2018).
- 571 4. Allaby, R. G., Smith, O. & Kistler, L. Archaeogenomics and Crop Adaptation: Genome-
572 Scale Analysis of Ancient DNA. in *Paleogenomics* (eds. Lindqvist, C. & Rajora, O. P.)
573 vol. 61 189–203 (Springer International Publishing, 2019).
- 574 5. Meyer, M. *et al.* A high-coverage genome sequence from an archaic Denisovan
575 individual. *Science* **338**, 222–226 (2012).
- 576 6. Allentoft, M. E. *et al.* Population genomics of Bronze Age Eurasia. *Nature* **522**, 167–172
577 (2015).
- 578 7. Meyer, M. *et al.* Nuclear DNA sequences from the Middle Pleistocene Sima de los
579 Huesos hominins. *Nature* **531**, 504–507 (2016).
- 580 8. Smith, O. *et al.* Sedimentary DNA from a submerged site reveals wheat in the British
581 Isles 8000 years ago. *Science* **347**, 998–1001 (2015).
- 582 9. Graham, R. W. *et al.* Timing and causes of mid-Holocene mammoth extinction on St.
583 Paul Island, Alaska. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 9310–9314 (2016).
- 584 10. Pedersen, M. W. *et al.* Postglacial viability and colonization in North America's ice-free
585 corridor. *Nature* **537**, 45–49 (2016).
- 586 11. Wang, Y. *et al.* The southern coastal Beringian land bridge: cryptic refugium or
587 pseudorefugium for woody plants during the Last Glacial Maximum? *J. Biogeogr.* **44**,
588 1559–1571 (2017).
- 589 12. Slon, V. *et al.* Neandertal and Denisovan DNA from Pleistocene sediments. *Science* **356**,
590 605–608 (2017).
- 591 13. Parducci, L. *et al.* Shotgun Environmental DNA, Pollen, and Macrofossil Analysis of
592 Lateglacial Lake Sediments From Southern Sweden. *Front. Ecol. Evol.* **7**, (2019).
- 593 14. Schulte, L. *et al.* Hybridization capture of larch (*Larix* Mill) chloroplast genomes from
594 sedimentary ancient DNA reveals past changes of Siberian forests. *BioRxiv* (2020)
595 doi:10.1101/2020.01.06.896068.
- 596 15. Pedersen, M. W. *et al.* Ancient and modern environmental DNA. *Philos. Trans. R. Soc.*

597 *Lond. B Biol. Sci.* **370**, 20130383 (2015).

598 16. Parducci, L. *et al.* Ancient plant DNA in lake sediments. *New Phytol.* **214**, 924–942
599 (2017).

600 17. Willerslev, E. *et al.* Fifty thousand years of Arctic vegetation and megafaunal diet.
601 *Nature* **506**, 47–51 (2014).

602 18. Taberlet, P. *et al.* Soil sampling and isolation of extracellular DNA from large amount of
603 starting material suitable for metabarcoding studies. *Mol. Ecol.* **21**, 1816–1820 (2012).

604 19. Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. *Environmental DNA for functional
605 diversity*. (Oxford University Press, 2018).

606 20. Nichols, R. V., Curd, E., Heintzman, P. D. & Shapiro, B. Targeted Amplification and
607 Sequencing of Ancient Environmental and Sedimentary DNA. in *Ancient DNA* 149–161
608 (Humana Press, 2019).

609 21. Briggs, A. W. *et al.* Patterns of damage in genomic DNA sequences from a Neandertal.
610 *Proc. Natl. Acad. Sci. U.S.A.* **104**, 14616–14621 (2007).

611 22. Skoglund, P. *et al.* Separating endogenous ancient DNA from modern day contamination
612 in a Siberian Neandertal. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 2229–2234 (2014).

613 23. Zinger, L. *et al.* DNA metabarcoding—Need for robust experimental designs to draw
614 sound ecological conclusions. *Mol. Ecol.* **28**, 1857–1862 (2019).

615 24. Seersholm, F. V. *et al.* DNA evidence of bowhead whale exploitation by Greenlandic
616 Paleo-Inuit 4,000 years ago. *Nat. Commun.* **7**, 13389 (2016).

617 25. Vorren, T. O., Rydningen, T. A., Baeten, N. J. & Laberg, J. S. Chronology and extent of
618 the Lofoten-Vesterålen sector of the Scandinavian Ice Sheet from 26 to 16 cal. ka BP.
619 *Boreas* **44**, 445–458 (2015).

620 26. Parducci, L. *et al.* Glacial survival of boreal trees in northern Scandinavia. *Science* **335**,
621 1083–1086 (2012).

622 27. Birks, H. H. *et al.* Comment on ‘Glacial survival of boreal trees in northern
623 Scandinavia’. *Science* **338**, 742; author reply 742 (2012).

624 28. Parducci, L. *et al.* Response to Comment on ‘Glacial Survival of Boreal Trees in
625 Northern Scandinavia’. *Science* **338**, 742–742 (2012).

626 29. Vorren, K.-D. Late and Middle Weichselian stratigraphy of Andøya, north Norway.
627 *Boreas* **7**, 19–38 (1978).

628 30. Vorren, T. O., Vorren, K.-D., Torbjørn, A., Gulliksen, S. & Løvlie, R. The last
629 deglaciation (20,000 to 11,000 B. P.) on Andøya, northern Norway. *Boreas* **17**, 41–77
630 (1988).

631 31. Alm, T. & Birks, H. H. Late Weichselian flora and vegetation of Andøya, Northern
632 Norway-macrofossil (seed and fruit) evidence from Nedre Åråsvatn. *Nord. J. Bot.* **11**,
633 465–476 (1991).

634 32. Alm, T. Øvre Åråsvatn - palynostratigraphy of a 22,000 to 10,000 BP lacustrine record
635 on Andøya, northern Norway. *Boreas* **22**, 171–188 (1993).

636 33. Elverland, E. & Alm, T. PhD chapter: A Late Weichselian Alle alle colony on Andøya,
637 northern Norway - a contribution to the history of an important Arctic environment. (UiT
638 - The Arctic University of Norway, 2012).

639 34. Vorren, T. O. *et al.* Palaeoenvironment in northern Norway between 22.2 and 14.5 cal.
640 ka BP. *Boreas* **42**, 876–895 (2013).

641 35. Alsos, I. G. *et al.* Late Glacial Maximum environmental condition of Andøya, a northern
642 ecological ‘hotspot’. *Quaternary Science Reviews* (2020).

643 36. Su, C.-H. *et al.* Factors affecting lipid accumulation by *Nannochloropsis oculata* in a
644 two-stage cultivation process. *J. Appl. Phycol.* **23**, 903–908 (2011).

645 37. Radakovits, R. *et al.* Draft genome sequence and genetic transformation of the
646 oleaginous alga *Nannochloropsis gaditana*. *Nat. Commun.* **3**, (2012).

647 38. Vieler, A. *et al.* Genome, functional gene annotation, and nuclear transformation of the
648 heterokont oleaginous alga *Nannochloropsis oceanica* CCMP1779. *PLoS Genet.* **8**,
649 e1003064 (2012).

650 39. Wei, L. *et al.* *Nannochloropsis* plastid and mitochondrial phylogenomes reveal organelle
651 diversification mechanism and intragenus phylotyping strategy in microalgae. *BMC
652 Genom.* **14**, 534 (2013).

653 40. Schwartz, A. S. *et al.* Complete genome sequence of the model oleaginous alga
654 *Nannochloropsis gaditana* CCMP1894. *Genome Announc.* **6**, (2018).

655 41. Krienitz, L., Hepperle, D., Stich, H.-B. & Weiler, W. *Nannochloropsis limnetica*
656 (Eustigmatophyceae), a new species of picoplankton from freshwater. *Phycologia* **39**,
657 219–227 (2000).

658 42. Fietz, S. *et al.* First record of *Nannochloropsis limnetica* (Eustigmatophyceae) in the
659 autotrophic picoplankton from Lake Baikal. *J. Phycol.* **41**, 780–790 (2005).

660 43. Fawley, K. P. & Fawley, M. W. Observations on the diversity and ecology of freshwater
661 *Nannochloropsis* (Eustigmatophyceae), with descriptions of new taxa. *Protist* **158**, 325–
662 336 (2007).

663 44. Hibberd, D. J. Notes on the taxonomy and nomenclature of the algal classes
664 Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). *Bot. J. Linn. Soc.* **82**,

665 93–119 (1981).

666 45. Karlson, B., Potter, D., Kuylenstierna, M. & Andersen, R. A. Ultrastructure, pigment
667 composition, and 18S rRNA gene sequence for *Nannochloropsis granulata* sp. nov.
668 (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the
669 Skagerrak, northeast Atlantic Ocean. *Phycologia* **35**, 253–260 (1996).

670 46. Suda, S., Atsumi, M. & Miyashita, H. Taxonomic characterization of a marine
671 *Nannochloropsis* species, *N. oceanica* sp. nov. (Eustigmatophyceae). *Phycologia* **41**,
672 273–279 (2002).

673 47. Andersen, R. A., Brett, R. W., Potter, D. & Sexton, J. P. Phylogeny of the
674 Eustigmatophyceae Based upon 18S rDNA, with Emphasis on *Nannochloropsis*. *Protist*
675 **149**, 61–74 (1998).

676 48. Karlov, D. S. *et al.* Microbial communities within the water column of freshwater Lake
677 Radok, East Antarctica: predominant 16S rDNA phylotypes and bacterial cultures. *Polar
678 Biology* **40**, 823–836 (2017).

679 49. Smol, J. P., Birks, H. J. & Last, W. M. *Tracking Environmental Change Using Lake
680 Sediments: Volume 4: Zoological Indicators*. (Springer Netherlands, 2001).

681 50. Gladu, P. K., Patterson, G. W., Wikfors, G. H. & Smith, B. C. Sterol fatty acid and
682 pigment characteristics of UTEX 2341 a marine eustigmatophyte identified previously as
683 *Chlorella minutissima* (Chlorophyceae). *J. Phycol.* **31**, 774–777 (1995).

684 51. Kryvenda, A., Rybalka, N., Wolf, M. & Friedl, T. Species distinctions among closely
685 related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-
686 structure data: *Eustigmatos* and *Vischeria*. *Eur. J. Phycol.* **53**, 471–491 (2018).

687 52. Voldstad, L. H. *et al.* A complete Holocene lake sediment ancient DNA record reveals
688 long-standing high Arctic plant diversity hotspot in northern Svalbard. *Quat. Sci. Rev.*
689 **234**, (2020).

690 53. Prüfer, K. *et al.* Computational challenges in the analysis of ancient DNA. *Genome Biol.*
691 **11**, R47 (2010).

692 54. Orlando, L., Gilbert, M. T. P. & Willerslev, E. Reconstructing ancient genomes and
693 epigenomes. *Nat. Rev. Genet.* **16**, 395–408 (2015).

694 55. Zhang, X. *et al.* First record of a large-scale bloom-causing species *Nannochloropsis
695 granulata* (Monodopsidaceae, Eustigmatophyceae) in China Sea waters. *Ecotoxicology*
696 **24**, 1430–1441 (2015).

697 56. Andreoli, C. *et al.* A Survey on a Persistent Greenish Bloom in the Comacchio Lagoons
698 (Ferrara, Italy). *Bot. Mar.* **42**, (1999).

699 57. Alsos, I. G. *et al.* Plant DNA metabarcoding of lake sediments: How does it represent the
700 contemporary vegetation. *PLoS One* **13**, e0195403 (2018).

701 58. Epp, L. S. *et al.* Lake sediment multi-taxon DNA from North Greenland records early
702 post-glacial appearance of vascular plants and accurately tracks environmental changes.
703 *Quat. Sci. Rev.* **117**, 152–163 (2015).

704 59. Stivrins, N. *et al.* Towards understanding the abundance of non-pollen palynomorphs: A
705 comparison of fossil algae, algal pigments and seda DNA from temperate lake
706 sediments. *Rev. Palaeobot. Palynol.* **249**, 9–15 (2018).

707 60. Li, G. *et al.* Temporal Succession of Ancient Phytoplankton Community in Qinghai
708 Lake and Implication for Paleo-environmental Change. *Sci. Rep.* **6**, 19769 (2016).

709 61. Alsos, I. G. *et al.* Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing
710 the resilience of arctic flora to Holocene climate change. *Holocene* **26**, 627–642 (2016).

711 62. Rasmussen, S. O. *et al.* A stratigraphic framework for abrupt climatic changes during the
712 Last Glacial period based on three synchronized Greenland ice-core records: refining and
713 extending the INTIMATE event stratigraphy. *Quat. Sci. Rev.* **106**, 14–28 (2014).

714 63. Søe, M. J. *et al.* Ancient DNA from latrines in Northern Europe and the Middle East
715 (500 BC-1700 AD) reveals past parasites and diet. *PLoS One* **13**, e0195481 (2018).

716 64. Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using
717 compressed data structures. *Genome Res.* **22**, 549–556 (2012).

718 65. Camacho, C. *et al.* BLAST : architecture and applications. *BMC Bioinform.* **10**, 421
719 (2009).

720 66. Huson, D. H. *et al.* MEGAN Community Edition - Interactive Exploration and Analysis
721 of Large-Scale Microbiome Sequencing Data. *PLoS Comput. Biol.* **12**, e1004957 (2016).

722 67. Alsos, I. G. *et al.* The treasure vault can be opened: large scale genome skimming works
723 equally well for herbarium as silica gel dried material. *Plants* (2020).

724 68. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359 (2012).

725 69. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
727 2078–2079 (2009).

728 70. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
729 genomic features. *Bioinformatics* **26**, 841–842 (2010).

730 71. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-
731 node solution for large and complex metagenomics assembly via succinct de Bruijn
732 graph. *Bioinformatics* **31**, 1674–1676 (2015).

733 72. Seitz, A. & Nieselt, K. Improving ancient DNA genome assembly. *PeerJ* **5**, e3126
734 (2017).

735 73. Tillich, M. *et al.* GeSeq - versatile and accurate annotation of organelle genomes.
736 *Nucleic Acids Res.* **45**, W6–W11 (2017).

737 74. Greiner, S., Lehwerk, P. & Bock, R. OrganellarGenomeDRAW (OGDRAW) version
738 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. *Nucleic
739 Acids Res.* **47**, W59–W64 (2019).

740 75. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L.
741 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage
742 parameters. *Bioinformatics* **29**, 1682–1684 (2013).

743 76. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
744 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

745 77. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
746 large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

747 78. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last
748 Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1.
749 *Boreas* **45**, 1–45 (2016).

750 Acknowledgements

751 This paper is a part of a larger project on the past environment of Andøya and we thank the
752 Andøya team for fruitful discussion and access to pre-publication results. We thank Per
753 Sjögren, Aage Paus and Ludovic Gielly for assistance with fieldwork; Antony G. Brown for
754 help with the age-depth models; Mikkel W. Pedersen for conducting the library preparation
755 and overseeing the sequencing; Edana Lord, Vendela K. Lagerholm, and Love Dalén for
756 access to the pre-published *Lemmus lemmus* genome; and Sandra Garcés Pastor for
757 informative discussions. The work was funded by the Research Council of Norway (grants:
758 213692, Ancient DNA of NW Europe reveals responses of climate change; 250963,
759 ECOGEN – Ecosystems change and species persistence over time: a genome-based approach
760 to IGA). YL was financed by an internal PhD position at The Arctic University Museum of
761 Norway.

762

763 Author contribution

764 YL, PDH, and IGA conceptualised and designed the research, and contributed to the final
765 version of the manuscript; YL analysed the data and wrote the first draft; PDH provided
766 analytical guidance and refined the drafted manuscript; IGA performed fieldwork, DNA
767 extractions, provided resources, acquired funding, and supervised YL.

768

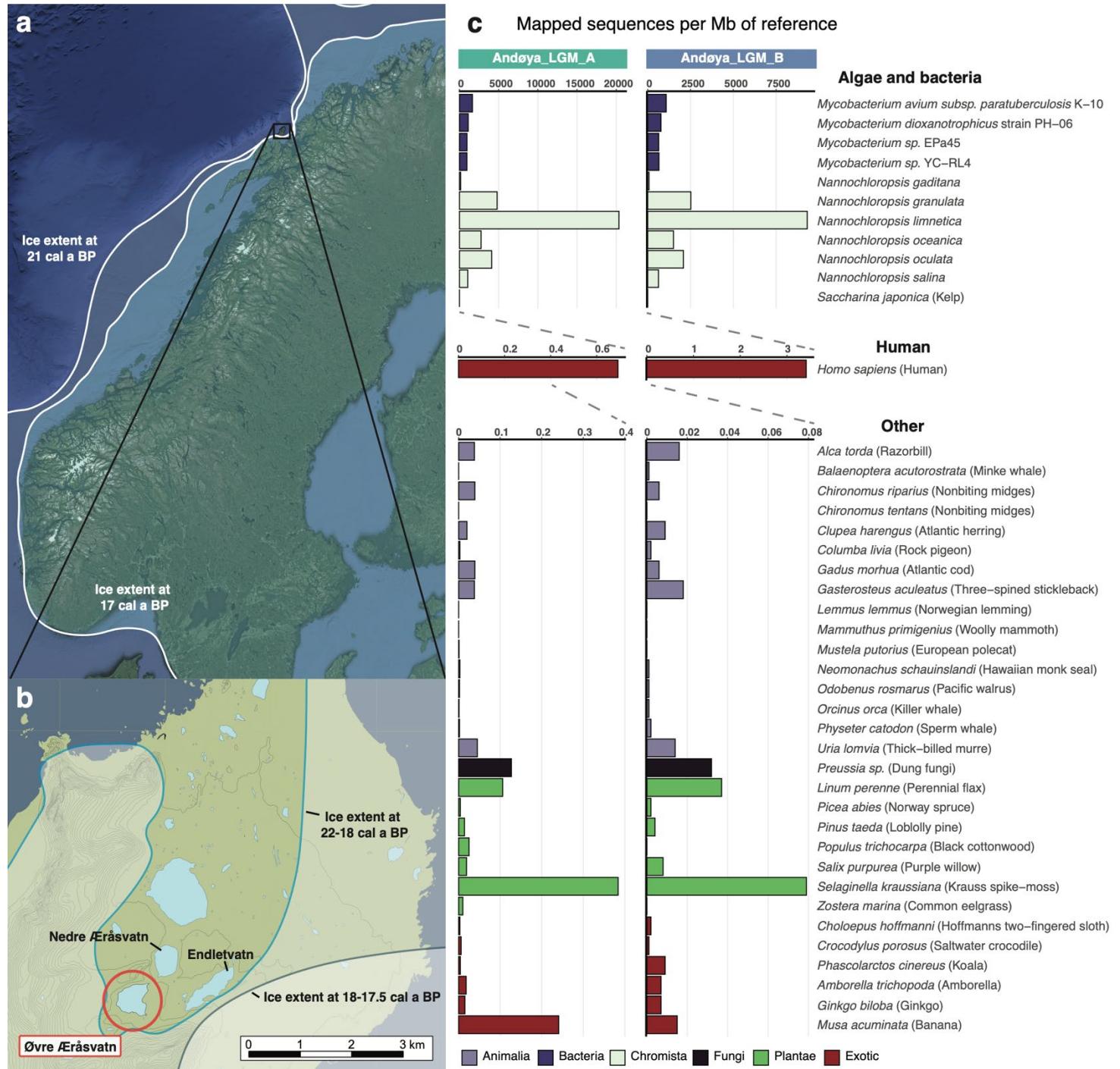
769 Ethics declarations

770 **Competing interests**

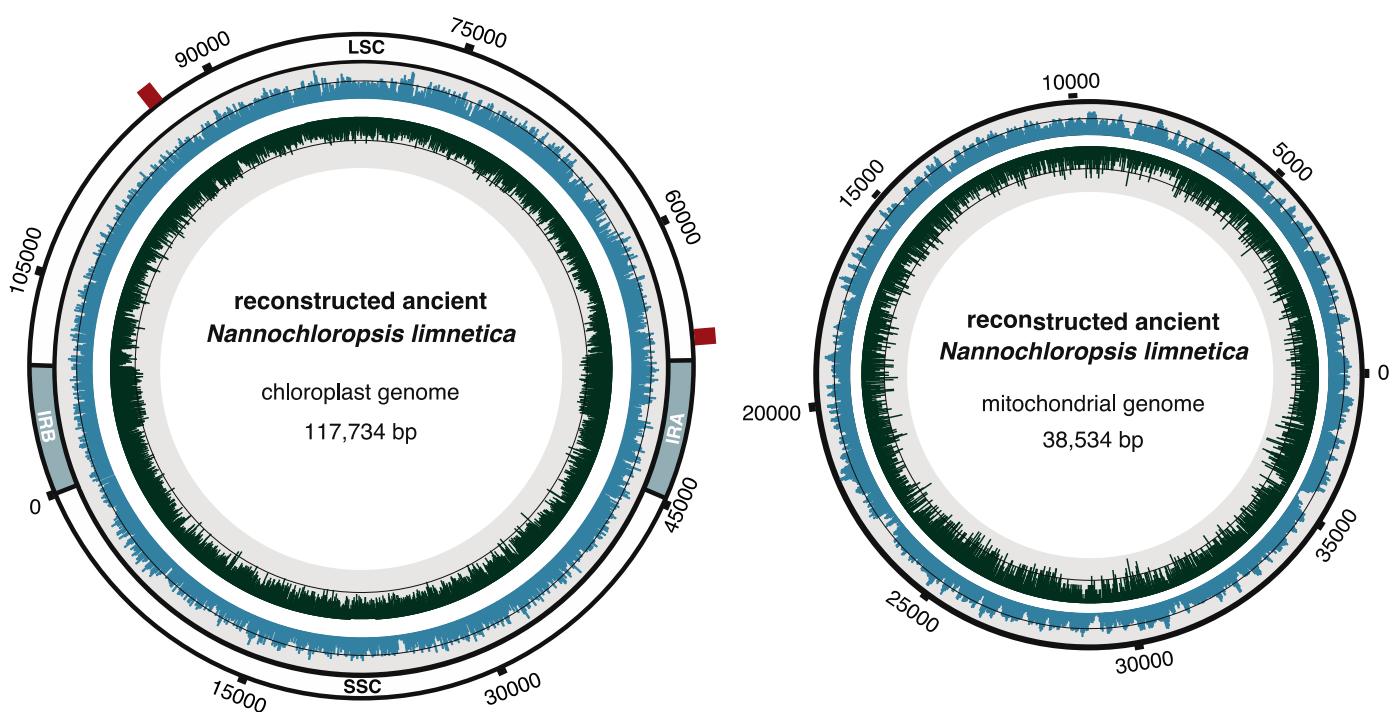
771 The author(s) declare no competing interests.

772

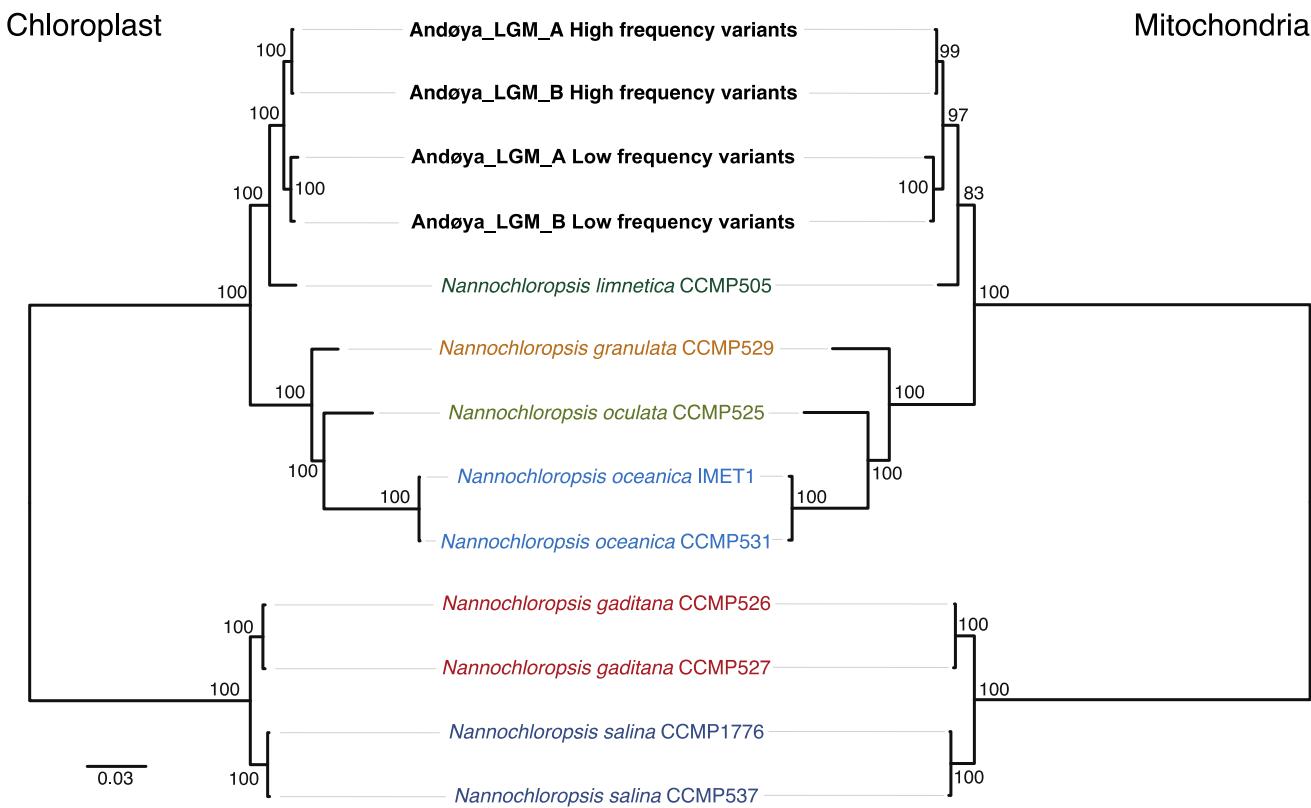
773 Tables and figures


774 **Table 1:** Summary of the best represented taxa (>200 identified sequences) detected in the
775 metagenomic analysis. N=Number of identified sequences, I=Percentage of identified
776 sequences, A=Percentage of all sequences included in the metagenomic analysis.

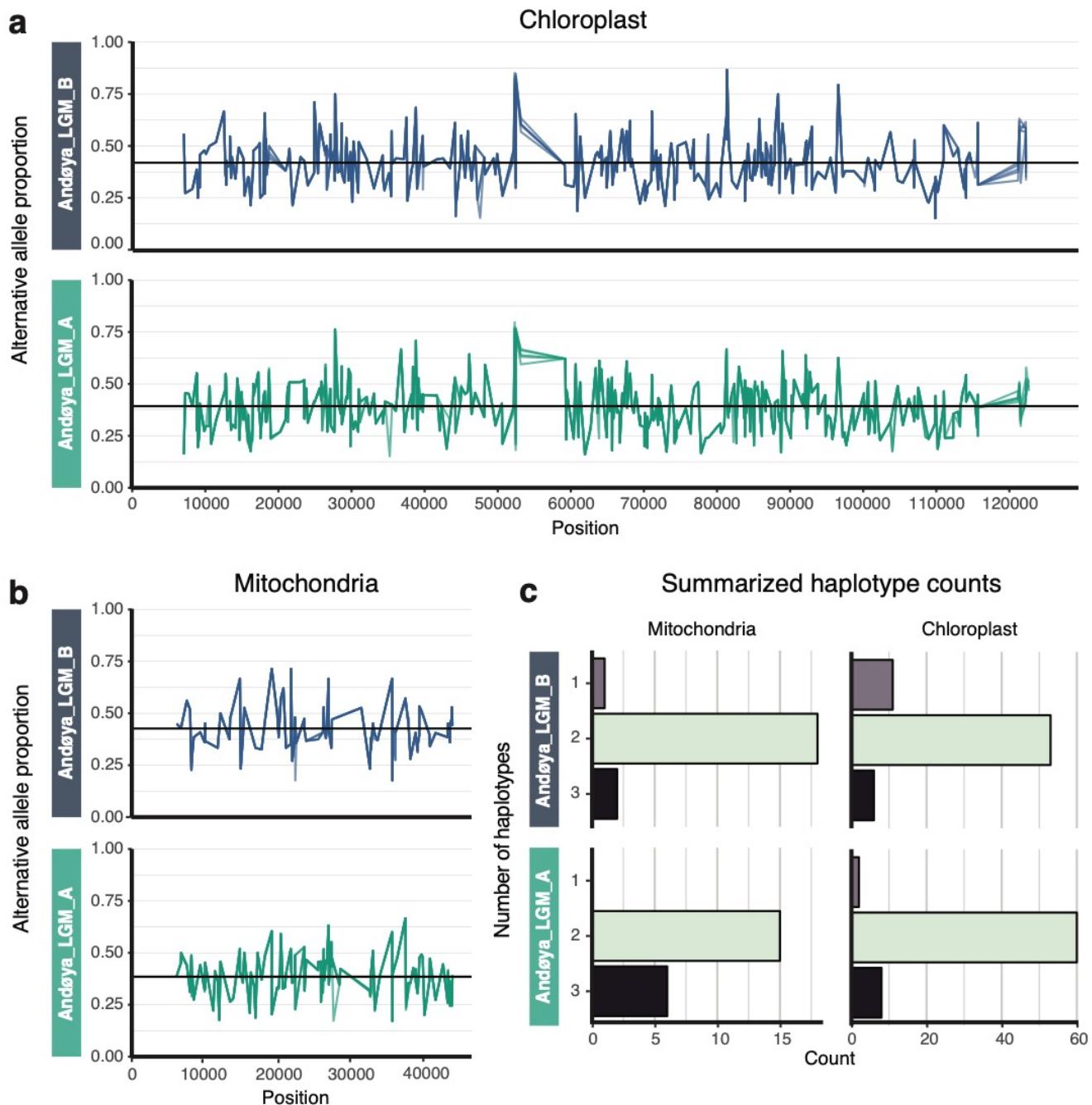
	Andøya_LGM_A			Andøya_LGM_B		
	N	I	A	N	I	A
Bacteria	18,852	63.93	0.94	21,873	66.85	1.09
<i>Mycobacterium</i>	6268	21.26	0.31	8535	26.08	0.43
<i>M. avium</i> complex	444	1.51	0.02	635	1.94	0.03
<i>M. dioxygenotrophicus</i>	0	0	0	229	0.7	0.01
<i>M. sp.</i> EPa45	0	0	0	306	0.94	0.02
<i>M. sp.</i> YC-RL4	0	0	0	207	0.63	0.01
<i>Pseudomonas</i>	920	3.12	0.05	904	2.76	0.05
Eukaryota	9333	31.65	0.47	9563	29.23	0.48
<i>Nannochloropsis</i>	5913	20.05	0.3	6179	18.88	0.31
<i>N. limnetica</i>	2223	7.54	0.11	2272	6.94	0.11
Other	1303	4.42	0.07	1284	3.92	0.06
Total	29,488	100	1.47	32,720	100	1.64


777

778 **Table 2:** Placement of the reconstructed high and low frequency organellar genomes and markers in each phylogenetic analysis. BSS=Bootstrap
 779 support values, HFV=High frequency variant, LFV=Low frequency variant.


Sample	Chloroplast			Mitochondrion			Nuclear			Consensus
	whole	rbCL	whole	placement	BSS (%)	placement	BSS (%)	placement	BSS (%)	
Andøya_LGM_A_HFV	sister to <i>N. limnetica</i>	100	<i>N. limnetica</i> var. <i>globosa</i>	57	sister to <i>N. limnetica</i>	83	<i>N. limnetica</i>	76	sister to <i>N. limnetica</i>	98
Andøya_LGM_B_HFV	sister to <i>N. limnetica</i>	100	<i>N. limnetica</i> var. <i>globosa</i>	57	sister to <i>N. limnetica</i>	83	<i>N. limnetica</i>	76	sister to <i>N. limnetica</i>	98
Andøya_LGM_A_LFV	sister to <i>N. limnetica</i>	100	<i>N. limnetica</i> var. <i>limnetica</i>	48	sister to <i>N. limnetica</i>	83	<i>N. limnetica</i> var. <i>limnetica</i>	72	sister to <i>N. limnetica</i>	49
Andøya_LGM_B_LFV	sister to <i>N. limnetica</i>	100	<i>N. limnetica</i> var. <i>limnetica</i>	48	sister to <i>N. limnetica</i>	83	<i>N. limnetica</i> var. <i>limnetica</i>	72	sister to <i>N. limnetica</i>	49

781 **Figure 1:** (a, b) Location of Lake Øvre Åråsvatnet (circled in red, panel b) in the ice-free
 782 refugium of Andøya in northwest Norway. The regional ice extent for Scandinavia in panel a
 783 has been plotted for 22 (outer) and 17 (inner) kcal yr BP and is based on Hughes *et al.*⁷⁸. The
 784 local ice extent in panel B is plotted for 22-18 and 18-17.5 kcal yr BP and is based on Vorren
 785 *et al.*²⁵. (c) Taxonomic composition of the LGM Andøya sediment samples, based on
 786 alignment to a reference panel of 42 eukaryotic or bacterial nuclear genomes. For readability,
 787 the algal, bacterial, and human results are plotted separately with differing y-axis scales.



788 **Figure 2:** *N. limnetica* chloroplast and mitochondrial palaeogenomes reconstructed directly
789 from sedaDNA. The innermost circle contains a distribution of the GC content in dark green,
790 with the black line representing the 50% mark. The outer blue distribution contains the
791 genomic coverage for the assembly, with the black line representing the average coverage of
792 64.3x for the chloroplast and 64.9x for the mitochondria. For the chloroplast the inverted
793 repeats (IRB and IRA), large single copy (LSC) and small single copy (SSC) regions are
794 annotated. The red bars on the chloroplast indicate the location of the two regions with
795 structural change compared to the *N. limnetica* reference genome.
796

797 **Figure 3:** Maximum likelihood phylogeny of *Nannochloropsis* chloroplast (left) and
798 mitochondrial (right) genome sequences, including the reconstructed *N. limnetica* consensus
799 sequences based on either high or low frequency variants.

800

801 **Figure 4:** The proportions of alternative alleles across the chloroplast (a) and mitochondrial
802 (b) genomes based on transversions-only. Each proportion plot consists of five independent
803 variant calling runs to account for sampling biases (see Methods). The horizontal black lines
804 represent averages: 0.39 and 0.42 for the chloroplast and 0.39 and 0.43 for the mitochondria,
805 for samples Andøya_LGM_A and Andøya_LGM_B respectively. In (a) and (b), colour
806 denotes sample. (c) Observed minimum haplotype counts based on the linked alleles for the
807 chloroplast and mitochondrial genomes for both samples.